
## AN920/D



| Test                  | Conditions                                                         | Results                         |
|-----------------------|--------------------------------------------------------------------|---------------------------------|
| Line Regulation       | $V_{in} = 4.5$ to 12 V, $I_{out} = 5.0$ mA                         | $\Delta$ = 2.3 V or $\pm$ 0.61% |
| Load Regulation       | $V_{in} = 5.0 \text{ V}, I_{out} = 1.0 \text{ to } 6.0 \text{ mA}$ | $\Delta$ = 1.4 V or $\pm$ 0.37% |
| Output Ripple         | $V_{in} = 5.0 \text{ V}, I_{out} = 5.0 \text{ mA}$                 | 250 mV <sub>p–p</sub>           |
| Short Circuit Current | $V_{in} = 5.0 \text{ V}, \text{ R}_{L} = 0.1 \Omega$               | 113 mA                          |
| Efficiency            | $V_{in} = 5.0 \text{ V}, \text{ I}_{out} = 5.0 \text{ mA}$         | 68%                             |

This circuit was designed to power the ON Semiconductor Solid Ceramic Displays from a  $V_{in}$  of 4.5 to 12 V. The design calculations are based on a step-up converter with an input of 4.5 V and a 24 V output rated at 45 mA. The 24 V level is the maximum step-up allowed by the oscillator ratio of  $t_{on}/(t_{on} + t_{off})$ . The 45 mA current level was chosen so that the transformer primary power level is about 10% greater than that required by the load. The maximum  $V_{in}$  of 12 V is determined by the sum of the flyback and leakage inductance voltages present at the collector of the output switch during turn-off must not exceed 40 V.

Figure 27. High-Voltage, Low Power Step-Up for Solid Ceramic Display