ロட 154ロ／154ロレ ロட 15コロ／15ᄅロட Digital Oscilloscope ISER＇S IIIULI

Introduction

Thank you for purchasing the YOKOGAWA DL1520/DL1520L/DL1540/DL1540L Digital Oscilloscope.
This User's Manual contains useful information about the functions and operating procedures of the instrument, mainly DL1540. It also contains precautions that should be observed during use. Main differences in the specifications between DL1540 and DL1520/ DL1520L/DL1540L are that DL1520 has two input channels, DL1520L has two input channels and allows record length of up to 1 M words, and DL1540L allows record length of up to 2 M words. Due to these differences, functions and operations differ slightly among these models. For a detailed description, refer to the relevant sections of this manual. To ensure correct use of the instrument, please read this manual thoroughly before operating it. Keep the manual in a safe place for quick reference whenever a question arises. Two manuals are provided with the instrument in addition to this manual.

Manual Name	Manual No.	Description
DL 1540/1540L/1520/1520L IM701510-02E	Describes basic operations only.	
Operation Guide		
DL 1540/1540L/1520/1520L	IM701510-11E	Describes the communications functions Communication Interface
User's Manual		

Notes

- The contents of this manual are subject to change without prior notice as a result of improvements in the instrument's performance and functions. Display contents illustrated in this manual may differ slightly from what actually appears on your screen.
- Every effort has been made in the preparation of this manual to ensure the accuracy of its contents. However, should you have any questions or find any errors, please contact your nearest YOKOGAWA representative as listed on the back cover of this manual.
- Copying or reproduction of all or any part of the contents of this manual without YOKOGAWA's permission is strictly prohibited.

Trademarks

MS-DOS is a registered trademark of Microsoft Corporation.
HP-GL is a registered trademark of Hewlett-Packard Company.
PostScript is a registered trademark of Adobe Systems Incorporated.

Revisions

1st Edition: June 1995
2ndEdition: October 1995
3rd Edition: February 1996
4th Edition : May 1996
5th Edition: September 1996
6th Edition : March 1997
7th Edition : May 1997

Checking the Contents of the Package

Unpack the box and check the contents before operating the instrument. If the wrong instrument or accessories have been delivered, if some accessories are missing or if they appear abnormal, contact the dealer from which you purchased them.

Main Body

Check that the model name and suffix code given on the name plate of the rear panel match those on your order.

MODEL (Type Name)
701505 : DL1520, 701515 : DL1520L, 701510 : DL1540, 701520 : DL1540L

SUFFIX (Suffix Code)

NO. (Instrument No.)

When contacting the dealer from which you purchased your instrument, please quote the instrument No.

Standard Accessories

The following standard accessories are supplied with the instrument. Make sure that all items are present and undamaged.

Power cord (one of the following power cords is supplied according to the instrument's suffix codes)

Power supply fuse
(in fuse holder)
For DL1540/DL1540L,
for suffix code -1 \& -5: A1351EF For DL1520/DL1520L,
for suffix code -1: A1436EF
for suffix code -5: A1349EF

Rubber feet(x4)

Front cover A9088ZMx2
 B9920BT

$\left.\begin{array}{ll}\text { Soft case } \\ \text { B9918EZ }\end{array} \begin{array}{l}\text { User's manual (this manual) } \\ \text { Communication interface manual } \\ \text { Operation guide }\end{array} \begin{array}{l}\text { (x1) } \\ (\mathbf{x 1)} \\ \mathbf{(x 1)}\end{array}\right)$

Optional Accessories

The following optional accessories are available. On receiving these optional accessories, make sure that all the items that you ordered have been supplied and that they are undamaged.
If you have any questions regarding optional accessories, or if you wish to place an order, contact the dealer from whom you purchased the instrument.
Mini-clip convertor

B9852CR \begin{tabular}{l}
BNC adapter

B9852CS

\quad

Ground lead

B9852CT
\end{tabular}

Optional Spare Parts
The following optional spare parts are available. On receiving these optional spare parts, make sure that all the items that you ordered have been supplied and that they are undamaged.
If you have any questions regarding optional spare parts, or if you wish to place an order, contact the dealer from whom you purchased the instrument.

Part Name	Part No.	Minimum Q'ty	Remarks
150 MHz passive probe	700998	1	Input impedance: 10 M 2 , Length: 1.5 m
Roll chart	B9850NX	5	Thermo-sensible paper, Total length: 30 m
Power supply fuse (for DL1540, DL1540L)	A1351EF	2	Time lag, 3.15 A, 250 V
Power supply fuse (for DL1520, DL1520L)	A1436EF	A1349EF	2

Note

It is recommended that the packing box be kept in a safe place. The box can be used when you need to transport the instrument somewhere.

Safety Precautions

This instrument is an IEC safety class I instrument (provided with terminal for protective grounding). The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. If this instrument is used in a manner not specified in this manual, the protection provided by this instrument may be impaired. Also, YOKOGAWA Electric Corporation assumes no liability for the customer's failure to comply with these requirements.

The following symbols are used on this instrument.

!
To avoid injury, death of personnel or damage to the instrument, the operator must refer to an explanation in the User's Manual or Service manual.
$\stackrel{1}{=}$
Function Grounding Terminal (This terminals shold not be used as a "Protective grounding terminal".)
~ Alternating current
ON(power)
\bigcirc
OFF(power)
ص. In-position of a bistable push control
\square Out-position of a bistable push control

Power Supply

Ensure the source voltage matches the voltage of the power supply before turning on the power.

Power Cord and Plug

To prevent an electric shock or fire, be sure to use the power supply cord supplied by YOKOGAWA. The main power plug must be plugged in an outlet with protective grounding terminal. Do not invalidate protection by using an extension cord without protective grounding.

Protective Grounding

Make sure to connect the protective grounding to prevent an electric shock before turning on the power.

Necessity of Protective Grounding

Never cut off the internal or external protective grounding wire or disconnect the wiring of protective grounding terminal. Doing so poses a potential shock hazard.

Defect of Protective Grounding and Fuse

Do not operate the instrument when protective grounding or fuse might be defective.

Fuse
To prevent a fire, make sure to use fuses with specified standard (current, voltage, type). Before replacing the fuses, turn off the power and disconnect the power source. Do not use a different fuse or short-circuit the fuse holder.

Do not Operate in an Explosive Atmosphere
Do not operate the instrument in the presence of flammable liquids or vapors. Operation of any electrical instrument in such an environment constitutes a safety hazard.

Do not Remove any Covers

There are some areas with high voltage. Do not remove any cover if the power supply is connected. The cover should be removed by qualified personnel only.

External Connection

To ground securely, connect the protective grounding before connecting to measurement or control unit.

Handling the CRT

This CRT is in conformity with the requirements specified in CSA and VDE standards. However please avoid rough handling or jarring of the instrument to prevent possible CRT implosion. Breakage of the CRT may cause a high velocity scattering of glass fragments.

How to Use this Manual

Structure of the Manual

This User's Manual consists of 16 chapters, an Appendix and an Index as described below.

Chapter	Title	Description
1	Functions	Describes measurement principles and functions. Although this section does not give a description of the operating methods, it will help you to understand the basic operations.
2	Name and Use of Each Part	Gives the name of each part and describes how to use it. The corresponding reference pages for panel keys and the rotary knobs are also given.
3	Before Starting Observation and Measurement of Waveforms	Describes points to watch during use and describes how to install the instrument, connect the power cord, turn the power switch ON/OFF and connect probes as well as how to set the date and time.
4	Common Operations	Describes the operations used to make settings, such as start/ stop acquisition, auto set-up and initialization of each setting as well as operations, such as snapshot, clear trace and calibration, that are used frequently during operation.
5	Setting the Vertical and Horizontal Axes	Describes how to turn channels ON/OFF, how to make settings, such as input coupling, probe attenuation and vertical sensitivity, that are related to the vertical axis (voltage axis), as well as how to make settings related to the horizontal axis (time axis).
6	Activating a Trigger	Describes trigger setting operations, such as those for setting trigger mode, trigger type, trigger source and trigger level, that enable you to determine acquisition timing.
7	Changing Acquisition and Display Conditions	Describes how to make acquisition condition settings, such as acquisition mode, sampling mode, input filter and hysteresis, as well as how to make display condition settings, such as waveform expansion, interpolation, accumulation, X-Y display and graticule.
8	Analyzing Waveforms	Describes how to measure waveforms using cursors, perform automatic measurement of waveform parameters and waveform math, and how to display the power spectrum obtained by FFT computation.
9	Performing a GO/NO-GO Action	Describes how to perform a GO/NO-GO action by setting the waveform zone or setting limits for waveform parameters, then detecting whether the input signal waveform is within the specified range (zone or limits).
10	Outputting Displayed Waveforms and Setting Parameters to the Printer/Plotter	Describes how to output displayed waveforms (screen hardcopy) and set-up information to the built-in printer or plotter connected to the GP-IB interface.
11	Storing and Recalling Data from the Internal Memory	Describes how to store displayed waveforms or settings in the internal memory, how to recall stored waveform data and display the waveforms, and how to recall settings and change them.
12	Saving and Loading Data from a Floppy Disk	Describes how to save waveform data or set-up data to a floppy disk, how to load saved data, how to initialize a floppy disk and how to delete data.
13	Saving and Loading Data from a SCSI Device	Describes how to save waveform data or set-up data to a SCSI device, how to load saved data, how to initialize a SCSI device and how to delete data.
14	Other Operations	Describes operations such as those required for trigger output.
15	Troubleshooting, Maintenance and Inspection	Describes how to diagnose the cause of trouble and how to correct it, as well as describing each message that may appear on the screen and how to perform a self test.
16	Specifications	Describes the specifications.
	Appendix	Shows a menu map, describes the relationship between the time axis, sample rate and record length, and describes the data format which must be specified when waveform data is saved.
	Index	Important terms used in this manual with corresponding reference page numbers are given.

Conventions Used in this Manual

Unit

k
............. Denotes "1000". Example: $100 \mathrm{kS} / \mathrm{s}$

K \qquad Denotes "1024" or "1002".

- Example of when K indicates " 1024 " : 640 KB (storage capacity of a floppy disk)
- Example of when K indicates "1002" : 100 KW (record length for acquisition memory)

Used Characters

Alphanumerics enclosed in double quotation marks usually refer to characters and set values that appear on the screen and panel.
The SHIFT + xxx key refers to first pressing the SHIFT key (the indicator above the SHIFT key lights), and then pressing the xxx key to obtain another, specified, function.

Symbols Used

The following symbol marks are used in this User's Manual.

WARNING

CAUTION

Note

To avoid injury or death of personnel, or damage to the instrument, the operator must refer to the User's Manual. In the User's Manual, these symbols appear on the pages to which the operator must refer.

Describes precautions that should be observed to prevent the danger of serious injury or death to the user.

Describes precautions that should be observed to prevent the danger of minor or moderate injury to the user, or the damage to the property.

Provides information that is important for proper operation of the instrument.

Symbol Marks Used for Descriptions of Operations

The following symbol marks are used in Chapters 3 to 14 to distinguish certain features in descriptions.

Relevant Keys

Operating Procedure

Indicates the relevant panel key which are necessary to carry out the operation.

Carry out steps in the order shown. The operating procedures are given with the assumption that you are not familiar with the operation. Thus, it may not be necessary to carry out all the steps when changing settings.

Keys and Procedure

Explanation

Shows the above mentioned relevant keys and the operating procedure in one block.

Describes settings and restrictions relating to the operation. A detailed description of the function is not provided. For a detailed description of the function, refer to Chapter 1.

Contents

Introduction 1
Checking the Contents of the Package 2
Safety Precautions 5
How to Use this Manual 7
Conventions Used in this Manual 8
Chapter 1 Functions
1.1 System Configuration and Block Diagram 1-1
1.2 Setting the Vertical and Horizontal Axes 1-2
Input Coupling / Probe Attenuation 1-2
Inverted Waveform Display / Vertical Sensitivity 1-3
Vertical Position of the Waveform / Time Axis 1-4
1.3 Setting a Trigger 1-8
Trigger Type / Trigger Source / Trigger Level 1-8
Trigger Mode / Action-On Trigger / Trigger Coupling 1-10
HF Rejection / Trigger Position / Trigger Delay / Trigger Hold-off 1-11
1.4 Setting the Acquisition and Display Conditions 1-12
Acquisition Modes / Sampling Mode 1-12
Record Length Input Filter / Expanded Waveform 1-13
Sequential Store 1-14
History Memory / Display Interpolation 1-15
Accumulated Waveform Display / X-Y Waveform Display 1-16
Other Display Settings 1-17
1.5 Analyzing the Waveform 1-18
Cursor Measurements / Automated Measurements / Linear Scaling 1-18
Waveform Math / Power Spectrum Display 1-19
1.6 Other Useful Functions 1-20
Auto Set-up / Initialization / Snapshot / Clear Trace / GO/NO-GO Determination 1-20
Making Hardcopy Print-outs / Real-time Printing / Storing and Recalling 1-21
Saving and Loading Data from a Floppy Disk / Saving and Loading Data from a SCSI Device / GP-IB and RS-232-C 1-22
Chapter 2 Name and Use of Each Part
2.1 Front Panel / Rear Panel / Top View 2-1
2.2 Operation keys / Rotary Knob 2-2
2.3 Display 2-5
Chapter 3 Before Starting Observation and Measurement of Waveforms
3.1 Precautions During Use 3-1
3.2 Installing the Main Unit 3-2
4 3.3 Connecting the SCSI Cable (for DL1520L with suffix code -C4) 3-3
3.4 Connecting the Power Cord 3-5
3.5 Turning the Power Switch ON/OFF 3-6
4 3.6 Connecting a Probe 3-7
© 3.7 Compensating the Probe (Phase Correction) 3-8
3.8 Setting the Date and Time 3-9

Chapter 4 Common Operations

4.1 Starting and Stopping Acquisition 4-1
4.2 Displaying Waveforms using the Auto Set-up Function 4-2
4.3 Initializing Settings 4-4
4.4 Halting a Waveform and Erasing the Halted Waveform (Snap Shot and Clear Trace) 4-5
4.5 Performing Calibration 4-6
4.6 Setting Values 4-7
4.7 Entering Characters using the Keyboard 4-8
Chapter 5 Setting the Vertical and Horizontal Axes
5.1 Turning Display of Input Signal Waveforms ON/OFF 5-1
© 5.2 Setting the Input Coupling 5-2
5.3 Setting the Probe Attenuation 5-4
5.4 Inverting a Waveform 5-5
5.5 Setting the Vertical Sensitivity 5-6
5.6 Changing the Waveform's Vertical Position 5-7
4. 5.7 Selecting the Timebase 5-8
5.8 Setting the Time Axis 5-10
5.9 Changing the Waveform's Horizontal Position 5-12
Chapter 6 Activating a Trigger
6.1 Relationship between Trigger Type and Trigger Source/Slope/Level 6-1
(1) 6.2 Setting the Edge Trigger 6-2
6.3 Setting the Window Trigger 6-4
6.4 Setting the TV Trigger 6-5
6.5 Setting the OR Trigger (Optional for DL1540/DL1540L) 6-7
6.6 Setting the Pattern Trigger (Optional for DL1540/DL1540L) 6-8
6.7 Setting the Width Trigger (Optional for DL1540/DL1540L) 6-10
6.8 Setting the Trigger Mode 6-12
6.9 Setting the Action-On Trigger 6-14
6.10 Setting the Trigger Coupling and HF Rejection 6-16
6.11 Changing the Trigger Position 6-17
6.12 Setting the Trigger Delay 6-18
6.13 Setting the Hold-off Time 6-19
Chapter 7 Changing Acquisition and Display Conditions
7.1 Selecting Acquisition Mode, Sampling Mode, and Record Length for DL1520L/DL1540L 7-1
7.2 Setting the Input Filter 7-3
7.3 Zooming the Waveform 7-4
7.4 Acquiring Waveforms using the Sequential Store Function (for DL1520L/DL1540/DL1540L) 7-7
7.5 Using the History Memory Function (for DL1520L/DL1540/DL1540L) 7-9
7.6 Changing the Interpolation Settings 7-11
7.7 Displaying an Accumulated Waveform 7-12
7.8 Displaying an X-Y Waveform 7-13
7.9 Changing the Graticule, Scale and \%Marker Settings 7-14
7.10 Turning the Waveform Information Display ON/OFF 7-15
7.11 Changing the Screen Intensity 7-16
Chapter 8 Analyzing Waveforms
8.1 Measuring a V-T Waveform using Cursors 8-1
8.2 Measuring an X-Y Waveform using Cursors 8-5
8.3 Measuring Waveform Parameters Automatically 8-7
8.4 Using the Linear Scaling Function 8-14
8.5 Performing Waveform Math (Addition, Subtraction and Multiplication) 8-16
8.6 Displaying the Power Spectrum (Performing FFT Computation) 8-18
8.7 Measuring the Power Spectrum using Cursors 8-19
Chapter 9 Performing a GO/NO-GO Action
9.1 Judging using a Waveform Zone 9-1
9.2 Judging using Measured Values of Waveform Parameters 9-8
9.3 Using the GO/NO-GO Signal Output Function (for DL1540/DL1540L) 9-13
Chapter 10 Outputting Displayed Waveforms and Set-up Information to the Printer/Plotter
10.1 Loading a Chart in the Optional Built-in Printer 10-1
10.2 Printing Waveforms and Additional Information using the Optional Built-in Printer 10-3
10.3 Real-Time Printing using the Optional Built-in Printer 10-6
10.4 Connecting an External Plotter 10-7
10.5 Printing Displayed Waveforms and Additional Information using an External Plotter 10-8
10.6 Entering a Comment $10-10$
10.7 Printing the Screen Image to an External Printer (for DL1520/DL1520L with suffix code -C3) 10-11
Chapter 11 Storing and Recalling Data from the Internal Memory
11.1 Storing and Recalling Displayed Waveforms 11-1
11.2 Storing and Recalling Setting Parameters 11-3
Chapter 12 Saving and Loading Data from a Floppy Disk
12.1 Floppy Disks 12-1
12.2 Formatting a Floppy Disk 12-2
12.3 Saving and Loading Waveform Data 12-4
12.4 Saving and Loading Setting Parameters 12-9
12.5 Saving Screen Image Data 12-11
12.6 Deleting and Protecting Saved Data 12-14
Chapter 13 Saving and Loading Data from the SCSI Device (for DL1520L with suffix code -C4)
13.1 Selecting the SCSI Device 13-1
13.2 Formatting the Media 13-2
13.3 Saving and Loading Waveform Data 13-4
13.4 Saving and Loading Setting Parameters 13-9
13.5 Saving Screen Image Data 13-11
13.6 Deleting and Protecting Saved Data 13-1410

Chapter 14 Other Operations

14.1 Using a Trigger Output Signal (for DL1540/DL1540L) ... 14-1
14.2 Downloading Waveform Data to an AG Arbitrary Waveform Generator 14-2
14.3 Checking the System Condition ... 14-3
14.4 Adjusting the Printer Density ... 14-4

Chapter 15 Troubleshooting, Maintenance and Inspection

15.1 Troubleshooting .. 15-1
15.2 Error Messages and Corrective Actions ... 15-3
15.3 Self Test ... 15-7
15.4 Replacing the Power Supply Fuse ... 15-8
15.5 Recommended Parts for Replacement .. 15-9

Chapter 16 Specifications

16.1 Input Section .. 16-1
16.2 Trigger Section .. 16-2
16.3 Time Axis ... 16-3
16.4 Display .. 16-3
16.5 Functions .. 16-4
16.6 Rear Panel Input/Output Section .. 16-5
16.7 Communication Interface ... 16-6
16.8 Built-in Printer .. 16-7
16.9 Built-in Floppy Disk Drive .. 16-7
16.10 General Specifications ... 16-8
16.11 External Dimensions .. 16-10

Appendix

Appendix 1	Menu Map.	App-1
Appendix 2	Relationship between the Time Axis Setting, Sample Rate and Record Length (for DL1520/DL1540) \qquad	App-2
Appendix 3	Relationship between the Time Axis Setting, Sample Rate and Record Length (for DL1520L/DL1540L) \qquad	App-5
Appendix 4	How to Calculate the Area of a Waveform	pp-11
Appendix 5	Output Data Format used When Saving Waveform Data (Exampl	pp-12

Index

2.1 Front Panel / Rear Panel / Top View

Front Panel (2 channels are provided with DL1520/DL1520L.)

Rear Panel (Varies depending on the model. Refer to the their individual specifications.)

Top View

2.2 Operation Keys / Rotary Knob

Operation keys provided with DL1540/DL1540L are shown below. For DL1520/DL1520L, keys relating to CH3 and CH4 and HISTORY key are not provided.

Keys and Rotary Knob used for Various Functions

Keys and Rotary Knob used for Setting the Vertical/Horizontal Axis

Keys and Rotary Knob used for Making Trigger Settings

Keys and Rotary Knob used for Setting Acquisition and Display Conditions

Keys and Rotary Knob used for Analysis of Waveforms

Keys and Rotary Knob used for Other Operations

RESET key
Resets the settings made using the rotary knob to their default values.

Used to input the file name, for selection Used to input the
Rotary knob
Used to select the desired setting items or values.

MISC key (Pages 14-2 to 14-4, 15-7)
Displays the MISC menu used to make communications, date and time settings, confirm system condition, perform a self test and make system configuration setting. Used for outputting to internal printer, external plotter, hard copy of screen image data, etc.

SHIFT + COPY(MENU)

(Chapter 10, Page 12-11)
Displays the setting menu for outputting to the internal printer, external plotter, and for hard copy of screen image data, etc.
STORE/RECALL key (Chapter 11)
Displays the store/recall menu used to store or recall displayed waveforms and setting parameters from the internal memory.

SHIFT + STORE/RECALL(FILE) key (Chapter 12 and 13) Displays the setting menu used to save/load data to/from the floppy disk or the SCSI device. The menu for operating the SCSI device is displayed only on the DL1520L with suffix code -C4.

2.3 Display

An example of screen displayed on DL1540/DL1540L is shown below. For DL1520/ DL1520L, waveforms and data relating to CH 3 and CH 4 are not displayed.

Normal Waveform Display

Information concerning waveform acquisiton
No display $\cdots \cdots \cdots$ acquisition in progress
Stopped
Waiting for trigger

Trigger level mark
Trace

Automated Measurements \rightarrow Refer to page 8-7.

Expanded Display \rightarrow Refer to page 7-4.

Recalled Waveform \rightarrow Refer to page 11-1.

3.1 Precautions During Use

Safety Precautions

When using this instrument, thoroughly read the "Safety Precautions" given on page 4 and 5. In addition, pay attention to the following points:

Do not remove the cover from the instrument

Some parts of the instrument use high voltages, which are extremely dangerous. When the instrument needs internal inspection or adjustment, contact your dealer or nearest YOKOGAWA representative as listed on the back cover of this manual.

Unusual occurrences

If you notice smoke or unusual odors coming from the instrument, turn OFF the power and unplug the power cord immediately. Contact your dealer or the nearest YOKOGAWA representative as listed on the back cover of this manual.

Power cord

Nothing should be placed on the power cord; also, it should be kept away from any heat sources. When unplugging the power cord from the AC outlet, never pull the cord itself. Always hold the plug and pull it. If the power cord is damaged, contact your dealer. Refer to page 2 for the part number to quote when placing an order.

General Handling Precautions

Never place anything on top of the instrument
Never place another instrument or any objects containing water on top of the instrument, otherwise a breakdown may occur.

Do not subject the input terminals or connecting cables to shock
Shock to the input terminals or connecting cables may turn into electrical noise and enter
the instrument via the signal lines.

When the instrument is not going to be used for a long period

Unplug the power cord from the AC outlet.

CRT Screen

It is recommended to use weak contrast settings so as not to burn in the screen.

When moving the instrument

Disconnect the power cord and connecting cables. Always carry the instrument by the handles or carry it with both hands as shown on the right.
Note that the chart paper might show some discoloration due to friction after the instrument is moved with the roll paper installed. In such a case, we recommend to remove and re-install the chart paper again. For details on the procedure, refer to page 10-1.

Cleaning

For cleaning the case and the operation panel, unplug the power cord first, then gently wipe with a dry, soft and clean cloth. Do not use chemicals such as benzene or thinner, since these may cause discoloration or damage.

3.2 Installing the Main Unit

Installation Position

Place the instrument in a flat, horizontal position as shown in the figure below. To tilt the screen slightly forwards, use the support, as shown below also.
When using the support, pull it forwards until it is at right angles to the bottom of the instrument, and lock it. If you are installing the instrument in a slippery place, attach the rubber stoppers to all feet to prevent the instrument from sliding.

Installation Conditions

The instrument must be installed in a place where the following conditions are met.

Ambient temperature and humidity

Ambient temperature: 5 to $40^{\circ} \mathrm{C}$
To ensure high measurement accuracy, ambient temperature should be $23 \pm 2^{\circ} \mathrm{C}$.
Ambient humidity: 20 to 80% RH
No condensation should be present. To ensure high measurement accuracy, ambient humidity should be $55 \pm 10 \%$ RH.

Flat, horizontal locations

Place the instrument in a stable location, which is horizontal in each direction. Operating the instrument in an unstable location may hinder recording of the printer and accurate measurement.

Well-ventilated location

Vent holes are situated on the left side of the instrument. In addition, vent holes for the cooling fan are also situated in the rear panel. To prevent a rise in the internal temperature, the vent holes should not be blocked and sufficient clearance should be maintained around them.

If the instrument is equipped with a built-in printer or when the GP-IB cable is connected, make sure to allow sufficient space for operations in addition to the space for the vent holes.

Never install the instrument in any of the following places.

- In direct sunlight or near heat sources
- Where an excessive amount of soot, steam, dust or corrosive gases are present.
- Near strong magnetic field sources
- Near high voltage equipment or power lines
- Where the level of mechanical vibration is high
- In an unstable place

Note

Internal condensation may occur if the instrument is moved to another place where both the ambient temperature and humidity are higher, or if the temperature changes rapidly. In such cases allow the instrument to acclimatize to its new environment for at least one hour before starting operation.

3.3 Connecting the SCSI cable (for DL1520L with suffix code -C4)

Name, position and pin cofigurationo of the SCSI cable connector

- Name : OPTION
- Position : Real panel of DL1520L
- Pin configuration

Pin No.	Signal name	Pin No.	Signal name	Pin No.	Signal name
1 to 12	GND	32	-DB6	43	-BSY
13	NC	33	-DB7	44	-ACK
14 to 25	GND	34	-DBP	45	-RST
26	-DB0	35 to 37	GND	46	-MSG
27	-DB1	38	TERMPWR	47	-SEL
28	-DB2	39,40	GND	48	-C/D
29	-DB3	41	-ATN	49	-REQ
30	-DB4	42	GND	50	-I/O
31	-DB5				

504948 - - - - - - 282726
(Rear panel)

Other necessary equipment

SCSI Device

SCSI devices which can send and receive data over SCSI and can set the ID number to " 5 " can be connected the instrument. There are exceptions as in the case when the media used on the SCSI device is formatted with another equipment such as a PC, or the pin configuration of the connector is different. Refer to section 16.7, for the SCSI specification. Also, for information on general precautions in using the SCSI device, refer to the
instruction manual for that device.

SCSI cable

SCSI cables should have the connector shape and pin configuration which match the "OPTION" connector on the rear panel of the DL1520L (refer to the figure above). They should be less than 3 m long with a characteristic impedance between 90 and 132Ω. Also, attach a ferrite core (TDK:ZCAT2035-0930A) on each end of the cable.

Terminator

Some SCSI devices require terminators. Follow the instruction manual for the SCSI device.

Note

[^0]
Connecting the SCSI cable

CAUTION

- When connecting or disconnecting the SCSI cable, turn the power switches OFF on all equipment. Not doing so may cause malfunction, or damage the equipment.
- Never short the connector pins on any equipment or externally apply voltage to them. It may damage the equipment.

Before connecting

1. Make sure to read the instruction manuals thoroughly and have a good understanding on all equipment being connected beforehand.
2. Turn the power switches OFF on all equipment that are being connected.

Connecting DL1520L and the SCSI device

3. Connect one end of the SCSI cable to the connector "OPTION" on the rear panel of this unit.
4. Connect the other end of the SCSI cable to the connector on the SCSI device.
5. Set the ID number of the SCSI device to "5."

DL1520L digital oscilloscope (suffix code -C4)

Note
DL1520L with suffix code - C4 can connect one SCSI device to the "OPTION" connector.

3.4 Connecting the Power Cord

Before Connecting the Power

Make sure that you perform the following steps before connecting the power. Failure to do so may cause electric shock or damage to the instrument.

WARNING

- Connect the power cord after confirming that the voltage of the power supply complies to the rated electric power voltage for this instrument.
- Connect the power cord after confirming that the power switch is OFF.
- Always use protective ground to prevent electric shock. Connect the accessory power cord to a power outlet with grounding terminal.
- Do not use non-grounding extension cords or other measures that defect the protective grounding.
- Never use an extension cord that does not have protective grounding, otherwise the protection feature will be negated.

Connecting the Power Cord

1. Make sure that the main power switch is OFF.
2. Plug the power cord into the power connector socket on the rear panel of the instrument.
3. Plug the other end of the power cord into an AC outlet that meets the following specifications. The AC outlet must be of 3-pin type with a protective grounding terminal.

Item	DL1540, DL1540L Suffix code -1 and -5	DL1520, DL1520L Suffix code -1	Suffix code -5
Rated supply voltage	100 to 120 VAC/ 220 to 240 VAC	100 to 120 VAC	200 to 240 VAC
Permitted supply voltage range	90 to $132 \mathrm{VAC} / 180$ to 264 VAC	90 to 132 VAC	180 to 264 VAC
Rated supply voltage frequency	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
Permitted supply voltage frequency range	48 to 63 Hz	48 to 63 Hz	48 to 63 Hz
Maximum power consumption (when the built-in printer is used)	220 VA/280 VA	130 VA	140 VA
Typical power consumption (when the built-in printer is not used)	$\begin{aligned} & 150 \mathrm{VA} \text { (at } 100 \mathrm{VAC} \text {) } \\ & / 190 \mathrm{VA}(\text { at } 200 \mathrm{VAC}) \end{aligned}$	75 VA (at 100 VAC)	85 VA (at 200 VAC)

3.5 Turning the Power Switch ON/OFF

Points to be Checked before Turning ON the Power
Check that the instrument is correctly installed as described in Section 3.2
"Installing the Main Unit" (page 3-2).
Check that the SCSI cable is correctly connected as shown in Section 3.3
"Connecting the SCSI cable (for DL1520L with suffix code -C4)" (page 3-3).
Check that the power cord is correctly connected as shown in Section 3.4
"Connecting the Power Cord" (page 3-5).

Location of the Power Switch

The power switch is located on the front panel in the lower left corner.

Turning the Power ON/OFF

The power switch is a push-button type switch, and the power is turned ON and OFF alternately as the switch is pressed.

The Order in Turning the Power Switches ON/OFF

When peripheral devices are connected to the half pitch interface connector of the this instrument, turn ON the power switches on all peripheral devices first, then turn ON the power switch of this instrument. When turning OFF the power, reverse the order.

Response at Power ON

Calibration (correction of the ground level and gain etc.) starts automatically when the power switch is turned ON. Front panel keys are not operative during calibration (which lasts approximately seven seconds). When calibration has been completed, the normal waveform display screen will appear.

Note

If calibration does not start when the power is turned ON , or if the normal waveform display screen does not appear, check the following points.

- Check that the power cord is plugged in properly.
- Check that the correct voltage is being supplied from the AC outlet. (Refer to page 3-5.)
- Check that the fuse is not blown. (Refer to page 15-8.)
- If the power switch is turned ON while the INITIALIZE key is pressed, all settings will be reset to the factory settings. For details, refer to Section 4.3 "Initializing Settings" (page 4-4).
If there is still no power even after the above points have been checked, contact your nearest YOKOGAWA representative as listed on the back cover of this manual.

For Accurate Observation and Measurement

Turn the power switches ON and allow the unit to warm up for approximately 30 minutes. Just before starting observation/measurement, perform calibration. The ground level and gain etc. will be corrected. For a description of the calibration method, refer to Section 4.5 "Performing Calibration" (page 4-6).

Response at Power OFF

Settings made prior to turning OFF the power are retained. This allows display of waveforms using these saved settings the next time the power is turned ON.

Note

The settings are backed up by a lithium battery. The battery lasts for approximately five years if it is used at an ambient temperature of $23^{\circ} \mathrm{C}$. When the battery runs out, an icon $\boldsymbol{L i} /$ appears in the top left of the screen. In this case, the battery needs to be replaced immediately. The battery cannot be replaced by the user. Contact your nearest YOKOGAWA representative as listed on the back cover of this manual.

3.6 Connecting a Probe

Input Terminals

A probe (or an input cable such as a BNC cable) must be connected to one of the input terminals (CH1 to CH4, CH1 and CH2 for DL1520/DL1520L) located on the lower section of the front panel.
The input impedance is $1 \mathrm{M} \Omega \pm 1.5 \%$ and approximately 25 pF .

CAUTION
The maximum input voltage is 250 V (DC + ACpeak) or 177 Vrms when the frequency is 1 kHz or less. Never input a voltage exceeding this level, as it could damage the input section of the instrument. If the frequency exceeds 1 kHz , the input section may be damaged even when the voltage is below $\mathbf{2 5 0} \mathbf{V}$.

Example (DL1540/DL1540L)

Points to Note when Connecting a Probe

- When connecting a probe to the instrument for the first time, perform phase correction of the probe as described in the next section on page 3-7. Failure to do so may result in unstable gain across different frequencies, thereby preventing correct measurement. Calibration must be performed for each channel.
- If the object to be measured is connected to the instrument directly, without using a probe, correct measurement cannot be performed due to the load effect.

Probe
Specifications for the probe (700998) supplied with the instrument (after calibration)

Item	Specifications Setting 10:1	Setting 1:1	Conditions
Input impedance/capacitance	$10 \mathrm{M} \Omega \pm 2 \% /$ approx. 14 pF	$1 \mathrm{M} \Omega \pm 1.5 \% /$ approx. 100 pF	When used with this instrument
Attenuation ratio	$10: 1 \pm 2.5 \%$	-	When used with this instrument
Frequency band	DC to 150 MHz	DC to 6 MHz	When used with this instrument
Rise time	2.4 ns or less	58 ns or less	When used with this instrument
Maximum input voltage	600 V (DC +ACpeak$)$	$* 1$	-
	or 424 Vrms,		
	Frequency is 100 kHz or lower	-	
Connector type	BNC	BNC	-
Total length	1.5 m	1.5 m	

*1 When the probe's attenuation ratio is " $1: 1$," never input voltage exceeding the maximum input voltage of this instrument.

When using a probe other than the one supplied with the instrument

To measure a signal which contains harmonics of approximately 150 MHz , use a probe with a frequency band of 150 MHz or higher.
Correct measured values cannot be displayed if the probe's attenuation ratio is not " $1: 1$ ",
" $10: 1 ", " 100: 1 "$ or " $1000: 1$ ".
When a probe other than $1 \mathrm{M} \Omega$ probe (for example a 50Ω probe) is to be used, connect a through-type 50Ω terminator ${ }^{* 2}$ for impedance matching.
*2 When placing an order for the 50Ω terminator as the one supplied with the instrument, quote the number " 700976 ".

Setting the probe attenuation

Follow the operating procedure given in Section 5.3 "Setting the Probe Attenuation" (page 5-4) so that the probe's attenuation matches the one displayed below "Probe" in the soft key menu which appears when the INPUT key is pressed. If they do not match, measured values cannot be read correctly.

3.7 Compensating the Probe (Phase Correction)

Never apply an external voltage to the CAL terminal, as damage to the instrument may result.

Operating Procedure

1. Turn ON the power switch.
2. Connect the probe to the input terminal to which the signal is to be applied.
3. Touch the probe's tip against the CAL output terminal and connect the grounding wire to the grounding function terminal.
4. Press the AUTO-SETUP key.
5. Press the "EXEC" soft key. The calibration signal is displayed on the screen.
6. Insert a screwdriver into the trimmer adjusting hole in the probe and turn the trimmer so that the displayed waveform becomes square.

Explanation

Reason for probe compensation

If the probe's input capacitance is outside the specified range, the gain will not be constant across different frequencies, preventing display of the correct waveforms. The input capacitance varies depending on the probe used, so the variable capacitor (trimmer) provided on the probe must be adjusted.
Probe compensation must be performed when the probe is to be used for the first time. Moreover, the appropriate input capacitance varies according to which channel is used, so probe compensation is required when the probe is switched from one channel to another.

Calibration signal

A CAL signal (square waveform) of the following characteristics is output from the CAL terminal on the front panel.
Frequency: Approx. 1 kHz
Amplitude : Approx. 1 V

Waveform differences

Correct waveform

Over-compensated (gain is too high at high frequency)

Under-compensated (gain is too low at high frequency)

3.8 Setting the Date and Time

Keys and Procedure

1. Press the MISC key to display the MISC menu.
2. Press the "Date/Time" soft key to display the DATE/TIME setting menu.

Turning the Date/Time ON/OFF

3. Turn the rotary knob to select "Mode", and select "ON" or "OFF" using the SELECT key.

Setting the Date/Time

4. Turn the rotary knob to select "Year", "Month", "Day", "Hour", "Minute" or "Second". Press the SELECT key to display the setting screen.
5. Set the required value using the rotary knob.
6. Press the SELECT key or the ESC key to close the setting screen.
7. Repeat steps 4 to 6 until all necessary items are set.
8. Turn the rotary knob to select "SET" and press the SELECT key to confirm the settings.
9. Press the ESC key to close the menu.

Explanation

Setting the Date/Time ON or OFF

When you set the mode to ON, the date and time will appear in the upper right corner of the screen. And when making a hard copy of the screen (to the built-in printer or external plotter) the date and time will be printed together with the waveform.

1995/05/01 00:09:15

The current date and time are saved together with the waveform data or set-up data when the data is saved to a floppy disk.

Setting values of Date/Time

DATE
Year : 1980 to 2079 Hour : 00 to 23
Month : 1 to $12 \quad$ Minute : 00 to 59
Day : 1 to $31 \quad$ Second: 00 to 59

Note

The date and time are backed up by the built-in lithium battery. Leap years are provided.

4.1 Starting and Stopping Acquisition

Keys and Procedure

1. Press the START/STOP key to start/stop waveform acquisitioning.
2. In case the indicator located at the upper left of the START/STOP key is lit, waveform acquisition is in progress.
3. In case the indicator located at the upper left of the START/STOP key is not lit, waveform acquisition is not in progress. In the upper left corner of the screen, "Stopped" appears.

Operation during display of accumulated waveforms

Accumulated display stops temporarily when acquisition is stopped. When measurement is restarted, the accumulated display is reset and accumulation starts.

The START/STOP key is not operative in the following cases

- When remote state is active (i.e. the REMOTE indicator is lit);
- When a short or long copy is being output to the built-in printer;
- When the floppy disk is being accessed (e.g. when data is being saved to it). (If acquisition is in progress, access to the floppy disk starts after acquisition is stopped.);
- When calibration, auto set-up or initialization is in progress.

Operation in combination with external clock

When the external clock is being used and you start acquisition, the error messages "Ext clock too slow" or "Ext clock too fast" might appear.

Note

If the START/STOP key is pressed to start acquisition while acquisition data (ACQ data) loaded from a floppy are being displayed, the acquisition data will disappear from the screen. It is possible to retain the waveform on screen by stopping acquisition only for the channel corresponding to the trace No. of the waveform. For a description of this operation, refer to page 12-6.
For details regarding the external clock settings, refer to page 5-8.

4.2 Displaying Waveforms using the Auto Set-up Function

Keys and Procedure

1. Press the AUTO-SETUP key to display the auto set-up execution menu.
Executing auto set-up
2. Press the "AUTOSET EXEC" soft key to perform auto set-up. Channels will be turned ON/OFF automatically depending on whether input is applied or not.

Canceling auto set-up

3. Press the "UNDO" soft key to restore the previous settings which were in effect before the auto set-up. Note however that, if you have performed any other settings, it might be necessary to press the
AUTO-SETUP key once again.

UNDO

Explanation

Waveforms for which auto set-up is effective
Frequency: Approx. 40 Hz to 150 MHz
Amplitude : Approx. 50 mV or higher (when probe attenuation is 1:1)
Type : Repetitive (but not complex) waveform
Auto set-up settings related to the vertical axis CH1 to 4 (CH1/CH2 for DL1520/DL1520L)

Depending on whether input is applied or not, the channels are automatically turned ON or OFF. (In case of an amplitude of at least approx. 50 mV (and probe attenuation is $1: 1$), the channel will be turned ON).
V/DIV when one waveform is displayed : Set to a value so that the peak voltage is between 1.6 div p-p and 4 div p-p.
when two waveforms are displayed : Set to a value so that the peak voltage is between 0.8 div p-p and 2 div p-p.
when three waveforms are displayed : Set to a value so that the peak voltage is between 0.4 div p-p and 1 div p-p.
when four waveforms are displayed : Set to a value so that the peak voltage is between 0.4 div p-p and 1 div p-p.
POSITION
Set as follows depending on the number of channels which are ON.

- Input coupling: DC; Offset: 0 V
- Inversion: Unchanged
- Probe attenuation : Unchanged
Probe attenuation must be set before starting auto set-up.
- Acquisition hold : Unchanged

INPUT

Auto set-up settings related to the horizontal axis

TIME/DIV
Set to a value so that between two and four periods of the slowest input
signal can be observed.
If this is not possible for any of the channel input signals, set to $1 \mathrm{~ms} /$
div.

TIMEBASE Set to "INT".

```
Auto set-up settings related to triggers
MODE Set to "AUTO".
TYPE Set to "EDGE".
LEVEL/SOURCE The trigger level is set to half the amplitude of the trigger source, and
the channel for the slowest signal is selected as the trigger source. The
slope setting is set to " }\Gamma\mathrm{ ".
COUPLING Set to "DC", HF rejection remains unchanged.
POSITION Set to Odiv.
DELAY Set to "0s".
HOLD OFF Set to "OFF".
```

Auto set-up settings related to acquisition/display conditions
START/STOP Acquisition is started.
ACQUISITION Set to "NORMAL".
LENGTH (for DL1540L)
Unchanged.
FILTER Smoothing is set to "OFF", Band to "FULL".
ZOOM Mode is set to "OFF", and other settings remain unchanged.
DISPLAY Settings related to interpolation, the X-Y display, and accumulate display remain unchanged.
DISPLAY FORM Settings related to graticule, scale, \%marker and Waveform information remain unchanged.

Auto set-up settings related to waveform analysis	
MEASURE	Settings related to automated measurements remain unchanged.
CURSOR	Settings related to cursor measurements remain unchanged.
MATH	Waveform computation and phase shift are set to "OFF".

Other Auto set-up related settings
STORE/RECALL Display of recalled waveforms is set to "OFF".
SAVE/LOAD Display of loaded waveforms is set to "OFF".

UNDO: Cancellation of auto set-up

After auto set-up has been completed, this function allows you to restore the settings which were in effect before the auto set-up was performed.
However, if the power is turned OFF, the settings which were in effect before the auto setup will be lost. Thus, it is not possible to perform an UNDO before an auto set-up.

Note

- It is not possible to perform auto set-up while GO/NO-GO determination is in progress.
- The snapshot waveform will be deleted if auto set-up is performed.
- The auto set-up function may not operate correctly in certain cases such as when the waveform contains DC components or high frequency components.

4.3 Initializing Settings

Keys and Procedure

1. Press the INITIALIZE key to display the initialization execution menu.
2. Press the "INITIAL EXEC" soft key to execute initialization. INITIAL EXEC EXEC

Explanation

Default settings related to the vertical and horizontal axes	
CH1 to CH4	All channels ON (CH1/CH2 for DL1520/DL1520L)

Settings which cannot be initialized

In the following cases, the settings which were in effect before initialization will be retained even if initialization is performed.

- Date and time
- Displayed waveforms/setting parameters
- GO/NO-GO zone waveforms stored in the internal memory
- Communications addresses

Points to note when initializing

- Snapshot waveforms will be deleted when initialization is performed.
- Operations such as measurements, computations, etc. will be halted.
- Initialization cannot be performed during GO/NO-GO.

4.4 Halting a Waveform and Erasing the Halted Waveform (Snap Shot and Clear Trace)

Keys and Procedure

1. Press the SNAP SHOT key to halt the waveform.
2. Press the CLEAR TRACE key to erase the halting waveform.

Explanation

Snap Shot Function

A snapshot waveform is displayed each time the SNAP SHOT key is pressed and will be deleted when you switch between MAIN/ZOOM or MainZoom display, or when initialization of settings is performed.
A snapshot cannot be performed during X-Y waveform display.
In order to view snapshot waveforms only, you can either turn off the input signal (by pressing the CH key), or move the vertical position of the displayed channel.
Snapshot waveforms will remain on the screen even if calibration is performed.
The following operations are not possible on snapshot waveforms.

- Position movement
- Cursor measurement
- Automated measurement
- Expansion
- Waveform computation
- Storage in the internal memory
- Outputting to an external plotter
- Saving on a floppy disk in case of the HP-GL and PS format

Functions of the CLEAR TRACE key

Deletes the following waveforms.

- Snapshot waveform
- Accumulated waveform (refer to page 7-12)

Restarts the following operations.

- Averaging (refer to page 7-1)
- Equivalent time sampling

4.5 Performing Calibration

Keys and Procedure

Abstract

1. Press the CAL key to display the calibration execution menu. Executing manual calibration

2. Press the "EXEC" soft key to execute calibration.

Turning automatic calibration ON

3. Press the "Auto CAL" soft key to select "ON"
AutoCal
CAL
OFF ON
EXEC

Explanation

About the calibration function

The following parameters are calibrated.

- Ground level offset
- A/D converter gain
- Trigger threshold level
- Time axis for equivalent time sampling

Calibration takes approximately five seconds. No keys are operative during calibration.

Automatic calibration function

When the automatic calibration function is ON, calibration is performed automatically after the following time periods has elapsed in case T/div has been changed.
After the power is turned ON
3 minutes;
10 minutes;
30 minutes, then every half hour.

4.6 Setting Values

Keys and Procedure

Entry using the keyboard

1. Press the SHIFT + MISC(KEYBOARD) key to display the keyboard.

Setting by rotary knob and SELECT key

2. Use the rotary knob to select the desired value and press the SELECT key. This allows setting one by one.
3. Select the "SET" key and press the SELECT key. The keyboard screen will be closed.

Setting by corresponding panel keys (available on DL1540/

 DL1540L)2. After having performed step 1 , press the corresponding panel keys directly.
3. After having entered the new value, select the "SET" key and press the SELECT key. The keyboard screen will be closed.

$\square{ }^{\text {div }}$	$\square \quad \mathrm{v}$	L	[
	(4) $5_{5}^{\text {(v/div) }}$ 6 ${ }^{\text {a }}$	(4) $5_{5}^{\text {(V/DV) }}$ [6] ${ }^{\text {a }}$	(4) $5{ }^{(v / r i v) ~} 6$ NAN
	(1) $\left.\begin{array}{c}\text { (POSITION } \\ 2\end{array}\right]$		(1) (POSITION) [3] [5ET
	(INPUT)		[0) ${ }_{\text {(input) }}$

Entry by rotary knob

1. Change the value (displayed in the lower right side of the screen) by turning the rotary knob.
2. When the new value has been selected using the rotary knob, use the $<,>$ keys to move to the next position to be changed.

CH1 Positio
 100div

Explanation

Entry using the keyboard

The operation described in step 1 will only result in displaying the corresponding keyboard when the setting allows numerical input.
Depending on the setting, there are cases when units such as k , m , u (symbolizing μ), EXP and NAN (Ignore) appear. To change such a setting, select the correct one using the rotary knob, and press the SELECT key.
Pressing the RESET key will clear the keyboard display.
Decimal enterings will be rounded as necessary to comply with the step size.

Entry using the rotary knob

Pressing the RESET key will reset the value displayed in the rotary knob menu to the default value (factory setting).

4.7 Entering Characters using the Keyboard

Keys and Procedure

1. Display the keyboard used for entering a file name or comment (displayed when your are prompted a character input).
2. Use the rotary knob to select the desired character or symbol and press the SELECT key. The entered character will appear on the displayed keyboard.
3. Repeat step 2 until all characters and symbols are entered.
4. Move the rotary knob to the "ENT" setting and press the SELECT key. The file name, comment and such will be set and the keyboard screen will be closed.
1234560810 DEL INS ENT

Explanation

Displaying the keyboard to enter characters/symbols

For entry of a file name, refer to
6.9 Setting the Action-On Trigger (page 6-14)
9.1 Judging using a Waveform Zone (page 9-1)
9.2 Judging using Measured Values of Waveform Parameters (page 9-5)
12.3 Saving and Loading Waveform Data (page 12-4)
13.3 Saving and Loading Waveform Data (page 13-4)

For entry of a comment, refer to
10.6 Entering a Comment (page 10-10)

Function keys on the soft keyboard

DEL Deletes the character or symbol left of the cursor in the character string.
INS Switches between insert and overwrite modes.
CAPS Switches between upper and lower case letters.
CLR Deletes all entered characters and symbols. Has thus the same function as the RESET key on the front panel.
SPACE ... Enters one space.
ENT Confirms the entered characters and symbols.

* Pressing the < or > key shifts the entry position (cursor) to the left or right.

ESC key Aborts entering file name or comments during setting. The keyboard screen will be closed and setting will be ignored.

Points to note

- The following number of characters can be entered.

File name : 1 to 8
Comment: 0 to 25

- The following character types are available.

File name : Digits, letters (not case sensitive), _(underline), - (minus), \%, (,)
Comment : All characters and symbols on the keyboard (case sensitive), and space

- The following five file names are not available due to MS-DOS restrictions. AUX, CON, PRN, NUL, CLOCK

5.1 Turning Display of Input Signal Waveforms ON/ OFF

Keys and Procedure

1. The waveform will appear on the display after you have pressed the CH key. The indicator above the CH key will light up.
2. If you want to display all waveforms, press all the CH keys, and verify that all the indicators light up.
3. In order to turn the display of a waveform off, press the corresponding CH key once more.

Maximum display record length and limits on waveform acquisition (when 1 MW for 1520 L or $\mathbf{2}$ MW for DL1540L is selected)

The channels which acquire/display the waveform are limited to channel 1 on DL1520L and channel 1 and 2 on DL1540L. Channel 2 on DL1520L and channel 3 and 4 on DL1540L do not acquire/display the waveform.
When the time axis setting is set to 50 ns to 5 ns range; when the trigger mode is not single mode; or when one of the two, channel 2 or trace math in the case of DL1520L and one of the two, channel 3 or 4 in the case of DL1540L is ON, maximum display record length of 1 MW for DL1520L and 2 MW for DL1540L can not be selected.
For information about selection of maximum displayable record length, refer to Section 7.1 (page 7-1).

CH key operation during waveform math

The math waveform will be displayed at trace 3 (for DL1540/DL1540L, location where the input signal of channel 3 is usually displayed). For DL1540/DL1540L, even if you press the CH3 key, and the indicator is lit, the math waveform will be displayed. For DL1520/
DL1520L, the math waveform will be displayed at trace MATH.
The math waveform consists of data of channel 1 and channel 2. Even when you turn off the display of channel 1 or 2 , the math waveform will remain.
For DL1540/DL1540L, to display the input signal waveform of channel 3, you have to turn OFF waveform math. Refer to page 8-16.

CH key operation during display of a recalled waveform

When you recall waveform data from the internal memory, that waveform will appear on the screen.
To turn the display of the recalled waveform off, press the CH key corresponding to the number of the recalled waveform (displayed as "MEM"), and select OFF at the appeared menu. Refer to page 11-2, step 13 and 14 .

CH key operation during display of a loaded waveform

When you load P-P waveform data or acquisition waveform data from a floppy disk, that waveform will appear on the screen.
To turn the display of the P-P waveform off, press the CH key corresponding to the number of the P-P waveform (displayed as "MEM"), and select OFF at the appeared menu. Refer to page $12-5$, step 19 and 20.
To turn the display of the acquisition waveform off, press the CH key corresponding to the number of the acquisition waveform.

CH key operation during display of a GO/NO-GO zone waveform

Pressing a CH key turns display of both the corresponding input signal waveform and the zone waveform ON/OFF.

Note

- If the START/STOP key is pressed to start acquisition while loaded waveforms are displayed, the displayed waveforms will be cleared from the screen. It is possible to retain a desired waveform on screen by stopping acquisition of the corresponding channel. For a description of this operation, refer to page 12-6.
- For DL1520L/DL1540L, if you have saved ACQ data to multiple floppy disks, you can opt to load all of this data or only part of it (for example, data from one disk only). If you do a partial load, the waveform display will not appear over the entire time axis, but only over a portion of it. Refer to the procedures for saving and loading of ACQ waveform data, beginning on page 12-5.
- Pressing the SNAP SHOT key also keeps the waveform on the screen. To clear the snapshot waveform, press the CLEAR TRACE key.
- In the following cases erroneous waveforms might appear on channel 3 or 4 (channel 2 for DL1520). Acquiring the waveform once again will result in a correct display.
- For DL1540, when the record length is 120 KW , the trigger mode is SGL (L) and waveform acquisitioning has ended and you turn CH 3 or CH 4 ON , while they had been OFF until then.
- After acquiring waveforms at $200 \mathrm{MS} / \mathrm{s}$ and you stop acquisition, and then you switch CH 3 or CH 4 (CH2 for DL1520/DL1520L) ON.

5.2 Setting the Input Coupling

Keys and Procedure

1. Press the INPUT key corresponding to the channel for which input coupling is to be selected. The input setting menu will be displayed.
2. Press the soft key corresponding to the desired coupling type.
3. When DC is selected, turn the rotary knob to set the desired offset voltage.

						CH 1 Offset 0.500 V
CH1 Coupling	Coupling		$\begin{gathered} \text { Probe } \\ 10: 1 \\ \hline \end{gathered}$	Invert	ACQ Hold	
AC	DC	GND		OFF ON	OFF ON	

Explanation

Input coupling

The following three types of input coupling are available. The default is "DC".
AC Displays only the AC content of the input signal.
DC Displays both the DC and AC content of the input signal. Only in this case an offset value can be set. This setting can also be done pressing the KEYBOARD key (refer to page 4-7).
GND Used to check the ground level.

Input coupling and frequency characteristic

The frequency characteristic when "AC" or "DC" is selected is shown below.
Note that low-frequency signals and low-frequency contents are not acquired if "AC" is selected.

When "AC" is selected

less than 10 Hz when using $1: 1$ probe
less than 1 Hz when using 10:1 probe
Input frequency

When "DC" is selected

Input frequency

Offset voltage and vertical sensitivity

If "DC" is selected, it is possible to cancel the offset voltage for the input signal.
The allowable setting range varies depending on the vertical sensitivity as shown in the table below.

Vertical sensitivity*	Allowable setting range*	Setting step
10 mV to $500 \mathrm{mV} /$ /div	-10 V to $\pm 10 \mathrm{~V}$	$500 \mu \mathrm{~V}$
(for DL1520/DL1520L, 20 mV to $500 \mathrm{mV} / \mathrm{div}$)		
1 V to $5 \mathrm{~V} /$ div	-100 V to $\pm 100 \mathrm{~V}$	5 mV
10 V to $50 \mathrm{~V} /$ div	-1000 V to $\pm 1000 \mathrm{~V}$	50 mV

* The above values are given for a probe attenuation of 10:1. They will be $1 / 10$ the value shown when the attenuation is $1: 1,10$ times the value shown when it is $100: 1$, and 100 times the value shown when it is 1000:1.

Offset voltage and displayed value (measured value)

The offset function eliminates unnecessary DC voltage from an input signal voltage. If the offset voltage is set to a positive value, the input signal is displayed with the offset voltage subtracted from it, as shown below. The offset voltage is also subtracted from the measured voltages obtained during automated measurements.

Points to note when setting the offset voltage

- Once the offset voltage has been set, it will not change unless initialization is performed. For instance, if the input coupling is set to "AC" after the offset voltage has been set, the offset voltage will remain unchanged even if the input coupling is later switched to "DC".
- When the probe attenuation is changed, the offset voltage also changes accordingly.
- The offset voltage remains unchanged irrespective of the vertical sensitivity. However, if the offset voltage exceeds the allowable setting range, it will be set to the maximum or minimum vertical sensitivity value.
- When the offset voltage is set, it will also be subtracted from the acquired waveform data in acquisition memory. Thus, care must be taken when saving acquisition data.

When using AC coupling with a $10 \mathrm{M} \Omega, 10: 1$ probe, keep in mind that the voltage at the input connector will not be attenuated to $1 / 10$ at the probe tip for input signal components below 1 Hz . Be careful not to let the input voltage at the probe tip exceed 250 V (DC+ACpeak) or 177 Vrms for signal components below 1 Hz .

5.3 Setting the Probe Attenuation

Keys and Procedure

1. Press the INPUT key corresponding to the channel for which the probe attenuation is to be selected. The input setting menu will be displayed.
2. Press the "Probe" soft key to display the probe selection menu.
3. Press the soft key corresponding to the desired attenuation.

Explanation

Probe attenuation

Probe attenuation can be selected from " $1: 1$ ", " $10: 1$ ", " $100: 1$ " and " $1000: 1$ ". The default is "10:1".
Set to " $10: 1$ " when using the probe supplied with the instrument.
Set to " $1: 1$ " when using a BNC cable.

Note

The selected probe attenuation will remain unchanged even if auto set-up is performed.
When the probe attenuation is changed, the offset voltage also changes accordingly.

5.4 Inverting a Waveform

Keys and Procedure

1. Press the INPUT key corresponding to the channel whose waveform is to be inverted. The input setting menu will be displayed.
2. Press the "Invert" soft key to select "ON".

Explanation

Relevant channels

The input signals for channels CH1 to CH4 (for DL1520/DL1520L, CH1/CH2) can be inverted independently of one another. Each time the soft key is pressed, "ON" or "OFF" are displayed alternately, and the waveform will be inverted accordingly.

Indication of an inverted signal

When a waveform is inverted, the corresponding trace number is highlighted as shown below.

Points to note

- Cursor measurement, automated measurement, waveform math and GO/NO-GO determination are performed on the inverted waveforms, not on the original ones.
- The waveform data that will be saved in the acquisition memory will not be inverted, so care must be taken when saving the acquisition data.

5.5 Setting the Vertical Sensitivity

Keys and Procedure

1. Press the V/DIV key of the desired channel to display the vertical sensitivity setting menu. Verify that the "CAL" setting is highlighted.
2. Turn the rotary knob to set the desired sensitivity (V/div).

3. In case you want to adjust the setting in smaller steps, press the "Variable" soft key.
4. Turn the rotary knob to set the desired sensitivity.

Explanation

Setting the range and probe attenuation

The V/div setting range varies depending on the attenuation of the probe used, as shown below.

Probe attenuation	Setting range*
$1: 1$	1 mV to $5 \mathrm{~V} / \mathrm{div}$ (for DL1520/DL1520L, 2 mV to $5 \mathrm{~V} / \mathrm{div}$)
$10: 1$	10 mV to $50 \mathrm{~V} / \mathrm{div}$ (for DL1520/DL1520L, 20 mV to $50 \mathrm{~V} / \mathrm{div}$)
$100: 1$	100 mV to $500 \mathrm{~V} /$ /div (for DL1520/DL1520L, 200 mV to $500 \mathrm{~V} / \mathrm{div}$)
$1000: 1$	1 V to $5000 \mathrm{~V} / \mathrm{div}$ (for DL1520/DL1520L, 2 V to $5000 \mathrm{~V} / \mathrm{div}$)

* V/div can be set in multiples of 1,2 and 5 , e.g. $1 \mathrm{~V} /$ div $\rightarrow 2 \mathrm{~V} /$ div $\rightarrow 5 \mathrm{~V} /$ div.

Variable mode

When "Variable" is highlighted, V/div can be set in fine steps as shown below.

CAL Setting value	Variable Setting range*	Setting step*
10 mV	5.0 mV to 20.0 mV	0.1 mV
(Available on DL1540/DL1540L)		
20 mV	10.0 mV to 50.0 mV	0.1 mV
50 mV	20.0 mV to 100.0 mV	0.1 mV
100 mV	50 mV to 200 mV	1 mV
200 mV	100 mV to 500 mV	1 mV
500 mV	200 mV to 1000 mV	1 mV
1 V	0.5 V to 2.00 V	0.01 V
2 V	1.00 V to 5.00 V	0.01 V
5 V	2.00 V to 10.00 V	0.01 V
10 V	5.0 V to 20.0 V	0.1 V
20 V	10.0 V to 50.0 V	0.1 V
50 V	20.0 V to 100.0 V	0.1 V

* The above values are given for a probe attenuation of $10: 1$. They will be $1 / 10$ of the value shown when the attenuation is $1: 1,10$ times the value shown when it is $100: 1$, and 100 times the value shown when it is 1000 :1.

Note

If the RESET key is pressed to reset V/div setting, V/div will be set to the maximum possible level.
For a description of how to set the probe attenuation, refer to page 5-4.

5.6 Changing the Waveform's Vertical Position

Keys and Procedure

Explanation

1. Press the POSITION key of the channel whose waveform you want to move.
2. Select the position of the screen where you want the waveform to be displayed by pressing the corresponding soft key.
3. Turn the rotary knob to fine adjust the position.

Moving range

The ground level can be moved up to ± 4.000 div from the center of the waveform display frame. This range can be travelled using the rotary knob. The soft keys allow you to move the waveform quickly to either of the positions "-3div/-1div/0div/+1div/+3div".

Setting resolution

The ground level can be moved in steps of 0.02 divisions irrespective of the vertical sensitivity.

Waveforms which cannot be moved

Snapshot waveforms

Indication of the vertical position

For an input signal waveform or computed waveform, the corresponding trace No. and ground level mark are displayed on the left edge of the waveform display frame. The trace No. and ground level mark also move with the waveform when the waveform is moved. For a recalled or loaded waveform, the trace No. (preceded by "L") also moves with the waveform when the waveform is moved.

Note

Waveforms can still be moved vertically if acquisition is in progress. However, if some parts of the waveform exceed 10.24 divisions before acquisition is stopped, those parts will remain at the end of the display frame even if the waveform is moved.
If a waveform is moved vertically out of the waveform display frame, measured values obtained during automated measurement or cursor measurement may not be accurate.

5.7 Selecting the Timebase

Keys and Procedure

1. Press the MISC key to display the MISC menu.
2. Press the "Time Base..." soft key to display the timebase setting menu.

| Time
 Base... | Comnn... | Date
 Time... | Infor-
 mation... | Config... | To
 NextMenu |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3. Select the required timebase by pressing the corresponding soft key. "EXT CH4" menu is available on DL1540/DL1540L.

Time Base		
INT	EXT IN	EXT CH4

4. In case you selected "EXT IN" or "EXT CH4", use the rotary knob to set the required threshold level. "EXT CH4" menu is available on DL1540/DL1540L.

Explanation

Selectable Timebases

Timebase can be selected from the following three types.
INT Internal clock signal
EXT IN Clock signal input to the EXT TRIG IN/EXT CLOCK IN terminal
EXT CH4 Clock signal input to the CH 4 input terminal
(Available on DL1540/DL1540L)

When "EXT IN" is selected

Input a clock signal to the EXT TRIG IN/EXT CLOCK IN terminal on the rear panel (for DL1520/DL1520L, EXT TRIG terminal on the front panel). The clock signal must conform to the specifications given below.

- For DL1520/DL1520L

Item	Specifications
Connector type	BNC
Maximum input voltage	250 V (DC+ACpeak) or 177 Vrms , when the frequency is 1 kHz or below, (CAT I and II)
Input band	DC to 100 MHz
Fequency range of external clock	40 Hz to 80 MHz
Input range	2 ranges ($\pm 10 \mathrm{~V}$ and $\pm 1 \mathrm{~V}$)
Input level range (Probe attenuation ratio 1:1)	$\begin{aligned} & \pm 10 \mathrm{~V} \text { range: }-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { in steps of } 40 \mathrm{mV} \\ & \pm 1 \mathrm{~V} \text { range: }-1 \mathrm{~V} \text { to }+1 \mathrm{~V} \text { in steps of } 4 \mathrm{mV} \\ & \hline \end{aligned}$
Input sensitivity (Probe attenuation ratio 1:1)	$\begin{aligned} & 2 \mathrm{Vp}-\mathrm{p}(\pm 10 \mathrm{~V} \text { range }) \\ & 200 \mathrm{mVp}-\mathrm{p}(\pm 1 \mathrm{~V} \text { range }) \end{aligned}$
Input coupling	AC/DC
HF rejection	Bandwidth limit (approx. DC to 15 kHz) for the input signal can be turned ON/OFF.
Input impedance	Approx. $1 \mathrm{M} \Omega$ (same as section 16.1)

- For DL1540/DL1540L

Item	Specifications
Connector type	BNC
Maximum input voltage	$\pm 6 \mathrm{~V}$
Frequency range	40 Hz to 15 MHz
Input level	$\mathrm{TTL} / \mathrm{CMOS}$ level recommended
	$0.3 \mathrm{Vp}-\mathrm{p}$ or greater when measured
	at the end of the connector
	$\pm 0.15 \mathrm{~V}$ or greater relative to the
threshold level	
Input impedance	Approx. $1 \mathrm{M} \Omega$
Threshold level	1.5 V or 0.15 V
Minimum pulse width	25 ns or more for both
	High and Low levels

If a clock signal exceeding the maximum input voltage is input to the each terminal, damage to the internal circuits of the instrument may result.

When "EXT CH4" is selected (available on DL1540/DL1540L)

Input a clock signal to the CH4 input terminal on the front panel. The clock signal must conform to the specifications given below.

Item	Specifications
Frequency range	40 Hz to 80 MHz
Input level	2 div p-p or higher
Input impedance	$1 \mathrm{M} \Omega$
Minimum pulse width	5 ns or more for both High and Low levels

Threshold level setting range for detection of edge : Voltage equivalent to ± 5 div

Points to note when sampling using an external clock

- The clock signal must be continuous. No burst signal is allowed.
- If the frequency of the clock signal is out of specification, a warning message "External Clock too slow" or "External Clock too fast" will be displayed at the top of the screen. When the internal clock is switched to the external clock, no waveforms will be displayed until the clock conforms to the specifications.
- Only real-time sampling mode is available.
- Envelope mode cannot be set.
- Display of waveforms is not possible in roll mode.
- No function to divide the clock signal is available.
- Since the time axis setting cannot be changed, expand the time axis if you want to change the display range. For a description of expanding waveforms, refer to page 7-4.
- Trigger delay setting is invalidated.
- The time measured by the cursor measurement or automated measurement function is expressed in the number of pulses of the clock signal. No unit is displayed.

5.8 Setting the Time Axis

Keys and Procedure

Turn the time axis setting knob to adjust the time axis setting. The time axis setting value, displayed in the lower right corner of the screen, will change accordingly.

Explanation

Time axis setting range

$\mathrm{T} /$ div can be set within the range of $5 \mathrm{~ns} /$ div to $50 \mathrm{~s} /$ div (in multiples of 1,2 and 5)

The relationship between sampling mode and display mode

Sampling mode and display mode change as follows according to the T/div setting. For a detailed description of sampling mode and display mode, refer to page 1-5 and 1-6.

- If maximum displayable record length is set to 1 K (DL1520L/DL1540L)

Time-axis setting	Sampling mode	Display mode *1
50 s to $50 \mathrm{~ms} /$ div	Real-time	Roll mode
20 ms to $1 \mu \mathrm{~s} /$ div	Real-time	Update mode
500 ns to $100 \mathrm{~ns} /$ div	Real-time/repetitive *2	Update mode
50 ns to $5 \mathrm{~ns} /$ div	Repetitive	Update mode

- If maximum displayable record length is set to 10 K or 100 K (DL1520L/DL1540L), or when DL1520/DL1540 is used

Time-axis setting	Sampling mode	Display mode *1
50 s to $50 \mathrm{~ms} /$ div	Real-time	Roll mode
20 ms to $10 \mu \mathrm{~s} /$ div	Real-time	Update mode
5μ s to $100 \mathrm{~ns} /$ div	Real-time/repetitive *2	Update mode
50 ns to $5 \mathrm{~ns} /$ div	Repetitive	Update mode

- If maximum displayable record length is set to 400 K (available only if trigger mode is "single") (DL1520L/DL1540L)

Time-axis setting	Sampling mode	Display mode *1
50 s to $200 \mathrm{~ms} /$ div	Real-time	Roll mode
100 ms to $100 \mathrm{~ns} /$ div	Real-time	Update mode

- If maximum displayable record length is set to 1 M (available only if trigger mode is
"single" and the only displayed channel is CH1 for DL1520L.) (DL1520L/DL1540L)

Time-axis setting	Sampling mode	Display mode *1
50 s to $500 \mathrm{~ms} /$ div	Real-time	Roll mode
200 ms to $100 \mathrm{~ns} /$ div	Real-time	Update mode

- If maximum displayable record length is set to 2 M (available if trigger mode is "single" and display channel is 1 or 2) (DL1540L)

Time-axis setting	Sampling mode	Display mode *1
50 s to $1 \mathrm{~s} /$ div	Real-time	Roll mode
500 ms to $100 \mathrm{~ns} /$ div	Real-time	Update mode

[^1]
Relationship between sampling rate and record length

Reducing the time-per-division setting ("T/div" time axis setting) increases the sampling rate. If T/div is set below some specific level, the displayed record length will be shorter than the maximum displayable record length. For details, refer to Appendix 2/Appendix 3.

Changing T/div while acquisition is in progress

T/div can still be changed when acquisition has been stopped with the START/STOP key. The newly set T/div will come into effect when acquisition is restarted. When T/div is changed while acquisition is in progress, the new T/div value will be displayed below the T/ div for the displayed waveform, as shown below.

Points to note

- T/div can be changed irrespective of the displayed menu, since a T/div setting knob is available. But, for DL1520L/DL1540L, note that it is not possible to select a short time axis ($50 \mathrm{~ns} /$ div or less) if maximum displayable record length has been set to $400 \mathrm{KW}, 1$ MW, or 2 MW (for DL1540L only). (See page 7-1.)
- The T/div setting has no effect if the external clock signal is selected as the timebase.
- During expansion mode, the T/div obtained by dividing the normal display T/div by the expansion ratio is displayed.
- If T/div is set so that roll mode is activated, averaging will not be performed on the waveform data, even if the acquisition mode has been set to averaging mode ("NORM" will be displayed instead of "AVG").
- Even if the trigger mode is single mode, if T/div is set to a value within a certain range, roll mode will still be activated. However, when a trigger is activated and acquisition of data of the specified record length ends, waveform display will be stopped.
- Pressing the CLEAR TRACE key while waveforms are displayed in repetitive sampling mode will restart sampling.

5.9 Changing the Waveform's Horizontal Position

Keys and Procedure

1. Press the POSITION key to display the menu for horizontal positioning.
2. Select the position to where you want to move the viewing frame by pressing the corresponding soft key.
3. Turn the rotary knob to fine adjust the position.

Explanation

Moving range

The viewing frame can be moved up to ± 5.00 div from the center of the waveform display frame. This range can be travelled using the rotary knob. The soft keys allow you to move the viewing frame quickly to either of the positions "-4div/Odiv/+4div".

Setting resolution

The frame can be moved in steps of 0.02 divisions irrespective of the horizontal sensitivity.

Waveforms which cannot be moved

The viewing frame cannot be moved when snapshot waveforms are displayed.

Indication of the horizontal position

The trigger position marker will show the new position. In roll mode, a bargraph will appear in the upper side of the screen and will show which part of the waveform is shown on the screen.

Other modes than roll mode

Horizontal position is $\mathbf{0}$ div

Horizontal position is moved to +4 div

Roll mode
When the display is in roll mode and data acquisition has been started, the horizontal position will automatically be moved to +5 div.

Horizontal position is moved to 0 div 0 div

Horizontal position is moved to -4 div - 4 div

Points to note

- The horizontal position cannot be changed while acquisition is in progress in the roll mode. In order to move the horizontal position, first stop the acquisition.
- In all modes except the roll mode, changing the horizontal position might result in cases where the displayed range exceeds the record length of the acquisition memory. No waveform will be shown at that part of the displayed range.
- Even when the horizontal position has been changed, the zoom box will not change its position on the display. Refer to page 7-4.

6.1 Relationship between Trigger Type and Trigger Source/Slope/Level

Settings which can be made with the LEVELSOURCE soft key or rotary knob menu vary as shown below according to the selected trigger type. The setting procedure for each trigger type is described on the page indicated below. (The menu provided with DL1540/DL1540L is used. For DL1520/DL1520L, CH3/CH4, OR, PATTERN and WIDTH menus are not provided. For DL1520/DL1520L, TV trigger menu differs from the one given below.)

WIDTH... \longrightarrow page 6-10

6.2 Setting the Edge Trigger

Keys and Procedure

1. Press the TYPE key to display the trigger type selection menu.
2. Press the "EDGE" soft key.
(For DL1520/DL1520L, "OR", "PATTERN" and "WIDTH" menus are not displayed. They are optional with DL1540/DL1540L.)

Trigger					Type
EDGE	WINDOW	TV...	OR	PATTERN	WIDTH...

Selecting the trigger source and slope and setting the trigger level
3. Press the LEVEL/SOURCE key to display the trigger source selection menu.
4. Press the soft key corresponding to the desired trigger source. The trigger slope selection menu appears. When "LINE" is selected, this menu will not be displayed and thus steps 5 to 11 are not necessary.
5. Keep pressing the soft key corresponding to the selected trigger source until the desired slope is selected.

6. Turn the rotary knob to set the desired trigger level.

When "EXT" is selected as the trigger source for DL1520/DL1520L
7. Press the "Range" soft key to display the external trigger range setting menu.
8. Press the soft key corresponding to the desired range.
9. Press the "Probe" soft key to display the probe selection menu.
10. Press the soft key corresponding to the desired attenuation ratio.
11. Turn the rotary knob to select the desired trigger level for the external trigger.

Explanation

Types of Trigger sources and setting the trigger slope/level CH1/CH2/CH3/CH4

Select one of these to select one of the input signals CH 1 to CH 4 as the trigger source. The trigger slope can be selected from the following three slope types.
」 Activates a trigger when the trigger source changes from a level below the trigger level to one above the trigger level.
I Activates a trigger when the trigger source changes from the level above the trigger level to the one below the trigger level.
$f \succeq$ Activates a trigger in either of the above cases.
The setting range for the trigger level is within ± 10 div of the vertical sensitivity, but is however limited by the waveform display frame. For example, when the voltage sensitivity is set to $50 \mathrm{mV} /$ div, the trigger level to +300 mV and the ground level of the trigger source is positioned at Odiv, the trigger level becomes +250 mV . In case the ground level of the trigger source is positioned at -3 div, the trigger level becomes +300 mV . The setting step for the trigger level is $1 / 50$ of the vertical sensitivity.

EXT (external Trigger)

Select this when connecting the trigger signal source to the "EXT TRIG IN/EXT CLOCK
IN" terminal on the rear panel (also used as the terminal for an external clock) and selecting the signal as the trigger source.
For DL1520/DL1520L, connect the trigger signal source to the "EXT TRIG" terminal on the front panel.
For the specifications of the terminal, refer to "When "EXT IN" is selected" in section 5.7

If a clock signal exceeding the above permissible maximum input voltage is input to the each terminal, damage to the internal circuits of the instrument may result.

The trigger slope must be selected from " 5 ", " Z" and " \ddagger " in the same way when one of the channels CH1 to CH4 (for DL1520/DL1520L, CH1/CH2) is selected. For DL1540/ DL1540L, the trigger level must be either " 0.15 V " or " 1.5 V ".

- Setting the EXT range (for DL1520/DL1520L)

Select either $\pm 1 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ range. The default is $\pm 10 \mathrm{~V}$ range.

- Setting the attenuation for EXT probe (for DL1520/DL1520L) Select $1: 1,10: 1,100: 1$ or 1000:1. The default is $10: 1$.
- Setting the EXT trigger level (for DL1520/DL1520L)

The EXT trigger level can be set within the following range. This range is effective if the probe's attenuation is set to 1:1. If the probe's attenuation is set to10:1, 100:1 or 1000:1, the range will be multiplied by 10,100 and 1000 respectively.

- EXT range is $\pm 1 \mathrm{~V}:-1 \mathrm{~V}$ to +1 V in steps of 4 mV
- EXT range is $\pm 10 \mathrm{~V}:-10 \mathrm{~V}$ to +10 V in steps of 40 mV
* For DL1540/DL1540L, refer to "EXT (external Trigger)" on this page.

LINE (Line trigger)

Select this when the signal to be displayed is synchronized with the frequency of the commercial power source ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) and you want to select the commercial power source voltage signal as the trigger source signal.

Points to note when setting the edge trigger

- If the trigger type setting is changed, the edge trigger setting will be invalidated. However, selecting the edge trigger will restore the previous edge trigger setting.
- If the trigger mode is not auto-level mode, the trigger level will not change once it has been set. Thus, changing the amplitude of the trigger signal or changing the offset may invalidate the trigger level, thereby hindering activation of a trigger. Conversely, if the trigger mode is auto-level mode, the median of the amplitude of the trigger signal is detected and the trigger level is set to the median value automatically if the trigger level is invalidated. For a detailed description, refer to 6.8 "Setting the Trigger Mode" (page 612).

Note

If the trigger slope is set to "up/down 今 $\mathcal{\text { ", no trigger can be activated either at "rise } 5 \text { " or "fall } \mathcal { \text { " } } \text { . }}$ In this case, try to set an appropriate hold-off time. This may cause a trigger to be activated. For a description of how to set the hold-off time, refer to page 6-19.

6.3 Setting the Window Trigger

Keys and Procedure

1. Press the TYPE key to display the trigger type selection menu.
2. Press the "WINDOW" soft key.
(For DL1520/DL1520L, "OR", "PATTERN" and "WIDTH" menus are not displayed. They are optional with DL1540/DL1540L.)

Trigger				
Type				
EDGE	WINDOW	TV...	OR	PATTERN

Selecting the trigger condition and setting the window

3. Press the LEVEL/SOURCE key to display the trigger condition selection menu.
4. Press either soft key "IN" or "OUT".

5. Press the "CENTER" soft key and set the center level of the window using the rotary knob.
IN
Center
Level
0.010 V
6. Press the "WIDTH" soft key and set the width of the window using the rotary knob.

Selecting the trigger condition and setting the window

The window trigger will only be applied to the input signal of channel 1 .
Trigger conditions can be selected from the following types.
IN Trigger will be activated when the trigger source level enters a preset voltage range.
OUT Trigger will be activated when the trigger source level exits from a preset voltage range.
The center level of the window and the corresponding width can be set. The setting limit and resolution for the trigger level is the same as for the edge trigger. Refer to page 6-2. The smallest width of the window is the CAL setting of the vertical sensitivity.

Points to note when setting the window trigger

- If the trigger type setting is changed, the window trigger setting will be invalidated. However, selecting the window trigger again will restore the previous settings.
- Auto-mode operations are carried out even if the trigger mode is set to auto-level mode.

6.4 Setting the TV Trigger

Keys and Procedure

1. Connect the video signal to the CH 1 terminal.
2. Press the TYPE key to display the trigger type selection menu.
3. Press the "TV" soft key.
(For DL1520/DL1520L, "OR", "PATTERN" and "WIDTH" menus are not displayed. They are optional with DL1540/DL1540L.)

Selecting the broadcasting system for the video signal

If OR, PATTERN and WIDTH menus are not provided, the select menu will be displayed next to the trigger type selection menu.
4. Press any of the "NTSC", "PAL" or "HDTV" soft key to select the desired broadcasting system. (HDTV menu is not provided with DL1520/DL1520L.)

Selecting the field and line number

If OR, PATTERN and WIDTH menus are not provided, the select menu will be displayed next to the trigger type selection menu.
5. Press the "Field" soft key to select the desired field number.
6. Turn the rotary knob to select the desired line number.

Selecting the polarity and setting the trigger level
7. Press the LEVEL/SOURCE key to display the polarity/trigger level setting menu.
8. Press the soft key corresponding to the desired polarity.
9. Turn the rotary knob to set the desired trigger level.

Explanation

Broadcasting systems with which the TV trigger can be used

NTSC, PAL, HDTV
(HDTV menu is not provided with DL1520/DL1520L.)

Selecting the field No. : Field

1 Detects a field in which the vertical synchronizing pulse and the line start at the same time.
2 Detects a field in which the vertical synchronizing pulse starts $1 / 2 \mathrm{H}$ (H: horizontal scan time) after the line starts.
X Detects both of the above types of field.

Selecting the line No. : Line

A trigger is activated at the beginning of the selected line.

- NTSC : 5 to 1054

Field 1 starts at line No. " 5 ". (Field 2 starts at line No. "268".)

- PAL : 2 to 1251

Field 1 starts at line No. " 2 ". Field 2 starts at line No. " 315 ".

- HDTV : 2 to 2251 (available on DL1540/DL1540L)

Field 1 starts at line No. "2". Field 2 starts at line No. " 565 ".

Selecting the polarity: Polarity

POSITIVE

NTSC /PAL

NEGATIVE

Synchronization pulse

Trigger point

Setting the trigger level : Level

Set the difference between the beginning of the synchronization pulse and the level at which the trigger level is judged.
The setting range is from 0.10 div to 2.00 div. The setting resolution is 0.05 div.
The default settings are given below.
NTSC/PAL 0.50 div
HDTV (available on DL1540/DL1540L) 1.00 div

Points to note when activating a TV trigger

- If the trigger type setting is changed, the TV trigger setting will be invalidated. However, selecting the TV trigger again will restore the previous settings.
- Only channel 1 can be used for the video signal. Other channels cannot be used.
- For a TV trigger, the trigger coupling, HF rejection and trigger hysteresis settings are ignored.

6.5 Setting the OR Trigger (Optional for DL1540/ DL1540L)

Keys and Procedure

1. Press the TYPE key to display the trigger type selection menu.
2. Press the "OR" soft key.

Trigger Type						
EDGE	WINDOW	TV...	OR	PATTERN		
WIDTH...						

Selecting the trigger source, trigger slope and state and setting

 the trigger level3. Press the LEVEL/SOURCE key to display the trigger source selection menu.
4. Press the soft key corresponding to the desired signal source, and press the corresponding soft key to select the desired trigger slope/state selection.
5. In case you selected " 5 " or " \ddagger ", use the rotary knob to set the desired trigger level.
Repeat steps 4 and 5 to set the trigger slope, state and level for each trigger source.

Types of trigger sources and setting the trigger slope, state and level CH1/CH2/CH3/CH4

Selects which of the input signals CH 1 to CH 4 will be used as the trigger source. Select the trigger slope/state from the following.
」 Activates a trigger when the trigger source changes from a level below the trigger level to one above the trigger level.
I Activates a trigger when the trigger source changes from the level above the trigger level to the one below the trigger level.
X This channel will be skipped as a trigger source.
The setting limit and resolution for the trigger level is the same as for the edge trigger. Refer to page 6-2.

Points to note when setting the OR trigger

- If the trigger type setting is changed, the OR trigger setting will be invalidated. However, selecting the OR trigger again will restore the previous settings
- Auto-mode operations are carried out even if the trigger mode is set auto-level mode

6.6 Setting the Pattern Trigger (Optional for DL1540/DL1540L)

Keys and Procedure

1. Press the TYPE key to display the trigger type selection menu and press the "PATTERN" soft key.

Trigger Type				
EDGE	WINDOW	TV...	OR	PATTERN WIDTH...

2. Press the LEVEL/SOURCE key to display the trigger source/state selection menu.
3. Press the "ClkCH" soft key to display the clock channel selection menu. The default value is " \mathbf{X} ".

Activating a trigger by state pattern only

4. Press the " \mathbf{X} " soft key.
5. Press the trigger source soft key and select the state. Do this for all trigger sources. In case " H " or " L " has been selected, use the rotary knob to set the trigger level as well. Skip to step 7.

Activating a trigger in synchronization with the clock signal
4. Continuing from step 3 , select the desired clock channel and press the corresponding soft key.
5. Select the trigger slope of the clock channel using the soft keys, and then use the rotary knob to set the trigger level.

6. Press the trigger source soft key for the channels which are not clock channel, and select the trigger state. In case " H " or " L " has been selected, use the rotary knob to set the trigger level as well.

7. Press the "Condtn" soft key and select the desired conditions using the corresponding soft keys.

- menu in case of activating a trigger by state pattern only

- menu in case of activating a trigger in synchronization with the clock signal

Explanation

Setting the trigger source and trigger state/level

The trigger state can be selected from the following.
\mathbf{L} The trigger source level is above the preset trigger level.
H The trigger source level is below the preset trigger level.
X Not used as the trigger source.
The setting limit and resolution for the trigger level is the same as for the edge trigger. Refer to page 6-2.

Selecting the clock channel (CIkCH)

Set the clock channel to " \mathbf{X} " when no trigger in synchronization with the signal is activated, and select from "CH1-CH4" when a trigger in synchronization with the signal is activated. The following trigger slopes can be selected.
I Slope rising edge (changes from a level below the trigger level to one above the trigger level)
I Slope falling edge (changes from a level above the trigger level to one below the trigger level)

Selecting the trigger condition: Condtn

- Activating a trigger using only the state pattern

Select the trigger condition from the following.
ENTER Activates a trigger when the combination (pattern) becomes true.
EXIT Activates a trigger when the pattern becomes false.
[Setting example]
CH1 : H

CH2 : L
CH3 : X
CH4 : X

- Activating a trigger in synchronization with the clock signal

Select the trigger condition from the following.
TRUE Activates a trigger on the slope edge (riseor fall) of the clock channel when the state pattern becomes true.
FALSE Activates a trigger on the slope edge of the clock channel when the state pattern becomes false.
[Setting example]
CH1 : H
CH2 : L
CH4 : X
Clock CH: CH3
Condition : TRUE

Points to note when setting the pattern trigger

- If the trigger type setting is changed, the pattern trigger setting will be invalidated. However, selecting the pattern trigger again will restore the previous settings.
- Auto-mode operations are carried out even if the trigger mode is set to auto-level mode.
- Select the trigger states for all trigger sources. Make sure to select the trigger slope for the selected clock channel.
- If you want to activate a trigger in synchronization with the clock signal, make sure that the pattern set-up time is 2 ns or more relative to the clock and that the hold-time is 0 ns or less.

6.7 Setting the Width Trigger (Optional for DL1540/ DL1540L)

Keys and Procedure

Selecting the width trigger

1. Press the TYPE key to display the trigger type selection menu.
2. Press the "Width" soft key to display the width condition menu.

3. Select the width condition by pressing any of the "PULSE $<T$ ", "PULSE>T" or "TIMEOUT" soft keys.

4. Turn the rotary knob to set the desired pulse time.

Selecting the trigger source/state and setting the trigger level
5. Press the LEVEL/SOURCE key to display the trigger source selection menu.
6. Press the soft key corresponding to the channel to be used as a trigger source and set the trigger state.

7. Turn the rotary knob to set the desired trigger level.

Explanation

Selecting the width condition

PULSE $<\mathbf{T}$ Trigger will be activated when the pulse width of the trigger source becomes narrower than the preset pulse width.
PULSE>T Trigger will be activated when the pulse width of the trigger source is wider than the preset pulse width and the state changes.
TIMEOUT Trigger will be activated when the pulse width of the trigger source becomes wider than the preset pulse width.

Width setting range and setting steps

Width setting range and setting steps are given below. The setting accuracy of the width is within \pm ($2 \mathrm{~ns}+$ set value x 0.01), approximately.

Setting range	Setting steps
5 ns to $9.99 \mu \mathrm{~s}{ }^{* 1,2}$	10 ns
$10 \mu \mathrm{~s}$ to $99.9 \mu \mathrm{~s}$	100 ns
1 ms to 9.999 ms	$1 \mu \mathrm{~s}$
10 ms to 99.99 ms	$10 \mu \mathrm{~s}$
100 ms to 999.9 ms	$100 \mu \mathrm{~s}$
1 s to 9.999 s	1 ms

*1 The next pulse width after 5 ns is 10 ns .
*2 When the width condition is set to PULSE $<$ T, the smallest setting range is 5 ns ; when the width condition is set to PULSE $>\mathrm{T}$ or TIMEOUT, the smallest setting range is 30 ns .

Selecting the trigger source/state and setting the trigger level

The trigger source should be selected from CH 1 to CH 4
Select the trigger state from the following.
H The trigger source level is above the preset trigger level.
\mathbf{L} The trigger source level is below the preset trigger level.
The setting limit and resolution for the trigger level is the same as for the edge trigger. Refer to page 6-2.

Points to note when setting the width trigger

- A malfunction may occur if pulse intervals are less than 20 ns or more.

- If the trigger type setting is changed, the width trigger setting will be invalidated. However, selecting the width trigger again will restore the previous settings.
- Auto-mode operations are carried out even if the trigger mode is set to auto-level mode.

6.8 Setting the Trigger Mode

Keys and Procedure

1. Press the MODE key to display the trigger mode selection menu.
2. Press the soft key corresponding to the desired trigger mode.

- Menu (DL1520)

- Menu (DL1540)
- Menu (DL1520L/DL1540L)

Explanation

Selecting the trigger mode

The following six trigger modes are available. The default is "AUTO".

AUTO (Auto-mode)

Updates the displayed waveform each time a trigger is activated if the trigger condition has become true within the time-out period of approximately 100 ms . Updates the displayed waveform automatically if the trigger condition becomes false within the time-out period. The roll mode will be activated irrespective of the trigger condition if T/div is set to a value greater than 50 ms . However, the roll mode will not be displayed when the history memory function is "ON".

AT-LVL (Auto-level mode)

Updates the displayed waveform in the same way as auto-mode if the trigger condition has become true within the time-out period. If the trigger condition becomes false, the trigger level is automatically set to the median of the amplitude of the trigger source, and then the waveform is displayed.
Auto-level mode is only valid, however, if the edge trigger has been selected as the trigger type. Auto-mode operations are carried out even if auto-level mode has been selected for a trigger other than an edge trigger. Furthermore, roll mode will be activated irrespective of the trigger type if $\mathrm{T} / \mathrm{div}$ is set to a value greater than 50 ms . However, the roll mode will not be displayed when the history memory function is "ON".

NORMAL (normal transmission mode)

Updates the displayed waveform only when the trigger condition becomes true. The displayed waveform will not be updated if the trigger condition does not become true. In this mode, it is not possible to judge whether the signal is input or the trigger level is correct unless a trigger is activated. Furthermore, the ground level is not displayed even if the input coupling is set to "GND".
Furthermore, in this mode, roll mode display is never activated, whatever the T/div setting, and waveforms are displayed only when a trigger is activated.

SGL(S) (Single short mode) : for DL1540, SINGLE (Single mode) : for DL1520, DL1520L and DL1540L
When the START/STOP key is pressed and the trigger condition becomes true, the waveform is updated once only and acquisition stops.
If the time-axis setting corresponds to roll mode, the oscilloscope generates a roll-mode display. When the trigger occurs, the oscilloscope obtains data for the set record length and then stops the displayed waveform.
For details about record length, refer to Appendix 2/Appendix 3.

SGL(L) (Single long mode) : for DL1540

This mode is the same as the aboved mentioned SGL(S) mode, except that the record length here is longer. The maximum record length is 120 K words.
For more details about the relation between time axis setting, sample rate and record length, refer to Appendix 2.

N-SGL (Single (N) mode) : for DL1520L/DL1540/DL1540L

Each time the trigger condition becomes true after the START/STOP key has been pressed, acquisition is performed the specified number of times. The waveforms will be displayed after acquisition stops.
If the START/STOP key is pressed again before acquisition has been completed the specified number of times, acquisition stops immediately. In this case, all the waveform data which has been acquired thus far is valid and can be displayed.
This trigger mode can only be used in real time sampling mode.
For setting the number of repetitions, refer to page 7-7.

Points to note when setting the trigger mode

- If single short mode or single mode is selected with a T/div setting which enables repetitive time sampling mode, acquisition will stop after it has been repeated the specified number times.
- If trigger mode is changed while acquisition is stopped (i.e. while the START indicator is not lit), acquisition starts automatically.
- For DL1520L/DL1540/1540L if acquisition is interrupted in single (N) mode, only the waveforms which have been acquired completely are displayed.
- For DL1520L/DL1540/1540L if the history memory function is set ON or if the acquisition mode is set to averaging, all single mode triggering cannot be done.
- For DL1520L/DL1540/1540L if single long mode or single (N) mode is selected, repetitive sampling cannot be done.
- When the record length (maximum displayable record length) is $400 \mathrm{~K} / 1 \mathrm{MW}$ for DL1520L, or $400 \mathrm{~K} / 1 \mathrm{MW} / 2$ MW for DL1540L, single mode is the only mode available.

6.9 Setting the Action-On Trigger

Keys and Procedure

1. Press the SHIFT + MODE (ACTION) key to display the trigger on action selection menu.
2. Press the soft key corresponding to the desired action. Data acquisition will stop.
3. In case you selected "FD(P-P)" or "FD(ACQ)", pressing the
"FileName" soft key will display the keyboard. In case you selected "PRINTER", skip step 4.

4. Use the keyboard to enter the filename. For details on entering characters using the keyboard, refer to page 4-8.

Starting the action on trigger

5. Press the "EXEC" soft key to restart acquisition. The selected action will be validated when a trigger is activated.

Stopping the action on trigger

6. Press the "ABORT" soft key to stop acquisition.

Explanation

Selecting the action-on trigger

The action can be selected from the following.
PRINTER Outputs hardcopy to the built-in printer.
FD(P-P) Saves all the displayed waveforms (as P-P compressed data) on a floppy disk when a trigger is activated.
FD(ACQ) Saves all the displayed acquisition data (binary data) on a floppy disk when a trigger is activated.
When the action on trigger starts, the trigger mode will change automatically to the single short mode or single mode.

Specifying a file name when "FD(P-P)" or "FD(ACQ)" has been selected as the trigger action
A file No. (starting from " 0001 ") is assigned to each waveform data automatically when the data is saved on a floppy disk. It is possible to insert a common file name (character string consisting of up to four characters) before the assigned file No. (for instance,
"TRGO0001").
The entered file name is reset when "ABORT" is selected.

Points to note when using the action on trigger

- When you change the trigger mode to any other than the single short mode or single mode, the trigger on action will be aborted.
- It is not possible to perform auto set-up or GO/NO-GO determination while the action on trigger is in progress.
- When the action on trigger starts, the trigger mode will change automatically to the single short mode or single mode. Even after canceling the action on trigger, the previous trigger mode will not be restored.
- When the action on trigger is restarted ("EXEC") after first being aborted ("ABORT"), the automatically assigned file No. will start from 0001. Previous saved data will therefore be overwritten.
- For DL1520L/DL1540L, note that under "FD(ACQ)" action, ACQ-data record length may in some cases be too long to be saved onto a single floppy disk. In this case the screen will display an error message after saving data to the initial floppy disk.

6.10 Setting the Trigger Coupling and HF Rejection

Keys and Procedure

1. Press the COUPLING key to display the trigger coupling selection menu.
2. Press the soft key corresponding to the desired trigger coupling.

3. In case you want to set HF rejection, press the "ON" soft key at the "HF-Rej" field.

| HF-Rej |
| :---: | :---: | :---: |
| Coupling HF-Rej
 AC DC |

Explanation

Selecting the Trigger coupling

The following types are available.
AC The trigger source signal is used as the trigger source after the DC content has been removed. The trigger level becomes 0 V .
DC The trigger source signal is used as the trigger source without any processing. The trigger level becomes the center of the amplitude of the trigger source.
The default value is " $A C$ ".
The trigger coupling setting applies to all channels simultaneously.

Turning HF rejection ON/OFF

Set to "ON" if you want to use the trigger source signal as the trigger source after the high frequency content (frequency contents exceeding approximately 15 kHz) has been removed.

Points to note when setting the trigger coupling and HF rejection

These settings will be ignored if "EXT" or "LINE" is selected as the trigger source or "TV" is selected as the trigger type. However, the setting made for EXT will be valid (for DL1520/DL1520L).

6.11 Changing the Trigger Position

Keys and Procedure

1. Press the POSITION/DELAY key to display the trigger position/ delay setting menu.
2. Press the soft key to set the desired trigger position. Depending on the model or the software (ROM) version, the trigger position can also be set using the rotary knob.

- Menu (DL1520/DL1520L/DL1540 with software (ROM) version 1.20 or later/DL1540L with software (ROM) version 1.20 or later)

- Menu (DL1540 with software (ROM) version before 1.20/ DL1540L with software (ROM) version before 1.20)

Explanation

Selecting the trigger position

- The trigger position can be selected from the following. As shown in the menu above, the selection varies depending on the model or the software (ROM) version.
+4div $\quad+4$ divisions from the center of the waveform display frame
+2div +2 divisions from the center of the waveform display frame Odiv the center of the waveform display frame -2div $\quad-2$ divisions from the center of the waveform display frame -4div -4 divisions from the center of the waveform display frame

- Depending on the model or the software (ROM) version, the trigger position can be set with in steps of $1 / 50$ div using the rotary knob.

Setting the trigger delay and trigger position

The trigger position indicates which position of the waveform in the acquisition memory will actually be displayed on the screen. The trigger point refers to the point at which a trigger is activated. If no delay time has been set (i.e. delay time: 0 s), the trigger position and the trigger point refer to the same location.
However, if a delay time is set using the trigger delay, the trigger position must be moved using the above operations, since the delay point will not match the trigger point.
For more details on delays, refer to the next page.
Move the trigger position to the right

Points to note when setting the trigger position

- If the trigger position is changed while acquisition is not in progress (i.e. while the START indicator is not lit), the setting will not be valid until acquisition starts and the waveforms are updated.
- The time measured by cursor measurement will change if the trigger position is changed, because the trigger position is used as the reference position (except when the roll mode is being displayed).

6.12 Setting the Trigger Delay

Keys and Procedure

1. Press the POSITION/DELAY key to display the delay time setting menu.
2. Turn the rotary knob to set the desired delay time. You can also use the < or > keys.

- Menu (DL1520/DL1520L/DL1540 with software (ROM) version 1.20 or later/DL1540L with software (ROM) version 1.20 or later)
- Menu (DL1540 with software (ROM) version before 1.20/ DL1540L with software (ROM) version before 1.20)

Explanation

Setting the delay time

The trigger delay time is the duration between the point at which a trigger is activated, and the point at which data acquisition starts.

The setting range is 0 to 9.999 s . The setting step is as follows.

Setting time	Setting step
0 to 999.9 ns	0.1 ns
$1 \mu \mathrm{~s}$ to $9.999 \mu \mathrm{~s}$	1 ns
$10 \mu \mathrm{~s}$ to $99.99 \mu \mathrm{~s}$	10 ns
$100 \mu \mathrm{~s}$ to $999.9 \mu \mathrm{~s}$	100 ns
1 ms to 9.999 ms	$1 \mu \mathrm{~s}$
10 ms to 99.99 ms	$10 \mu \mathrm{~s}$
100 ms to 999.9 ms	$100 \mu \mathrm{~s}$
1 s to 9.999 s	1 ms

Points to note when setting the delay time

A delay time cannot be set if the external clock has been selected as the timebase. The setting will be invalid if sampling is performed using the external clock.

6.13 Setting the Hold-off Time

Keys and Procedure

1. Press the HOLD OFF key to display the hold-off time setting menu.
2. Turn the rotary knob to set the desired hold-off time. You can also use the < or > keys. Turning the rotary knob switches the "Mode" ON automatically.

3. To deactivate the hold-off function, press the "Mode" soft key and select "OFF".

Explanation

Hold-off time setting

The hold-off time setting range is $0.2 \mu \mathrm{~s}$ to 9.999 s .
The hold-off time will be $0.2 \mu \mathrm{~s}$ (minimum) if initialization is performed or if hold-off mode has been turned "OFF".

Turning the hold-off function ON/OFF

The hold-off time which has been set will be retained even if the hold-off function is set to OFF. If the hold-off function is switched ON again, the hold-off time which was in effect
before the hold-off function was switched OFF will be restored.

Points to note when setting the hold-off time

- If the hold-off time has been set to 100 ms or more, do not switch the trigger mode to auto-mode or auto-level mode. No trigger can be activated properly, as this conflicts with the time-out period (100 ms).
- The waveform updating interval may get longer depending on the hold-off time. In this case, switch the hold-off function OFF or change the hold-off time.

7.1 Selecting Acquisition Mode, Sampling Mode, and Record Length for DL1520L/DL1540L

Keys and Procedure

Selecting sampling mode

2. After step 1 has been completed, press the "Rep" soft key and select "ON" for real-time sampling mode or "OFF" for repetitive sampling mode.

Selecting the record length (maximum displayable record length), (for DL1520L/DL1540L)
2. After step 1 has been completed, press the "Length" soft key. The screen returns the length selection menu. For DL1520L, "2M" menu is not displayed
3. Press the soft key corresponding to the maximum displayable record length that you want to use.

Explanation

Selecting acquisition mode

Acquisition mode can be selected from the following modes. The default setting is
"NORMAL".

- NORMAL (normal mode)

Sampled data is stored in the acquisition memory without specific data processing.

- ENVELOPE (Envelope mode)

The data is sampled at $100 \mathrm{MS} / \mathrm{s}$. Each time data is stored in the acquisition memory, the maximum and minimum values are extracted. These are then stored in the acquisition memory and used to display the envelope waveform.

- AVERAGE (Averaging mode)

The averaging count can be set to values between " 1 " and " 256 " in steps of 2 n .
$A n=\frac{1}{N}\left\{(N-1) A_{n}-1+X_{n}\right\}$
An: Value obtained after nth averaging
Xn : nth measured value
N : Attenuation constant

Selecting sampling mode: Repetitive

A sampling mode can be selected provided that the selected T/div setting allows sampling both in real-time and repetitive modes.
However, the repetitive sampling mode is not effective when the trigger mode is set to single long mode. Furhermore, the repetitive sampling mode cannot be set in case of the single (N) trigger mode, when the history memory function is used, or in case FFT is used. T/div settings which enable the selection of the sampling mode are from 5μ to $100 \mathrm{~ns} /$ div.

Selecting the (maximum displayable) record length, for DL1520L/DL1540L

You can set the maximum displayable record length to $1 \mathrm{KW}, 10 \mathrm{KW}, 100 \mathrm{KW}, 400 \mathrm{KW}, 1$ MW, or 2 MW (for DL1540L only). The default selection is 10 KW . The following restrictions apply.

- Time-axis settings from 50 ns to 5 ns cannot be used in combination with $400 \mathrm{KW}, 1$ MW, and 2 MW record lengths. If the time-axis value is already set within this range, the 400 KW , 1 MW , and 2 MW selections will not be available.
- If the selected record length is 400 KW or 2 MW , certain time-axis settings will produce waveform display over eight divisions only, with no waveform appearing over the two rightmost time-axis divisions.
- Selection of $400 \mathrm{KW}, 1 \mathrm{MW}$, and 2 MW record lengths is available only if trigger mode is "single."
- For DL1540L, it is not possible to switch on Channel 3 or Channel 4 while record length is set to 2 MW. It is not possible to select 2 MW as the record length while Channel 3 or Channel 4 is on.
- For DL1520L, it is not possible to switch on Channel 2 or trace MATH while record length is set to 1 MW . It is not possible to select 1 MW as the record length while Channel 2 or trace MATH is on.
- Refer to Appendix 3 for information about the relationship between time axes, sampling rates, and record lengths.

Points to note when making acquisition mode and sampling mode settings

- Normal mode operations are carried out, even if envelope mode has been selected.
- It is not possible to select envelope mode if waveforms are sampled by the external clock.
- If each single mode has been selected as the trigger mode or if the history memory function has been set to ON, averaging mode cannot be selected.
- If auto-mode or auto-level mode has been selected as the trigger mode and T/div has been set such that the display is in roll mode, averaging will not be performed, even if averaging mode is selected. In this case, waveforms are displayed in roll mode.
- It is not possible to select envelope mode if input smoothing or FFT has been set to ON.

7.2 Setting the Input Filter

Keys and Procedure

1. Press the FILTER key to display the input filter setting menu. Applying the bandwidth limit
2. Press the " $\mathbf{2 0} \mathbf{~ M H z " ~ s o f t ~ k e y ~ t o ~ a p p l y ~ t h e ~ b a n d w i d t h ~ l i m i t . ~ T o ~ c a n c e l ~}$ the bandwidth limit, select "FULL".

Applying the smoothing function

2. After step 1 has been completed, press the "Smoothing" soft key and select "ON". To stop smoothing, select "OFF".

Explanation

Bandwidth limit

The bandwidth frequency limit can be " 20 MHz ". The frequency characteristic when the bandwidth limit is applied is shown below. When "FULL" is selected, the frequency bandwidth is 150 MHz .

Smoothing process

A moving average value is obtained for each five points of sampling data and the data obtained is used when displaying the waveform. This process is performed on the data in the acquisition memory, so it can still continue even if acquisition is stopped.
The following frequency characteristic of the smoothing process is dependent on the sample rate. The attenuation rate will be -3 dB when the frequency is approximately 13% of the sample rate. When the acquisition mode is envelope mode, this process cannot be carried out.

7.3 Zooming the Waveform

Keys and Procedure

1. Press the ZOOM key to display the zoom setting menu.

Displaying the pre-zoom and expanded waveform
2. Press the "MainZoom" soft key of the "ZOOM Mode" setting. The expansion rate and position selection menu appears.

\section*{| ZoOM Mode | | | |
| :--- | :--- | :--- | :--- |
| OFF | MAIN | ZOOM | Mainzoom |}

Setting the expansion rate and position
3. After having pressed the "ZOOM" soft key of the "ZOOM Knob" setting, use the rotary knob to adjust the expansion rate.

4. After having pressed the "POS" soft key of the "ZOOM Knob" setting, use the rotary knob to adjust the position.

Displaying the expanded waveform only

2. After step 1 has been completed, press the "ZOOM" soft key of the "ZOOM Mode" setting. The expansion rate and position are as described in step 3 and 4.

Displaying the pre-zoom waveform only
2. After step 1 has been completed, press the "MAIN" soft key of the "ZOOM Mode" setting. The expansion rate and position are as described in step 3 and 4.

Explanation

Expansion Rate

- Expansion rate limits

The expansion rate which can be set varies according to the specified record length of the pre-zoom waveform. The specified record length depends on the model, time axis setting, sampling mode and trigger mode. For more details, refer to Appendix 2/Appendix 3.
The following table shows the maximum expansion rates for some record lengths.

Displayed record length	$\mathbf{2 M}(\mathbf{d d i v})$		$\mathbf{2 M}$	$\mathbf{1 M}$	$\mathbf{8 0 0 K}$ (8div) 500K	400K(8div)
Maximum expansion rate	25000	20000	10000	10000	5000	5000
Setting position step (div)	0.00002	0.00001	0.00001	0.00001	0.00002	0.00002
Displayed record length	$\mathbf{4 0 0 K}$	$\mathbf{2 0 0 K}$	$\mathbf{1 6 0 K}(8 \mathrm{div}) \mathbf{1 0 0 K}$	$\mathbf{5 0 K}$	$\mathbf{4 0 K}$	
Maximum expansion rate	4000	2000	2000	1000	500	400
Setting position step (div)	0.00005	0.00005	0.00005	0.0001	0.0002	0.0005
Displayed record length	$\mathbf{2 0 K}$	$\mathbf{1 0 K}$	$\mathbf{5 K}$	$\mathbf{4 K}$	$\mathbf{2 K}$	$\mathbf{1 K}$
Maximum expansion rate	200	100	50	40	20	10
Setting position step (div)	0.0005	0.001	0.002	0.005	0.005	0.01
Displayed record length	$\mathbf{5 0 0}$	$\mathbf{4 0 0}$	$\mathbf{2 0 0}$	$\mathbf{1 0 0}$		
Maximum expansion rate	5	4	2	1		
Setting position step (div)	0.02	0.05	0.05	0.1		

- Expansion rate steps

Depending on the T/div value, the expansion rate steps are as follows.
In case of $50 \mathrm{~s}, 5 \mathrm{~s}, 500 \mathrm{~ms}, 50 \mathrm{~ms}, 5 \mathrm{~ms}, 500 \mu \mathrm{~s}, 50 \mu \mathrm{~s}$ and $5 \mu \mathrm{~s} /$ div
$\mathrm{x} 1, \mathrm{x} 2.5, \mathrm{x} 5, \mathrm{x} 10, \mathrm{x} 25, \mathrm{x} 50, \mathrm{x} 100, \mathrm{x} 250, \mathrm{x} 500, \mathrm{x} 1000, \mathrm{x} 2500, \mathrm{x} 5000, \mathrm{x} 10000, \mathrm{x} 25000$
In case of $20 \mathrm{~s}, 2 \mathrm{~s}, 200 \mathrm{~ms}, 20 \mathrm{~ms}, 2 \mathrm{~ms}, 200 \mu \mathrm{~s}$ and $20 \mu \mathrm{~s} /$ div
x1, x2, x4, x10, x20, x40, x100, x200, x400, x1000, x2000, x4000, x10000, x20000
In case of $10 \mathrm{~s}, 1 \mathrm{~s}, 100 \mathrm{~ms}, 10 \mathrm{~ms}, 1 \mathrm{~ms}, 100 \mu \mathrm{~s}$ and $10 \mu \mathrm{~s} /$ div
$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10, \mathrm{x} 20, \mathrm{x} 50, \mathrm{x} 100, \mathrm{x} 200, \mathrm{x} 500, \mathrm{x} 1000, \mathrm{x} 2000, \mathrm{x} 5000, \mathrm{x} 10000, \mathrm{x} 20000$

- Zooming range position

The center of the zooming position box can be set within ± 5 div of the waveform display frame. The setting step depends on the displayed record length.

Selecting the display type when displaying an expanded waveform

The type of display can be selected from the following.
OFF Only the original display will be displayed;
MAIN The pre-zoom waveform together with the zoom box will be displayed;
ZOOM Only the expanded waveform will be displayed. The part of the pre-zoom waveform selected in the zoom box will be expanded.
MainZoom Both the original and the expanded waveform will be displayed on the screen, which is divided in two.

Selecting the display type when displaying an X-Y waveform

The type of display depends on the settings in the expansion menu. For X-Y mode, refer to page 7-13.

ZOOM mode	X-Y Mode		
	OFF	X-Y	T-Y \& X-Y
OFF	V-T pre-zoom waveform	$\begin{aligned} & \text { X-Y pre-zoom } \\ & \text { waveform } \end{aligned}$	V-T pre-zoom waveform (upper) X-Y pre-zoom waveform (lower)
MAIN	V-T pre-zoom waveform + zoom box	X-Y pre-zoom waveform	V-T pre-zoom waveform + zoom box (upper) X-Y pre-zoom waveform (lower)
ZOOM	V-T expanded waveform	X-Y expanded waveform	V-T expanded waveform (upper) X-Y expanded waveform (lower)
MainZoom	V-T pre-zoom waveform + zoom box (u V-T expanded	X-Y expanded waveform r) veform (lower)	V-T pre-zoom waveform + zoom box (upper) X-Y expanded waveform (lower)

Selecting the display type in case of FFT mode (power spectrum)

The type of display depends on the settings in the expansion menu. For more details on the power spectrum, refer to page 8-18.

ZOOM mode		FFT Mode	
	FFT OFF	FFT	VT \& FFT
OFF	V-T pre-zoom	FFT pre-zoom	V-T pre-zoom waveform (upper)
	waveform	waveform	FFT pre-zoom waveform (lower)
MAIN	V-T pre-zoom	FFT pre-zoom	V-T pre-zoom waveform
	waveform	waveform	+ zoom box (upper) + zoom box
	V-T expanded	FFT expanded	VFT pre-zoom waveform (lower)
ZOOM	waveform	waveform	FFT expanded waveform (lupper)
	V-T pre-zoom	FFT expanded	V-T pre-zoom waveform
MainZoom	waveform	waveform	+ zoom box (upper)
	+ zoom box (upper)	FFT expanded waveform (lower)	
	V-T expanded waveform (lower)		

Points to note when displaying an expanded waveform

- The waveform zone cannot be edited during GO/NO-GO if both pre-zoom waveform and its expanded waveform are displayed at the same time.
- If you press the ZOOM Mode soft key while accumulated waveform display is in progress, accumulated waveform display will be reset.
- If you press the ZOOM Mode soft key while a snapshot waveform display is being displayed, the snapshot waveform will disappear.

7.4 Acquiring Waveforms using the Sequential Store Function (for DL1520L/DL1540/DL1540L)

Keys and Procedure
 Rotary knob

Acquiring the waveform data only a specified number of times

1. Press the MODE key to display the trigger mode setting menu.
2. Press the "N-SGL" soft key. When a trigger is activated at the time the "N-SGL" soft key is pressed, waveform acquisition starts.
For DL1520L/DL1540L, "SINGLE" menu will be displayed instead of "SGL(S)" and "SGL(L)" menus.

3. Turn the rotary knob to set the number of acquisitions at
"Acquisition Count (N)". When waveform acquisition is already in progress and you change the number of acquisitions, make sure to restart to get the specified number of acquisitions.

AUTO	AT-LVL	NORMAL	SGL(S)	SGL(L)	N-SGL

4. If no trigger has been activated already, press the START/STOP key or once more the "N-SGL" soft key to start data acquisition.
Displaying a specific acquired data by selecting its number
5. Press the CLEAR TRACE key to clear the displayed waveforms.
6. Press the DISPLAY key to display the display selection menu.
7. Use the rotary knob to set the number of the data you want to see. The corresponding waveform will appear at the same time.

Number
Nurnber
0

Displaying a specific acquired data by selecting its time of acquisition
8. Continuing from step 6, press the "Time Stamp" soft key to display the list of acquired data with their acquisition times.

9. Use the rotary knob to highlight the data you want to see.

Stopped		T Count= 90				\#080		
== Time Stamp ==								
\#000 06:58:54	\#020 06:58:56	\#040	06:58:58	\#060	06:59:00			06:59:02
\#001 06:58:54	\#021 06:58:56	\#041	06:58:58	\#061	06:59:00		\#081	06:59:02
\#002 06:58:54	\#022 06:58:56	\#042	06:58:58	\#062	06:59:00	\#082	06:59:02	
\#003 06:58:54	\#023 06:58:56	\#043	06:58:58	\#063	06:59:00	\#083	06:59:02	
\#004 06:58:54	\#024 06:58:56	\#044	06:58:58	\#064	06:59:00	\#084	06:59:02	
\#005 06:58:54	\#025 06:58:56	\#045	06:58:58	\#065	06:59:00	\#085	06:59:02	
\#006 06:58:54	\#026 06:58:56	\#046	06:58:58	\#066	06:59:01	\#086	06:59:03	
\#007 06:58:54	\#027 06:58:57	\#047	06:58:59	\#067	06:59:01	\#087	06:59:03	
\#008 06:58:55	\#028 06:58:57	\#048	06:58:59	\#068	06:59:01	\#088	06:59:03	
\#009 06:58:55	\#029 06:58:57	\#049	06:58:59	\#069	06:59:01	\#089	06:59:03	
\#010 06:58:55	\#030 06:58:57	\#050	06:58:59	\#070	06:59:01	\#090	---	
\#011 06:58:55	\#031 06:58:57	\#051	06:58:59	\#071	06:59:01	\#091	---	
\#012 06:58:55	\#032 06:58:57	\#052	06:58:59	\#072	06:59:01	\#092	---	
\#013 06:58:55	\#033 06:58:57	\#053	06:58:59	\#073	06:59:01	\#093		
\#014 06:58:55	\#034 06:58:57	\#054	06:58:59	\#074	06:59:01	\#094		
\#015 06:58:55	\#035 06:58:57	\#055	06:58:59	\#075	06:59:01	\#095		
\#016 06:58:55	\#036 06:58:57	\#056	06:59:00	\#076	06:59:02	\#096		
\#017 06:58:56	\#037 06:58:58	\#057	06:59:00	\#077	06:59:02	\#097		
\#018 06:58:56	\#038 06:58:58	\#058	06:59:00	\#078	06:59:02	\#098		
\#019 06:58:56	\#039 06:58:58	\#059	06:59:00	\#079	06:59:02	\#099	---	

10. Press the SELECT key. The list will disappear and the selected waveform will appear on the screen.

Displaying all waveforms

11. Continuing from step 6,7 or 10 , press the "ALL disp EXEC" soft key to display all waveforms.

Display Nurnber $\mathbf{0}$

Explanation

Number of acquisitions: Acquisition Count (N)

- For DL1540, this setting specifies the number of times that data acquisitions will be stored in memory, and ranges from 1 to 100.100 is default setting.
- For DL1520L/DL1540L, the record length per iteration (for a given channel) and the number of allowable iterations are determined by the selected maximum displayable record length (see page 7-2), as indicated below. Under default settings the record length is 10 KW , and 100 iterations are stored.

| Maximum Displayable
 Record Length | Supported Iteration
 Settings
 DL1520L | DL1540L |
| :--- | :--- | :--- | :--- |\quad| Record Length per |
| :--- |
| Waveform Iteration (per channel) |

- For DL1520L/DL1540L, 400 KW or above: Function is not supported.
- The number of acquired data can be viewed in the upper side of the screen, where the indication such as "Count=9" appears.

Displaying acquired data: Display Trace

The way of displaying the acquired data can be selected from the following.

- Displaying the selected waveform only

Selecting the waveform can be done by setting the Display Number or by highlighting data from the Time Stamp list.

- Displaying all waveforms

When all waveforms are displayed, you can easily spot the waveform which is selected by the Display Number since it is displayed more brightly.

Selecting the waveform to be displayed: Display Number

The setting ranges from 0 to -(the acquisition count number -1). The maximum value is 0 . The latest data being 0 , previous data are labeled $-1,-2,-3$, etc.

Points to note when using the sequential store function

- For more details on trigger modes, refer to page 6-12.
- After the data is acquired the specified number of times, all the waveforms will appear on the screen at once.
- Data will not be acquired in case of the repetitive sampling mode.
- If data acquisition is aborted while in progress, only the waveforms which have been acquired so far will appear on the display. Only the acquired waveforms can be selected at the Display Number setting.
- The all single modes will be deacivated when the history memory function is turned ON.
- Trigger mode cannot be set to "single (N) mode" if the selected record length is 400 KW , 1 MW, or 2 MW (for DL1540L only).

7.5 Using the History Memory Function (for DL1520L/DL1540/DL1540L)

Keys and Procedure

Rotary knob

1. Press the HISTORY (for DL1520L, SHIFT + ACQ(HISTORY))
key to display the history memory ON/OFF setting menu.
2. Press the "History" soft key and select "ON". To select "OFF", press the "History" soft key again.

Displaying a waveform from the memory
3. Stop data acquisition by pressing the START/STOP key.

Displaying a specific data by selecting its number

4. Use the rotary knob to set the number of the data you want to see (display number). The corresponding waveform will appear on the screen.

Displaying a specific acquired data by selecting its time of acquisition
5. Continuing from step 3, press the "Time Stamp" soft key to display the list of acquired data with their acquisition times.

6. Use the rotary knob to highlight the data you want to see.

7. Press the SELECT key. The list will disappear and the selected waveform will appear on the screen.

Displaying all waveforms

8. Continuing from step 3, 4 or 7, press the "ALL Disp EXEC" soft key.

Display
Nurnber
0

Explanation

Number of waveforms in the history memory

- Acquisition memory retains waveforms for the last N triggers, where N is equivalent to the maximum number of iterations that can be stored under sequential-store operation. The record length per waveform (on a given channel) is the same as that for sequential-store mode. For details, refer to page 7-8.
- Once the history has become full (the number of triggers has exceeded N), each new waveform acquisition deletes the oldest waveform in the history.

Displaying acquired data

Refer to page 7-8

Selecting the waveform to be displayed: Display Number

The setting ranges from 0 to 99 . The latest data being 0 , previous data are being labeled -1 , $-2,-3$, etc..

Acquisition period

You can extend the acquisition period by setting the hold-off time, which temporarily halts the trigger detection. This feature makes it possible to obtain a history of a periodically occurring waveform.

Points to note when using the history memory function

- Data will not be acquired in case of the repetitive sampling mode.
- If data acquisition is aborted while in progress, only the waveforms which have been acquired so far will appear on the display. Only the acquired waveforms can be selected at the Display Number setting.
- The history memory function cannot be turned ON when the acquisition mode is set to average, or when the trigger mode is set to SINGLE, SGL(S), SGL(L), or N-SGL.
- When the history memory function is set to ON, the display cannot be in the roll mode.
- The previously acquired waveforms will not appear on the screen while acquisition is in progress.
- Waveforms will be acquired in the memory even if the display of the input signals has been turned OFF. To display the acquired waveforms however, the display of the input signals should be set to ON. Refer to page 5-1.
- When the conditions of waveform acquisition are changed, the history memory function will be reset and previous waveform data will be lost.
- The history-memory function cannot be switched on if the selected record length is 400 KW, 1 MW, or 2 MW (for DL1540L only).

7.6 Changing the Interpolation Settings

Keys and Procedure

1. Press the DISPLAY key to display the setting menu.
2. Press the "Intrpl" soft key to display the interpolation selection menu.
```
IntrpI SINE OFF Accurn
```

3. Press the soft key corresponding to the desired interpolation type.

Explanation

Selecting the interpolation type: Intrpl

The following four interpolation types are available. The default is "SINE".
OFF No interpolation; Displays the sampling data as a horizontal line.
LINE Interpolates between two dots with a straight line.
SINE Generates interpolation data using a sine function and interpolates between two dots using a sine curve.
PULSE Draws a horizontal line to a point directly above or below the next data point and then interpolates using two dots so that the end of the horizontal line is connected to the next data point by a vertical line.

Note

LINE, SINE and PULSE can only be selected if the number of display points per division is 50 or less. OFF can always be selected.

7.7 Displaying an Accumulated Waveform

Keys and Procedure

1. Press the DISPLAY key to display the setting menu.
2. Turn the rotary knob to set the desired accumulation time. Turning the rotary knob automatically sets the "Accumu" setting to "ON".

3. To cancel the accumulation function, select "OFF".

Explanation

Setting the accumulation time

The accumulation time can be selected from the following. The default settings is " 100 ms ". $100 \mathrm{~ms}, 200 \mathrm{~ms}, 300 \mathrm{~ms}, 400 \mathrm{~ms}, 500 \mathrm{~ms}, 600 \mathrm{~ms}, 700 \mathrm{~ms}, 800 \mathrm{~ms}, 900 \mathrm{~ms}, 1 \mathrm{~s}, 2 \mathrm{~s}$, $3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 20 \mathrm{~s}, 30 \mathrm{~s}, 40 \mathrm{~s}, 50 \mathrm{~s}, 60 \mathrm{~s}$, INFINITE

Intensity of the accumulated waveform
The most recent waveform is bright and old waveforms (accumulated waveforms) are dark.

Clearing the accumulated waveform

Pressing the CLEAR TRACE key clears all accumulated waveforms except the most recent one.

Points to note

- The following operations apply only to the latest waveform's data if they are performed using accumulated waveform display.
-Cursor measurements and automated measurements
- Saving the waveform data
- If you want to stop accumulation, press the START/STOP key to stop measurement. Pressing the START/STOP key again to restart measurement will clear the previously displayed waveforms and the accumulation time will be reset.
- Waveforms which can be accumulated are Pre-zoom waveforms, expanded waveforms and X-Y waveforms. However, if both V-T waveform and X-Y waveform are displayed at the same time, the V-T waveform cannot be accumulated.
- When the display type (ZOOM Mode setting) is changed during expansion display of an X-Y waveform, the currently accumulated waveforms will be cleared and accumulation will start again.

7.8 Displaying an X-Y Waveform

Keys and Procedure

1. Press the DISPLAY key to display the setting menu.
2. Press the "X-Y" soft key to display the X-Y selection menu.

IntrpI SINE	X-Y OFF	OCcurnu
		OFF ON

When displaying both the $\mathrm{X}-\mathrm{Y}$ waveform and the T-Y waveform
3. Press the "T-Y \& X-Y" soft key.

When displaying the $X-Y$ waveform only
3. After step 2 has been completed, press the " $\mathbf{X}-\mathbf{Y}$ " soft key. When displaying the T-Y waveform only
3. After step 2 has been completed, press the "OFF" soft key.

Explanation

Assigning channels to the X axis (horizontal axis) and Y axis (vertical axis)
The assignment has been pre-determined as follows. The CH1 input voltage is assigned to the X axis and the CH 2 input voltage to the Y axis.
An X-Y waveform can also be displayed for acquisition data loaded from a floppy disk. In this case, the trace No. will simply be replaced by the channel No.

Selecting the display type

The display type can be selected from the following three types.
OFF Displays only the V-T waveform.
X-Y Displays only the X-Y waveform. In case the zoom setting has been set to ZOOM, the display will show the expanded waveform as specified in the zoom box.
T-Y \& X-Y Displays both the V-T waveform and the X-Y waveform. The display depends on the zoom settings. Refer to X.X for more details.

Points to note when displaying an $\mathrm{X}-\mathrm{Y}$ waveform

- When displaying X-Y waveforms, only measurement of "Integ1XY" and "Integ2XY" is possible during automated measurement. For a description of measurement operations and the measured parameters, refer to 8.3.
- If both the V-T and $\mathrm{X}-\mathrm{Y}$ waveforms are displayed, the $\mathrm{V}-\mathrm{T}$ waveform will not be accumulated. If the display mode is switched, accumulated waveform display will be reset.
- When you want to display a sequentially stored waveform or one stored in history memory as an X-Y waveform, you turn the rotary knob to select a [display number]. However, all the selected waveforms will appear on the screen. In order to display one selected waveform only, press the CLEAR TRACE key after selection.

7.9 Changing the Graticule, Scale and \% Marker Settings

Keys and Procedure

1. Press the SHIFT + DISPLAY (DISPLAY FORM) key to display the display condition setting menu.
Changing the graticule type
2. Select by pressing the "FRAME" or the "GRID" soft key. Turning the scale ON/OFF
3. After step 1 has been completed, press the "Scale" soft key and select "ON" or "OFF".
Turning the \% Marker ON/OFF
4. After step 1 has been completed, press the "\% Marker" soft key and select "ON" or "OFF".

Explanation

Graticule
The graticule type can be selected from the following two types. The default is "GRID".

FRAME

GRID

Scale

The cross type scale, shown below, can be turned ON or OFF. The default is "ON".

Scale ON

Scale OFF

\% Marker

The \% marker, shown below, can be turned ON or OFF. The default is "OFF".

7.10 Turning the Waveform Information Display ON/ OFF

Keys and Procedure

1. Press the SHIFT + DISPLAY (DISPLAY FORM) key to display the display condition setting menu.
2. Press the "Wave Info" soft key and select either "ON" or "OFF".

Graticule	ScaleOFFON	\%Marker		Inten
GRID FRAME				

Explanation

Selecting the waveform information display ON/OFF

The information display can be selected "ON" or "OFF". The default is "ON".
OFF Displays only the time axis setting, acquisition mode, and sample rate. This is useful if the displayed waveform information prevents observation of other waveforms.
ON Displays the channel No./ voltage axis sensitivity settings/ input coupling/ probe attenuation as shown below in addition to the "OFF" display. For DL1520/DL1520L, CH 3 and CH 4 are not displayed.

Points to note concerning the waveform information display

- If a recalled waveform is displayed, the memory number and the voltage axis sensitivity will be displayed.
- If P-P waveform data loaded from a floppy disk is displayed, the file name and the voltage axis sensitivity will be displayed. Up to 8 characters of the file name will be displayed, but overlap may occur with other displayed file names (depending on the size of the used characters).
- If ACQ waveform data loaded from a floppy disk is displayed, the channel No., voltage axis sensitivity, input coupling and probe attenuation will all be displayed at the site of the waveform. The channel No. of the channel for which acquisition has been halted (i.e. for which "ACQ Hold" is set to "ON") will be highlighted.

7.11 Changing the Screen Intensity

Keys and Procedure

1. Press the SHIFT + DISPLAY (DISPLAY FORM) key to display the display condition setting menu.
2. Press the "Inten" soft key to display intensity selection menu.

3. Press the soft key corresponding to the item for which the intensity is to be changed.

4. Turn the rotary knob to set the desired intensity.

5. Repeat step 3 and 4 to adjust the intensity of other items.

Explanation

Intensity

Intensity can be set to one of 15 levels, with the darkest intensity " 1 " and the brightest intensity " 15 ".

Items for which the intensity can be adjusted
Intensity can be adjusted independently for the following items. The value in () indicates the default setting.
TEXT
(9) : Characters, value

SCALE
(6) : Graticule, scale, \% marker

CURSOR
(10) : Cursor

SNAPSHOT (5) : Snapshot waveform
WAVE
(8) : All waveform except snapshot
ALL
8) : The entire screen

8.1 Measuring a V-T Waveform using Cursors

Keys and Procedure
Rotary knob

1. Press the CURSOR key to display the cursor measurement setting menu.
2. Press the "Cursor" soft key and select "ON".
3. Press the "Type" soft key to display the measurement type selection menu.

Measuring time difference/ frequency/ voltage/ voltage

 difference using the vertical cursors4. Press the "V-T" soft key to display the cursor selection menu. Two vertical cursors will appear on the screen.

5. Press the "Trace" soft key to display the trace selection menu.

6. Press the soft key corresponding to the trace you want to measure. For DL1520/DL1520L, menus such as "1", "2", "MATH", "LOAD1",
"LOAD2" and "ALL" are displayed instead of the trace selection menu shown below.

7. After having pressed any of the "T1", "T2" or "T1\&T2" soft keys, use the rotary knob to adjust the position of the cursor.

Measuring only the time difference using the vertical cursors
4. After step 3 has been completed, press the "dT" soft key to display the cursor selection menu. Two vertical cursors will appear on the screen.

5. After having pressed any of the "T1", "T2" or "T1\&T2" soft keys, use the rotary knob to adjust the position of the cursor.

Measuring only the voltage difference using the horizontal cursors
4. After step 3 has been completed, press the "dV" soft key to display the cursor selection menu. Two horizontal cursors will appear on the screen.

5. Press the "Trace" soft key to display the trace selection menu.

6. Press the soft key corresponding to the trace you want to measure. For DL1520/DL1520L, menus such as "1", "2", "MATH", "LOAD1" and "LOAD2" are displayed instead of the trace selection menu shown below.

7. After having pressed any of the "H1", "H2" or "H1\&H2" soft keys, use the rotary knob to adjust the position of the cursor.

Explanation

Waveforms which cannot be measured using cursors

The following waveforms are excluded from measurements using cursors.

- Snapshot waveform;
- Accumulated waveforms other than the most recent one;
- Waveforms other than those which are specified (by Display Number) and displayed (by Display Trace) using the sequential store or history memory function.

Selecting the measurement waveform: Trace

When "V-T" or "dV" has been selected at the type selection menu, the following can be selected at the trace menu. The menu is divided into two menus, which can be reached using the "PrevMenu" and "NextMenu" soft keys.
1-4 Measurements will only be performed on the selected trace;
LOAD1-4 Measurements will only be performed on the selected loaded waveform;
ALL (in case of "V-T" only) Measurements will be performed on all traces and loaded waveforms.

* For DL1520/DL1520L, a selection menu is used to select one of "1", "2", "MATH", "LOAD1", "LOAD2" and "ALL". "ALL" is displayed only when "V-T" is selected as the target to be measured.

* In case of roll mode, this is not the trigger position, but the center of the acquisition memory record length. This position is shown at the 0div in the figure on page 1-7.
- Using vertical cursors to only measure time difference : dT

DT Time difference between positions of cursors T1 and T2
1/DT Reciprocal of DT (frequency), for DL1520/DL1520L

- Using horizontal cursors to only measure voltage difference : dV

DV(X) V2-V1; where V2 is the position where the waveform intersects cursor H 2 , and V 1 is the position where the waveform intersects cursor H 1 .

Cursor movement method

The cursors can be selected as follows.

- Time measurement cursor (vertical)

T1 Moves cursor T1 only.
T2 Moves cursor T2 only.
T1\&T2 Moves both cursors T1 and T2 simultaneously without changing the distance between them.

- Voltage measurement cursor (horizontal)

H1 Moves cursor H1 only.
H2 Moves cursor H2 only.
H1\&H2 Move both cursors H1 and H2 simultaneously without changing the distance between them.

Cursor movement range

- Vertical cursor

Movement range
: Each vertical cursor can be moved to 1002 different positions from the left edge (-5.00 div) to the right edge (5.00 div) of the waveform display frame. One time position is used for the P-P value of the displayed waveform, and two points
 (maximum and minimum) are measured at this position.
The default setting : -2.50 div for $\mathrm{T} 1,2.50$ div for T 2

- Horizontal cursor

Movement range
Each horizontal cursor can be moved to 401 different positions from the top (4.00 div) to the bottom (-4.00 div) of the waveform display frame.

The default setting : -2.00 div for $\mathrm{H} 1,2.00$ div for H 2

Voltage measurement using vertical cursors

When two voltage data (maximum and minimum) are displayed at the same time axis position, moving a vertical cursor from left to right measures each datum in the order in which it was sampled.

Points to note when performing cursor measurements

- The cursors and measured values will still be displayed even if a different menu is selected. However, the cursors cannot then be moved.
- Cursor-measured values will be cleared if the automated measurement function is turned ON. However, pressing the CURSOR key (when "Cursor" is set to "ON") will display the cursor-measured values.
- If the GO/NO-GO "Mode" has been set to "ON" and the "GO/NOGO EXEC" soft key has been pressed, the cursor measurement function will not operate even if the CURSOR key is pressed. To operate the cursor measurement function, the GO/NO-GO "Mode" must be set to "OFF".
- In case the type selection menu is set to "V-T", and a measured voltage value is interpolation data, a "*" will be displayed with the measurement item.
- If measurement is not possible, "- - -" will be displayed.
- Cursor measurement is also possible for expanded waveforms. When switching the display to show the expanded waveform, the position of the cursor on the screen does not change. When both the pre-zoom and the expanded waveform are displayed, cursor measurement will be performed on the expanded waveform.
- There might be cases where the displayed waveform is not in synchronization with the measurement values. To synchronize, stop data acquistion.
- When using waveform computations, the displayed unit will become "div" for waveforms obtained by addition/subtraction, and "V2" for waveforms obtained by multiplication.
- In case engineering units have been set by the linear scaling function, the first three characters of the unit setting will appear on the screen.
- Time is measured based on the T/div value set for the input signal waveform. Thus, be careful if the T/div set for a loaded or recalled waveform does not match the T/div for the input signal waveform.

8.2 Measuring an X-Y Waveform using Cursors

Keys and Procedure

1. Display both the $\mathrm{T}-\mathrm{Y}$ and the $\mathrm{X}-\mathrm{Y}$ waveform in the same display.
2. Press the CURSOR key to display the cursor measurement setting menu.
3. Press the "Cursor" soft key and select "ON".
4. Press the "Type" soft key to display the measurement type selection menu.

Measuring time difference/ voltage using the $X-Y$ cursors
5. Press the "X-Y" soft key. The X-Y cursors will appear on the screen.

6. Use the rotary knob to adjust the position of the $X-Y$ cursor.

Cursor			
OFF	ON		Type
:---:			
$X-y$			

Cursor
0.00div

Measuring only voltage difference on the X axis using the vertical cursors
5. After step 4 has been completed, press the " $d \mathbf{X}$ " soft key to display the cursor setting menu. The vertical cursors will appear on the screen.

6. After having pressed any of the "T1", "T2" or "T1\&T2" soft keys, use the rotary knob to adjust the position of the cursor.

Measuring only voltage difference on the Y axis using the horizontal cursors
5. After step 4 has been completed, press the "dY" soft key to display the cursor setting menu. The horizontal cursors will appear on the screen.

6. After having pressed any of the "H1", "H2" or "H1\&H2" soft keys, use the rotary knob to adjust the position of the cursor.

Explanation

Channel assignment for the $\mathrm{X}-\mathrm{Y}$ axis
X -axis Input voltage of CH 1
Y-axis Input voltage of CH2
Waveforms which cannot be measured
For waveforms which cannot be measured, refer to page 8-2.

Measurement items

The following items can be measured.

- Using X-Y cursors to measure time difference/ voltage : X-Y

T Time difference between position of vertical cursor and trigger position (the vertical cursor is also displayed on the T-Y waveform in case the T-Y and $\mathrm{X}-\mathrm{Y}$ waveform are being displayed on the same screen)
X X-axis voltage at the position of the X - Y cursor (Voltage at the position where waveform CH 1 intersects the vertical cursor of the T-Y waveform)
Y Y-axis voltage at the position of the X-Y cursor (Voltage at the position where waveform CH2 intersects the vertical cursor of the T-Y waveform)

- Using vertical cursors to measure only voltage difference of the X -axis : dX

DX V2-V1; where V1 is the voltage at the X-axis where cursor T1 intersects, and V2 is the voltage at the X -axis where cursor T 2 intersects.

- Using horizontal cursors to measure only voltage difference of the \mathbf{Y}-axis : dY

DY V2-V1; where V1 is the voltage at the Y-axis where cursor H1 intersects, and V2 is the voltage at the Y -axis where cursor H 2 intersects.

Cursor movement method

The cursors can be selected as follows.

- X-Y cursor

The X-Y cursor is indicated by a " + " symbol and moves over the X-Y waveform. In case the display shows both the $\mathrm{X}-\mathrm{Y}$ and the T-Y waveform, there will be only one vertical cursor displayed, on the T-Y waveform. This cursor, related to the X-Y cursor, moves over the time-axis.

- Vertical cursor

T1 Moves cursor T1 only.
T2 Moves cursor T2 only.
T1\&T2 Moves both cursors T1 and T2 simultaneously without changing the distance between them.

- Horizontal cursor

H1 Moves cursor H1 only.
H2 Moves cursor H2 only.
H1\&H2 Moves both cursors H1 and H2 simultaneously without changing the distance between them.

Cursor movement range

The X-Y cursor can only be moved over the X-Y waveform. For details regarding the horizontal/vertical cursors, refer to page 8-3.

Points to note when performing cursor measurements

For more details regarding the points to note when performing cursor measurements, refer to page 8-3.

8.3 Measuring Waveform Parameters Automatically

Relevant Keys

Operating Procedure

1. Press the MEASURE key to display the automated measurement setting menu.
2. Press the "Measure" soft key and select "ON".

You can perform measurement both on displayed waveform data and on the corresponding waveform values within acquisition memory. You first set the various conditions (measurement range, measurement items, distal/proximal values, and channel delay). You can then start measurement of the displayed waveform data by pressing the "Measure" soft key so that it comes ON.
DL1520, DL1520L, DL1540L, or DL1540 with a software (ROM) version of 1.13 or later, are able to measure the actual (memory-resident) values. You must first stop waveform acquisition, then you can execute the measurement by pressing the "ALL Scan EXEC" soft key. Each press of the key takes a single measurement of the various waveform parameters, using the memory-resident values corresponding to the displayed waveform data. The measurement conditions (range, items, distal/proximal values, and channel delay) are the same as those for the displayed data.

Setting the measurement range

The measurement range is determined by the two vertical cursors T1 and T2. The position of cursor T1 indicates the starting point of measurement, and the position of cursor T2 indicates the end point.
3. After having pressed either the "T1", or "T2" soft keys, use the rotary knob to adjust the position of the cursor. You can also use the < or > keys.

Selecting the measurement items

The measurement items can be selected from 20 different ones. For the meaning of each item, refer to the description on page 8-11.
4. Press the "Measure" soft key at the automated measurement setting menu to display the item selection menu.
5. Press the soft key corresponding to the desired trace or loaded waveform number. For DL1520/DL1520L, menus such as "TRACE1", "TRACE2", "MATH", "LOAD1" and "LOAD2" are displayed instead of the trace/load waveform selection menu shown below.
6. Use the rotary knob to highlight the desired measurement item.
7. Press the SELECT key to select an item. The selection mark in front of the item will be highlighted to indicate it has been selected. Press the SELECT key again to undo this, or to reset all selection at once, press the "ALL CLEAR" soft key.
8. Repeat step 6 and 7 to select all the desired measurement items. The display of the measurement items depends on the number of waveforms to be measured and the selected items. Refer to page 8-13 for more details.

Setting the distal/proximal values

The two levels which are used as the reference for the measurement of rise and fall times can be set. For more details, refer to the description on page 8-11.
9. Use the rotary knob to select either the "PROX" or "DISTAL" setting and press the SELECT key to display the value setting box.
10. Use the rotary knob to set the desired value. Press the RESET key to restore the new value to the default value.
11. Press the SELECT key or the ESC key to close the value setting box.
12. Repeat steps 9 to 11 to set either the "PROX" or "DISTAL" settings.

13. Repeat steps 5 to 12 in case you want to select measurement items for another trace or loaded waveform. In case you want to select the same measurement items for all traces and loaded waveforms, select "Copy To All Trace" using the rotary knob and press the SELECT key.

Returning to the top menu

14. Press the "To Topmenu" soft key or the ESC key to return to the automated measurement setting menu.

Setting delay measurement between channels

The delay between channels is the time difference of the rising or falling edge between traces or loaded waveforms. For each trace and loaded waveform, the waveform to be used as a reference and the measurement waveform need to be specified.

Setting the measurement waveform

15. Press the "Delay Setup" soft key at the automated measurement setting menu to display the delay selection menu.
16. Press the soft key corresponding to the desired trace or loaded waveform number which will be subjected to measurement.
17. After having selected "Mode" using the rotary knob, press the SELECT key to select "ON". Pressing the SELECT key once more will result in selecting "OFF".
18. After having selected "Edge Polarity" of the "Measure" setting using the rotary knob, press the SELECT key to select rising edge or falling edge.
19. After having selected "Edge Count" of the "Measure" setting using the rotary knob, press the SELECT key to display the count setting box.
20. Use the rotary knob to set the desired count number. Press the RESET key to restore the new value to the default value.
21. Press the SELECT key or the ESC key to close the count setting box.
22. After having selected "Threshold" of the "Measure" setting using the rotary knob, press the SELECT key to set the delay detection level to "Volts" or "\%".
23. Use the rotary knob to select the screen below and press the SELECT key to display the value setting box.
24. Use the rotary knob to set the desired value. Press the RESET key to restore the new value to the default value.
25. Press the SELECT key or the ESC key to close the value setting box.

Setting the reference waveform

26. After steps 17 to 25 have been completed, and after having selected "Trace" of the "Reference" setting using the rotary knob, press the SELECT key to select the trace or loaded waveform to be used as reference.
27. After having selected "Edge Polarity" of the "Reference" setting using the rotary knob, press the SELECT key to select rising edge or falling edge.
28. After having selected "Edge Count" of the "Reference" setting using the rotary knob, press the SELECT key to display the count setting box.
29. Use the rotary knob to set the desired count number. Press the RESET key to restore the new value to the default value.
30. Press the SELECT key or the ESC key to close the count setting box.
31. After having selected "Threshold" of the "Reference" setting using the rotary knob, press the SELECT key to set the delay detection level to "Volts" or "\%".
32. Use the rotary knob to select the screen below and press the SELECT key to display the value setting box.
33. Use the rotary knob to set the desired value. Press the RESET key to restore the new value to the default value.
34. Press the SELECT key or the ESC key to close the value setting box.
35. Repeat steps 16 to 34 in case you want to set delay measurement for other trace or loaded waveforms.

Returning to the top menu

36. Press the "To Topmenu" soft key or the ESC key to return to the automated measurement setting menu.

Measuring data in acquisition memory (applicable to DL1540 with a software (ROM) version of 1.13 or later - refer to section 14.3, DL1520, DL1520L or DL1540L)

1. Set the measurement range, measurement items, distal/proximal values, and channel delay to appropriate values. Then confirm that the "Measure" soft key in the automated measurement setting menu (top menu) is set to "ON".

- To execute measurement of memory data

2. Press the START/STOP key to halt waveform acquisition.
3. Press the "ALL Scan EXEC" soft key. The key name immediately changes to "ALL Scan ABORT" and the oscilloscope begins executing a single measurement of the relevant data in memory, while displaying progress on the screen. When measurement is finished the key name changes back to "ALL Scan EXEC".

	T2
ALL Scan ABORT	Cursor 2.50div

Indicates progress of acquisition-memory data measurement.

- To abort measurement of memory data

4. The "ALL Scan ABORT" soft key remains on the screen while measurement is being carried out. You can abort the measurement at any time by pressing this key. (The key name will immediately change back to "ALL Scan EXEC").

Explanation

Waveforms which cannot be measured

For waveforms which cannot be measured, refer to page 8-2.

Setting the measurement range : Time range

The measurement range is determined at the displayed time axis by the two vertical cursors T 1 and T 2 . The position of cursor T1 indicates the starting point of measurement, and the position of cursor T2 indicates the end point. Automatic measurements will be carried on data within this range.
The default measurement range is 10div (time axis).

Measurement items : Item Setup

Measurement items can be selected from 20 different types. Items can be selected separately for each related waveform. The default is no items selected.
A maximum of 24 items can be displayed at once on the waveform display. This also includes the values of delay measurement.
The method of displaying the measurement values depends on the number of selected traces or loaded waveforms. Refer to page 8-13 for more details.
The items which can be selected are as follows.

- Measurement items related to the voltage axis

When measuring items such as rise time and fall time, "High" represents the voltage for the most frequently occurring high amplitude (at 100% level), while "Low" represents the voltage for the most frequently occurring low amplitude (at 0% level). They are therefore different from "Max" and "Min", which just represent the maximum and minimum voltage respectively.

- Measurement items related to the time axis

- Other Measurement items

INTEG1TY(I1TY) Area of positive amplitude
INTEG2TY(I2TY) Area of positive amplitude - Area of negative amplitude
INTEG1XY(I1XY) Total sum of the triangular areas of the $\mathrm{X}-\mathrm{Y}$ waveform
INTEG2XY(I2XY) Total sum of the trapezoid areas of the $\mathrm{X}-\mathrm{Y}$ waveform

Note

For a detailed description of the area calculation method, refer to Appendix 4.

The "Prox" setting ranges from 0 to 49 , in 1% steps.
The "Distal" setting ranges from 50 to 100 , in 1% steps.

Delay between channels : Delay Setup

The delay between channels is the time difference of the rising or falling edge between traces or loaded waveforms. For the relation between the channel of measurement and the reference channel, refer to page 8-10.
Measurement starts when the "Mode" setting is set "ON". The default setting is "OFF". The trigger slope can be either " \lceil " or " " default setting is " $\sqrt{ }$ ". The number of times the trigger is activated is set at the "Edge Count" setting, and can be set from 1 to 9 . The default setting is " 1 ". The voltage level at which triggering occurs is set at the "Threshold Level" setting, and can be selected from "Volts" or "\%". The default setting is " 0.0000 V ". This volts setting range is the voltage value corresponding to ± 8 div. The setting step is 0.04 div . $\%$ can be set to a percentage of 0 to 100%, where 100% corresponds to the amplitude of "HIGH - LOW". The setting step is 1%.
The measurement values will be displayed as "Dly".

Points to note relating to automated measurement

- The cursors and measured values will still be displayed even if a different menu is selected. However, the cursors cannot then be moved.
- Values gathered by the automated measurement function will be cleared if the cursor measurement function is turned ON. However, pressing the MEASURE key (when "Measure" is set to "ON") will display the automatically measured values.
- If the GO/NO-GO "Mode" has been set to "ON" and the "GO/NOGO EXEC" soft key has been pressed, the automated measurement function will not operate even if the MEASURE key is pressed. To operate the automated measurement function, the GO/NOGO "Mode" must be set to "OFF".
- If measurement is not possible, "- --" will be displayed.
- If two or more periods of the waveform lie within the measuring range, the first period will be measured.
- Automated measurement is also possible for expanded waveforms. When switching the display to show the expanded waveform, the position of the cursor on the screen does not change. When both the pre-zoom and the expanded waveform are displayed, automated measurement will be performed on the expanded waveform.
- Automated measurement is not synchronized with the update of the displayed waveform. Hence, the displayed waveform may not match the measured values. To make the displayed waveform match the automatic measurements, stop acquisition.
- When using waveform computations, the displayed unit will become "div" for waveforms obtained by addition/subtraction, and "V2" for waveforms obtained by multiplication.
- Time is measured based on the T/div value set for the input signal waveform. Thus, be careful if the T/div set for a loaded or recalled waveform does not match the T/div for the input signal waveform.
- Only the measurement items INTEG1XY and INTEG2XY can be displayed in case of the $\mathrm{X}-\mathrm{Y}$ display and $\mathrm{T}-\mathrm{Y} \& \mathrm{X}-\mathrm{Y}$ display.

Display Example of measurement values

The number and type of measurement items which can be displayed at a screen together with the waveform(s) depend on the number of waveforms under measurement.
Furthermore, if the number of measurement items exceeds the maximum which can be displayed, the type of measurement items which will appear on the display is designated. The following shows an example where the type of displayed measurement values is designated.

- In case of one waveform under measurement

Measurement values of selected measurement items and delay between channels will all be displayed.

\|=Trace1=	P-P	40.00 V	Max	20.00 V	Min	-20.00V
	Rms	13.59 V	Avg	129.5 mV	-0vr	4.3\%
	+0vr	4.3\%	High	18.40 V	Low	-18.40V
	Rise	2.000 ms	Fall	1.960 ms	Freq	142.9 Hz
	Prod	7.000 ms	+uld	3.560 ms	-wd	3.440 ms
	Duty	50.9\%	I1TY	125.1E-03	I2TY	$2.592 \mathrm{E}-03$
	I1XY	208.3E+00	I2XY	-208.0E+00	Dly	2.000 ms

- In case of two waveforms under measurement

Up to 12 measurement values of selected measurement items of one waveform will be displayed. In case delay measurement is set "ON", the maximum number of displayed measurement items becomes 11 .

$=$ Trace1 $=$	P-p	40.00 V	Max	20.00 V	Min	-20.00 V
	Rms	13.59 V	Avg	148.9 mV	- Ovr	4.3%
	+ovr	4.3%	High	18.40 V	Low	-18.40 V
	Rise	2.000 ms	Fall	1.960 ms	Dly	2.000 ms
$=$ Trace2 $=$	P-P	44.80 V	Max	22.40 V	Min	-22.40 V
	Rms	15.34 V	Avg	-777.6 mV	-Ovr	1.9%
	+Ovr	3.8%	High	20.80 V	Low	-21.60 V
	Rise	2.000 ms	Fall	2.000 ms	Dly	2.040 ms

- In case of three or four waveforms under measurement

Up to 6 measurement values of selected measurement items of one waveform will be displayed. In case delay measurement is set "ON", the maximum number of displayed measurement items becomes 5 .

=Trace1=	P-P	40.00 V	Max	20.00 V	Min	-20.00V
	Rms	13.59 V	Avg	129.5 mV	DIy	2.000 ms
=Trace $2=$	P-P	44.80 V	Max	22.40 V	Min	-22.40V
	Rms	15.33 V	Avg	-798.4mV	DIy	2.040 ms
=Trace3=	P-P	48.00 V	Max	25.60 V	Min	-22.40V
	Rms	11.51 V	Avg	75.12 mV	DIy	0.000 s
=Trace1=	P-P	40.00 V	Max	20.00 V	Min	-20.00V
	Rms	13.59 V	Avg	129.5 mV	Dly	2.000 ms
=Trace $2=$	P-P	44.80 V	Max	22.40 V	Min	-22.40V
	Rms	15.33 V	Avg	-798.4mV	DIy	2.040 ms
=Trace3=	P-P	48.00 V	Max	25.60 V	Min	-22.40V
	Rms	11.51 V	Avg	75.12 mV	DIy	0.000 s
=Trace $4=$	P-P	2.000 V	Max	-2.000V	Min	-4.000V
	Rms	3.716 V	Avg	-3.634V	Dly	

- In case of more than five waveforms under measurement

Up to 3 measurement values of selected measurement items of one waveform will be displayed. In case delay measurement is set "ON", the maximum number of displayed measurement items becomes 2 .

=Trace1=	P-P	39.20 V	max	19.20 V	Dly	1.920 ms
=Trace2=	P-P	44.80 V	Max	20.80 V	Dly	1.960 ms
=Trace3=	P-P	48.00 V	Max	26.40 V	Dly	0.000 s
=Trace $4=$	P-P	4.000 V	Max	-2.000V	Dly	---
=Load1 $=$	P-P	40.00 V	Max	20.00 V	Dly	20.00us
\|=Trace1=	P-P	39.20 V	Max	19.20 V	Dly	1.920 ms
=Trace2=	P-P	44.80 V	Max	20.80 V	Dly	1.960 ms
=Trace3=	P-P	48.00 V	Max	26.40 V	Dly	0.000 s
=Trace4=	P-P	4.000 V	Max	-2.000V	Dly	---
=Load1 $=$	P-P	40.00 V	Max	20.00 V	Dly	20.00us
=Load2=	P-P	44.80 V	Max	22.40 V	Dly	80.00us
=Load3 $=$	P-P	48.00 V	Max	25.60 V	Dly	60.00us
=Load4 $=$	P-P	2.000 V	Max	-2.000V	Dly	---

[^2]
8.4 Using the Linear Scaling Function

Relevant Keys

Operating Procedure

1. Press the MISC key to display the setting menu and press the "To NextMenu" soft key.

Time Base...	Cornrn...	Date Time...	Infor- mation...	Config...	To NextMenu

2. Press the "Scale" soft key.

3. Press the "Mode" soft key and select "ON". The "Setup" soft key will appear.

To
TopMenu

4. Press the "Setup" soft key to display the linear scaling setting menu.

To
TopMenu

In order to use the linear scaling function, it is necessary to select the waveform of measurement, to set the coefficient A and the offset value B, and to apply a unit.

Selecting the waveform of measurement

5. Use the rotary knob to select the desired waveform of measurement.
6. Press the SELECT key to turn the "Mode" setting "ON". Pressing the SELECT key once more will result in selecting "OFF".
For DL1520/DL1520L, menus such as "CH1", "CH2", "MATH", "LOAD1" and
"LOAD2" are displayed instead of the linear scaling setting menu shown below.

Setting the scaling coefficient A and the offset value B

7. Use the rotary knob to select the coefficient A of the measurement waveform and press the SHIFT + MISC (KEYBOARD) key to display the keyboard.
8. Use the keyboard to enter the desired value. For details concerning operation of the keyboard, refer to page 4-8.
9. Use the rotary knob to select the coefficient B of the measurement waveform and press the SHIFT + MISC (KEYBOARD) key to display the keyboard.
10. Use the keyboard to enter the desired value. For details concerning operation of the keyboard, refer to page 4-8.

Applying a unit

11. Use the rotary knob to select the "UNIT" setting and press the SELECT key to display the keyboard.
12. Use the keyboard to enter desired unit. The unit will appear at the "units" setting on the screen. For details regarding the usage of the keyboard, refer to page 4-8.
13. Repeat steps 5 to 12 in case you want to set the linear scaling function for other waveforms.

Returning to the top menu

14. Press the ESC key to close the linear scaling setting menu.
15. Press the "To Topmenu" soft key to return to the MISC menu.

Explanation

Waveforms which cannot be measured

For waveforms which cannot be measured, refer to page 8-2.

Setting the coefficient A and offset value B

If the setting range of A, B is within $-3.4 \mathrm{E} 38 \leq \mathrm{AX}+\mathrm{B} \leq 3.4 \mathrm{E} 38^{*}$, the results will be displayed. If the setting exceed this range, the display will show "---". For an example, refer to the next page.
The default setting is $0.000000 \mathrm{E}+00^{*}$.

* 1E38 represents 1x1038.

Setting the unit

This setting is useful to enter any unit. Up to eight characters can be input. Note however, that only the first three characters will appear on the display.

Display Example of linear scaling results

The results of linear scaling will not appear on the display until data acquisition has been started.
The scaling coefficient A , offset B , and new defined unit will be applied to measurement values of cursor measurements and automated measurements. The following is a display example of the results of automated measurement.

- When linear scaling is ON
- When linear scaling is OFF

8.5 Performing Waveform Math (Addition, Subtraction and Multiplication)

Keys and Procedure

1. Press the MATH key to display the waveform math setting menu. For DL1520, "Knob" menu for trace MATH which displays computation result is also displayed.

Selecting the type of computation

2. Press the soft key corresponding to the math to be carried out.

Performing a phase shift

3. For DL1540/DL1540L, in case of computation of multiplication, press the "Phase" soft key. For DL1520/DL1520L, open the "Knob" menu first, then press the "Phase" soft key.
4. Turn the rotary knob to shift the phase. For DL1540/DL1540L, step 3 is not required if a MATH function other than multiplication is selected.

Changing the display sensitivity of the computation result of multiplication
3. After step 2 has been completed, press the "SENS" soft key.
4. Turn the rotary knob to adjust the sensitivity.

* For DL1520/DL1520L, the "POSITION" menu of the Knob menu can be used to move the vertical position (trace MATH) in steps of 0.02 div.

Explanation

Types of computation

The following types can be selected. The default value is "OFF".
OFF computation will not be carried out;
$\mathbf{1 + 2 (\rightarrow 3)}$ The result of adding waveform data of CH 1 and CH 2 will be displayed as trace 3 (or MATH).
$\mathbf{1 - 2 (\rightarrow 3)}$ The result of subtracting waveform data of CH 1 and CH 2 will be displayed as trace 3 (or MATH).
$\mathbf{1 x 2}(\rightarrow \mathbf{3})$ The result of multiplying waveform data of CH 1 and CH 2 will be displayed as trace 3 (or MATH).

Phase shift

Math can be performed with the phase of CH 2 shifted. The setting range and steps are as follows.
Setting range : ± 5 div
Setting steps : depending on the display record length. Refer to page 7-4 for more details.
Changing the display sensitivity of the computation result of multiplication In order to observe the computation result better, the waveform size from the ground level (display sensitivity) can be changed. The display sensitivity of the computation result of multiplication is specified as follows.
Waveform size (from the ground level) of the computation result: $\mathrm{Z}=(\mathrm{SENS} / 2) \times(\mathrm{XxY} / 2)$
SENS set value using rotary knob (div)
X waveform size of channel 1 (compared to ground level)
Y waveform size of channel 2 (compared to ground level)
Setting ranges from 0.50 to 4.00 div.
Setting step is 0.01 div.

Points to note relating to waveform computation

- Computation cannot be carried out on snapshot waveforms or recalled waveforms.
- Computation between channels is carried out using the original acquisition data which are then displayed using P-P compression. In case the input coupling is AC and an offset voltage is applied, the offset part will not be included in computation.
- Addition and subtraction computation is carried out regardless of the V/DIV setting of the channels. Therefore, in case of cursor measurement or automated measurement of trace 3 (or MATH), the displayed unit will become "div".
- The voltage axis sensitivity of channel 1 and 2 being V1 and V2 respectively, the voltage axis sensitivity of the computation result becomes (4/SENS) x V1 x V2/div. Therefore, in case of cursor measurement or automated measurement of trace 3 (or MATH), the displayed unit will become " V " ".
- The computed waveform displayed on trace 3 (or MATH) is P-P compressed data. When this data is stored or saved on the internal memory/floppy disk/SCSI device, information indicating that this is a computed waveform and the voltage axis information after the computation are not stored or saved. Therefore, if this data is recalled or loaded and then a measurement is made using the cursors or automated measurement of waveform parameters, correct values will not be displayed. To display the correct values, save the waveform data on CH 1 and CH 2 from the acquisition memory to the floppy disk/SCSI device as binary data. Then, load the data and redo the waveform computation. Waveform data in the acquisition memory cannot be stored in the internal memory.
- If the computed result due to adding or subtracting is larger than 10.24 div or the result due to multiplying is larger than 13 div, a chopped waveform will be displayed as in the following diagram. This is due to the fact that the computed result exceeds the display range.

- Even if "OFF" is selected at the waveform math setting menu, the phase shift function is still effective. To disable the phase shift function, set the phase shift to 0 div.

8.6 Displaying the Power Spectrum (Performing FFT Computation)

Keys and Procedure

1. Press the SHIFT + MATH (FFT) key to display the FFT computation setting menu.
2. Press the "FFT" soft key and select "ON".

Selecting the waveform of measurement

3. Press the "Trace" soft key to display the trace selection menu.
4. Press the soft key corresponding to the trace you want to measure. For DL1520DL1520L, menus such as "1", " 2 " and "MATH" are displayed instead of the trace selection menu shown below.

Selecting the time window

3. After step 2 has been completed, press the "RECT" or the
"HANNING" soft key to select the time window.

Selecting the display format

3. After step 2 has been completed, press the "VT\&FFT" or the "FFT" soft key to select the display format.

Explanation

The upper and lower limits of the power spectrum display take on fixed values depending on the vertical sensitivity (V/div) as shown in the figure below. They are not displayed on the screen.

Waveforms on which FFT computation can be performed

FFT computation can be performed on any one trace selectable from trace 1 to trace 4 (for DL1520/DL1520L, 1/2/MATH).

Selecting the time window
The time window can be selected from the following window types.
RECT (rectangular window)
Useful for transient signals which attenuate completely within the time window
HANNING Useful for signals which are continuous and not periodical

FFT frequency band

Maximum 50 MHz

Display format
The display format depends on the expansion settings. Refer to page 7-5 for more details.

Points to note relating to displaying the power spectrum

- FFT computation is not possible in repetitive sampling mode or when the acquisition mode is envelope mode.
- FFT computation is not possible when the Waveform's Horizontal Position set except to Odiv.
- The unit of the voltage axis is [dBV].
- In case the waveform is expanded, FFT computation will be carried out on the expanded range.

8.7 Measuring the Power Spectrum using Cursors

1. Display the power spectrum. For details, refer to the previous page.
2. Press the CURSOR key to display the cursor measurement setting menu.
3. Press the "Cursor" soft key and select "ON".
4. After having pressed any of the "F1", "F2" or "F1\&F2" soft keys, use the rotary knob to adjust the position of the vertical cursor. You may also use the < or > key.

Explanation

Waveforms which can be measured

Waveforms which can be measured are the same on which FFT computation can be performed. Refer to the previous page for more details.

Measurement items

The following items can be measured.
F1(X) Frequency at the position of cursor F1.
F2(X) Frequency at the position of cursor F2.
DF(X) F2-F1
P1(X) Frequency level at the position of cursor F1.
P2(X) Frequency level at the position of cursor F2.
DP(X) P2-P1
(X) indicates the waveform of measurement.

Cursor movement method

.
F1 Moves cursor F1 only.
F2 Moves cursor F2 only.
F1\&F2 Moves both cursors F1 and F2 simultaneously without changing the distance between them.

Cursor movement range

Each vertical cursor can be moved to 501 different positions from the left edge (-5.00 div) to the right edge (5.00 div) of the waveform display frame. However, there is no data at the 501 position of the rigth edge. Thus, when you move the cursor to this position, the display will show "- - -"
The default setting is -2.50 div for T 1 and 2.50 div for T 2 .
Points to note when performing cursor measurements

- The cursors and measured values will still be displayed even if a different menu is selected. However, the cursors cannot then be moved.
- Cursor-measured values will be cleared if the automated measurement function is turned ON. However, pressing the CURSOR key (when "Cursor" is set to "ON") will display the cursor-measured values.
- If the GO/NO-GO "Mode" has been set to "ON" and the "GO/NOGO EXEC" soft key has been pressed, the cursor measurement function will not operate even if the CURSOR key is pressed. To operate the cursor measurement function, the GO/NO-GO "Mode" must be set to "OFF".
- If measurement is not possible, "- - -" will be displayed.
- Cursor measurement is also possible for expanded waveforms. When switching the display to show the expanded waveform, the position of the cursor on the screen does not change. When both the pre-zoom and the expanded waveform are displayed, cursor measurement will be performed on the expanded waveform.
- There might be cases where the displayed waveform is not in synchronization with the measurement values. To synchronize, stop data acquistion.

9.1 Judging using a Waveform Zone

Relevant Keys

Operating Procedure

1. Press the GO/NO-GO key to display the GO/NO-GO setting menu.
2. Press the "Mode" soft key and select "ON". The GO/NO-GO top menu appears.
3. Press the "ZONE" soft key. The default setting is "ZONE".

When using the GO/NO-GO determination funtion, the following settings/selections can be specified.

- Creating the determination zone (refer to page 9-1, 9-2);
- Saving the determination zone (refer to page 9-3);
- Redrawing/editing the saved determination zone (refer to page 9-3);
- Setting up the determination conditions (refer to page 9-4, 9-5); trace conditions, determination logic, determination sequence, action after determination
- Executing and aborting the determination function (refer to page 9-5).

Note

The determination waveforms are saved in the internal memory. Old determination waveforms which are already present in the internal memory, will be overwritten when new ones will be saved. An error message will not appear. Therefore, verify before saving whether or not determination waveforms already exist in the internal memory. Refer to steps 18 to 20.

Creating the Waveform

4. Press the "Edit..." soft key of the GO/NO-GO top menu. The zone creation menu will
appear.

Mode	go/nogo Type			
OFF ON	ZONE PRMTR	Edi	Setup	EXEC

5. Press the "NEW..." soft key and the base trace menu will appear.

6. Press the soft key corresponding to the desired base trace. To edit the entire waveform, continue with step 7 ; to edit a part of the waveform, continue with step 10 .
For DL1520/DL1520L, menus such as "TRACE1", "TRACE2" and "MATH" are displayed instead of the base trace menu shown below.

Editing the whole waveform

7．Press the＂WHOLE＂soft key to display the editing menu．The default setting is ＂WHOLE＂
8．After having pressed the＂Move＂soft key to select the editing direction，use the rotary knob to edit the zone．You may also use the $<$ or $>$ keys．

				Upper Cursor 0.00 div
		$\begin{gathered} \text { Move } \\ \text { 公ふらか } \end{gathered}$	DONE	
WHOLE	PART			

Example in case＂仓＂is set at the＂MOVE＂setting．

Example in case＂\measuredangle＂is set at the＂MOVE＂setting，following the previous example．

Example in case＂\diamond＂is set at the＂MOVE＂setting，following the previous example．

Example in case＂\Rightarrow＂is set at the＂MOVE＂setting，following the previous example．

9．Repeat step 8 until editing the waveform has been completed．To edit a part of the waveform，continue with step 10 ；if editing has been completed，continue with step 14 ．

Editing a part of the waveform

10．After having completed step 6 or step 9，press the＂PART＂soft key to display the editing menu．
11．After having pressed the＂T－Range＂soft key，select either＂T1＂or＂T2＂to set either boudary of the setting range．Then use the rotary knob to edit the boundary position． You may also use the＜or＞keys．Do this for both the left（T1）and right side boundary （T2）．
12．After having pressed the＂Zone＂soft key to select the editing direction，use the rotary knob to edit the zone．You may also use the $<$ or $>$ keys．

Example in case＂仓＂is set at the＂ZONE＂setting，following the previous zone editing example．

Example in case＂\measuredangle＂is set at the＂ZONE＂setting，following the previous example．

13．Repeat steps 11 and 12 until partial editing of the waveform has been completed．

Completing editing the waveform

14．After having completed editing the waveform，press the＂DONE＂soft key to display the saving menu．

Saving the determination zone

15. Select the field where the determination zone will be saved by pressing any of the "ZONE1-ZONE4" soft keys. The determination waveforms which have been saved in ZONE1, ZONE2, ZONE3 and ZONE4 can only be applied to trace 1, 2, 3 (or MATH), and 4 respectively. "ZONE4" is not provided with DL1520/DL1520L.
16. Execute saving by pressing the "STORE EXEC" soft key.

		A	EXEC	TopMenu
ZONE1	NE2			

Note

The determination waveforms are saved in the internal memory. Old determination waveforms which are already present in the internal memory, will be overwritten when new ones will be saved. An error message will not appear. Therefore, verify before saving whether or not determination waveforms already exist in the internal memory. Refer to steps 18 to 20.
17. Return to the GO/NO-GO top menu by pressing the "Quit \& TopMenu" soft key.

Redrawing/editing the saved determination zone

18. Press the "Edit..." soft key of the GO/NO-GO top menu. The zone creation menu will appear.

Mode	go/NOGO Type	Edit	Setup	EXEC
OFF ON	ZONE PRMTR	Edit...	Setup	EXEC

19. Press the "REDRAW..." soft key and the zone trace menu will appear.

To
TopMenu

20. Press the soft key corresponding to the desired zone you want to redraw. The saved determination zone will appear. "ZONE4" is not provided with DL1520/DL1520L.

21. To edit the redrawn zone, repeat steps 7 to 14 on the previous page.
22. To save the edited redrawn zone, repeat steps 15 to 17 .

Setting up the determination conditions

23. Press the "Setup" soft key of the GO/NO-GO top menu. The condition setup menu will appear.
24. After having selected the "Mode" setting of the trace to be measured using the rotary knob, press the SELECT key to select "ON". Pressing the key once again results in selecting "OFF", and no waveform determination will occur.
25. After having selected the "Condition" setting of the same trace using the rotary knob, press the SELECT key to select the desired condition. When the condition is met, "NO-GO" will result.
"OUT" : The waveform under measurement protrudes from the determination zone;
"IN" : The waveform under measurement enters the determination zone.
26. Repeat steps 24 and 25 for other traces if necessary.

Selecting AND or OR determination : Logic

27. After having selected the "Logic" setting on the condition setup menu, press the SELECT key to select the desired condition. When the condition is met, "NO-GO" will result.
"AND" : All determinations are "NO-GO"
"IN" : Any of the determination is "NO-GO"

Sequence determination

28. After having selected the "Sequence" setting on the condition setup menu, press the

SELECT key to select the desired sequence. The following types can be selected.
"SINGLE" : Stops determination when a "NO-GO" determination is made
"CONTINUE" : Carries out determination repeatedly until the "ABORT" soft key is pressed

Setting action after determination

29. After having selected the "Action" setting on the condition setup menu, press the SELECT key to select the desired action. After a "NO-GO" determination, the data can be recorded in the following manners.
"NONE" : No action;
"PRINT" : A hardcopy of the screen will be printed out on the built-in printer;
"FD(P-P)" : All waveforms displayed on the screen will be saved to the floppy disk as P-P compressed data;
"FD(ACQ)" : Acquisition data of all waveforms displayed on the screen will be saved to the floppy disk as binary data.
30. After having selected either "FD(P-P)" or "FD(ACQ)", move to the
"FileName"setting and press the SELECT key. The keyboard will be displayed. After having selected either "NONE" or "PRINT", continue with step 32.
31. Use the keyboard to enter the name of the file. The entered filename will be displayed at the "FileName"setting. For details how to operate the keyboard, refer to page 4-8.

Returning to the top menu

32. Return to the GO/NO-GO top menu by pressing the ESC key.

Executing the determination function

33. Press the "EXEC" soft key. The name of the soft key will change to "ABORT".

Display while GO/NO-GO judgement is in progress

Corresponding to trace $1,2,3,4$

- : Not under measurement
(For DL1520/DL1520L, trace 1,2,MATH)

Aborting the determination function

34. Press the "ABORT" soft key. The name of the soft key will change to "EXEC".

Explanation

Selecting the reference waveform: Base Trace

Selects the waveform on which the determination range is to be based. The reference waveform can be selected from the following four types which can be displayed as TRACE.

- Input signal waveform;
- ACQ waveform data (BIN data) loaded from a floppy disk;
- Computed waveform.

Editing the determination zone

Up to four determination zones can be set (for DL1520/DL1520L, up to three). The determination zone can be specified by expanding the reference waveform vertically and horizontally as follows.

- Setting range in the vertical direction ($\widehat{\rightharpoonup}, ~ ъ)$
± 8 div from the reference waveform, setting step is 0.02 div.
- Setting range in the horizontal direction ($\langle, 弓$)
± 5 div from the center of the display, setting step is 0.02 div.

File name in case of $\mathrm{FD}(\mathrm{P}-\mathrm{P})$ or $\mathrm{FD}(\mathrm{ACQ})$ action

When the waveform data are being saved to the floppy disk, a file number (starting from " 0000 ") is automatically assigned. It is possible to insert a common file name (character string consisting of up to four characters) before the assigned file number (for instance "NOGO0000").
The entered file name is will be reset when the action becomes "NONE" or when GO/ NOGO determination is set to "OFF".
The file name will be reset if the GO/NOGO determination is executed/aborted using EXEC and ABORT soft keys.

Example of data format

After GO/NO-GO determination has been completed, the NO-GO counts, the date, time, and the results for each trace will be saved automatically in the DL-MISC directory at the floppy disc. The extension is ".GNG". These files cannot be opened using this instrument; use a personal computer for this purpose. In the example given below, "Math" is provided instead of "Trace3" in the case of DL1520/DL1520L. "Trace4" is not provided.

JudgeCnt	NoGoCnt	Date	Time	Trace 1	Trace 2	Trace3	Trace 4
3	1	95/03/03	10:10:10	Go	NoGo	Go	G
5	2	95/03/03	10:10:12	NoGo	Go	NoGo	Go
10	3	95/03/03	10:10:15	Go	NoGo	NoGo	NoGo
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
100	100	95/03/03	10:23:10	Go	NoGo	NoGo	Go

Forcing determination to stop and clearing the zone waveform

To force determination to stop, press the "ABORT" soft key or set "Mode" (at the GO/NOGO top menu) to "OFF". To clear the displayed zone waveform, switch "Mode" (at the GO/ NO-GO top menu) to "OFF".

Points to note relating to zone determination

- Trigger mode is automatically switched to single short mode/single mode irrespective of the selected trigger mode during GO/NO-GO determination. However, determination will be repeated if the determination sequence has been set to "CONTINUE". Even in case the GO/NO-GO mode (at the GO/NO-GO top menu) is changed to OFF again, the setting at the trigger mode selection will not become valid again.
- It is not possible to perform zone determination while both pre-zoom waveform and its expanded waveform are displayed at the same time or while an FFT or X-Y waveform is displayed. Neither is it possible to a display zone waveform. To perform GO/NO-GO determination using a zone waveform, make sure that the expanded waveform alone is displayed before "Mode" is set to "ON" (at the GO/NO-GO top menu).
- The following operations are not possible after having pressed the "EXEC" soft key. In order to perform these operations, it is necessary to set "Mode" (at the GO/NO-GO top menu) to "OFF", after having pressed the "ABORT" soft key.
- Initialization of the settings • Automated measurements
- Auto set-up
- Changing of expansion settings
- Cursor measurements
- Display of an X-Y waveform
- Action on trigger
- A zone waveform is not displayed if the following conditions are not satisfied after the zone waveform has been created.
- "Mode" at the GO NO-GO top menu : ON
- "GO/NO-GO Type" : ZONE
- "Mode" for selected trace : ON
- Display for selected trace : ON (corresponding LED is lit)
- During the time in which an action is being executed after GO/NO-GO determination, no waveform data will be acquired.

Note

The zone waveform generated can be retained by saving the set-up data on a floppy disk. However, "Mode" (at the GO NO-GO top menu) must be set to "ON" and "GO/NO-GO Type" to "ZONE". For a description of how to save set-up data on a floppy disk, refer to 12.4 "Saving and Loading Set-up Data" (page 12-7).

9.2 Judging using Measured Values of Waveform Parameters

Relevant Keys

Operating Procedure

1. Press the GO/NO-GO key to display the GO/NO-GO setting menu.
2. Press the "Mode" soft key and select "ON". The GO/NO-GO top menu appears.
3. Press the "PRMTR" soft key. The default setting is "ZONE".

The parameters which can be selected/set at this setting consist of the following.

- Determination range (refer to page 9-8);
- Determination conditions, such as parameter setup, determination logic, sequence determination, and action after determination (refer to page 9-9, 9-10);
- Executing/aborting determination after setting/selecting the parameters. (refer to page 910).

Setting the determination range

4. After having pressed the "T-Range" soft key, select either "T1" or "T2" to set either boudary of the determination range. Then use the rotary knob to edit the boundary position. You may also use the $<$ or $>$ keys. Do this for both the left (T1) and right side boundary (T2).

Setting the determination conditions

Parameter setup

5. Press the "Setup" soft key of the GO/NO-GO top menu. The parameter menu will appear.
6. After having selected the "Mode" setting using the rotary knob, press the SELECT key to select "ON". Pressing the key once more results in selecting "OFF".
7. After having selected the "Trace" setting using the rotary knob, press the SELECT key to select the trace used for measurement. Selectable from " 1 " to " 4 " (for DL1520/ DL1520L, 1/2/Math).
8. After having selected the "Item" setting using the rotary knob, press the SELECT key to display the parameter setting screen.
9. Use the rotary knob to select the parameter of measurement. Press the SELECT key, the setting screen will disappear, and the setting will be shown at the "Item" setting.

Measure Parameter				
- P-P	\square UNDERSHOOT	\square RISE	\square +WIDTH	\square Integity
$\square \mathrm{Max}$	- OVERSHOOT	$\square \mathrm{FALL}$	\square-WIDTH	\square Integ2ty
$\square \mathrm{MIN}$	\square HIGH	\square FREQ	\square DUTY	- INTEG1XY
$\square \mathrm{RMS}$	\square Low	\square PERIOD	\square DELAY	$\square \mathrm{INTEG2XY}$
$\square \mathrm{BVG}$				

10. After having selected the "Upper" setting using the rotary knob, press the SHIFT + MISC (KEYBOARD key to display the keyboard.
11. Use the keyboard to enter the desired value. For details concerning operation of the keyboard, refer to page 4-7.
12. After having selected the "Lower" setting using the rotary knob, press the SHIFT + MISC (KEYBOARD key to display the keyboard.
13. Use the keyboard to enter the desired value. For details concerning operation of the keyboard, refer to page 4-7.
14. After having selected the "Condition" setting using the rotary knob, press the SELECT key to select the condition setting. When the condition is met, "NO-GO" will result.
"OUT" : The value of the measurement parameter lies outside the values determined by the Upper and Lower values.
"IN" : The value of the measurement parameter lies inside the values determined by the Upper and Lower values.
15. Repeat steps 6 to 14 until the parameter setup has been completed.

Determination Logic

16. After having selected the "Logic" setting using the rotary knob, press the SELECT key to select the desired condition. When the condition is met, "NO-GO" will result.
"AND" : All determinations are "NO-GO";
"IN" : Any of the determination is "NO-GO".

Sequence determination

17. After having selected the "Sequence" setting on using the rotary knob, press the

SELECT key to select the desired sequence. The following types can be selected.
"SINGLE" : Stops determination when a "NO-GO" determination is made;
"CONTINUE" : Carries out determination repeatedly until the "ABORT" soft key is pressed.

Setting action after determination

18. After having selected the "Action" setting using the rotary knob, press the SELECT
key to select the desired action. After a "NO-GO" determination, the data can be recorded in the following manners.
"NONE" : No action;
"PRINT" : A hardcopy of the screen will be printed out on the built-in printer;
"FD(P-P)" : All waveforms displayed on the screen will be saved to the floppy disk as P-P compressed data;
"FD(ACQ)" : Acquisition data of all waveforms displayed on the screen will be saved to the floppy disk as binary data.
19. After having selected either "FD(P-P)" or "FD(ACQ)", move to the
"FileName"setting and press the SELECT key. The keyboard will be displayed. After having selected either "NONE" or "PRINT", continue with step 21.
20. Use the keyboard to enter the name of the file. The entered filename will be displayed at the "FileName"setting. For details how to operate the keyboard, refer to page 4-8.

Returning to the top menu

21. Return to the GO/NO-GO top menu by pressing the ESC key.

Executing the determination function

22. Press the "EXEC" soft key. The name of the soft key will change to "ABORT".

For the display which appears during measurement, refer to page 9-5.

Aborting the determination function

23. Press the "ABORT" soft key. The name of the soft key will change to "EXEC".

Explanation

Selecting the waveforms to be judged

Input signal waveforms which are displayed as trace Nos. 1 to 4 (for DL1520/DL1520L, 1/ 2/Math) can be judged. Computed waveforms can also be judged. Acquisition-memory data is not available.

Setting the determination range: T-Range

The range of determination is set by the two cursors T 1 and T 2 . The setting lies within -5.00 div at the left side to +5.00 div at the right side measured from the center of the display.
Note that this range is different from the one used for automated measurements.
Selecting waveform parameters and setting the range: Item, Upper, Lower
Up to four waveform parameters can be selected from the following items. If you do not know the upper-limit or lower-limit, set the + side of the setting range, or (when the keyboard shows this settings) select "NAN" (Ignore). In the latter case, the display will show "XXX" at the corresponding setting.
For the meaning of each item, refer to page 8-10.
Each parameter can be set within the range given in the table below.

Measurement item	Upper-/lower-limit setting range	Setting step
Max, Min, High, Low P-P, AVG, RMS	± 8 div	0.04 div
+Overshoot, -Overshoot	0 to 200%	1%
+Duty, -Duty	0 to 100%	1%
Freq *	0.02 to 10 div	-
Period, Rise, Fall +Width, -Width	0 to 10 div	0.01 div
Delay, Delay	-10 to 10 div	0.01 div
INTEG1TY, INTEG2TY INTEG1XY, INTEG2XY	$\pm 3.4 \times 10^{38}$	-
The setting step is not constant since the frequency is the reciprocal of the period.		

File name in case of $\mathrm{FD}(\mathrm{P}-\mathrm{P})$ or $\mathrm{FD}(\mathrm{ACQ})$ action
When the waveform data are being saved to the floppy disk, a file number (starting from " 0001 ") is automatically assigned. It is possible to insert a common file name (character string consisting of up to four characters) before the assigned file number (for instance "NOGO0001").
The entered file name will be reset when the action becomes "NONE" or when GO/NOGO determination is set to "OFF".
The file name will not be reset if the GO/NOGO determination is executed/aborted using EXEC and ABORT soft keys.

Example of data format

In case of NO-GO determination, the measurement values will appear. For the other contents, refer to page 9-6.

JudgeCnt	NoGoCnt	Date	Time	Param1(T1/P-P)	Param2(T2/Max)
3	1	95/03/03	10:10:10	Go	$2.000 \mathrm{e}+02 \mathrm{~V}$
5	2	95/03/03	10:10:12	$1.000 \mathrm{e}+02 \mathrm{~V}$	Go
10	3	95/03/03	10:10:15	Go	$1.500 \mathrm{e}+02 \mathrm{~V}$
,	-	-	-	-	-
-	-	-	-	-	,
-	-	-	-	-	-
-	-	-	-	-	-
100	100	95/03/03	10:23:10	Go	$1.950 \mathrm{e}+02 \mathrm{~V}$

Forcing determination to stop

To force determination to stop, press the "ABORT" soft key or set "Mode" (at the GO/NOGO top menu) to "OFF".

Points to note relating to parameter determination

- Trigger mode is automatically switched to single mode irrespective of the selected trigger mode during GO/NO-GO determination. However, determination will be repeated if the determination sequence has been set to "CONTINUE". Even in case the GO/NO-GO mode (at the GO/NO-GO top menu) is changed to OFF again, the setting at the trigger mode selection will not become valid again.
- While both pre-zoom waveform and its expanded waveform are displayed at the same time, the expanded waveform will become the object of determination.
- The following operations are not possible after having pressed the "EXEC" soft key. In order to perform these operations, it is necessary to set "Mode" (at the GO/NO-GO top menu) to "OFF", after having pressed the "ABORT" soft key.
- Initialization of the settings • Automated measurements
- Auto set-up
- Changing of expansion settings
- Cursor measurements - Display of an X-Y waveform
- Action-on trigger
- During an action is being executed after GO/NO-GO determination, no waveform data will be acquired.
- In case the linear scaling function has been set to ON, you can enter linear scaled values at the GO/NO-GO parameter setting menu.
- Only waveforms displayed on screen are available for judgment. Acquisition-memory data is not available.

9.3 Using the GO/NO-GO Signal Output Function(for DL1540/DL1540L)

Output Signal

NO-GO OUT signal

The output signal level (TTL level) changes from high to low (L) temporarily when a "NOGO" determination is made.

GO OUT signal

The output signal level (TTL level) changes from high to low (L) temporarily when a "GO" determination is made.

Signal output circuit diagram

Output Connector

Pin No.	Signal name
1	NO-GO OUT
2	GND
26	GO OUT
27	GND

Only use pin No. 1, 2, 26, and 27.
Other pins are used for other communication purposes.

Output Timing

Connecting to Another Instrument

Use the dedicated half-pitch interface cable (B9920TA) to connect each terminal to the terminals of another instrument.
A DC voltage of 5 V is always present on the output terminals. Thus, take care when you connect to another instrument or when you touch the "NO-GO OUT" terminal.

- Never apply an external voltage to the NO-GO OUT and GO OUT terminals, otherwise damage to the instrument may result.
- When connecting the GO/NO-GO signal output externally, make sure not to connect other signal pins by mistake. Errors in connection may cause damage to this instrument or to the other connected instrument.

10.1 Loading a Chart in the Optional Built-in Printer

Printer Roll Charts

Use only YOKOGAWA's roll charts (the same type as the one supplied with the instrument) with the built-in printer.

When Roll Charts have Run out

When your roll charts have run out, purchase more from your dealer or YOKOGAWA sales representatives as listed on the back cover of this manual. Price information can be obtained from them.

Part No. : B9850NX
Specification : Thermo-sensible, 30 m
Minimum quantity : 5 rolls

Handling the Roll Chart

Thermo-sensible roll charts generate color using a thermal reaction, therefore the following precautions must be taken.

Storage precautions

The roll chart begins to develop color at approximately $70^{\circ} \mathrm{C}$. It is very sensitive to heat, damp, light and chemicals both before and after use.

- Keep roll charts in a dry, cool and dark place.
- Once the package is opened, use the roll chart as soon as possible.
- If the roll chart is left in contact with plastic films containing plasticizer (for instance, vinyl chloride film, cellophane tape etc.) for a long period of time, discoloration will occur on the recording area of the chart due to the plasticizer. If you are going to keep the roll chart in a holder, for instance, use a polypropylene holder.
- When you use adhesive on the roll chart, never use adhesive which contains an organic solvent such as alcohol or ether, otherwise color may develop on the chart.
- When you are going to store recorded roll charts for a long period of time, we suggest you make a copy of the charts since discoloration of the originals may occur.

Usage precautions

- Use only YOKOGAWA's genuine roll charts.
- Do not touch the roll chart with sweaty hands.
- Do not rub the surface of the roll chart hard with a solid object: color development may occur due to frictional heat.
- Do not allow chemicals or oil to come into contact with the roll chart, otherwise color development or loss of information may result.
- The chart paper might show some discoloration due to friction after the instrument is moved with the roll paper installed. Therefore it is recommended to remove and re-install the chart paper before moving.

Loading Procedure

Push the printer cover firmly at the point of the push mark.
The cover springs open, allowing you to open it.

Hold the chart so that the end of the chart faces away from you, and then place the roll in the provided space, as shown in the figure.

Insert the end of the roll into the gap beneath the black guides so that the chart protrudes approximately 10 cm from above the guides. The paper can be inserted easily after cutting off both corners of the end of the paper.

Rotate the chart to make sure that it is properly aligned and stretched out, then secure the chart paper by sliding the release arm back into its old position.
If the release arm is not put back in its old position, an error message will be displayed when printing is performed.

Half close the printer cover, insert the end of the chart through the paper slot in the cover, and then close it. Push the cover firmly at the point marked until it clicks into place.

10.2 Printing Waveforms and Additional Information using the Optional Built-in Printer

Keys and Procedure

1. Press the SHIFT + COPY (MENU) key to display the hardcopy setting menu.
2. Press the "PRNTER" soft key to display the printout type selection menu. "CENTR" menu is also provided with DL1520/DL1520L with suffix code -C3.

Copy To			Comment	Keyboard
PRNTR...	PLTR...	FILE...	OFF ON	

Selecting additional information

3. Press the "Info" soft key to select "OFF" or "ON".

Selecting the type of printout
4. Select from "SHORT", "LONG" or "REAL". If "SHORT" is selected, read chapter 11 ; If "REAL" is selected, refer to page 10-10.

Long copy

Setting the printing range

5. Press the "LONG" soft key and the "Range" soft key will appear.

The display will automatically show the pre-zoom and expanded waveform.

6. Press the "Range" soft key to display the printing range setting menu.
7. After having pressed either the "T1" or "T2" soft keys, use the rotary knob to adjust the position of the cursor. You can also use the < or > keys. The position of cursor T1 indicates the starting point of printing, and the position point of cursor T 2 indicates the end point of printing.

Setting the zoom value

8. After having pressed the "ZOOM" soft key, use the rotary knob to adjust the zoom value.

Verifying the waveform to be printed

9. Press the "BOX POS" soft key to move the zoom box to the desired printing range. This allows you to verify which part of the waveform will be printed.

10. Press the ESC key to close the printing range setting menu.

Outputting to the printer

11. Press the COPY key to execute the printing.

Aborting the printing

12. After having performed step 11, press the COPY key again to abort the printing.

Explanation

Contents of hardcopy

- Displayed waveforms;
- Ground display (such as graticule, measured values);
- Menu;
- Setting information such as filter, offset, display record length and trigger settings (only in case printing type is set to "SHORT").

Additional information: Addition Info

The following additional information (setup and waveform parameters) can also be output. To output the hardcopy only, select "OFF".
Setup Information

Measurement Values of Waveform Parameters

Setting the printing type SHORT (short copy)

Select this type of output if you want to output an exact copy of the screen. It looks as the figure below.

LONG (long copy)

Select this type of output if you want to output normal waveforms on screen as expanded waveforms. The following settings must be made.

- Setting the printing range; Sets from where to where printing will be done. 10div of the time axis will be printed on one page. A printout page will always be filled up to 10div, and therefore more of the waveform might be printed than specified by the printing range.
- Setting the expansion rate; For setting limits and expansion rate, refer to page x.x This setting is not necessary if expanded waveforms have already been displayed before the hardcopy output setting menu is displayed and you do not want to change the expansion rate.

After having selected the long copy and having closed the hard copy setting menu, the display will still be according to the MainZoom display mode. To display normal waveforms only, press the ZOOM key and select OFF or MAIN.

Note

The printer density can be adjusted. For more details, refer to page 14-4.

10.3 Real-Time Printing using the Optional Built-in Printer

Keys and Procedure

1. Press the SHIFT + COPY (MENU) key to display the hardcopy setting menu. "CENTR" menu is also provided with DL1520/ DL1520L with suffix code -C3.
2. Press the "PRNTR" soft key to display the printout type selection menu.
3. Press the "REAL" soft key.

Outputting to the printer

4. Press the COPY key to execute the printing.

Aborting the printing

5. After having performed step 4, press the COPY key again to abort the printing.

Explanation

Chart speed

The chart speed depends on the time axis setting as shown in the table below.

Time axis setting	Chart Speed
$500 \mathrm{~ms} / \mathrm{div}$	$16.67 \mathrm{~mm} / \mathrm{s}$
$1 \mathrm{~s} / \mathrm{div}$	$8.33 \mathrm{~mm} / \mathrm{s}$
$2 \mathrm{~s} / \mathrm{div}$	$4.17 \mathrm{~mm} / \mathrm{s}$
$5 \mathrm{~s} / \mathrm{div}$	$1.67 \mathrm{~mm} / \mathrm{s}$
$10 \mathrm{~s} / \mathrm{div}$	$0.83 \mathrm{~mm} / \mathrm{s}$
$20 \mathrm{~s} / \mathrm{div}$	$0.42 \mathrm{~mm} / \mathrm{s}$
$50 \mathrm{~s} / \mathrm{div}$	$0.17 \mathrm{~mm} / \mathrm{s}$

Points to note when printing real-time

Before carrying out real-time printing, verify the following settings.

- The trigger mode should be set to Auto mode or Auto Level mode;
- The history memory function should be set to OFF;
- The time base should be selected INT;
- For DL1520L/DL1540L, the record length must be set to 10 K or 100 K .
- The time axis setting should lie within $500 \mathrm{~ms} / \mathrm{div}$ to $50 \mathrm{~s} / \mathrm{div}$;
- Waveform acquisition should be started.

During real-time printing, only the execution/abortion operations are valid.
During real-time printing, the cursor measurements and waveform parameter measurements will be halted.
When you press the START/STOP key during real time printing, data acquisition will stop and therefore real-time printing will also stop. Pressing the START/STOP key again results in resuming data acquisition and therefore real-time printing.
Real-time printing is not possible during ZOOM/MainZoom display, X-Y display or when loaded/recalled waveforms are being displayed.

10.4 Connecting an External Plotter

Compatible Plotters

Any plotter which accepts HP-GL commands can be used.
However, the plotting range varies according to the model, causing loss of output data on some plots.

Communications Settings

This instrument
Initiating output to the plotter will switch this instrument to talk-only mode automatically. Plotter
Set the plotter to listen-only mode.

Note

- For a description of the GP-IB interface, refer to the "Communication Interface User's Manual" (IM 701510-11E).
- For DL1520 with suffix code -C1/-C3 or DL1520L with suffix code -C1/-C3/-C4, enable to connect the external plotter to the instrument.

Connecting Procedure

1. Turn OFF the power to both the instrument and the plotter.
2. Connect the plotter to the instrument using the GP-IB cable. After the plotter is connected, tighten the screws firmly.

10.5 Printing Displayed Waveforms and Additional Information using an External Plotter

Keys and Procedure

1. Press the SHIFT + COPY (MENU) key to display the hardcopy setting menu.
2. Press the "PLTR..." soft key. "CENTR" menu is also provided with DL1520/DL1520L with suffix code -C3.
3. Press the "Setup" soft key to display the plotter setup menu.

Selecting the paper size

4. After having selected the "Paper Size" setting using the rotary knob, press the the SELECT key to select the desired paper size.

Selecting the pen speed

5. After having selected the "Pen Speed" setting using the rotary knob, press the the SELECT key to select from "NORMAL" or "SLOW".

Selecting the XY Mode

6. After having selected the " $X Y$ Mode" setting using the rotary knob, press the the SELECT key to select from "DOT" or "LINE".

Assigning pens

7. After having selected the "Pen Mode" setting using the rotary knob, press the the SELECT key to select from "AUTO" or "MANUAL". In case of AUTO
8. After having selected "AUTO", and after having selected the "Auto Pen" setting using the rotary knob, press the SELECT key to display the setting frame.
9. Use the rotary knob to set the number of pens. Press the RESET key to return the default value. Continue with step 10.

In case of MANUAL

8. After having selected "MANUAL", use the rotary knob and the SELECT key to set the "Grid Pen" setting, the "TRACE1 Pen TRACE4 Pen (for DL1520/DL1520L, TRACE1/TRACE2/MATH)" setting and the "LOAD1 Pen - LOAD4 Pen (for DL1520/DL1520L, LOAD1/LOAD2)" setting.
9. Use the rotary knob to set the pen numbers. Press the RESET key to return the default value.
Closing the plotter setup menu
10. Press the SELECT key or the ESC key to close the setting frame.
11. Press the ESC key to close the setting menu.

Outputting to the external plotter
12. Press the COPY key.

Aborting the printing

13. After having performed step 12 , press the COPY key again to abort the printing.

Explanation

Selecting the paper size

The contents of printing, paper size, printing size and printing location can be selected from the following eight types. However, only one type of output can be selected at a time. "A5Upper WAVE" and "A5-Lower WAVE" allow output of two A5-sized screens of information on a sheet of A4 paper.

Setting	Output item	Output size	Output location
A3-WAVE	Screen hardcopy	A3	Middle
A3-SETUP	Set-up parameters	A3	Middle
A4-WAVE	Screen hardcopy	A4	Middle
A4-SETUP	Set-up parameters	A4	Middle
A5-Upper WAVE	Screen hardcopy	A5	Upper half
A5-Lower WAVE	Screen hardcopy	A5	Lower half
A5-Upper WAVE \&	Screen hardcopy	A5	Upper half
A5-Lower SETUP	Set-up parameters	A5	Lower half
A5-Upper WAVE \&	Screen hardcopy	A5	Upper half
A5-Lower MEASURE	waveform measurement data	A5	Lower half

Selecting the pen speed

The pen speed can be selected from the following two speeds.
NORM Plots at the default speed setting.
SLOW Plots at a speed of $10 \mathrm{~cm} / \mathrm{s}$.

Selecting the pen assignment method: Pen Mode

The pens can be assigned according to the following two methods.
AUTO Assigns pens automatically, as shown in the table below, according to the number of pens.

Number of installed pens	GRID	TRACE $\mathbf{2}$ (MATH)				$\mathbf{4}$	$\mathbf{1}$	LOAD			
	$\mathbf{1}$		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$						
1	1	1	1	1	1	1	1	1	1		
2	1	2	1	1	2	2	1	1	2		
3	1	2	3	1	2	2	3	1	2		
4	1	2	3	4	1	2	3	4	1		
5	1	2	3	4	5	2	3	4	5		

MANUAL A particular pen can be assigned to the graticule, to TRACE1 to 4 (for DL1520/ DL1520L, 1/2/MATH) and to LOAD 1 to 4 (for DL1520/DL1520L, 1/2). The pen numbers that can be assigned are 0 to 12 . If " 0 " is selected, no plotting is performed for the corresponding item.

Assignment of pens to the grid, trace and load

The grid, TRACE1 to TRACE4 and LOAD 1 to LOAD4 can have pens assigned to them as follows.

Setting	Assignment for hardcopy
Grid	Graticule, all cursors, trigger position mark, date and time, comments, setup information list, measurement values
TRACE1 \quadTrace1 waveform, ground level, trigger level mark, voltage axis conditions, input coupling, probe attenuation	
TRACE2 to 4	Same as Trace1
(for DL1520/DL1520L, 2/MATH)	
LOAD1 to 4	
\quad (for DL1520/DL1520L, 1/2)	

Note

For DL1520 with suffix code -C1/-C3 or DL1520L with suffix code -C1/-C3/-C4, enable to print displayed waveforms and additional information.

10.6 Entering a Comment

Keys and Procedure

1. Press the SHIFT + COPY (MENU) key to display the hardcopy setting menu.
Entering comments
2. Press the "Keyboard" soft key to display the keyboard. "CENTR" menu is also provided with DL1520/DL1520L with suffix code-C3.
3. Use the keyboard to enter the comment. For details regarding the usage of the keyboard, refer to page x.x.

Displaying comments

4. Press the "Comment" soft key to select "ON". Pressing the soft key once again results in "OFF", and therefore comments will not be displayed.

Explanation

Number of characters which can be entered

Up to 25 characters may be entered.

Displaying a comment

The comment will appear above the waveform display frame, as shown in the figure below.

Clearing the comment

Press the "EXEC" soft key in the hardcopy setting menu or display another menu. The comment will be cleared.

Points to note when entering a comment

The displayed comment may overlap the messages which occur during waveform acquisition. When you want to display the comment in such a case, turn off data acquisition, and set the "Comment" setting on the hardcopy setting menu to "ON" once again.

10.7 Printing the Screen Image to an External Printer (for DL1520/DL1520L with suffix code -C3)

Keys and Procedure

1. Press the SHIFT + COPY (MENU) key to display the hardcopy setting menu.
2. Press the "CENTR..." soft key to display the external printer selection menu.
3. Press the soft key corresponding to the desired external printer. DL1520 with software (ROM) version before 1.30 does not display the "PCL5" menu.

Format			
ESC/P	LIPS	PR201	PCL5

To

``` TopMenu
```

Outputting to the external printer
4. Press the COPY key.

Aborting the printing

5. After having performed step4, press the COPY key again to abort the printing.

Explanation

Centronics interface

Centronics interface is a typical interface used to transfer print data and is employed in many printers. DL1520/DL1520L can print screen image to a printer which supports the following print formats.

External printer type: Format

Select from ESC/P, LIPS, PR201 or PCL5. DL1520 with software (ROM) version before 1.30 can not select "PCL5."

Print type

Same as SHORT (short copy) on page 10-4. However, the setting information will not be printed for DL1520 with software (ROM) version before 1.30 when using ESC/P.
Points to note when printing the screen image to an external printer

- DL1520/DL1520L with suffix code -C3 only can output to the external printer.
- Connect the external printer to DL1520/DL1520L using the printer connecting cable of standard accessories.
- With some printers, the screen image cannot be printed properly. If this problem continues to occur, even when the printer has been adjusted, contact the printer's manufacturer.
- It is possible to print the screen image to a printer connected to a personal computer. Save the screen image data to a floppy disk as described in Section 12.5, "Saving Screen Image Data", then open the data using the computer and print it.

Note

DL1520/DL1520L doesn't be recognizable errors (example, the chart end) of external printer. In case of occuring the errors, if DL1520/DL1520L is executed to output to the external printer, aborting the printing by pressing the COPY key.

Pin configuration of Centronics connector(the rear panel side of DL1520/DL1520L) and D-sub socket(the Printer connecting cable B9916TB side)

(Printer connecting cable B9916TB side)

[^3]
Print example

- ESC/P: Printed by EPSON MJ-700V2C

The setting information is not printed for DL1520 with software (ROM) version before 1.30 .

- LIPS: Printed by Canon LASER SHOT A404F

- PR201: Printed by Canon LASER SHOT A404F PR201 emulation

- PCL5: Printed by HEWLETT PACKARD Laser Jet 5L

11.1 Storing and Recalling Displayed Waveforms

1. Press the STORE/RECALL key to display the data type selection menu.
2. Press the "Wave" soft key to display the store/recall setting menu. Data Type
WAVE... ${ }^{|l|}$ SETUP...

Storing a waveform

3. Press the "STORE" soft key to display the waveform store setting menu. The default setting is "STORE".

4. Press the "Source" soft key to display the source selection menu.
5. Press the soft key corresponding to the trace No. to be stored. For DL1520/DL1520L, menus such as "TRACE1", "TRACE2" and "MATH" are displayed instead of the source selection menu shown below.

6. Press the "Destn" soft key to display the memory selection menu.
7. Press the soft key corresponding to the memory in which the waveform is to be stored.
"MEM\#3" and "MEM\#4" menus are not provided with DL1520/ DL1520L.

8. Press the "EXEC" soft key to execute waveform storing.

Recalling a waveform

3. After step 2 has been completed, press the "RECALL" soft key to display the waveform recalling menu.

Function(WAVE)	Source MEM	Destr LOAD 1	EXEC	To TopMenu
STORE	RECALL	MEM \#t		

4. Press the "Source" soft key to display the recall memory selection menu.
5. Press the soft key corresponding to the memory No. from which the waveform is to be recalled.
"MEM\#3" and "MEM\#4" menus are not provided with DL1520/ DL1520L.

6. Press the "Destn" soft key to display the trace No. selection menu.
7. Press the soft key corresponding to the trace No. to be recalled.
"LOAD3" and "LOAD4" menus are not provided with DL1520/ DL1520L.
8. Press the "EXEC" soft key to execute waveform recalling.

Moving a recalled waveform
9. Press the POSITION key of the channel corresponding to the number of the recalled waveform. The vertical position setting menu appears.
10. Press the "Knob" soft key to select "MEM".
11. Press the soft key corresponding to the desired position.
12. Use the rotary knob to fine adjust the position.

Position To					$\begin{aligned} & \text { Knob } \\ & \text { CH MEM } \end{aligned}$	LOAD 1 Position 0.0 giv
-3div	-1div	Odiv	+1div	+3div		

Canceling the display of the recalled waveform

13. Press the CH key of the channel corresponding to the number of the recalled waveform. The recall waveform ON/OFF menu appears. Note that by alternately pressing the CH key the acquisition waveform also (dis)appears.
14. Press the "MEM" soft key to select "OFF" and the recalled waveform will be canceled. Selecting "ON" results in displaying the recalled waveform.

\section*{| mem |
| :---: |
| orf |
| On |}

Explanation

Selecting the waveform to be stored: Source

The waveform to be stored can be selected from any displayed waveform (either input signal waveforms or computed waveforms) at Trace 1 to 4 (for DL1520/DL1520L, 1/2/ MATH). X-Y waveforms cannot be stored.

Selecting the destination memory: Destn

The destination memory can be selected from the four internal memories "MEM \#1" to "MEM \#4" (for DL1520/DL1520L, MEM \#1/MEM \#2). Be aware that when storing the data, previous data will be overwritten and thus lost.

Selecting the waveform to be recalled: Source

Waveforms can be recalled from the internal memories "MEM \#1" to "MEM \#4" (for DL1520/DL1520L, MEM \#1/MEM \#2).

Selecting the display destination for recalled waveforms: Destn

Waveforms destination can be selected from the four traces "LOAD1" to "LOAD4" (for DL1520/DL1520L, LOAD1/LOAD2). The waveforms will be displayed at the 0div location on the voltage axis.

Moving waveforms

You can move the position of input signal waveforms and recalled waveforms seperately. When displaying recalled waveforms, press the POSITION key corresponding to the recalled waveform and select which waveform (either the input signal or the recalled one) should be moved.
When you want to move the input signal waveform, press the "Knob" soft key and select "CH".
When you want to move the recalled waveform, press the "Knob" soft key and select "MEM".

Restrictions on the recalled waveforms

It is not possible to change either the voltage axis or the time axis sensitivity of the recalled waveforms. The conditions when the waveform was stored, are kept.
It is also not possible to perform computation and expansion on the recalled waveforms. However, it is possible to move the recalled waveforms using the POSITION key and to perform cursor measurements and waveform parameter measurements.

Points to note when storing and recalling

- The waveform that is stored is the P-P data displayed on the screen, not the acquisition data.
- Waveform data located within ± 5.12 div of the center of the waveform display frame is stored. Thus, if the stored waveform exceeds this range vertically, the part exceeding the range will not be displayed if the waveform is recalled and moved vertically.

Note

Initializing does not result in loss of stored waveforms

11.2 Storing and Recalling Setting Parameters

Keys and Procedure

1. Press the STORE/RECALL key to display the data type selection menu.
2. Press the "SETUP..." soft key to display the store/recall setting menu.
\qquad WAVE... \quad SETUP...

Storing setting parameters

3. Press the "STORE" soft key to display the setting parameters storing menu. The default setting is "STORE".

Function(SETUP)	
STORE	RECALI
SEStn $\# 1$	

4. Press the "Destn" soft key to display the memory selection menu.
5. Press the soft key corresponding to the memory in which the setting parameters are to be stored.

6. Press the "EXEC" soft key to execute storing.

Recalling setting parameters

3. After step 2 has been completed, press the "RECALL" soft key to display the setting parameters recalling menu.

| Function(SETUP) | | Source
 SOM |
| :---: | :---: | :---: | :--- |
| STORE | RECALL | MEM \#t |

4. Press the "Source" soft key to display the recall memory selection menu.
5. Press the soft key corresponding to the memory No. from which the setting parameters are to be recalled.

6. Press the "EXEC" soft key to execute recalling.

Function(SETUP)		Source MEM $\# t$	
STORE	RECALL	EXEC	To TopMenu

Explanation

Parameters that are stored

Settings made using the soft key menu and rotary knob as well as the acquisition START/ STOP state and channel ON/OFF state are stored.

Selecting the destination memory: Destn

The destination memory can be selected from the four internal memories "MEM \#1" to "MEM \#4". Be aware that when storing the data, previous data will be overwritten and thus lost. Note that the internal memory where the waveforms are stored is a different memory.

Selecting the setting parameters to be recalled: Source

Setting parameters can only be recalled from the internal memories "MEM \#1" to
"MEM \#4" in which setting parameters are present.

> Note
> \quad Initializing does not result in loss of stored setting parameters.

12.1 Floppy Disks

Types of floppy Disk which can be used

The following types of 3.5 -inch floppy disks can be used. Floppy disks can also be formatted using this instrument.
2HD type : MS-DOS format, 1.2 MB or 1.44 MB
2DD type : MS-DOS format, 640 KB or 720 KB

Inserting a Floppy Disk into the Drive

Hold the floppy disk with the label facing up and the shuttered-side facing towards the drive, then insert it into the floppy drive. Insert it until the eject button pops up.

Removing the floppy disk from the drive

Make sure that the access indicator is not lit, then push the eject button.

CAUTION Never remove the floppy disk while the access indicator of the floppy disk drive is lit, or damage to the magnetic head of the drive or loss of data on the floppy disk may result.

General Handling Precautions

For general handling precautions, refer to the instructions supplied with the floppy disk.

12.2 Formatting a Floppy Disk

Keys and Procedure

1. Press the SHIFT + STORE/RECALL (FILE) key to display the data save/load menu. "Media" menu is also provided with DL1520L with suffix code -C4. Press the "Media" soft key to display the media selection menu, then select "Floppy".
2. Press the "Utility" soft key to display the utility selection menu.

Data Type			AutoFile Utility P-P... ACO...		SETUP...

3. Press the "Format" soft key to display the format selection menu.

List $A C Q$	Exec Func		Format	Disk
2HD:t.2M	To Info	TopMenu		

4. Press the soft key corresponding to the desired type of format and the screen prompting for verification will appear.

Formatting

5. After having selected "OK" using the rotary knob, press the SELECT key. When formatting is complete, the message "Formatting complete" appears.

Canceling

5. After having selected "CANCEL" using the rotary knob, press the SELECT key.

Explanation

Formatting the floppy disk

The following four MS-DOS format types are available.
2DD:640K Formats a 2DD floppy disk with 8 sectors to hold 640 KB .
2DD:720K Formats a 2DD floppy disk with 9 sectors to hold 720 KB .
2HD:1.2M Formats a 2HD floppy disk with 8 sectors to hold 1.2 MB .
2HD:1.44M Formats a 2HD floppy disk with 18 sectors to hold 1.44 MB .

Checking the format

If the floppy disk has already been formatted, select "Disk Info" after step 2 (on the previous page) and the following information will be displayed. If the floppy disk has not been formatted, or if it has been formatted in a format other than one of the above, the error message "Storage media is defective" will be displayed.

- Type of disk;
- Total disk space;
- Used disk space;
- Available on disk;
- Number of Setup data files;
- Number of P-P data files;
- Number of ACQ(bin) data files;
- Number of ACQ(ascii) data files;
- Number of Image data files.

Points to note concerning formatting

- The following three directories are created automatically when a floppy disk is formatted using this instrument.
DL_WAVE Directory for "BIN" (binary) waveform data
DL_SETUP Directory for "SETUP" (setting parameters)
DL_MISC Directory for "P-P" and "ASCII" waveform data, as well as "HP-GL", "PS" (Postscript), "TIFF" and "BMP" screen image data
- Floppy disks formatted in a format other than those specified on the previous page cannot be used.
- If an error message appears when formatting has been completed, the floppy disk may be damaged.
- Formatting the floppy disk will erase all data on the disk. Be careful.

CAUTION Never remove the floppy disk while the access indicator of the floppy disk drive is lit, or damage to the magnetic head of the drive or loss of data on the floppy disk may result.

12.3 Saving and Loading Waveform Data

Keys and Procedure

1. Press the SHIFT + STORE/RECALL (FILE) key to display the data save/load menu. "Media" menu is also provided with DL1520L with suffix code -C4. Press the "Media" soft key to display the media selection menu, then select "Floppy".

Turning ON/OFF the auto naming function

2. Press the "AutoFile" soft key to select "ON" or "OFF". For more details concerning this function, refer to the explanation later on.

Saving P-P waveform data

3. Press the "P-P" soft key to display the save/load setting menu and a list of files.

4. Press the "SAVE" soft key to display the saving menu.
5. Press the "Source" soft key to display the source waveform setting menu.

Function(P-P)	Source TRACE	FileName	EXEC	To TopMenu
SAVE	LOAD			

6. Press the soft key corresponding to the waveform to be saved.

For DL1520/DL1520L, menus such as "TRACE1", "TRACE2", "MATH" and "ALL" are displayed instead of the source wave setting menu shown below.

7. Press the "FileName" soft key to display the keyboard.
8. Use the keyboard to enter the filename. For details regarding the usage of the keyboard, refer to page 4-8.
9. Press the "EXEC" soft key to start saving.

Function(P-P)	Source	FileName	EXEC	
SAVE LOAD	TRACEt	$A B C$	EXEC	TopMenu

Loading P-P waveform data

10. Press the "LOAD" soft key to display the loading menu.
11. Press the "Destn" soft key to display the destination setting menu.

12. Press the soft key corresponding to the destination of the waveform to be loaded.
"LOAD3" and "LOAD4" menus are not provided with DL1520/
DL1520L.

13. Use the rotary knob to select the file to be loaded.

14. Press the "EXEC" soft key to start loading.

Moving loaded P-P waveforms

15. Press the POSITION key of the channel corresponding to the number of the loaded waveform.
16. Press the "Knob" soft key to select "MEM".
17. Press the soft key corresponding to the desired position.
18. Use the rotary knob to fine adjust the position.

Canceling the display of the loaded waveform

19. Press the CH key of the channel corresponding to the number of the loaded waveform. The load ON/OFF menu appears. Note that by alternately pressing the $\mathbf{C H}$ key the acquisition waveform also (dis)appears.
20. Press the "MEM" soft key to select "OFF" and the loaded waveform will be canceled. Selecting "ON" results in displaying the loaded waveform.
```
Mern
```


Saving ACQ waveform data

3. Press the "ACQ..." soft key to display the save/load setting menu and a list of files.

4. Press the "SAVE" soft key to display the saving menu.
5. Press the "Type" soft key to display the saving format menu.

Function(ACQ)	Type B / H	FileName	EXEC	To
TopMenu				
SAVE	LOAD			

6. Select the saving format by selecting either "BIN" or "ASCII".

7. Press the "FileName" soft key to display the keyboard.
8. Use the keyboard to enter the filename. For details regarding the usage of the keyboard, refer to page 4-8.
9. Press the "EXEC" soft key to start saving.

Function(ACO)	$\begin{aligned} & \text { Type } \\ & B I N \end{aligned}$	FileName VWX	EXEC	To TopMenu
SAVE LOAD				

10. For DL1520L/DL1540L, if waveform data is to large to fit on the floppy disk, the unit will display the message shown below when the disk becomes full. To continue the save: Insert another formatted disk into the drive, select "OK" with the rotary knob, and press the SELECT key. (The save will then continue on the new disk, under the same filename as on the previous disk.) If you want to terminate the save instead, select "ABORT" with the knob, then press SELECT key.
<< ROTARY KNOB = select: SELECT key = enter >>
This floppy disc has become full. All data could not be saved on this disc. In case you want to save all data,insert an other formatted floppy in the drive, and select OK.

Loading ACQ waveform data

Note that only BIN data can be loaded.
11. Press the "LOAD" soft key to display the loading menu.

EXEC	To
TopMenu	

12. Use the rotary knob to select the file to be loaded.

13. Press the "EXEC" soft key to start loading.

For DL1520L/DL1540L, if you have saved ACQ data to multiple floppy disks, you can opt to load all of this data or only part of it (for example, data from one disk only). If you do a partial load, the waveform display will not appear over the entire time axis, but only over a portion of it. If you want to display waveforms over the full span of the time axis, insert the floppy disk(s) with the remaining ACQ data and repeat Steps 11 to 13 as necessary (repeating the same filename at Step 5).

Moving loaded ACQ waveforms

14. The way to move these waveforms is exactly the same as for input signal waveforms. For details, refer to page 5-7.

Canceling/holding the display of the loaded waveform

15. Press the INPUT key of the channel corresponding to the number of the loaded waveform. The acquisition hold menu appears.
16. Press the "ACQ Hold" soft key to select "OFF". Then when you press the START/STOP key to start data acquisition, the loaded ACQ waveform will be canceled. When you select "ON", the loaded ACQ waveform will not be canceled, even when you start data acquisition. In this case, the channel display appears in the left upper side of the screen.

17. The way to display the ACQ waveforms and cancel them is exactly the same as for input signal waveforms. For details, refer to page 5-1.

Explanation

Auto naming function: AutoFile

If "AutoFile" has been set to "ON", a number (3 digits, starting from " 001 ") will be assigned to the waveform data automatically when the data is saved. It is possible to insert a common file name (up to five characters) before the assigned number by specifying the file name using "FileName".

Selecting the data format in which to save data: Data Type

The data format can be selected from the following.
P-P Converts the displayed waveform data (P-P compressed data) to binary data and saves it.
ACQ Converts the waveform data stored in the acquisition memory to either binary or ascii data and saves it.
BIN : Converts to binary data
ASCII : Converts to ascii data
Computed waveforms can only be saved in the P-P format.
When in single (N) mode, displayed P-P data will be saved.
Saving the waveform data (ACQ) in ASCII data format while displaying the power spectrum (FFT), also saves the computed result of the power spectrum (FFT).

Selecting the waveform to be saved: Source

When P-P is selected as the data type, the waveform to be saved can be selected from the following. X-Y waveforms cannot be saved.
TRACE1 to 4 One of the input signal waveforms and computed waveforms displayed as trace Nos. 1 to 4 (for DL1520/DL1520L, 1/2/MATH) is output.
ALL TRACE All displayed waveforms are output.
When ACQ is selected as the data type, the waveforms to be saved are the input signal waveforms displayed as trace.

About the saved data

For a description of the format of the data to be saved, refer to Appendix 5 "Output Data Format used When Saving Waveform Data" (App-12).
Data is saved in the directory which corresponds to the data's format type, with one of the following extensions added. The directory is created automatically when the floppy disk is formatted by the instrument or when data is saved.

Data format	Directory name	Extension
P-P	DL_MISC	WVF
ACQ	DL_WAVE	.WVF

When saving data, a header file (which contains information in ASCII format necessary for analysis of the saved data) is also saved. The file name used for the data is also assigned to the header file, and a ".HDR" extension is added. The header file is saved in the same directory as the corresponding data.

Data size

Data size will vary according to the save format, the number of waveforms (channels), the record length, and other such factors.

For DL1520L/DL1540L, if acquisition-memory record length is long, an ACQ data save may require more than one floppy disk. In this case you should be sure to format a sufficient number of floppy disks before beginning the save. If you insert an unformatted disk during the save procedure, an error message will appear and the save will abort, so that you will have to reexecute the save from the beginning.
The "approx. 7 K " shown below denotes memory used for storage of setting data.
Values are given in bytes.

Data format	Data size
P-P	$4096 \times \mathrm{CH} \times \mathrm{N}+$ approx. 300
ACQ	record length of acquisition memory x CH x N + approx. 7 K

* " N " indicates the number of trigger repetitions in single (N) mode; for any other mode, $\mathrm{N}=1$.

Checking the free space on a floppy disk

Refer to page 12-3 for a description of this procedure.

Moving loaded P-P waveforms

Pressing the POSITION key of the channel corresponding to the number of the loaded waveform prompts you to select whether you want to move the input signal waveform or the loaded waveform.
"CH" at the "Knob" setting selects to move input signal waveforms;
"MEM" at the "Knob" setting selects to move loaded P-P waveforms.

Entering a file name

The following points must be kept in mind when entering a file name.

- A file name must always be specified;
- Up to eight characters can be entered. However, in case of GO/NO-GO or acquisition-ontrigger only the first four will be valid;
- For details regarding the characters which can be used, refer to page 4-8;
- The same name cannot be assigned to different data files of the same data type.
(Overwrite inhibit). However, restarting the GO/NO-GO determination or acquisition-ontrigger function will result in overwriting the old files.

Points to note when saving/loading waveform data

- Acquisition stops when saving or loading is started;
- Only waveform data located within ± 5.12 div of the center of the waveform display frame is saved. Thus, if the saved waveform exceeds this range vertically, the part exceeding this range will not be displayed if the waveform is subsequently loaded and scrolled vertically;
- For DL1520L/DL1540L, floppy disks having less than 20 K free capacity cannot be used for ACQ-waveform data saves.
- When "ACQ" data is loaded, the setting parameters will change to their values at the time of saving;
- If "P-P" data is loaded, expansion of the waveform and waveform computation are not possible.
- If the extension of the waveform data file is changed using a personal computer, it will be impossible to load the data.
- As for "ACQ" data, only "BIN" data will be loaded.
- For more details regarding the display of the waveform information while displaying loaded P-P waveform or ACQ waveform data, refer to page 7-15.
- When you load waveform data (ACQ and P-P), be aware of the restrictions of some models;
-DL1520 : Can only load waveform data saved by the DL1520.
-DL1520L : Can only load waveform data saved by the DL1520 or DL1520L.
-DL1540 : Can only load waveform data saved by the DL1520 or DL1540.
-DL1540L : Can load waveform data saved by the DL1520, DL1520L, DL1540 and DL1540L.

Never remove the floppy disk while the access indicator of the floppy disk drive is lit, or damage to the magnetic head of the drive or loss of data on the floppy disk may result.

12.4 Saving and Loading Setting Parameters

Keys and Procedure

1. Press the SHIFT + STORE/RECALL (FILE) key to display the data save/load menu. "Media" menu is also provided with DL1520L with suffix code -C4. Press the "Media" soft key to display the media selection menu, then select "Floppy".

Turning ON/OFF the auto naming function

2. Press the "AutoFile" soft key to select "ON" or "OFF". For more details concerning this function, refer to the explanation later on.

Saving setting parameters

3. Press the "SETUP..." soft key to display the save/load setting menu and a list of files.

4. Press the "SAVE" soft key to display the saving menu.

FileName	EXEC	To TopMenu

5. Press the "FileName" soft key to display the keyboard.
6. Use the keyboard to enter the filename. For details regarding the usage of the keyboard, refer to page 4-8.
7. Press the "EXEC" soft key to start saving.
\(\left.\begin{array}{|c|c||c||l|}\hline Function(SETUP)

\hline SAVE \& LOAD

\hline FileName

CCC\end{array}\right]\) EXEC | To |
| :--- |
| TopMenu |

Loading setting parameters

3. Press the "SETUP..." soft key to display the save/load setting menu and a list of files.

4. Press the "LOAD" soft key to display the loading menu.

5. Use the rotary knob to select the file to be loaded.

AAA	$95 / 05 / 03$	$12: 15: 36$	
BBB	$95 / 05 / 03$	$12: 16: 08$	
CCC	$95 / 05 / 03$	$12: 16: 34$	

6. Press the "EXEC" soft key to start loading.

Explanation

Never remove the floppy disk while the access indicator of the floppy disk drive is lit, or damage to the magnetic head of the drive or loss of data on the floppy disk may result.

12.5 Saving Screen Image Data

Keys and Procedure

Output setting menu in case "PS" is selected

Output setting menu in case "HPGL" is selected

1. Press the SHIFT + COPY (MENU) key to display the hard copy setting menu.
2. Press the "FILE..." soft key to display the image setting menu. "CENTR" menu is also provided with DL1520/DL1520L with suffix code -C3.

Copy To			Comment	Keyboard
PRNTR...	PLTR...	FILE...	OFF ON	

Turning ON/OFF the auto naming function

3. Press the "AutoFile" soft key to select "ON" or "OFF". For more details concerning this function, refer to the explanation later on.

Saving screen image data

4. Press the "Format" soft key to display the image data setting menu.

Format $H P G L$	FileName	AutoFile OFF ON	Setup

5. Press the soft key corresponding to the desired format. In case you selected "HPGL" or "PS", continue with step 6. In case you selected "TIFF" or "BMP", continue with step 19.

6. Press the "Setup" soft key to display the output setting menu.

Selecting the paper size

7. After having selected the "Paper Size" setting using the rotary knob, press the the SELECT key to select the desired paper size. In case you selected "PS" at step 5, there is no need to use the rotary knob and you may continue with step 18 .

Selecting the pen speed

8. After having selected the "Pen Speed" setting using the rotary knob, press the the SELECT key to select from "NORMAL" or "SLOW".

Selecting the XY Mode

9. After having selected the "XY Mode" setting using the rotary knob, press the the SELECT key to select from "DOT" or "LINE".

Assigning pens

10. After having selected the "Pen Mode" setting using the rotary knob, press the the SELECT key to select from "AUTO" or "MANUAL". In case you selected "MANUAL", continue with step 14.
11. After having selected "AUTO", and after having selected the "Auto Pen" setting using the rotary knob, press the SELECT key to display the setting frame.
12. Use the rotary knob to set the number of pens. Press the RESET key to return the default value.
13. Press the SELECT key or the ESC key to close the setting frame. Continue with step 18.
14. After having selected "MANUAL", use the rotary knob and the SELECT key to select the "Grid Pen" setting, the "TRACE1 Pen TRACE4 Pen (for DL1520/DL1520L, TRACE1/TRACE2/MATH)" setting and the "LOAD1 Pen - LOAD4 Pen (for DL1520/DL1520L, LOAD1/LOAD2) " setting.
15. Use the rotary knob to set the pen numbers. Press the RESET key to return the default value.
16. Press the SELECT key or the ESC key to close the setting frame.
17. Repeat steps 14 to 16 to set other items of the "MANUAL" setting.
18. Press the ESC key to close the setting menu.

Entering the filename

19. Press the "FileName" soft key to display the keyboard.
20. Use the keyboard to enter the filename. For details regarding the usage of the keyboard, refer to page 4-8.

Outputting

21. Press the COPY key.

Explanation

Auto naming function: AutoFile

If "AutoFile" has been set to "ON", a number (3 digits, starting from " 001 ") will be assigned to the data automatically when the data is saved. It is possible to insert a common file name (up to five characters) before the assigned number by specifying the file name using "FileName".

Selecting the data output format: Format

The data output format can be selected from the following formats.
HP-GL Saves image data in HP-GL format.
PS Saves image data in PostScript format.
TIFF Saves image data in TIFF format.
BMP Saves image data in BMP format.

About saved image data

When saving image data, extensions are automatically added. The "DL_MISC" directory is created automatically, and the data is saved into this directory. The extensions are as follows.
$\begin{array}{ll}\text { HPGL ".HGL" } \quad \text { TIFF ".TIF" } \\ \text { PS ".PS" } & \text { BMP ".BMP" }\end{array}$

Selecting the paper size

These "Setup" settings are necessary for printing out image data from a PC or such to a plotter. The contents of printing, paper size, printing size and printing location depend on the format of the data and can be selected from the following types. Also refer to page 10-4. For HPGL format:

Setting	Output item	Output size	Output location
A3-WAVE	Screen hardcopy	A3	Middle
A3-SETUP	Set-up parameters	A3	Middle
A4-WAVE	Screen hardcopy	A4	Middle
A4-SETUP	Set-up parameters	A4	Middle
A5-Upper WAVE	Screen hardcopy	A5	Upper half
A5-Lower WAVE	Screen hardcopy	A5	Lower half
A5-Upper WAVE \&	Screen hardcopy	A5	Upper half
A5-Lower SETUP	Set-up parameters	A5	Lower half
A5-Upper WAVE \&	Screen hardcopy	A5	Upper half
A5-Lower MEASURE	waveform measurement data	A5	Lower half

For PS format:

Setting	Output item	Output size	Output location
A4-WAVE	Screen hardcopy	A4	Middle
A4-SETUP	Set-up parameters	A4	Middle
A5-Upper WAVE	Screen hardcopy	A5	Upper half
A5-Lower WAVE	Screen hardcopy	A5	Lower half
A5-Upper WAVE \&	Screen hardcopy	A5	Upper half
A5-Lower SETUP	Set-up parameters	A5	Lower half
A5-Upper WAVE \&	Screen hardcopy	A5	Upper half
A5-Lower MEASURE	waveform measurement data	A5	Lower half

For TIFF/BMP format:

No selections are possible; the output size is approx. $12 \times 8 \mathrm{~cm}$.

Contents to be saved

In the HP-GL and PS format, the following types of screen image data are not saved.

- Snapshot waveforms
- Soft key menu and rotary knob menu
- Messages (except "Stopped" and "RUNNING)

In the TIFF and BMP format, data will be saved exactly as in case of the short copy. Refer to page 10-4 for more details.

Data size when saving

In case of saving a V-T Waveform, with two waveforms and grid displayed:

| HPGL : approx. 25 Kbyte | TIFF : approx. 30 Kbyte |
| :--- | :--- | :--- |
| PS $:$ approx. 70 Kbyte | BMP : approx. 30 Kbyte |

Checking the free space on a floppy disk

Refer to page 12-3 for a description of this procedure.

Entering a file name

The following points must be kept in mind when entering a file name.

- A file name must always be specified;
- Up to eight characters can be entered;
- All the characters on the keyboard can be used. However, the following file names cannot be used due to MS-DOS restrictions; AUX, CON, PRN, NUL, CLOCK
- The same name cannot be assigned to different data files of the same data type. (Overwrite inhibit).

Points to not when using data saved in Post Script format

There is no problem printing out data saved in PostScript format on a PostScript printer. However, if the PostScript data is used in a file created by DTP application software, the waveform image will probably not appear on the computer's screen. Instead a gray box indicating the size of the image will probably appear.

CAUTION Never remove the floppy disk while the access indicator of the floppy disk drive is lit, or damage to the magnetic head of the drive or loss of data on the floppy disk may result.

12.6 Deleting and Protecting Saved Data

Keys and Procedure

1. Press the SHIFT + STORE/RECALL (FILE) key to display the data save/load menu. "Media" menu is also provided with DL1520L with suffix code -C4. Press the "Media" soft key to display the media selection menu, then select "Floppy".
2. Press the "Utility" soft key to display the utility selection menu.

Data Type			
P-P....	ACO...	SETUP...	AutoFile OFF ON
Utility			

3. Press the "List" soft key to display the list selection menu.

$\underset{p-P}{\text { List }}$	c	func		Disk	TopMenu
	Protect	Delete	2 H	Info	

4. Press the soft key corresponding to the desired list.

5. Use the rotary knob to select the file to protect/save.

PQR	$95 / 05 / 03$	$14: 04: 52$	仓
ABC	$95 / 05 / 03$	$14: 05: 30$	
DEF	$95 / 05 / 03$	$14: 06: 08$	

Deleting

6. Press the "Delete" soft key.

Protecting

6. Press the "Protect" soft key. A " 느 " symbol will be added before the file name of the protected file.

List	Exec Func		Fornat ACO	Protect	Delete			
2HD:f.2M	Disk							
Info						$	$	To
:---								
TopMenu								

Canceling protection

7. After step 4 has been performed, use the rotary knob to select the file at the beginning of which a " ㅅㄴ" symbol is added.

8. Press the "Protect" soft key and the protection will be canceled. The
" \mathbf{L} " symbol before the file name will be deleted.

Explanation

Deleting data

Waveform data and setting parameters saved on a floppy disk can be deleted one file at a time.

Protecting data

A protection function is used to protect saved data from being deleted by mistake. If an attempt is made to delete protected data, an error message will be displayed and the data will not be deleted.
A " \mathbf{B} " symbol is displayed before the names of protected files to distinguish them from un-protected files.

Selecting the data list: Change Data List

File lists are displayed by data type and data format and are grouped as follows.
P-P Displayed waveform data (P-P compressed);
ACQ Data being saved in the acquisition memory;
SETUP Setting parameters.

Points to note when protecting or deleting data

- Protection setting cannot be performed if the floppy disk is write-protected. An error message will appear if an attempt is made to protect or delete files.
- It is not possible to delete more than one file at once.
- This protection setting is effective against deletion of data, but not against initialization (formatting). Take care not to accidentally delete files by reformatting a floppy file.

CAUTION Never remove the floppy disk while the access indicator of the floppy disk drive is lit, or damage to the magnetic head of the drive or loss of data on the floppy disk may result.

13.1 Selecting the SCSI Device

Keys and Procedure

1. Press SHIFT + STORE/RECALL(FILE) key to display the data save/load settings menu.
2. Press the "Media" soft key to display the media selection menu.

Media Floppy	Data Type			AutoFile
P-P...	ACQ...	SETUP...	OFF ON ON	

3. Press the "SCSI" soft key to select the SCSI device as the media.

Explanation

Selecting the Media

Select from the following:
-Floppy: Floppy disk
-SCSI : SCSI device. Refer to Section 16.1 for information on the different types of SCSI devices.

Note

When this instrument and the SCSI device are not connected properly the media selection menu does not appear. Refer to Section 3.3.

13.2 Formatting the Media

Keys and Procedure

1. Following the steps described in section 13.1 , select SCSI device as the media.

Media SCSI		Data Type			AutoFile
	P-P...	ACO...	SETUP...	OFF ON	Utility

2. Press the "Utility" soft key to display the utility selection menu.

3. Press the "Format" soft key to display the format selection menu.

Formatting

4. After having selected "OK" using the rotary knob, press SELECT key. When formatting is complete, the message "Formatting complete" appears.

Canceling

4. After having selected "CANCEL" using the rotary knob, press the SELECT key.

Explanation

Checking the format

If the media has already been formatted, select "Disk Info" after step 2 (on the previous page) and the following information will be displayed. If the media has not been formatted, or if it has been formatted in uncorrect format, the error message "Storage media is defective" will be displayed.

- Type of disk;
- Total disk space;
- Used disk space;
- Available on disk;
- Number of Setup data files;
- Number of P-P data files;
- Number of ACQ(bin) data files;
- Number of ACQ(ascii) data files;
- Number of Image data files.

Points to note concerning formatting

- The following three directories are created automatically when a medium is formatted using this instrument.
DL_WAVE Directory for "BIN" (binary) waveform data
DL_SETUP Directory for "SETUP" (setting parameters)
DL_MISC Directory for "P-P" and "ASCII" waveform data, as well as "HP-GL", "PS" (Postscript), "TIFF" and "BMP" screen image data
- There are cases when a medium which has been formatted with another equipment such as a PC can not be used.
- If an error message appears when formatting has been completed, the medium may be damaged.
- Formatting the medium will erase all data on the disk. Be careful.

CAUTION Never turn OFF the SCSI device or remove the disk (media) such as a MO or a PD while the access indicator of the SCSI device is lit. Otherwise, damage to the SCSI device or the disk may result.

13.3 Saving and Loading Waveform Data

1. Following the steps described in section 13.1 , select SCSI device as the media.
Turning ON/OFF the auto naming function
2. Press the "AutoFile" soft key to select "ON" or "OFF". For more details concerning this function, refer to the explanation later on.

Saving P-P waveform data

3. Press the "P-P" soft key to display the save/load setting menu and a list of files.

Media	Data Type			AutoFile
SCSI	P-P...	ACO...	SETUP...	OFF ON ON

4. Press the "SAVE" soft key to display the saving menu.
5. Press the "Source" soft key to display the source waveform setting menu.

6. Press the soft key corresponding to the waveform to be saved.

7. Press the "FileName" soft key to display the keyboard.
8. Use the keyboard to enter the filename. For details regarding the usage of the keyboard, refer to page 4-8.
9. Press the "EXEC" soft key to start saving.

Function(P-P)	Source		
TRACE	FileName		
ABC		EXEC	To
:---			
TopMenu			

Loading P-P waveform data

10. Press the "LOAD" soft key to display the loading menu.
11. Press the "Destn" soft key to display the destination setting menu.

12. Press the soft key corresponding to the destination of the waveform to be loaded.

13. Use the rotary knob to select the file to be loaded.

ABC	$96 / 05 / 03$	$11: 24: 26$	仓
DEF	$96 / 05 / 03$	$11: 25: 24$	
GHI	$96 / 05 / 03$	$11: 26: 00$	
JKL	$96 / 05 / 03$	$11: 26: 34$	
MNO	$96 / 05 / 03$	$11: 27: 26$	

14. Press the "EXEC" soft key to start loading.

Moving loaded P-P waveforms

15. Press the POSITION key of the channel corresponding to the number of the loaded waveform.
16. Press the "Knob" soft key to select "MEM".
17. Press the soft key corresponding to the desired position.
18. Use the rotary knob to fine adjust the position.

Canceling the display of the loaded waveform

19. Press the $\mathbf{C H}$ key of the channel corresponding to the number of the loaded waveform. The load ON/OFF menu appears. Note that by alternately pressing the $\mathbf{C H}$ key the acquisition waveform also (dis)appears.
20. Press the "MEM" soft key to select "OFF" and the loaded waveform will be canceled. Selecting "ON" results in displaying the loaded waveform.
```
Mern
```


Saving ACQ waveform data

3. Press the "ACQ..." soft key to display the save/load setting menu and a list of files.

Media SCSI		Data Type		
P-P...	ACOtoFile...	SETUP...	OFF ON O	Utility

4. Press the "SAVE" soft key to display the saving menu.
5. Press the "Type" soft key to display the saving format menu

6. Select the saving format by selecting either "BIN" or "ASCII".

7. Press the "FileName" soft key to display the keyboard.
8. Use the keyboard to enter the filename. For details regarding the usage of the keyboard, refer to page 4-8.
9. Press the "EXEC" soft key to start saving.

10. For DL1540L, if waveform data is too large to fit on the medium, the unit will display the message shown below when the disk becomes full. To continue the save: Insert another formatted medium in to the drive, select "OK" with the rotary knob, and press the SELECT key. (The save will then continue on the new medium, under the same filename as on the previous medium.) If you want to terminate the save instead, select "ABORT" with the knob, then press SELECT key.
<< ROTARY KNOB = select: SELECT key = enter >>
This media has become full. All data could not be saved on this media. In case you want to save all data,insert an other formatted media in the drive, and select OK.

ABORT

Loading ACQ waveform data

Note that only BIN data can be loaded.
11. Press the "LOAD" soft key to display the loading menu.

12. Use the rotary knob to select the file to be loaded.

13. Press the "EXEC" soft key to start loading.

If you have saved ACQ data to multiple media, you can opt to load all of this data or only part of it (for example, data from one disk only). If you do a partial load, the waveform display will not appear over the entire time axis, but only over a portion of it. If you want to display waveforms over the full span of the time axis, insert the medium (media) with the remaining ACQ data and repeat Steps 11 to 13 as necessary (selecting the same filename at Step 12).

Moving loaded ACQ waveforms

14. The way to move these waveforms is exactly the same as for input signal waveforms. For details, refer to page 5-7.

Canceling/holding the display of the loaded waveform

15. Press the INPUT key of the channel corresponding to the number of the loaded waveform. The acquisition hold menu appears.
16. Press the "ACQ Hold" soft key to select "OFF". Then when you press the START/STOP key to start data acquisition, the loaded ACQ waveform will be canceled. When you select "ON", the loaded ACQ waveform will not be canceled, even when you start data acquisition. In this case, the channel display appears in the left upper side of the screen.

17. The way to display the ACQ waveforms and cancel them is exactly the same as for input signal waveforms. For details, refer to page 5-1.

Explanation

Auto naming function: AutoFile

If "AutoFile" has been set to "ON", a number (3 digits, starting from " 001 ") will be assigned to the waveform data automatically when the data is saved. It is possible to insert a common file name (up to five characters) before the assigned number by specifying the file name using "FileName".

Selecting the data format in which to save data: Data Type

The data format can be selected from the following.
P-P Converts the displayed waveform data (P-P compressed data) to binary data and saves it.
ACQ Converts the waveform data stored in the acquisition memory to either binary or ascii data and saves it.
BIN : Converts to binary data
ASCII : Converts to ascii data
Computed waveforms can only be saved in the P-P format.
When in single (N) mode, displayed P-P data will be saved.
Saving the waveform data (ACQ) in ASCII data format while displaying the power spectrum (FFT), also saves the computed result of the power spectrum (FFT).

Selecting the waveform to be saved: Source

When P-P is selected as the data type, the waveform to be saved can be selected from the following. X-Y waveforms cannot be saved.

TRACE1 to 4 One of the input signal waveforms and computed waveforms displayed as trace Nos. 1 to 4 is output.
ALL TRACE All displayed waveforms are output.
When ACQ is selected as the data type, the waveforms to be saved are the input signal waveforms displayed as trace.

About the saved data

For a description of the format of the data to be saved, refer to Appendix 5 "Output Data Format used When Saving Waveform Data" (App-12).
Data is saved in the directory which corresponds to the data's format type, with one of the following extensions added. The directory is created automatically when the medium is formatted by the instrument or when data is saved.

Data format	Directory name	Extension
P-P	DL_MISC	.WVF
ACQ	DL_WAVE	.WVF

When saving data, a header file (which contains information in ASCII format necessary for analysis of the saved data) is also saved. The file name used for the data is also assigned to the header file, and a ".HDR" extension is added. The header file is saved in the same directory as the corresponding data.

Data size

Data size will vary according to the save format, the number of waveforms (channels), the record length, and other such factors.
For DL1540L, if acquisition-memory record length is long, an ACQ data save may require more than one medium. In this case you should be sure to format another medium before beginning the save. If you insert an unformatted disk during the save procedure, an error message will appear and the save will abort, so that you will have to reexecute the save from the beginning.
The "approx. 7 K " shown below denotes memory used for storage of setting data.
Values are given in bytes.

Data format	Data size
P-P	$4096 \times \mathrm{CH} \times \mathrm{N}+$ approx. 300
ACQ	record length of acquisition memory $\times \mathrm{CH} \times \mathrm{N}+$ approx. 7K

* " N " indicates the number of trigger repetitions in single (N) mode; for any other mode, $\mathrm{N}=1$.

Checking the free space on a medium

Refer to page 13-3 for a description of this procedure.

Moving loaded P-P waveforms

Pressing the POSITION key of the channel corresponding to the number of the loaded waveform prompts you to select whether you want to move the input signal waveform or the loaded waveform.
"CH" at the "Knob" setting selects to move input signal waveforms;
"MEM" at the "Knob" setting selects to move loaded P-P waveforms.

Entering a file name

The following points must be kept in mind when entering a file name.

- A file name must always be specified;
- Up to eight characters can be entered. However, in case of GO/NO-GO or acquisition-ontrigger only the first four will be valid;
- For details regarding the characters which can be used, refer to page 4-8;
- The same name cannot be assigned to different data files of the same data type. (Overwrite inhibit). However, restarting the GO/NO-GO determination or acquisition-ontrigger function will result in overwriting the old files.

Points to note when saving/loading waveform data

- Acquisition stops when saving or loading is started;
- Only waveform data located within ± 5.12 div of the center of the waveform display frame is saved. Thus, if the saved waveform exceeds this range vertically, the part exceeding this range will not be displayed if the waveform is subsequently loaded and scrolled vertically;
- For DL1540L, medias having less than 20K free capacity cannot be used for ACQwaveform data saves.
- When "ACQ" data is loaded, the setting parameters will change to their values at the time of saving;
- If "P-P" data is loaded, expansion of the waveform and waveform computation are not possible.
- If the extension of the waveform data file is changed using a personal computer, it will be impossible to load the data.
- As for "ACQ" data, only "BIN" data will be loaded.
- For more details regarding the display of the waveform information while displaying loaded P-P waveform or ACQ waveform data, refer to page 7-15.

[^4]
13.4 Saving and Loading Setting Parameters

Keys and Procedure

1. Following the steps described in section 13.1 , select SCSI device as the media.

Turning ON/OFF the auto naming function

2. Press the "AutoFile" soft key to select "ON" or "OFF". For more details concerning this function, refer to the explanation later on.

Saving setting parameters

3. Press the "SETUP..." soft key to display the save/load setting menu and a list of files.

Media SCSI		Data Type		
	P-P...	ACO...	SETUP...	OFF ON ON

4. Press the "SAVE" soft key to display the saving menu.

5. Press the "FileName" soft key to display the keyboard.
6. Use the keyboard to enter the filename. For details regarding the usage of the keyboard, refer to page 4-8.
7. Press the "EXEC" soft key to start saving.

Loading setting parameters

8. Press the "SETUP..." soft key to display the save/load setting menu and a list of files.

Media SCSI	Data Type			AutoFile OFF ON	Utility
	P-P...	ACO...	SETUP...		

9. Press the "LOAD" soft key to display the loading menu.

EXEC	To
TopMenu	

10. Use the rotary knob to select the file to be loaded.

AAA	$96 / 05 / 03$	$12: 15: 36$	仓
BBB	$96 / 05 / 03$	$12: 16: 08$	
CCC	$96 / 05 / 03$	$12: 16: 34$	

11. Press the "EXEC" soft key to start loading.

Explanation

Auto naming function: AutoFile

If "AutoFile" has been set to "ON", a file name No. (3 digits, starting from "001") will be assigned to the data automatically when the data is saved. It is possible to insert a common file name (up to five characters) before the assigned file name No. by specifying the file name using "FileName".

Setting parameters which can be saved

Settings made using the soft key menu and rotary knob, as well as the START/STOP state and the channel's ON/OFF state are saved. If a zone waveform has been registered in GO / NO-GO and the following settings have been made, the zone waveform will also be saved.
Mode : ON
Type : ZONE

About saved setting parameters

When setting parameters are saved, the extension "SET" is automatically added, the "DL_SETUP" directory is created automatically, and the data is saved into this directory.

Data size

Approximately 10 K bytes are used for each set of setting parameters. However, if GO/NOGO zone waveforms are included, approximately 4 K bytes extra are required for each zone waveform.

Checking the free space on a medium

Refer to page 13-3 for a description of this procedure.

Entering a file name

The following points must be kept in mind when entering a file name.

- A file name must always be specified;
- Up to eight characters can be entered.
- All the characters on the keyboard can be used. However, the following file names cannot be used due to MS-DOS restrictions; AUX, CON, PRN, NUL, CLOCK
- The same name cannot be assigned to different data files of the same data type. (Overwrite inhibit).

Points to note when saving/loading setting parameters

- Setting parameters can be saved even if acquisition is in progress (i.e. while the START indicator is lit).
- Once the loaded setting parameters have been canceled, the original setting parameters cannot be restored.
- If the extension of the setting parameter file is changed using a personal computer, it will be impossible to load the data.

Never turn OFF the SCSI device or remove the disk (media) such as a MO or a PD while the access indicator of the SCSI device is lit. Otherwise, damage to the SCSI device or the disk may result.

13.5 Saving Screen Image Data

Keys and Procedure

Output setting menu in case "PS" is selected

Output setting menu in case "HPGL" is selected

1. Following the steps described in section 13.1 , select SCSI device as the media.
2. Press the "FILE..." soft key to display the image setting menu.

Copy To				CommentOFF ON	Keyboard
PRNTR...	PLTR...	FLOPPY...	SCSI...		

Turning ON/OFF the auto naming function
3. Press the "AutoFile" soft key to select "ON" or "OFF". For more details concerning this function, refer to the explanation later on.

Saving screen image data

4. Press the "Format" soft key to display the image data setting menu.

Format	FileName	AutoFile	Setup

5. Press the soft key corresponding to the desired format. In case you selected "HPGL" or "PS", continue with step 6. In case you selected "TIFF" or "BMP", continue with step 19.

6. Press the "Setup" soft key to display the output setting menu.

Selecting the paper size

7. After having selected the "Paper Size" setting using the rotary knob, press the the SELECT key to select the desired paper size. In case you selected "PS" at step 5, there is no need to use the rotary knob and you may continue with step 18.

Selecting the pen speed

8. After having selected the "Pen Speed" setting using the rotary knob, press the the SELECT key to select from "NORMAL" or "SLOW".

Selecting the XY Mode

9. After having selected the "XY Mode" setting using the rotary knob, press the the SELECT key to select from "DOT" or "LINE".

Assigning pens

10. After having selected the "Pen Mode" setting using the rotary knob, press the the SELECT key to select from "AUTO" or "MANUAL". In case you selected "MANUAL", continue with step 14.
11. After having selected "AUTO", and after having selected the "Auto Pen" setting using the rotary knob, press the SELECT key to display the setting frame.
12. Use the rotary knob to set the number of pens. Press the RESET key to return the default value.
13. Press the SELECT key or the ESC key to close the setting frame. Continue with step 18.
14. After having selected "MANUAL", use the rotary knob and the SELECT key to select the "Grid Pen" setting, the "TRACE1 Pen TRACE4 Pen " setting and the "LOAD1 Pen - LOAD4 Pen" setting.
15. Use the rotary knob to set the pen numbers. Press the RESET key to return the default value.
16. Press the SELECT key or the ESC key to close the setting frame.
17. Repeat steps 14 to 16 to set other items of the "MANUAL" setting.
18. Press the ESC key to close the setting menu.

Entering the filename

19. Press the "FileName" soft key to display the keyboard.
20. Use the keyboard to enter the filename. For details regarding the usage of the keyboard, refer to page 4-8.

Outputting

21. Press the COPY key.

Explanation

Auto naming function: AutoFile

If "AutoFile" has been set to "ON", a number (3 digits, starting from " 001 ") will be assigned to the data automatically when the data is saved. It is possible to insert a common file name (up to five characters) before the assigned number by specifying the file name using "FileName".

Selecting the data output format: Format

The data output format can be selected from the following formats.
HP-GL Saves image data in HP-GL format.
PS Saves image data in PostScript format.
TIFF Saves image data in TIFF format.
BMP Saves image data in BMP format.

About saved image data

When saving image data, extensions are automatically added. The "DL_MISC" directory is created automatically, and the data is saved into this directory. The extensions are as follows.

HPGL ".HGL" TIFF ".TIF"			
PS	".PS"	BMP	".BMP"

Selecting the paper size

These "Setup" settings are necessary for printing out image data from a PC or such to a plotter. The contents of printing, paper size, printing size and printing location depend on the format of the data and can be selected from the following types. Also refer to page 10-4. For HPGL format:

Setting	Output item	Output size	Output location
A3-WAVE	Screen hardcopy	A3	Middle
A3-SETUP	Set-up parameters	A3	Middle
A4-WAVE	Screen hardcopy	A4	Middle
A4-SETUP	Set-up parameters	A4	Middle
A5-Upper WAVE	Screen hardcopy	A5	Upper half
A5-Lower WAVE	Screen hardcopy	A5	Lower half
A5-UpperWAVE \&	Screen hardcopy	A5	Upper half
A5-LowerSETUP	Set-up parameters	A5	Lower half
A5-UpperWAVE \&	Screen hardcopy	A5	Upper half
A5-LowerMEASURE	waveform measurement data	A5	Lower half

For PS format:

Setting	Output item	Output size	Output location
A4-WAVE	Screen hardcopy	A4	Middle
A4-SETUP	Set-up parameters	A4	Middle
A5-Upper WAVE	Screen hardcopy	A5	Upper half
A5-Lower WAVE	Screen hardcopy	A5	Lower half
A5-UpperWAVE \&	Screen hardcopy	A5	Upper half
A5-LowerSETUP	Set-up parameters	A5	Lower half
A5-UpperWAVE \&	Screen hardcopy	A5	Upper half
A5-LowerMEASURE	waveform measurement data	A5	Lower half

For TIFF/BMP format:
No selections are possible; the output size is approx. $12 \times 8 \mathrm{~cm}$.

Contents to be saved

In the HP-GL and PS format, the following types of screen image data are not saved.

- Snapshot waveforms
- Soft key menu and rotary knob menu
- Messages (except "Stopped" and "RUNNING)

In the TIFF and BMP format, data will be saved exactly as in case of the short copy. Refer to page 10-4 in the User's Manual IM701510-01E for more details.

Data size when saving

In case of saving a V-T Waveform, with two waveforms and grid displayed:

HPGL : approx. 25Kbyte	TIFF :	approx. 30Kbyte	
PS	: approx. 70Kbyte	BMP	:
approx. 30 Kbyte			

Checking the free space on a medium

Refer to page 13-3 for a description of this procedure.

Entering a file name

The following points must be kept in mind when entering a file name.

- A file name must always be specified;
- Up to eight characters can be entered;
- All the characters on the keyboard can be used. However, the following file names cannot be used due to MS-DOS restrictions;
AUX, CON, PRN, NUL, CLOCK
- The same name cannot be assigned to different data files of the same data type. (Overwrite inhibit).

Points to not when using data saved in Post Script format

There is no problem printing out data saved in PostScript format on a PostScript printer. However, if the PostScript data is used in a file created by DTP application software, the waveform image will probably not appear on the computer's screen. Instead a gray box indicating the size of the image will probably appear.

CAUTION Never turn OFF the SCSI device or remove the disk (media) such as a MO or a PD while the access indicator of the SCSI device is lit. Otherwise, damage to the SCSI device or the disk may result.

13.6 Deleting and Protecting Saved Data

Keys and Procedure

1. Following the steps described in section 13.1 , select SCSI device as the media.
2. Press the "Utility" soft key to display the utility selection menu.

Media SCSI	Data Type			
	P-P...	ACO...	SETUP...	AutoFile
OFF	ON	Utility		

3. Press the "List" soft key to display the list selection menu.

$\begin{aligned} & \text { List } \\ & P-P \end{aligned}$	Exec Func		Format	Disk Info	$\begin{aligned} & \text { To } \\ & \text { TopMenu } \end{aligned}$
	Protect	Delete			

4. Press the soft key corresponding to the desired list.

5. Use the rotary knob to select the file to protect/save.

PQR	$96 / 05 / 03$	$14: 04: 52$
ABC	96/05/03	44:05:30
DEF	$96 / 05 / 03$	$14: 06: 08$

Deleting

6. Press the "Delete" soft key.

Protecting

6. Press the "Protect" soft key. A" $\underline{\mathbf{L}}$ " symbol will be added before the file name of the protected file.

List $P-P$	Exec Func		Format	Disk Info	To TopMenu
	Protect	Delete			

Canceling protection

7. After step 4 has been performed, use the rotary knob to select the file at the beginning of which a " $\mathbf{\mathbf { L }}$ "symbol is added.

8. Press the "Protect" soft key and the protection will be canceled. The " \mathbf{L} " symbol before the file name will be deleted.

$\begin{aligned} & \text { List } \\ & P-P \end{aligned}$	Exec Func		Format	Disk Info	To TopMenu
	Protect	Delete			

Explanation

Deleting data

Waveform data and setting parameters saved on a medium can be deleted one file at a time.

Protecting data

A protection function is used to protect saved data from being deleted by mistake. If an attempt is made to delete protected data, an error message will be displayed and the data will not be deleted.
A " G " symbol is displayed before the names of protected files to distinguish them from un-protected files.

Selecting the data list: Change Data List

File lists are displayed by data type and data format and are grouped as follows.
P-P Displayed waveform data (P-P compressed);
ACQ Data being saved in the acquisition memory;
SETUP Setting parameters.

Points to note when protecting or deleting data

- Protection setting cannot be performed if the medium is write-protected. An error message will appear if an attempt is made to protect or delete files.
- It is not possible to delete more than one file at once.
- This protection setting is effective against deletion of data, but not against initialization (formatting). Take care not to accidentally delete files by reformatting a medium file.

CAUTION Never turn OFF the SCSI device or remove the disk (media) such as a MO or a PD while the access indicator of the SCSI device is lit. Otherwise, damage to the SCSI device or the disk may result.

14.1 Using a Trigger Output Signal (for DL1540/ DL1540L)

Trigger Output Circuit

Output level	$:$ TTL
Output logic	$:$ Negative (trailing edge)
Output delay time	$: 150 \mathrm{~ns}$ max.
Output hold time	$: 2 \mu \mathrm{~s}$ min. for low level, $2 \mu \mathrm{~s}$ min. for high level

Output Circuit

Trigger Output Terminal
The TRIG OUT terminal is situated on the rear panel. TRIG OUT

Output timing

Hold Time for Low and High Level

Trigger
Trigger

*1: Duration during which the trigger output level is HIGH
Consists of the pre-trigger time and internal process time. ($2 \mu \mathrm{~s}$ or longer)
*2: Duration during which the trigger output level is LOW
Consists of the post-trigger time and internal process time. ($2 \mu \mathrm{~s}$ or longer)
Acquisition

CAUTION Never apply an external voltage to the TRIG OUT terminal, as damage to the instrument may result.

14.2 Downloading Waveform Data to an AG Arbitrary Waveform Generator

Keys and Procedure

1. Press the MISC key to display the MISC menu.
2. Press the "To NextMenu" soft key.

3. Press the "DataOut..." soft key to display the download menu.

| DataOut... | Scale... | Self
 Test... |
| :--- | :--- | :--- | :--- | :--- |

4. Press the "CH" soft key to display the channel selection menu.

5. Press the soft key corresponding to the desired channel to be downloaded.
" 3 " and " 4 " menus are not provided with DL1520/DL1520L.

6. Set the downloading range by selecting either "T1" or "T2" soft key, and setting the vertical cursor position using the rotary knob. You can also use the < or $>$ keys.

Executing the download funtion

7. Press the "EXEC" soft key. The name of the soft key will change to "ABORT".

Aborting the download function

8. Press the "ABORT" soft key. The name of the soft key will change to "EXEC".

Explanation

Download setting: Dataout...

Downloading data from this instrument should only be done after having set downloading settings at the YOKOGAWA AG series arbitrary waveform generator. For details regarding the settings and/or operation of the YOKOGAWA AG series, refer to its corresponding instruction manual.
When executing downloading, the setting of this instrument will change to "talking mode" in the case of GP-IB. When downloading is finished, or when the "ABORT" soft key is pressed, the previous setting will return.
The range of determination is set by the two cursors T1 and T2. The setting lies within -5.00 div at the left side to +5.00 div at the right side measured from the center of the display.

14.3 Checking the System Condition

Keys and Procedure

1. Press the MISC key to display the MISC menu.
2. Press the "Information" soft key to display the ROM check screen.

3. Press any key, or move any knob on the front panel.

The setting parameter information screen will be displayed.

Returning to the MISC menu

4. Press any key, or move any knob on the front panel.

Explanation

ROM check screen

The ROM check screen, as shown below, enables you to check the ROM version, the date the ROM was programmed, the model type and whether options are installed. An example for DL1540 is shown below.

Setting parameter information screen

The set-up information screen, shown below, enables you to check the most important setting parameters.
The information given on the screen can also be printed. For a description of the procedure, refer to page $10-3$ and 10-8. An example for DL1540 is shown below.

14.4 Adjusting the Printer Density

Keys and Procedure

1. Press the MISC key to display the MISC menu.
2. Press the "Config..." soft key.

Time Base...	Commn...	Date Time...	Infor- mation...	Config...	To NextMenu

3. Press the SELECT key to display the density setting frame.
4. Use the rotary knob to select the desired density level. Pressing the RESET key results in displaying the default value.
5. Press either the SELECT key or the ESC key to close the density setting frame.

Explanation

Setting the printer density: Printer Density

This setting controls the printing density of hard copies on the built-in printer.
Setting range : 0 to 3
Default setting : 1

Note

When you press the soft key [Config...] on DL1540L, or DL1540 with a software (ROM) version of 1.10 or later, the setting menu for the isolator (700926) will appear as well. For details regarding the isolator and its operation, refer to the accessory user's manual of the isolator.

15.1 Troubleshooting

- For corrective actions when a message appears on the display, refer to Section 15.2 "Error Messages and Corrective Actions" (page 15-3).
- If maintenance service is required, or if the instrument still does not operate even after the proper corrective action has been taken, contact your nearest YOKOGAWA representative as listed on the back cover of this manual.

Symptom	Possible Cause	Corrective Action	Reference Page
The power does not come ON.	The source voltage is outside the rated range.	Connect the instrument to a source of the correct voltage.	3-5
	Fuse is blown.	Verify it the fuse is blown, check the cause and replace the fuse.	14-7
Nothing is displayed.	Instrument is faulty.	While holding down the INITIALIZE key, turn ON the power.	3-6
Display appears abnormal.	Instrument is faulty.	Reset the instrument to its factory settings.	4-4
The phase of the waveform of CH 2 is shifted.	The phase shift is set.	Set the phase shift to 0 div.	8-17
Keys do not function.	Instrument is in remote mode.	Press the LOCAL key to activate local mode.	-
	Other causes	While holding down the INITIALIZE key, turn ON the power.	-
No trigger is caused.	Trigger settings are incorrect.	Make correct trigger settings for the input signal.	Chapter 6
Measured values are abnormal.	Insufficient warm-up time	Allow instrument to warm up for at least 30 minutes after the power is turned ON.	-
	No calibration has been performed.	Perform calibration.	4-6
	The probe has not been calibrated.	Calibrate the probe.	3-8
	Incorrect probe attenuation	Set the correct attenuation.	5-4
	Offset voltage is in use.	Set the offset voltage to "0".	5-2
	Waveform inversion is ON.	Turn waveform inversion OFF.	5-5
No data is output to the internal printer.	Printer head is damaged or worn out.	Maintenance service is required.	-
No data is output to the external printer.	The type or format of printer do not match.	Match the type and format of printer.	-
	The printer is not set to the on-line.	Set to the on-line mode.	
	The printer cable is not connect properly.	Connect the cable properly.	
	The chart paper of printer is not set.	Set the chart paper to the printer.	
No data is output to the plotter.	The plotter is not set to listen-only mode.	Set the plotter to listen-only mode.	-
	The communication interface cable is not properly connected.	Connect the cable properly.	-
	The RS-232-C setting parameters do not match.	Set the RS-232-C setting parameters correctly.	-
Data cannot be saved on a floppy disk.	Floppy disk has not been formatted.	Format the disk. The disk must be formatted if it is a new disk.	12-2
	The floppy disk is not inserted properly.	Push the disk until the eject button pops up.	12-1
Data cannot be loaded on a floppy disk.	The floppy disk is not inserted properly.	Push the disk until the eject button pops up.	12-1
Making settings and performing operation control are not possible via the communication interface.	The GP-IB addresses / RS-232-C parameters set in the program differ from those used by the instrument.	Make sure that the correct addresses / parameters are set for both program and instrument.	*
	Instrument is not being used according to its electrical and mechanical specifications.	Use the instrument according to these specifications.	*

* Refer to the Communication Interface User's Manual (IM 701510-11E).

Symptom	Possible Cause	Corrective Action	Reference Page
SCSI Menu not displayed	The connection to DL1520L is incorrect.	Connect the cable properly.	$3-3$
	ID No. is not set to "5."	Set ID No. to "5." The order in which the power switches are turned ON is incorrect.	Turn the power ON in the following order: SCSI device - DL1520L.
	Mismatch in the media format.	Format the media with the DL1520L.	$3-3$
Data can not be saved to the SCSI device.	Media not formatted.	Format the media with the DL1520L.	$3-6$
	Media is not inserted properly.	Check the direction of the media, and insert properly.	$13-2$
	Media is not inserted properly.	Check the direction of the media, and insert properly.	13-2

15.2 Error Messages and Corrective Actions

Message Type

There are two types of messages which are displayed on the screen.

Status message

Displays the currently executing operation and the results.

Error/warning message

Displayed if an invalid setting has been made or if the instrument is defective.

When Maintenance Service is Required

Contact your nearest YOKOGAWA representative as listed on the back cover of this manual.

Status Message

No.	Message	Reference Page
0	Calibration is in progress.	$4-6$
1	Auto setup is in progress.	$4-2$
2	Saving file is in progress.	$12-4,9,11$
3	Loading file is in progress.	$12-4,9$
4	Deleting file is in progress.	$12-14$
5	Disk formatting is in progress.	$12-2$
6	A directory list is currently being created.	$12-3$
7	Set-up data has been stored in the internal memory.	$11-3$
8	Displayed waveform has been stored in the internal memory.	$11-1$
9	Printer output is aborted.	$10-3,10$
10	GO/NO-GO is aborted.	$9-5,6,10,11$
11	Trigger action is aborted.	$6-14,15$
12	DATA output is aborted.	$13-2$
13	Exit from GO/NO-GO mode.	$9-5,6,10,11$
14	Execution completed.	-

Error/Warning Message

In addition to the messages given below, there are also some other error/warning messages (code Nos. 100 to 500). These messages are described in the Communication Interface User's Manual (IM701510-11E).
If an error message other than those given below is displayed, the instrument may be defective. In this case, inform your nearest YOKOGAWA representative and inform him the number of the message which appears.

No.	Message	Reference Page
601	Invalid file name	$4-8$
602	No floppy disk inserted.	$12-1$
603	No SCSI	-
604	Storage media is defective.	$12-3$
605	File not found.	-
606	Floppy disk is write-protected.	-
609	File name already exists.	-
610	Reserved file name or illegal character.	$4-8$
611	Directory is full. No more files can be created.	$12-3$
612	Insufficient space for creating a file.	$12-3$
614	File is write-protected.	$12-14$
615	Formatting error.	-
$646-654$	Storage media is defective.	$12-3$
656	File attribute error.	-
659	It is not possible to load the file using this ROM version or this Model.	-
662	It is not possible to load an ASCII type file.	-
675	(For DL1520L/DL1540L)	-

No.	Message Ref	Reference Page
700	Specified operation is currently in progress. Execute again after the current operation has been completed.	-
701	It is not possible to start acquisition since the specified operation is in progress.	-
702	It is not possible to save X -Y waveform data.	12-7
703	Designated trace is not displayed.	5-1
704	No set-up data has been stored.	11-3
705	No displayed waveform has been stored.	11-1
706	It is not possible to perform a snapshot during $\mathrm{X}-\mathrm{Y}$ waveform display.	4-5
707	The roll chart is not secured.	10-2
708	No roll chart.	10-2
709	Printer is overheating. Turn OFF the power immediately. Contact your nearest YOKOGAWA representative.	-
710	It is not possible to execute a self test since a storage media operation or printer operation, or GO/NO-GO operation, or trigger action operaton is in progress.	-
711	It is not possible to perform this operation since GO/NO-GO is active. Stop GO/NO-GO and try again.	9-1, 8
712	No printer installed.	2
713	It is not possible to perform this operation since the trigger action is active. Stop the trigger action and try again.	6-14
714	It is not possible to perform the real time printout in this time range. Set time range to $500 \mathrm{~ms} /$ div or below.	10-10
715	It is not possible to perform the real time printout during Zoom/MainZoom waveform display, X-Y waveform display, FFT waveform display or during loading/recalling a waveform.	10-10
716	(For DL1520) It is not possible to perform real time printout with NORM/SINGLE as the trigger mode. (For DL1540) It is not possible to perform the real time printout with NORM/SGL (S)/ SGL (L)/ N-SGL as the trigger mode or with history mode. (For DL1520L/DL1540L) It is not possible to perform the real time printout with NORM/SINGLE/ N-SGL as the trigger mode or with history mode.	10-10
717	It is not possible to display a time stamp during acquisition.	7-9
718	It is not possible to use the ALL display during acquisition.	7-9
720	It is not possible to perform the real time printout using the external clock as timebase.	10-10
721	(For DL1520) It is not possible to perform this action while averaging is active. (For DL1520L/DL1540/DL1540L) It is not possible to perform this action while averaging or history mode is active.	-
722	CAL-OUT is not connected.	-
723	Low temperature error has been detected in printer.	-
724	It is not possible to execute measurement of acquisition data (All Scan EXEC) because automatic measurement of waveform parameter is OFF, or because data acquisition is in progress.	8-9
725	(For DL1520L/DL1540L) It is not possible to perform the real time printout since the record length 1 K words.	10-10
726	(For DL1520/DL1520L) No centronics interface.	2, 10-11
728	(For DL1520/DL1520L) Centronics printer off-line.	-
730	(For DL1520/DL1520L) Centronics interface in use.	10-11
731	(For DL1520/DL1520L) Can't detect printer.	10-11
800	(For DL1520) It is not possible to set the time range during SINGLE as the trigger mode. (For DL1540) It is not possible to set the time range during $\mathrm{SGL}(\mathrm{L}) / \mathrm{N}-\mathrm{SGL}$ as the trigger mode or history mode. (For DL1520L) It is not possible to carry out this time range setting, because the trigger mode is N-SGL, the history mode is active or the record length is $400 \mathrm{~K} / 1 \mathrm{M}$ words. (For DL1540L) It is not possible to carry out this time range setting, because the trigger mode is N-SGL, the history mode is active or the record length is $400 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{M}$ words.	$\begin{aligned} & 5-11,6-13, \\ & 7-10 \end{aligned}$
801	It is not possible to select an external clock in Envelope mode.	5-9
802	Delay time was set to " 0 s " as an external clock was selected.	5-9
803	It is not possible to set a delay time since an external clock has been selected.	5-9

* Refer to the Communication Interface User's Manual (IM701510-11E).

No.	Message	Reference Page
828	(For DL1520L)	
	A record length of $400 \mathrm{~K} / 1 \mathrm{M}$ words can only be set when the trigger mode is SINGLE.	
	(For DL1540L)	
	A record length of $400 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{M}$ words can only be set when the trigger mode is SINGLE.	7-2
829	(For DL1520L)	
	A record length of 1 M words can only be set when the CH 2 and Math operation are both OFF.	
	(For DL1540L)	
	A record length of 2M words can only be set when the CH3 and CH4 are both OFF.	7-2
830	(For DL1520L)	
	Since the record length is $400 \mathrm{~K} / 1 \mathrm{M}$ words, the trigger mode can only be set to SINGLE. (For DL1540L)	
	Since the record length is $400 \mathrm{~K} / 1 \mathrm{M} / 2 \mathrm{M}$ words, the trigger mode can only be set to SINGLE.	6-13
831	(For DL1520L)	
	Since the record length is 1 M words, CH 2 and Math operation cannot be set ON. (For DL1540L)	
	Since the record length is 2M words, CH3 and CH4 cannot be set ON.	7-2
900	The back-up lithium battery has run out. The back-up function is no longer valid. To have the battery replaced, contact your nearest YOKOGAWA representative as listed on the back cover of this manual.	3-6
901	Cooling fan has stopped. Turn OFF the power immediately.	-
905	Isolator cannot be used.	

15.3 Self Test

The self test function is available in the MISC menu. This function can be used when the instrument seems to be defective. Contact your nearest YOKOGAWA representative and proceed according to his instructions. Do not use this function unless the instrument is defective.

Keys and Procedure

1. Press the MISC key to display the MISC menu.
2. Press the "To NextMenu" soft key.

Time Base...	Commn...	Date Time...	Infor- mation...	Config...	To NextMenu

3. Press the "Self Test..." soft key to start selftesting.

| DataOut.... | Scale... | Self
 Test... |
| :--- | :--- | :--- | :--- |

15.4 Replacing the Power Supply Fuse

WARNNG
Before replacing the fuse, make sure to turn OFF the power supply and disconnect the power source. Use ony specified fuses which should only be obtained from your sales representative. The usage of other fuses might cause fire.

Specifications

Item	DL1540, DL1540L	DL1520, DL1520L	
	Suffix code -1 and $\mathbf{- 5}$	Suffix code -1	Suffix code -5
Maximum rated voltage	250 V	250 V	250 V
Maximum rated current	3.15 A	3 A	2 A
Type	Time lag	Time lag	Time lag
Approved standard	VDE/SEMKO	UL/CSA	VDE/SEMKO
Part No.	A1351EF	A1436EF	A1349EF

Procedure

1. Turn the power switch OFF.
2. Remove the power cord from the power supply.
3. Pull out the fuse holder by placing a screw driver under the tab and pulling the holder forward.
4. Remove the blown fuse located at the front of the fuse holder. Note that the other fuse is a spare one.
5. Make sure the ratings of the new fuses are correct and install them.
6. Click the holder back into its place.

Note

The fuses inside the case can not be replaced by the user. If you believe the fuse is blown, please contact your nearest YOKOGAWA representative listed on the back cover of this manual. The ratings of the fuses used inside the case are indicated below.

Location	Max. rated voltage	Max. rated current	Type	Approved standard
CRT unit(F1)	125 V	2 A	Time lag	UL/CSA
CPU board(F131)	250 V	2 A	Time lag	VDE/SEMKO
Rear board(F1)	250 V	800 mA	Time lag	VDE/SEMKO
(for DL1520L with suffix code -C4)				

15.5 Recommended Parts for Replacement

The 3-year warranty applies only to the main unit of this instrument (starting from the day of delivery) and doesn't cover any other items nor expendable items (items which wear out). In order to use the instrument over a prolonged period of time, we recommend periodic replacement. Contact your nearest Yokogawa sales representative for replacement parts. Addresses may be found on the back cover of this manual.

Parts name	Replacement interval
Built-in printer	after printing 120 rolls (parts No. B9850NX) continuously

16.1 Input Section

16.2 Trigger Section

Item	Specifications	
Trigger source	CH1, CH2, CH3 and CH4 (signal which is input to each input terminal, CH1/CH2 for DL1520/ DL1520L), LINE (commercial power source signal), EXT (signal input to the TRIG IN terminal)	
Trigger type	Edge trigger Window Trigger	: Activates a trigger on the edge of a single trigger source. : Activates a trigger when the source level of channel leither enters a previously set range of voltages or protrudes from a previously set range of voltages.
	TV Trigger	Activates a trigger for the video signal in NTSC, PAL or HDTV (studio standard high-vision signal, available on DL1540/DL1540L) broadcasting systems. Only CH1 is available for this function. Designation of field No. and line No. is possible.
	OR Trigger (optional)	Activates a trigger when one of the trigger source conditions becomes true. The edge trigger condition can be selected for each trigger source.
	Pattern trigger (optional)	Activates a trigger when all the multiple trigger source conditions become true. Trigger condition can be selected from High or Low for each trigger source. Clock signal can also be selected.
	Width trigger (optional)	Activates a trigger when the pulse width is greater or smaller than the specified width. Setting range below pulse width: $5 \mathrm{~ns}, 10 \mathrm{~ns}$ to 9.999 s Setting range above pulse width: 30 ns to 9.999 s
	*OR, PATTERN and WIDTH are provided as optional with DL1520L/DL1540/DL1540L.	
Trigger mode	Auto	: Acquires waveform automatically if no trigger is activated for more than approx. 100 ms .
	Auto-level	: Automatically sets the trigger level to the median of the amplitude if no trigger is activated for more than approx. 100 ms .
	Normal	: Acquires waveform only when a trigger is activated. : Acquires waveform only once when a trigger is activated. : Acquires waveform when a trigger is activated the specified number of times. Available on DL1520L/DL1540/DL1540L.
	Single	
	Single (N)	
Trigger slope	Rise, fall and rise/fall	
Trigger coupling	DC or AC for trigger source.	
HF rejection	Bandwidth limit (approx. DC to 15 kHz) for the trigger source can be turned ON/OFF.	
Trigger level	Setting range $: \pm 10$ div from the center of the waveform display frame Setting resolution $: 1 / 50$ div Accuracy* $: \pm(1 \mathrm{div}+10 \%$ of trigger level $)$	
Trigger sensitivity 1 divp-p(when frequency of trigger source is DC to 150 MHz)		
Trigger position	$0, \pm 2$ div, ± 4 div from the center of waveform display frame (Settable from -5 div to +5 div in steps of $1 / 50$ div in the case of DL1520, DL1520L, DL1540 with software (ROM) version 1.20 or later, or DL1540L with software (ROM) version 1.20 or later)	
Trigger delay setting range	0 to 9.999 s (normal delay)	
Inter channel trigger skew*2 (when vertical sensitivity is	5 ns or less	
*1 Measured with the internal clock selected as the timebase and the voltage axis sensitivity set to "CAL", after calibration following a 30minute warm-up, under the standard operating conditions stipulated on page 16-8.		
*2 Measured with a voltage axis sensitivity of $50 \mathrm{mV} / \mathrm{div}$ when a pulse of amplitude of $5 \mathrm{div} \mathrm{v}-\mathrm{p}$ and rise time of 1 ns is input. Trigger coupling: DC, HF rejection : OFF		

16.3 Time Axis

* Measured after 30-minute warm-up, under the standard operating conditions stipulated on page 16-8.

16.4 Display

Item	Specifications
CRT	Size: 7, display method: raster scan, emission color: amber, display resolution: 540 dots (horizontal) x 432 dots (vertical)
Display area	Voltage axis: 8 div Time axis: 10 div, 501 dots (horizontal) x 401 dots (vertical)
Display resolution	Voltage axis: 50 dots/div (A/D converter resolution equivalent: 25 LSB/div) Time axis: 50 dots/div (compressed)
Maximum display update interval	60 times/s
Max. No. of displayed waveforms	8 waveforms, 6 waveforms for DL1520/DL1520L

16.5 Functions

Item	Specifications
Auto set-up	Makes the voltage axis, time axis, and trigger settings automatically.
Initialization	Automatically resets settings to the factory settings.
Snapshot	Retains the waveform displayed when the SNAP SHOT key is pressed.
Clear trace	Clears snapshot and accumulated waveforms.
Calibration	Automatic calibration and manual calibration are available.
Waveform display ON/OFF	Display ON/OFF function is available for each of the channels CH1 to CH4.
Waveform inversion	Inverts waveforms about the ground level.
Vertical position setting	Moves waveforms vertically within ± 4 div of the center of the waveform display frame.
Horizontal position setting	Moves display positions horizontally within ± 5 div of the center of the waveform display frame.
Acquisition mode	Normal, envelope and averaging modes are available.
Sampling mode	For some time-axis settings, the user can switch between real-time sampling and repetitive sampling.

16.6 Rear Panel Input/Output Section

Item	Specifications	
External trigger input (EXT TRIG IN)*	(For DL1520/DL1520L)	
	Refer to "External clock" in section 15.3, "Time Axis". (For DL1540/DL1540L)	
	Connector type	BNC
	Input band	DC to 15 MHz
	Input impedance	: Approx. $1 \mathrm{M} \Omega$
	Maximum input voltage	: $\pm 6 \mathrm{~V}$
	Trigger level	: 1.5 V or 0.15 V
	Input amplitude	TTL/CMOS level recommended (0.3 Vp-p or greater at the end of the connector, $\pm 0.15 \mathrm{~V}$ or greater relative to the threshold level)
	Input pulse width	: 25 ns or more for both High and Low levels
Trigger output	Connector type	: BNC
(TRIG OUT)	Output level	: TTL
(for DL1540/DL1540L)	Output logic	: Negative (trailing edge)
	Output delay time	: 200 ns max.
	Output hold time	: $20 \mu \mathrm{~s}$ min. for low level, 200 ns min. for high level
GO/NO-GO input/output	Connector type	: Half-pitch interface cable (DDK: DHA-RB50-S132)
(NO-GO OUT, GO OUT)	Output level	: TTL
(for DL1540/DL1540L)	Output logic	: Negative
	Output	: NO-GO OUT signal, GO OUT signal
	Output timing	: Refer to page 9-13.

* The external trigger input terminal (EXT TRIG IN) is also used as the external clock input terminal (EXT CLOCK IN). For specifications of the external clock input, refer to page 16-3.

16.7 Communication Interface

For details regarding the GP-IB/RS-232-C interface, refer to the "Communication Interface User's Manual" (IM 701510-11E). GP-IB Interface

Comes standard on DL1540/DL1540L. Provided with DL1520/DL1520L with suffix code C1, -C3, or -C4.

Item	Specifications
Interface	GP-IB
Electrical and mechanical specifications	Conforms to IEEE St'd 488-1978 (JIS C 1901-1987).
Interface function	SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT0, C0
Protocol	Conforms to IEEE St'd 488.2-1987.
Code	ISO (ASCII) code
Mode	Addressable mode/talk-only mode
Address setting	Listener and talker addresses 0 to 30 are settable.
Remote mode clear	Remote mode can be cleared by pressing the LOCAL key (except when local lock-out has been set).

RS-232-C Interface

An optional RS-232-C unit is required for DL1540/DL1540L. This interface is provided with DL1520/DL1520L with suffix code -C2.

Item	Specifications
Connector type	Half pitch interface cable (DDK : DHA-RB50-S132)
Electrical specifications	Conforms to EIA RS-232-C Standard.
Connection format	point to point
Communication format	full duplex
Synchronizing format	Start-stop asynchronous transmission
Baud rate	$75 / 150 / 300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200$

Centronics Interface

Provided with DL1520/DL1520L with suffix code -C3. This interface is not supported by DL1540/DL1540L.

Item	Specifications
Connector type	Centronics interface connector (half-pitch 36 pin), with a printer connecting cable to D-sub socket.
Electrical specifications	Conforms to Centronics specifications.
Printers which support	ESC/P, LIPS, PCPR201 or PCL5

SCSI (Small Computer System Interface)

Provided with DL1520L with suffix code -C4. DL1540/DL1540L with software (ROM) version 1.20 or later needs the SCSI interface unit 700930 (sold separately). Not provided with DL1520.

tem	Specifications
Interface standard	Conforms to ANSI X3.131-1986 for SCSI (Small Computer System Interface)
Connector shape	Half pitch 50 pins (Converting to the pin type is possible with the SCSI adapter accessory)
Electrical specifications	Single end, refer to Section 3.3 for pin configurations.
SCSI Devices that can be Used*	HD Drives : SCSI HD drives for MS-DOS ver.3.3 or later, or SCSI HD drives that can format in
	MO Drives :128/230/640 MB drives. MO media uses Semi IBM format.
	ZIP Drives
	PD Drives

[^5]16.8 Built-in Printer (optional)

Item	Specifications
Printing system	Thermal line dot method
Dot density	6 dots $/ \mathrm{mm}$
Paper width	112 mm
Real-time printout	max. chart speed of $16.7 \mathrm{~mm} / \mathrm{s}$ (speed drops at time axis settings slower than $500 \mathrm{~ms} /$ div)

16.9 Built-in Floppy Disk Drive

Item	Specifications
Drive size	3.5 inch
No. of drives	1
Format type	$640 \mathrm{~KB}, 720 \mathrm{~KB}, 1.2 \mathrm{MB}$ and 1.44 MB (MS-DOS compatible)

16.10 General Specifications

Item	Specifications
Safety standard*	Complying standard :EN61010 - Overvoltage category II - Pollution degree 2
Emission*	Complying Standard : EN55011:Class A, Group1 This is a Class A product(for industrial environment). In a domestic environment, this product may cause radio interference in which case the user may be required to take adequate measures. - Cable conditions for DL1540/DL1540L - External trigger/clock input terminal Connected BNC cable(3D2W), with both side's Ferrite Cores(TDK:ZCAT2035-0930A) - Trigger output terminal Same as above for the External trigger/clock input terminal - Connecter for half pitch interface Connected the cable B9920TA(the dedicated cable for RS-232-C Unit-700927) - Cable conditions for DL1520/DL1520L - Connector for RS-232-C interface (for suffix code -C2) Connected RS-232-C shielded cable, with both side's Ferrite Cores(TDK:ZCAT2035-0930A) - Connector for Centronics interface (for suffix code -C3) Connected the cable B9916TB(the dedicated cable for suffix code -C3) - Connecter for half pitch interface (for the SCSI interface, on DL1520L with suffix code -C4) Use a cable less than 3 m long with a characteristic impedance between 90 and 132Ω. Also, attach a ferrite core (TDK:ZCAT2035-0930A) on each end of the cable.
Immunity*	Complying Standard : EN50082-2:1995 - Susceptibility under immunity condition Noise increase $\quad:< \pm 15 \mathrm{mV}$ SCSI interface : No effect - Testing Condition 100 Msps $5 \mathrm{mV} /$ div PeakDetect(Envelope)Mode 20 MHzBWL , Channel Input terminated with 50Ω.
Standard operating conditions	Ambient temperature $: \quad 23 \pm 2{ }^{\circ} \mathrm{C}$ Ambient humidity Power voltage and frequency fluctuation : Less than 1% of the rated voltage/frequency
Warm-up time	30 min . or more
Storage conditions	Temperature $:-20$ to $60^{\circ} \mathrm{C}$ Humidity $: 20$ to $85 \% \mathrm{RH}$ (no condensation allowed)
Operating conditions	Temperature $: 5$ to $40{ }^{\circ} \mathrm{C}$ Humidity $: 20$ to $85 \% \mathrm{RH}$ (without printer) $: 35$ to $85 \% \mathrm{RH}$ (with printer) (No condensation allowed in either case)
Storage altitude	3000 m or below
Operating altitude	2000 m or below
Rated supply voltage	$\begin{array}{ll} \hline \text { DL1540, DL1540L (for suffix code }-1 \text { and }-5 \text {) }: 100 \text { to } 120 \mathrm{VAC} / 200 \text { to } 240 \mathrm{VAC} \\ \text { DL1520, DL1520L (for suffix code }-1 \text {) } & : 100 \text { to } 120 \mathrm{VAC} \\ \text { DL1520, DL1520L (for suffix code }-5 \text {) } & : 200 \text { to } 240 \mathrm{VAC} \\ \hline \end{array}$
Permitted supply voltage range	$\begin{array}{ll} \hline \text { DL1540, DL1540L (for suffix code }-1 \text { and }-5 \text {) }: 90 \text { to } 132 \text { VAC/180 to } 264 \text { VAC } \\ \text { DL1520, DL1520L (for suffix code }-1 \text {) } & : 90 \text { to } 132 \text { VAC } \\ \text { DL1520, DL1520L (for suffix code }-5 \text {) } & : 180 \text { to } 264 \text { VAC } \\ \hline \end{array}$
Rated supply voltage frequency	$50 / 60 \mathrm{~Hz}$
Permitted supply voltage frequency	48 to 63 Hz
Power Supply Fuse	$\begin{array}{ll} \hline \text { DL1540, DL1540L (for suffix code }-1 \text { and }-5 \text {) }: 250 \mathrm{~V}, 3.15 \mathrm{~A} \text {, Time lag, VDE/SEMKO approved } \\ \text { DL1520, DL1520L (for suffix code }-1 \text {) } & : 250 \mathrm{~V}, 3 \mathrm{~A} \text {, Time lag, UL/CSA approved } \\ \text { DL1520, DL1520L (for suffix code }-5 \text {) } & : 250 \mathrm{~V}, 2 \mathrm{~A} \text {, Time lag, VDE/SEMKO approved } \\ \hline \end{array}$
Maximum power consumption (when the built-in printer is used)	DL1540, DL1540L (for suffix code -1 and -5) : $220 \mathrm{VA} / 280$ VA DL1520, DL1520L (for suffix code -1) : 130 VA DL1520, DL1520L (for suffix code -5) : 140 VA (when the built-in printer is not used; refer to page 3-5)
* Applies to products manufactured a representative as listed on the back	Jan. 1997 having the CE Mark. For all other products, please contact your nearest YOKOGAWA er of this manual.

Item	Specifications
Withstand voltage (between power supply and case)	1.5 kVAC for 1 minute
Insulation resistance (between power supply and case)	$10 \mathrm{M} \Omega$ or more at 500 VDC
External dimensions	Approx. 215 (W) x 268 (H) x 278 (D) mm (projections excluded).
Weight (without printer, only main body)	DL1540 : Approx. 5 kg ; DL1520, DL1520L, DL1540L : Approx. 6 kg
Cooling method	Forced air cooling, air discharged from the rear and left side
Installation position	Horizontal (one on top of another not allowed), vertical (using supports)
Battery back-up	Set-up data and internal clock are backed up by a built-in lithium battery Battery life is approx. 10 years (at ambient temperature of $23^{\circ} \mathrm{C}$)
Accessories	- Power cord (1) - Printer connecting cable (1, supplied with DL1520-C3 only) - 150 MHz probe ($10: 1,1: 1$ selectable) (2 , or 4 if two optional probes are added) - Power supply fuse (in fuse holder) (2, including a spare one) DL1540, DL1540L (for suffix code -1 and -5) : A1351EF DL1520, DL1520L (for suffix code -1) : A1436EF DL1520, DL1520L (for suffix code -5) : A1349EF - Roll chart (1 , supplied only when the instrument is equipped with a printer) - User's Manual (1, this manual) - Operation Guide (1) - Communication Interface User's Manual (1, option)

16.11 External Dimensions

The drawing below shows the exammple for DL1540/DL1540L.
The external dimensions of DL1520/DL1520L are same too.
Unit : mm

If not specified, the tolerance is $\pm 3 \%$. However, in cases of less than 10 mm , the tolerance is $\pm 0.3 \mathrm{~mm}$.

Appendix 1 Menu Map

The following menus are displayed when initialization is performed (i.e. when factory settings are restored). The menus for DL1540 are shown below as examples.
Key Operation \& First menu
Key Operation \& First menu

Appendix 2 Relationship between the Time Axis Setting, Sample Rate and Record Length (for DL1520/DL1540)

The record length varies according to the time axis setting as shown below.
trigger mode : auto, auto level, normal, single short hysterisys : OFF

Rep: Repetitive sampling mode

T/div	When Mode other than Envelope Mode is Active								When Envelope Mode is Active	
	At Least One of $\mathrm{CH} 3, \mathrm{CH} 4$ is $\mathrm{ON}^{* 5}$				CH3, CH4 are Both OFF*6					
	Rep: "OFF"		Rep: "ON"		Rep: "OFF"		Rep: "ON"			
	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)
50s	20	$10 \mathrm{~K}(20 \mathrm{~K})$	20	$10 \mathrm{~K}(20 \mathrm{~K})$	20	10K(20K)	20	$10 \mathrm{~K}(20 \mathrm{~K})$	$100 \mathrm{M}[10 \times 2]$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$
20s	50	$10 \mathrm{~K}(20 \mathrm{~K})$	100M[25 x 2]	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \mathrm{x} 2)$						
10s	100	$10 \mathrm{~K}(20 \mathrm{~K})$	100M[50 x 2]	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$						
5s	200	$10 \mathrm{~K}(20 \mathrm{~K})$	$100 \mathrm{M}[100 \times 2]$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \mathrm{x} 2)$						
2 s	500	$10 \mathrm{~K}(20 \mathrm{~K})$	$100 \mathrm{M}[250 \times 2]$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \mathrm{x} 2)$						
1 s	1 k	$10 \mathrm{~K}(20 \mathrm{~K})$	$100 \mathrm{M}[500 \times 2]$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$						
500 ms	2k	$10 \mathrm{~K}(20 \mathrm{~K})$	2k	$10 \mathrm{~K}(20 \mathrm{~K})$	2 k	$10 \mathrm{~K}(20 \mathrm{~K})$	2 k	$10 \mathrm{~K}(20 \mathrm{~K})$	$100 \mathrm{M}[1 \mathrm{k} \mathrm{x} \mathrm{2]}$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \mathrm{x} 2)$
200 ms	5k	$10 \mathrm{~K}(20 \mathrm{~K})$	5 k	$10 \mathrm{~K}(20 \mathrm{~K})$	5 k	$10 \mathrm{~K}(20 \mathrm{~K})$	5 k	$10 \mathrm{~K}(20 \mathrm{~K})$	$100 \mathrm{M}[2.5 \mathrm{k} \mathrm{x} \mathrm{2]}$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \mathrm{x} 2)$
100 ms	10k	$10 \mathrm{~K}(20 \mathrm{~K})$	100M[5k x 2]	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$						
50 ms	20k	$10 \mathrm{~K}(20 \mathrm{~K})$	100M[10k x 2]	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$						
20 ms	50k	10K	50k	10K	50k	10K	50k	10K	100M[25k x 2]	$5 \mathrm{~K} \times 2$
10 ms	100k	10K	100k	10K	100k	10K	100k	10K	100M[50k x 2]	$5 \mathrm{~K} \times 2$
5 ms	200k	10K	200k	10K	200k	10K	200k	10K	100M[100k x 2]	5 K x 2
2 ms	500k	10K	500k	10K	500k	10K	500k	10K	100M[250k x 2]	5 K x 2
1 ms	1M	10K	1 M	10K	1M	10K	1 M	10 K	100M[500k x 2]	$5 \mathrm{~K} \times 2$
$500 \mu \mathrm{~s}$	2M	10K	2M	10K	2M	10K	2M	10K	$100 \mathrm{M}[1 \mathrm{M} \mathrm{x} \mathrm{2]}$	$5 \mathrm{~K} \times 2$
$200 \mu \mathrm{~s}$	5M	10K	5M	10K	5M	10K	5M	10K	100M[2.5M x 2]	5 K x 2
$100 \mu \mathrm{~s}$	10M	10K	10M	10K	10M	10K	10M	10K	$100 \mathrm{M}[5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$5 \mathrm{~K} \times 2$
$50 \mu \mathrm{~s}$	20M	10K	20M	10K	20M	10K	20M	10K	100M[10M x 2]	$5 \mathrm{~K} \times 2$
$20 \mu \mathrm{~s}$	50M	10K	50M	10K	50M	10K	50M	10K	100M[10M x 2]	$2 \mathrm{~K} \times 2$
$10 \mu \mathrm{~s}$	100M	10K	100M	10K	100M	10K	100M	10K		
$5 \mu \mathrm{~s}$	100M	5K	200M	10K	200M	10K	200M	10K		
$2 \mu \mathrm{~s}$	100M	2K	500 M	10K	200M	4K	500 M	10K		
$1 \mu \mathrm{~s}$	100M	1K	1G	10K	200M	2K	1G	10K		
500 ns	100M	500	2G	10K	200M	1K	2G	10K	Changes to n even when en	nvelope mode
200 ns	100M	200	5G	10K	200M	400	5G	10K	has been set.	
100 ns	100M	100	10G	10K	200M	200	10G	10K		
50 ns	20G	10K	20G	10K	20G	10K	20G	10K		
20 ns	20G	4K	20G	4K	20G	4K	20G	4K		
10 ns	20G	2K	20G	2K	20G	2K	20G	2K		
5 ns	20G	1K	20G	1K	20G	1K	20G	1K		

*1 The displayed record length given in () refers to the record length stored in the acquisition memory. Only when the trigger mode is auto or auto level, data of a record length given in () is stored. In case where no value in () is given, the displayed record length and the record length stored in the acquisition memory are the same.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
*4 For the setting enclosed by the bold line, repetitive sampling mode is active.
*5 CH2 is ON in the case of DL1520.
*6 CH2 is OFF in the case of DL1520.
(For DL1540)
trigger mode : single long
hysterisys : OFF

T/div	When Mode other than Envelope Mode is Active				When Envelope Mode is Active			
	At Least One of CH3, CH 4 is ON		$\mathrm{CH} 3, \mathrm{CH} 4$ are Both OFF		At Least One of CH3, CH 4 is ON		CH3, CH4 are Both OFF	
	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)
50s	100	$50 \mathrm{~K}(56 \mathrm{~K})$	200	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[50 \mathrm{x} \mathrm{2]}$	$25 \mathrm{~K} \times 2(28 \mathrm{~K} \times 2)$	$100 \mathrm{M}[100 \mathrm{x} 2$]	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
20s	200	$40 \mathrm{~K}(56 \mathrm{~K})$	500	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[100 \times 2]$	$20 \mathrm{~K} \mathrm{x} 2(28 \mathrm{~K}$ x 2$)$	$100 \mathrm{M}[250 \times 2]$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
10s	500	$50 \mathrm{~K}(56 \mathrm{~K})$	1k	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[250 \times 2]$	$25 \mathrm{~K} \times 2(28 \mathrm{~K} \times 2)$	$100 \mathrm{M}[500 \times 2]$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \times 2)$
5s	1 k	$50 \mathrm{~K}(56 \mathrm{~K})$	2k	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[500 \times 2]$	$25 \mathrm{~K} \times 2(28 \mathrm{~K} \times 2)$	$100 \mathrm{M}[1 \mathrm{k} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
2 s	2k	$40 \mathrm{~K}(56 \mathrm{~K})$	5k	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[1 \mathrm{k} \mathrm{x} \mathrm{2]}$	$20 \mathrm{~K} \mathrm{x} 2(28 \mathrm{~K} \mathrm{x} 2)$	$100 \mathrm{M}[2.5 \mathrm{k} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \times 2)$
1 s	5k	$50 \mathrm{~K}(56 \mathrm{~K})$	10k	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[2.5 \mathrm{k} \mathrm{x} \mathrm{2]}$	25 K x 2 28 K x 2$)$	$100 \mathrm{M}[5 \mathrm{k} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
500 ms	10k	$50 \mathrm{~K}(56 \mathrm{~K})$	20k	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[5 \mathrm{k} \mathrm{x} \mathrm{2]}$	$25 \mathrm{~K} \times 2(28 \mathrm{~K} \times 2)$	$100 \mathrm{M}[10 \mathrm{k} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \mathrm{x} 2(60 \mathrm{~K} \mathrm{x} 2)$
200 ms	20k	$40 \mathrm{~K}(56 \mathrm{~K})$	50k	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[10 \mathrm{k} \mathrm{x} \mathrm{2]}$	$20 \mathrm{~K} \mathrm{x} 2(28 \mathrm{~K}$ x 2$)$	$100 \mathrm{M}[25 \mathrm{k} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
100 ms	50k	$50 \mathrm{~K}(56 \mathrm{~K})$	100k	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[25 \mathrm{k} \mathrm{x} \mathrm{2]}$	$25 \mathrm{~K} \times 2(28 \mathrm{~K} \times 2)$	$100 \mathrm{M}[50 \mathrm{k} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \times 2)$
50 ms	100k	$50 \mathrm{~K}(56 \mathrm{~K})$	200k	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[50 \mathrm{k} \mathrm{x} \mathrm{2]}$	$25 \mathrm{~K} \times 2(28 \mathrm{~K} \times 2)$	100M[100k x 2]	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
20 ms	200k	$40 \mathrm{~K}(56 \mathrm{~K})$	500k	$100 \mathrm{~K}(120 \mathrm{~K})$	100M[100k x 2]	$20 \mathrm{~K} \mathrm{x} 2(28 \mathrm{~K} \mathrm{x} 2)$	100M[250k x 2]	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
10 ms	500k	$50 \mathrm{~K}(56 \mathrm{~K})$	1M	$100 \mathrm{~K}(120 \mathrm{~K})$	100M[250k x 2]	$25 \mathrm{~K} \mathrm{x} 2(28 \mathrm{~K} \mathrm{x} 2)$	100M[500k x 2]	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
5 ms	1M	$50 \mathrm{~K}(56 \mathrm{~K})$	2M	$100 \mathrm{~K}(120 \mathrm{~K})$	100M[500k x 2]	$25 \mathrm{~K} \times 2(28 \mathrm{~K} \times 2)$	$100 \mathrm{M}[1 \mathrm{M} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \times 2)$
2 ms	2M	$40 \mathrm{~K}(56 \mathrm{~K})$	5M	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[1 \mathrm{M} \mathrm{x} \mathrm{2]}$	$20 \mathrm{~K} \mathrm{x} 2(28 \mathrm{~K}$ x 2$)$	$100 \mathrm{M}[2.5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
1 ms	5M	$50 \mathrm{~K}(56 \mathrm{~K})$	10M	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[2.5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$25 \mathrm{~K} \times 2(28 \mathrm{~K} \times 2)$	$100 \mathrm{M}[5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \times 2)$
$500 \mu \mathrm{~s}$	10M	$50 \mathrm{~K}(56 \mathrm{~K})$	20M	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$25 \mathrm{~K} \mathrm{x} 2(28 \mathrm{~K} \mathrm{x} 2)$	$100 \mathrm{M}[10 \mathrm{M} \mathrm{x} \mathrm{2]}$	$50 \mathrm{~K} \times 2(60 \mathrm{~K} \mathrm{x} 2)$
$200 \mu \mathrm{~s}$	20M	$40 \mathrm{~K}(56 \mathrm{~K})$	50M	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[10 \mathrm{M} \mathrm{x} \mathrm{2]}$	$20 \mathrm{~K} \mathrm{x} 2(28 \mathrm{~K} \mathrm{x} 2)$	$100 \mathrm{M}[10 \mathrm{M} \mathrm{x} \mathrm{2]}$	$20 \mathrm{~K} \times 2(40 \mathrm{~K} \mathrm{x} 2)$
$100 \mu \mathrm{~s}$	50M	$50 \mathrm{~K}(56 \mathrm{~K})$	100M	$100 \mathrm{~K}(120 \mathrm{~K})$	$100 \mathrm{M}[10 \mathrm{M} \mathrm{x} \mathrm{2]}$	$10 \mathrm{~K} \mathrm{x} 2(20 \mathrm{~K} \mathrm{x} 2)$		
$50 \mu \mathrm{~s}$	100M	$50 \mathrm{~K}(56 \mathrm{~K})$	200M	$100 \mathrm{~K}(120 \mathrm{~K})$	Changes to normal mode, even when envelope mode has been set.			
$20 \mu \mathrm{~s}$	100M	$20 \mathrm{~K}(40 \mathrm{~K})$	200M	$40 \mathrm{~K}(80 \mathrm{~K})$				
$10 \mu \mathrm{~s}$	100M	$10 \mathrm{~K}(20 \mathrm{~K})$	200M	20K(40K)				
$5 \mu \mathrm{~s}$	100M	$5 \mathrm{~K}(10 \mathrm{~K})$	200M	$10 \mathrm{~K}(20 \mathrm{~K})$				
$2 \mu \mathrm{~s}$	100M	$2 \mathrm{~K}(4 \mathrm{~K})$	200M	$4 \mathrm{~K}(8 \mathrm{~K})$				
$1 \mu \mathrm{~s}$	100M	$1 \mathrm{~K}(2 \mathrm{~K})$	200M	$2 \mathrm{~K}(4 \mathrm{~K})$				
500 ns	100M	500(1K)	200M	$1 \mathrm{~K}(2 \mathrm{~K})$				
200 ns	100M	200(400)	200M	400(800)				
100 ns	100M	100(200)	200M	200(400)				

*1 The displayed record length given in () refers to the record length stored in the acquisition memory.
Only when the trigger mode is auto or auto level, data of a record length given in () is stored.
In case where no value in () is given, the displayed record length and the record length stored in the acquisition memory are the same.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
(For DL1540)
trigger mode : single (N) or with history function ON

	When Mod	other than E	velope M	de is Active		
	At Least CH	One of CH3, 4 is ON	$\mathrm{CH} 3, \mathrm{CH}$	4 are Both OFF	A	e
T/div	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)
50s	2	$1 \mathrm{~K} \times 100$	2	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[1 \mathrm{x} 2$]	$500 \times 2 \times 100$
20s	5	$1 \mathrm{~K} \times 100$	5	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[2.5 \times 2]$	$500 \times 2 \times 100$
10s	10	$1 \mathrm{~K} \times 100$	10	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[5 \times 2]$	$500 \times 2 \times 100$
5s	20	$1 \mathrm{~K} \times 100$	20	$1 \mathrm{~K} \times 100$	100M[10 x 2]	$500 \times 2 \times 100$
2 s	50	$1 \mathrm{~K} \times 100$	50	$1 \mathrm{~K} \times 100$	100M[25 x 2]	$500 \times 2 \times 100$
1 s	100	$1 \mathrm{~K} \times 100$	100	$1 \mathrm{~K} \times 100$	100M[50 x 2]	$500 \times 2 \times 100$
500 ms	200	$1 \mathrm{~K} \times 100$	200	$1 \mathrm{~K} x 100$	100 M [100 x 2]	$500 \times 2 \times 100$
200 ms	500	$1 \mathrm{~K} \times 100$	500	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[250 \times 2]$	$500 \times 2 \times 100$
100 ms	1 k	$1 \mathrm{~K} \times 100$	1 k	$1 \mathrm{~K} \times 100$	100M[500 x 2]	$500 \times 2 \times 100$
50 ms	2k	$1 \mathrm{~K} \times 100$	2k	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[1 \mathrm{k} \mathrm{x} \mathrm{2]}$	$500 \times 2 \times 100$
20 ms	5k	$1 \mathrm{~K} \times 100$	5k	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[2.5 \mathrm{kx} \mathrm{2]}$	$500 \times 2 \times 100$
10 ms	10k	$1 \mathrm{~K} \times 100$	10k	$1 \mathrm{~K} \times 100$	100M[5k x 2]	$500 \times 2 \times 100$
5 ms	20k	$1 \mathrm{~K} \times 100$	20k	$1 \mathrm{~K} x 100$	100M [10k x 2]	$500 \times 2 \times 100$
2 ms	50k	$1 \mathrm{~K} \times 100$	50k	$1 \mathrm{~K} \times 100$	100M[25k x 2]	$500 \times 2 \times 100$
1 ms	100k	$1 \mathrm{~K} \times 100$	100k	$1 \mathrm{~K} \times 100$	100M[50k x 2]	$500 \times 2 \times 100$
$500 \mu \mathrm{~s}$	200k	$1 \mathrm{~K} \times 100$	200k	$1 \mathrm{~K} \times 100$	100M[100k x 2]	$500 \times 2 \times 100$
$200 \mu \mathrm{~s}$	500k	$1 \mathrm{~K} \times 100$	500k	$1 \mathrm{~K} \times 100$	100M[250k x 2]	$500 \times 2 \times 100$
$100 \mu \mathrm{~s}$	1M	$1 \mathrm{~K} \times 100$	1M	$1 \mathrm{~K} \times 100$	100M[500k x 2]	$500 \times 2 \times 100$
$50 \mu \mathrm{~s}$	2M	$1 \mathrm{~K} \times 100$	2M	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[1 \mathrm{M} \mathrm{x} \mathrm{2]}$	$500 \times 2 \times 100$
$20 \mu \mathrm{~s}$	5M	$1 \mathrm{~K} \times 100$	5M	$1 \mathrm{~K} \times 100$	100M[2.5M x 2]	$500 \times 2 \times 100$
$10 \mu \mathrm{~s}$	10M	$1 \mathrm{~K} \times 100$	10M	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$500 \times 2 \times 100$
$5 \mu \mathrm{~s}$	20M	$1 \mathrm{~K} \times 100$	20M	$1 \mathrm{~K} \times 100$	100M[10M x 2]	$500 \times 2 \times 100$
$2 \mu \mathrm{~s}$	50M	$1 \mathrm{~K} \times 100$	50 M	$1 \mathrm{~K} \times 100$	$100 \mathrm{M}[10 \mathrm{M} \mathrm{x} \mathrm{2]}$	$200 \times 2 \times 100$
$1 \mu \mathrm{~s}$	100M	$1 \mathrm{~K} \times 100$	100M	$1 \mathrm{~K} \times 100$	Changes to normal mode, even when envelope mode has been set.	
500 ns	100M	500×100	200M	$1 \mathrm{~K} \times 100$		
200 ns	100M	200×100	200M	400×100		
100 ns	100M	100×100	200M	200×100		

*1 The displayed record length given in () refers to the record length stored in the acquisition memory Only when the trigger mode is auto or auto level, data of a record length given in () is stored. In case where no value in () is given, the displayed record length and the record length stored in the acquisition memory are the same.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
*4 The displayed record length $x 100$ shows the number of repeated waveform acquisition out of 100 in the single (N) mode or hysterisys function.

Appendix 3 Relationship between the Time Axis Setting, Sample Rate and Record Length (for DL1520L/DL1540L)

Displayed record length varies according to the time-axis setting, as omdicated below.

When "Maximum Displayable Record Length" is set to 1 KW
Rep: Repetitive sampling mode

		When Mode other than Envelope Mode is Active								When Envelope Mode is Active	
		At Least One of CH3, CH4 is ON *5				CH3, CH4 are Both OFF *6					
		Rep: "OFF"		Rep: "ON"		Rep: "OFF"		Rep: "ON"			
	T/div	$\begin{gathered} \text { Sample } \\ \text { rate } \\ \text { (S/s) } \\ \hline \end{gathered}$	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	$\begin{gathered} \hline \text { Sample } \\ \text { rate } \\ \text { (S/s) } \\ \hline \end{gathered}$	Displayed record length (word)	$\begin{gathered} \text { Sample } \\ \text { rate } \\ \text { (S/s) } \end{gathered}$	Displayed record length (word)
	50s	2	1K(2K)	2	$1 \mathrm{~K}(2 \mathrm{~K})$	2	$1 \mathrm{~K}(2 \mathrm{~K})$	2	$1 \mathrm{~K}(2 \mathrm{~K})$	$100 \mathrm{M}[1 \times 2]$	$500 \times 2(1 \mathrm{Kx} 2)$
	20s	5	$1 \mathrm{~K}(2 \mathrm{~K})$	$100 \mathrm{M}[2.5 \times 2]$	$500 \times 2(1 \mathrm{~K} \times 2)$						
	10s	10	$1 \mathrm{~K}(2 \mathrm{~K})$	$100 \mathrm{M}[5 \times 2]$	$500 \times 2(1 \mathrm{~K} \times 2)$						
	5s	20	$1 \mathrm{~K}(2 \mathrm{~K})$	100M[10 $\times 2$]	$500 \times 2(1 \mathrm{~K} \times 2)$						
	2s	50	$1 \mathrm{~K}(2 \mathrm{~K})$	$100 \mathrm{M}[25 \times 2]$	$500 \times 2(1 \mathrm{Kx} \mathrm{2)}$						
	1 s	100	$1 \mathrm{~K}(2 \mathrm{~K})$	$100 \mathrm{M}[50 \times 2]$	$500 \times 2(1 \mathrm{~K} \times 2)$						
	500 ms	200	$1 \mathrm{~K}(2 \mathrm{~K})$	100M[100 x 2]	$500 \times 2(1 \mathrm{Kx} 2)$						
	200 ms	500	$1 \mathrm{~K}(2 \mathrm{~K})$	$100 \mathrm{M}[250 \times 2]$	$500 \times 2(1 \mathrm{~K} \times 2)$						
	100 ms	1k	$1 \mathrm{~K}(2 \mathrm{~K})$	100M[500 x 2]	$500 \times 2(1 \mathrm{~K} \times 2)$						
\downarrow	50 ms	2k	$1 \mathrm{~K}(2 \mathrm{~K})$	100M[1k x 2]	$500 \times 2(1 \mathrm{Kx} 2)$						
	20 ms	5k	1K	5k	1K	5k	1K	5k	1K	100M $[2.5 \mathrm{kx} \mathrm{2]}$	500×2
	10 ms	10k	1K	10k	1K	10k	1K	10k	1K	100M[5k x 2]	500×2
	5 ms	20k	1K	20k	1 K	20k	1K	20k	1K	100M[10k x 2]	500×2
	2 ms	50k	1K	50k	1K	50k	1K	50k	1K	$100 \mathrm{M}[25 \mathrm{kx} 2]$	500×2
	1 ms	100k	1K	100k	1K	100k	1K	100k	1K	100M[50k x 2]	500×2
	500 s	200k	1K	200k	1 K	200k	1K	200k	1K	100M [100k x 2]	500×2
	200 s	500k	1K	500k	1K	500k	1 K	500k	1K	100M[250k x 2]	500×2
	100 s	1M	1K	1M	1K	1M	1K	1M	1K	100M[500k x 2]	500×2
	50 s	2M	1K	2M	1K	2M	1K	2M	1K	$100 \mathrm{M}[1 \mathrm{M} \mathrm{x} \mathrm{2]}$	500×2
	20 s	5M	1K	5M	1 K	5M	1K	5M	1K	$100 \mathrm{M}[2.5 \mathrm{M} \mathrm{x} \mathrm{2]}$	500×2
	10 s	10M	1K	10M	1K	10M	1K	10M	1K	$100 \mathrm{M}[5 \mathrm{M} \mathrm{x} \mathrm{2]}$	500×2
	5 s	20M	1K	20M	1K	20M	1K	20M	1K	100M[10M x 2]	500×2
	2 s	50M	1K	50M	1K	50M	1K	50M	1K	$100 \mathrm{M}[10 \mathrm{M} \mathrm{x} \mathrm{2]}$	200×2
	1 s	100M	1K	100M	1 K	100M	1K	100M	1K	Changes to normal mode, even when envelope mode has been set.	
	500ns	100M	500	200M	1K	200M	1K	200M	1K		
	200 ns	100M	200	500M	1K	200M	400	500M	1K		
	100 ns	100M	100	1 G	1K	200M	200	1 G	1K		
	50 ns	2G	1K	2G	1K	2G	1K	2G	1K		
	20 ns	5G	1K	5G	1K	5G	1 K	5G	1K		
	10 ns	10G	1K	10G	1K	10G	1K	10G	1K		
	5 ns	20G	1K	20G	1 K	20G	1K	20G	1K		

*1 The displayed record length given in () refers to the record length stored in the acquisition memory. Only when the trigger mode is auto or auto level, data of a record length given in () is stored. In case where no value in () is given, the displayed record length and the record length stored in the acquisition memory are the same.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
*4 For the setting enclosed by the bold line, repetitive sampling mode is active.
*5 CH2 is ON in the case of DL1520L.
*6 CH 2 is OFF in the case of DL1520L.

When "Maximum Displayable Record Length" is set to 10KW
Rep: Repetitive sampling mode

		When Mode other than Envelope Mode is Active								When Envelope Mode is Active	
		At Least One of CH3, CH4 is ON ${ }^{* 5}$				CH3, CH4 are Both OFF *6					
		Rep: "OFF"		Rep: "ON"		Rep: "OFF"		Rep: "ON"			
	T/div	$\begin{gathered} \text { Sample } \\ \text { rate } \\ \text { (S/s) } \end{gathered}$	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)	Sample rate (S/s)	\qquad
\uparrow	50s	20	10K(20K)	20	10K(20K)	20	10K(20K)	20	10K(20K)	100M[10 x 2]	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$
	20s	50	$10 \mathrm{~K}(20 \mathrm{~K})$	50	10K(20K)	50	10K(20K)	50	10K(20K)	$100 \mathrm{M}[25 \times 2]$	$5 \mathrm{~K} \mathrm{x} 2(10 \mathrm{~K} \mathrm{x} 2)$
入	10s	100	$10 \mathrm{~K}(20 \mathrm{~K})$	100	$10 \mathrm{~K}(20 \mathrm{~K})$	100	10K(20K)	100	$10 \mathrm{~K}(20 \mathrm{~K})$	$100 \mathrm{M}[50 \times 2]$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$
$\frac{9}{9}$	5s	200	10K(20K)	200	10K(20K)	200	10K(20K)	200	$10 \mathrm{~K}(20 \mathrm{~K})$	$100 \mathrm{M}[100 \times 2]$	$5 \mathrm{~K} \mathrm{x} 2(10 \mathrm{~K} \times 2)$
\%	2 s	500	10K(20K)	500	10K(20K)	500	10K(20K)	500	10K(20K)	$100 \mathrm{M}[250 \times 2]$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$
앙	1 s	1k	10K(20K)	1 k	10K(20K)	1 k	10K(20K)	1 k	10K(20K)	100M[500 x 2]	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \mathrm{x} 2)$
\%	500 ms	2k	10K(20K)	2 k	10K(20K)	2 k	10K(20K)	2k	10K(20K)	$100 \mathrm{M}[1 \mathrm{kx} \mathrm{2]}$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$
	200 ms	5 k	10K(20K)	$100 \mathrm{M}[2.5 \mathrm{k} \mathrm{x} \mathrm{2]}$	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$						
	100 ms	10k	$10 \mathrm{~K}(20 \mathrm{~K})$	10k	10K(20K)	10k	10K(20K)	10k	10K(20K)	$100 \mathrm{M}[5 \mathrm{k} \mathrm{x} \mathrm{2]}$	$5 \mathrm{~K} \mathrm{x} \mathrm{2(10K} \mathrm{x} 2)$
\downarrow	50 ms	20k	10K(20K)	20k	$10 \mathrm{~K}(20 \mathrm{~K})$	20k	10K(20K)	20k	10K(20K)	100M[10k x 2]	$5 \mathrm{~K} \times 2(10 \mathrm{~K} \times 2)$
	20 ms	50k	10K	50k	10K	50k	10K	50k	10K	100M[25k x 2]	5 K x 2
	10 ms	100k	10K	100k	10K	100k	10K	100k	10K	100M[50k x 2]	5 K x 2
	5 ms	200k	10K	200k	10K	200k	10K	200k	10K	100M [100k x 2]	$5 \mathrm{~K} \times 2$
	2 ms	500k	10K	500k	10K	500k	10K	500k	10K	$100 \mathrm{M}[250 \mathrm{k} \mathrm{x} \mathrm{2]}$	5 Kx 2
	1 ms	1M	10K	1M	10K	1M	10K	1M	10K	100M[500k x 2]	$5 \mathrm{~K} \times 2$
	500 us	2M	10K	2M	10K	2M	10K	2M	10K	$100 \mathrm{M}[1 \mathrm{M} \times 2$]	$5 \mathrm{~K} \times 2$
	$200 \mu \mathrm{~s}$	5M	10K	5M	10K	5M	10K	5M	10K	$100 \mathrm{M}[2.5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$5 \mathrm{~K} \times 2$
	$100 \mu \mathrm{~s}$	10M	10K	10M	10K	10M	10K	10M	10K	$100 \mathrm{M}[5 \mathrm{M} \times 2]$	5 K x 2
	$50 \mu \mathrm{~s}$	20M	10K	20M	10K	20M	10K	20M	10K	$100 \mathrm{M}[10 \mathrm{M} \times 2$]	$5 \mathrm{~K} \times 2$
	$20 \mu \mathrm{~s}$	50M	10K	50M	10K	50M	10K	50M	10K	100M[10M x 2]	$2 \mathrm{~K} \times 2$
	$10 \mu \mathrm{~s}$	100M	10K	100M	10K	100M	10K	100M	10K	Changes to normal mode, even when envelope mode has been set.	
	$5 \mu \mathrm{~s}$	100M	5K	200M	10K	200M	10K	200M	10K		
	$2 \mu \mathrm{~s}$	100M	2K	500M	10K	200M	4K	500M	10K		
	$1 \mu \mathrm{~s}$	100M	1K	1G	10K	200M	2K	1G	10K		
	500 ns	100M	500	2G	10K	200M	1 K	2G	10K		
	200 ns	100M	200	5G	10K	200M	400	5G	10K		
	100 ns	100M	100	10G	10K	200M	200	10G	10K		
	50 ns	20G	10K	20G	10K	20G	10K	20G	10K		
	20 ns	20G	4K	20G	4K	20G	4K	20G	4K		
	10 ns	20G	2K	20G	2 K	20G	2K	20G	2K		
	5 ns	20G	1 K	20G	1K	20G	1K	20G	1K		

*1 The displayed record length given in () refers to the record length stored in the acquisition memory.
Only when the trigger mode is auto or auto level, data of a record length given in () is stored.
In case where no value in () is given, the displayed record length and the record length stored in the acquisition memory are the same.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
*4 For the setting enclosed by the bold line, repetitive sampling mode is active.
*5 CH2 is ON in the case of DL1520L..
*6 CH 2 is OFF in the case of DL1520L.

When "Maximum Displayable Record Length" is set to 100 KW
Rep: Repetitive sampling mode

*1 The displayed record length given in () refers to the record length stored in the acquisition memory. Only when the trigger mode is auto or auto level, data of a record length given in () is stored. In case where no value in () is given, the displayed record length and the record length stored in the acquisition memory are the same.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
*4 For the setting enclosed by the bold line, repetitive sampling mode is active.
*5 CH 2 is ON in the case of DL1520L.
*6 CH2 is OFF in the case of DL1520L.

When "Maximum Displayable Record Length" is set to 400KW
(Selection of 400 KW length is not available if T/div is set
between 50 ns and 5 ns , or if trigger mode is other than "single.")
Rep: Repetitive sampling mode

		When Mode other than Envelope Mode is Active				When Envelope Mode is Active	
		At Least One of CH3, CH4 is ON *5		CH3, CH4 are Both OFF *6			
		Rep: "ON" or "OFF"		Rep: "ON" or "OFF"			
		Sample rate (S/s)		$\begin{aligned} & \hline \text { Sample } \\ & \text { rate } \\ & (\mathrm{S} / \mathrm{s}) \\ & \hline \end{aligned}$		Sample rate $(\mathrm{S} / \mathrm{s})$	Displayed record length (word)
\uparrow	50s	1k	400K(8div)	1k	400K(8div)	100M[500 x 2]	200K x 2
\geqslant	20s	2k	400K	2k	400K	$100 \mathrm{M}[1 \mathrm{kx} \mathrm{2]}$	200K x 2
훙	10s	5k	400K(8div)	5k	400K(8div)	$100 \mathrm{M}[2.5 \mathrm{k} \mathrm{x} 2$]	200K x 2
$\stackrel{\rightharpoonup}{8}$	5s	10k	400K(8div)	10k	400K(8div)	100M[5k x 2]	200K x 2
O	2 s	20k	400K	20k	400K	100M[10k x 2]	200K x 2
$\overline{\bar{o}}$	1 s	50k	400K(8div)	50k	400 K (8div)	100M[25k x 2]	200K x 2
$\stackrel{\sim}{\sim}$	500 ms	100k	400K(8div)	100k	400K(8div)	100M[50k x 2]	200K x 2
\downarrow	200 ms	200k	400K	200k	400K	100M [100k x 2]	$200 \mathrm{~K} \times 2$
	100 ms	500k	400K(8div)	500k	400 K (8div)	100M[250k x 2]	$200 \mathrm{~K} \times 2$
	50 ms	1M	400K(8div)	1M	400K(8div)	100M[500k x 2]	$200 \mathrm{~K} \times 2$
	20 ms	2M	400K	2M	400K	100 M [1M x 2]	200K x 2
	10 ms	5M	400K(8div)	5M	400K(8div)	$100 \mathrm{M}[2.5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$200 \mathrm{~K} \times 2$
	5 ms	10M	400K(8div)	10M	400K(8div)	$100 \mathrm{M}[5 \mathrm{M} \times 2]$	$200 \mathrm{~K} \times 2$
	2 ms	20M	400 K	20M	400 K	$100 \mathrm{M}[10 \mathrm{M} \times 2]$	$200 \mathrm{~K} \times 2$
	1 ms	50M	400K(8div)	50M	400K(8div)	$100 \mathrm{M}[10 \mathrm{M} \times 2]$	80K x 2(8div)
	500 $\mu \mathrm{s}$	100M	400K(8div)	100M	400K(8div)	Changes to normal mode, even when envelope mode has been set.	
	200 $\mu \mathrm{s}$	100M	200K	200M	400K		
	$100 \mu \mathrm{~s}$	100M	100K	200M	200K		
	$50 \mu \mathrm{~s}$	100M	50K	200M	100K		
	20us	100M	20K	200M	40K		
	10 us	100M	10K	200M	20K		
	$5 \mu \mathrm{~s}$	100M	5K	200M	10K		
	$2 \mu \mathrm{~s}$	100M	2K	200M	4K		
	$1 \mu \mathrm{~s}$	100M	1K	200M	2K		
	500ns	100 M	500	200M	1K		
	200 ns	100M	200	200M	400		
	100 ns	100M	100	200M	200		

*1 The "(8div)" indication shown in the "Displayed record length" column indicates that the waveform display spans only 8 divisions of the screen's time axis. (No waveform appears over the two far-right divisions.) The displayed record length and acquisition-memory record length are equivalent.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
*4 Regardless of the "Rep" setting, repetitive sampling is not used with 400 KW maximum displayable record length. (A "Rep" setting of "ON" is ineffective.)
*5 CH2 is ON in the case of DL1520L.
*6 CH2 is OFF in the case of DL1520L.

When "Maximum Displayable Record Length" is set to 1MW
(Selection of 1MW length is not available if T/div is set between 50 ns and 5 ns , or if trigger mode is other than "single.")

Rep: Repetitive sampling mode

	T/div	When Mode other than Envelope Mode is Active				When Envelope Mode is Active	
		At Least One of CH3, CH4 is $\mathrm{ON}{ }^{*} 5$		CH3, CH4 are Both OFF *6			
		Rep: "ON" or "OFF"		Rep: "ON" or "OFF"			
		$\begin{aligned} & \text { Sample } \\ & \text { rate } \\ & \text { (S/s) } \end{aligned}$	$\begin{aligned} & \text { Displayed } \\ & \text { record length } \\ & \text { (word) } \end{aligned}$	$\begin{gathered} \text { Sample } \\ \text { rate } \\ \text { (S/s) } \end{gathered}$	Displayed record length (word)	Sample rate (S/s)	Displayed record length (word)
\uparrow	50s	2k	1M	2k	1M	100M[1k x 2]	$500 \mathrm{~K} \times 2$
厌	20s	5 k	1M	5k	1M	$100 \mathrm{M}[2.5 \mathrm{k} \mathrm{x} \mathrm{2]}$	$500 \mathrm{~K} \times 2$
$\stackrel{0}{0}$	10s	10k	1M	10k	1M	$100 \mathrm{M}[5 \mathrm{kx} \mathrm{2]}$	$500 \mathrm{~K} \times 2$
$\stackrel{8}{8}$	5 s	20k	1M	20k	1M	100M [10k x 2]	$500 \mathrm{~K} \times 2$
\underline{E}	2s	50k	1M	50k	1M	100M [25k x 2]	$500 \mathrm{~K} \times 2$
뭄	1 s	100k	1M	100k	1M	$100 \mathrm{M}[50 \mathrm{kx} 2$]	$500 \mathrm{~K} \times 2$
\downarrow	500 ms	200k	1M	200k	1M	100M[100k x 2]	$500 \mathrm{~K} \times 2$
	200 ms	500k	1M	500k	1M	100M [250k x 2]	$500 \mathrm{~K} \times 2$
	100 ms	1M	1M	1M	1M	100M[500k x 2]	$500 \mathrm{~K} \times 2$
	50 ms	2M	1M	2M	1M	100 M [1M x 2]	$500 \mathrm{~K} \times 2$
	20 ms	5M	1M	5M	1M	$100 \mathrm{M}[2.5 \mathrm{M} \mathrm{x} \mathrm{2]}$	$500 \mathrm{~K} \times 2$
	10 ms	10M	1M	10M	1M	$100 \mathrm{M}[5 \mathrm{M} \times 2]$	$500 \mathrm{~K} \times 2$
	5 ms	20M	1M	20M	1M	$100 \mathrm{M}[10 \mathrm{M} \mathrm{x} \mathrm{2]}$	500K x 2
	2 ms	50M	1M	50M	1M	$100 \mathrm{M}[10 \mathrm{M} \mathrm{x} \mathrm{2]}$	200K x 2
	1 ms	100M	1 M	100M	1M	Changes to normal mode, even when envelope mode has been set.	
	500 $\mu \mathrm{s}$	100 M	500K	200M	1M		
	$200 \mu \mathrm{~s}$	100M	200K	200M	400K		
	$100 \mu \mathrm{~s}$	100M	100K	200M	200K		
	$50 \mu \mathrm{~s}$	100M	50K	200M	100K		
	$20 \mu \mathrm{~s}$	100M	20K	200M	40K		
	$10 \mu \mathrm{~s}$	100M	10K	200M	20K		
	$5 \mu \mathrm{~s}$	100M	5K	200M	10K		
	$2 \mu \mathrm{~s}$	100M	2K	200M	4K		
	$1 \mu \mathrm{~s}$	100M	1K	200M	2K		
	500 ns	100M	500	200M	1K		
	200 ns	100M	200	200M	400		
	100 ns	100M	100	200M	200		

*1 The displayed record length and acquisition-memory record length are equivalent.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
*4 Regardless of the "Rep" setting, repetitive sampling is not used with 1MW maximum displayable record length.
(A "Rep" setting of "ON" is ineffective.)
*5 This column is inapplicable on DL1520L.
*6 CH 2 is OFF in the case of DL1520L.

When "Maximum Displayable Record Length" is set to 2MW (for DL1540L only)
(Selection of 2MW length is not available if T/div is set between 50 ns and 5 ns , if trigger mode is other than "single," or if CH 3 or CH 4 is ON.)

Rep: Repetitive sampling mode

*1 The displayed record length and acquisition-memory record length are equivalent.
*2 The sample rate given in () for the envelope mode is the rate at which data are acquired after having been sampled at $100 \mathrm{MS} / \mathrm{s}$ and having taken the minimum and maximum values.
*3 In the envelope mode, the minimum / maximum values are displayed in a pair.
*4 Regardless of the "Rep" setting, repetitive sampling is not used with 2MW maximum displayable record length. (A "Rep" setting of "ON" is ineffective.)

Appendix 4 How to Calculate the Area of a Waveform

"Integ1TY"

Total area for positive side only: $\mathrm{S}_{1}+\mathrm{S}_{2}$

"Integ2TY"
Total area for both positive and negative sides: $S_{1}+S_{3}-S_{2}$

"Integ1XY"
(1) Multiplc loops
(2) Non-closed curve

(3) Loop tracing the shape of "8"

(4) Spiral loop

"Integ2XY"
(1) When only one Y data corresponds to X data

(2) When the waveform extends into the negative side

Start point

(2) When two or more Y data correspond to X data

Appendix 5 Output Data Format used when Saving Waveform Data (Example DL1540L)

Header Files (Files with the identifier of ".HDR")

The header file is always saved with the data, irrespective of the data type. The header file contains information in ASCII format used when saved waveforms are recalled for analysis. The same header file is used by all YOKOGAWA measuring instruments, so it may contain some data which is not necessary for this instrument.
Only a brief description is given in this section. Detailed technical information on the header file is available from YOKOGAWA.
If you need this information, contact your nearest YOKOGAWA representative.

//YOKOGAWA ASCII FILE FORMAT		
\$PublicInfo		: Common information label
FormatVersion	1.01	: Version No. of header file format
Model	1540 L	: Model name
Endian	Big	: Endian mode (Big/Ltl)* 1 for storage
DataFormat	Trace	: Storage format (Trace/Block) of binary file waveform data *2
GroupNumber	1	: Number of groups for display
TraceTotalNumber	1	: Total number of selected waveforms
DataOffset	0	: Start position of waveform data

(The following data is applicable to the DL1540L only.)
\$MediaInfo
MediaNo. $1 \quad$: Sequential number of divided save

MGroupNumber 1 : Number of groups in this medium.
MTraceTotalNumber 1
: Number of waveforms in this medium
\$MGroup1

MTraceNumber	1	: Number of waveforms in this group
MBlockNumber	3	: Number of blocks in this group
MTraceName	Ch2	: Waveform ID within group
StartBlockNo.	1	: First block of saved data in group
StartPointNo.	1	: Data start point in first block
EndBlockNo.	3	: Last block of saved data in group
EndPointNo.	10024	: Data end point in last block of group

[^6]Big : Data for Motorola 68000 series.
Ltl : Data for Intel 86 series.
*2: Binary file storage format (becomes "Trace" on DL1500 series)
Trace : Groups into blocks, each block for a single waveform.
Block : Groups into blocks, each block for data sampled at the same time.
*3: Maximum number of blocks per group (or repetitions in the case of single (N) trigger mode)
Maximum number of blocks applies if the number of blocks varies from waveform to waveform.
*4: Y axis conversion equation for each waveform
Y axis value $=$ VResolution \times Raw data + VOffset
*5: Data type
ISn: n-byte signed integer " "BIN", "P-P"
FS10: 10-byte signed real number " "FLOAT"
*6: X axis conversion equation for each waveform
X axis value $=$ HResolution $¥($ Data No. -1$)+$ HOffset

Binary Data

The data and file structures vary according to the type of data to be saved.

Data structure

Data other than averaging data

Averaging data

File structure

- BIN

- P-P DATA

ASCII Data

ASCII data consists of a mantissa part and an exponent part as shown below.
"Model", "DL1540L"
"BlockSize", 512
"BlockNumber", 1
"DisplayPointNo.", 6
"DisplayBlockSize", 500
"TriggerPointNo.", 250
"Date", "95/12/01"
"Time", "18:17:11"
"SampleRate", $100, " \mathrm{MHz} "$
"TraceName", "Ch1","Ch2","Ch3","Ch4"
"Unit", "V","V","V","V"
"MediaNo.", 1
"StartBlockNo.", 1
"StartPointNo.", 1
"EndBlockNo.", 1
"EndPointNo.", 512
$-4.200 \mathrm{e}+01,-2.000 \mathrm{e}+00,2.400 \mathrm{e}+01,-2.000 \mathrm{e}+00$
$-4.200 \mathrm{e}+01,-2.000 \mathrm{e}+00,2.400 \mathrm{e}+01,-2.000 \mathrm{e}+00$
$-4.200 \mathrm{e}+01,-2.000 \mathrm{e}+00,2.200 \mathrm{e}+01,-2.000 \mathrm{e}+00$

$3.800 \mathrm{e}+01,-2.000 \mathrm{e}+00,2.200 \mathrm{e}+01,-2.000 \mathrm{e}+00$
$3.800 \mathrm{e}+01,-2.000 \mathrm{e}+00,2.400 \mathrm{e}+01,-2.000 \mathrm{e}+00$
$3.800 \mathrm{e}+01,-2.000 \mathrm{e}+00,2.400 \mathrm{e}+01,-2.000 \mathrm{e}+00$

Index

\% marker $1-17,7-14$
A Page
AC 1-2
AC coupling 5-2
accessories 3
accumulated waveform 1-16, 7-12
acquisition 7-8
coun
1-12, 7-1
setting 1-12
starting/stopping 4-1
action-on trigger 6-14
AG series 14-2
AT-LVL 6-12
attenuation 5-4
auto set-up 1-20, 4-2
auto-level mode 1-10
auto-mode 1-10, 6-12
automated measurements 1-18
averaging mode 1-12, 7-1BPage
bandwidth limit 1-13, 7-3
base trace 9-6
block diagram 1-1
broadcasting system 6-5
C Page
CAL 5-6
calibration performing 4-6
signal. 3-8
chart
loading 10-1
specs 10-1
speed 10-6
clear trace 1-20, 4-5
cleaning. 3-1
ClkCH 6-9
clock channel 6-9
comment 10-10
displaying10-10
Condtn 6-8
contents of package 2
coupling
input 5-2
trigger 6-16
cursor 8-1, 8-5, 8-1
cursor measurements 1-18
D Pagedata list$12-15,13-15$
date/time setting 3-9
DC 1-2
DC coupling 5-2
default settings 4-4
delay
measurement 8-9
setup 8-12
time 6-18
deleting 12-4, 13-4
density 14-4
determination
logic 9-4, 9-9
range 9-8, 9-11
zone 9-3
displays 2-5
display
interpolation 1-14
mode 5-10
number 1-14
sensitivity 8-16
distal value 8-8
downloading 14-2
Eentering
characters 4-8
values 4-7
envelope mode 1-12, 7-1
erasing a waveform 4-5
error messages 15-3
expanded waveform 1-13, 7-4
expansion rate 7-4
EXT CH4 5-8
EXT IN 5-8
external clock 5-9
external plotter 10-7, 10-8
F Page
FD(ACQ) 6-14, 9-4
FD(P-P) 6-14, 9-4
FFT 1-19, 7-5, 8-18
field 6-5
filter 7-3
floppy disk 12-1
formatting floppy 12-2
front panel 2-1
fuse
replacemen 15-8
parts number 3
G Page
GND ..1-2, 5-2
GO/NO-GO determination 1-20, Ch 9 GO/NO-GO signal output 9-13
graticule .. 1-17, 7-14

S Page
safety precautions 4
sample rate App-2, App-5
sampling
mode 1-12, 5-10, 7-1
real-time 1-6
repetitive 1-6
point 1-6
saving
screen image data 2-11, 13-11
setting parameters 12-9, 13-9
waveform data 12-4, 13-4
scale. 1-17, 7-14
scaling linear 1-18, 8-14
screen intensity 7-16
self test. 15-7
sequential store 1-14, 7-7
setting parameters 11-4
setting values 4-7
short copy 10-4
signal flow 1-1
sine 7-11
single (N) mode 1-10, 6-13
single (long) mode 1-10, 6-12
single (short) mode 1-10, 6-12
smoothing 1-12, 7-3
snapshot 1-20, 4-5
software version 14-3
source 11-2
spare parts 3
storing
setting parameters 1-21, 11-4
waveforms 1-21, 11-1
suffix code 2
system condition 14-3
system configuration 1-1
T Page
T/div 5-10
test 15-7
threshold level 5-8
time axis setting 1-5, 5-10
time stamp 7-7, 7-9
timebase selection 1-4, 5-8
timeout 6-10
trigger
action-on 1-10, 6-14
coupling 1-10, 6-16
delay 1-11, 6-17, 6-18
edge 1-8, 6-2
EXT 6-3
hold-off 1-11
level. 1-8, 6-1
LINE 6-3
mode 1-10, 6-12
OR. 1-9, 6-7
output signal $14-1$
$6-8$
point 6-17
position 1-11, 6-17setting1-8, ch 6
source 1-8, 6-1
TV. 1-8, 6-5
type. 1-8, 6-1
width 1-9, 6-10
window 1-8, 6-4
troubleshooting 15-1
type name 2
u Page
unit 7
of linear scaling 8-15
V Page
VAR 5-6
version 14-3
vertical axis setting 1-2
vertical position 1-3, 5-7
vertical sensitivity $1-3,5-2,5-6$
W Page
waveform
accumulation 7-12
computation 8-16, 8-18
display ON/OFF 5-1
erasing 4-5
expansion 1-13, 7-4
halting 4-5
information 7-15, 10-3
inversion 1-3, 5-5
loading 12-4, 13-4
math 1-18, 8-16
measurement Ch 8
parameters 8-7
printing 10-3
recalling 11-1
saving 12-4
storing 11-1
X-Y 7-13
zone 9-1
zooming 7-4
X Page
X-Y waveform display 1-16, 7-13
X-Y waveform measurement 8-5
Z Page
ZOOM display 1-13
Zooming waveforms 7-4

[^0]: DL1540/DL1540L with software (ROM) version 1.20 or later can save/load data from the SCSI device through the SCSI interface unit 700930 (sold separately). For details, refer to the instruction manual for the SCSI interface unit 700930, IM700930-01E.

[^1]: *1 Indicates the display mode which is in effect when the trigger mode is auto mode or auto level mode and hysterisis is set off. For a description of how to set the trigger mode, refer to 6.8 "Setting the Trigger Mode" (page 6-12).
 *2 Either real-time or repetitive mode is possible. For a description of how to switch modes, refer to 7.1 "Selecting Acquisition Mode, Sampling Mode and Record Length" (page 7-1).

[^2]: * MISC: Use of the Information menu or communications function enables output of all the selected measured values, though the measured values cannot be updated by the Information menu. When saving screen image data on a floppy disk in HP-GL or PostScript format, all the selected items can be saved.

[^3]: *Pin nos. of Centronics connector and D-sub socket are same each to each, but pin nos. 26 to 36 are not provided with D-sub socket.

[^4]: Never turn OFF the SCSI device or remove the disk (media) such as a MO or a PD while the access indicator of the SCSI device is lit. Otherwise, damage to the SCSI device or the disk may result.

[^5]: * SCSI devices which can send and receive data over SCSI and which can set the ID number to "5" can be used. There are exceptions as in the case when the media used on the SCSI device is formatted with another equipment such as a PC, or the pin configuration of the connector is different. The specifications of each SCSI device are shown above. For more detailed information, contact your nearest YOKOGAWA representative listed on the back cover of this manual.

[^6]: *1: Endian mode for storage (becomes "Big" on DL1500 series)

