
VESA DDC/CI Standard Page 1 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

VESA®

Display Data Channel Command Interface (DDC/CI) Standard

Video Electronics Standards Association_______________________________

2150 North First Street, Suite 440 Phone: (408) 435-0333
San Jose, CA 95131-2029 Fax: (408) 435-8225

DISPLAY DATA CHANNEL COMMAND INTERFACE (DDC/CI)
STANDARD (formerly DDC2Bi)

Version 1
Adoption Date : August 14, 1998

Purpose

Define I2C based protocols with various levels of complexity which operate over the DDC channel
for the purpose of controlling the monitor and optional annex devices.

Summary

In response to the Plug and Play needs by end-users, VESA has defined the DDC standard, made
of different levels of communication. DDC2Bi, DDC2B+ and DDC2AB levels offer bi-directional
communication between the computer graphic host and the display device. This standard describes
and compares each display control interface.

Notes
All of these serial communications are independent of display technology (CRT, LCD, PDP), and
are compatible with different video interfaces (VGA, P&D, EVC, FPDI)

VESA DDC/CI Standard Page 2 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

[This page left intentionally blank]

VESA DDC/CI Standard Page 3 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

PREFACE

Scope
This revision of the DDC/CI Standard is intended to extend the current DDC standard and provide
flexibility and expandability to DDC, MCCS and P&D standards.

Intellectual Property
Copyright © 1998 , Video Electronics Standards Association. All rights reserved.

While every precaution has been taken in the preparation of this standard, the Video Electronics Standards
Association and its contributors assume no responsibility for errors or omissions, and make no warranties,
expressed or implied, of functionality or suitability for any purpose.

Trademarks
All trademarks used within this document are the property of their respective owners. VESA, DDC, DPMS,
EDID, MCCS, P&D and VDIF are trademarks of the Video Electronics Standards Association.
I2C is a trademark owned by Philips.

Patents
VESA proposals and standards are adopted by the Video Electronics Standards Association without regard
to whether their adoption may involve any patents on articles, materials, or processes. Such adoption does
not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting
the proposals or standards documents.

Support for this standard

Clarifications and application notes to support this standard may be written. To obtain the latest standard
and any support documentation, contact VESA.

If you have a product which incorporates DDC/CI, you should ask the company that manufactured your
product for assistance. If you are a manufacturer, VESA can assist you with any clarification you may
require. All comments or reported errors should be submitted in writing to VESA using one of the
following methods.

• Fax 408-435-8225, direct this note to Technical Support at VESA

• e-mail support@vesa.org (with subject: [monitor-DDC/CI])

• mail to Technical Support
VESA - Video Electronics Standards Association
2150 North First Street, Suite 440
San Jose, CA 95131-2029

VESA DDC/CI Standard Page 4 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Acknowledgments

This document would not have been possible without the efforts of the VESA Monitor Committee. In particular, the
following individuals and their companies contributed significant time and knowledge.

Name Company Contribution
D. Balthaser STB Systems Feedback
K. Bennett SciTech SSC Committee, VBE SCI spec
T. Block Number 9 Graphics Card Host (H/W)
R. Cyr Number 9 Graphics Card Host (S/W)
J. Frederick Compaq PC Home Theater and CEMA
O. Garreau Siemens Semiconductor Feedback
F. Grilli SGS-Thomson Feedback
W. Johnson Diamond Multimedia Graphics Card Host (S/W)
D. Loucks EloTouch Touch Screen Device
M. Marentic Hitachi Application to FPD
S. Marsanne SGS-Thomson System concept, PC S/W Tools
B. Milford STB Systems Feedback
Y. Narui Sony Corp. Feedback
A. Pakkala Planar Feedback (FPD)
M. Phillips Panasonic Display Device
A. Morrish National Semiconductor Feedback (GTF)
T. Sasaki Panasonic Display Device
C. Scott Microsoft Feedback (O/S)
M. Shiota Panasonic Display Device
A-L. Sixou SGS-Thomson Implementation
H. Tanizoe Mitsubishi Feedback
O. Tomita Toshiba Feedback (FPD)
D. Virag Thomson Multimedia Feedback, CEMA
R. J. Visser Philips MCCS workgroup chair

VESA DDC/CI Standard Page 5 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Terms and Abbreviations

Term or Abbreviation Description
ABIG Access Bus Industry Group
CC [TV] Close Caption
CEMA Consumer Electronics Manufacturer Association (www.cemacity.org)
CPU Central Processor Unit (computer)
CRT Cathode Ray Tube (display type)
DCI [VESA] Display Control Interface (serial communication)
DDC [VESA] Display Data Channel (serial communication)
DDC2B Simplest of the DDC2B modes defined in VESA DDC standard
DDC2Bi This current proposal to upgrade the functionality of existing DDC2B standard
DDC2B+ Adds bi-directional communication to DDC2B
DDC2AB An Access Bus Mode defined in DDC Standard
DLL Dynamic Linked Library (Windows S/W programming)
DPMS [VESA] Display Power Management Signaling standard
EDID [VESA] Extended Display Identification Data
EDS [TV] Extended Data System
EEPROM Electrically Erasable Programmable Read Only Memory (memory type)
FPD Flat Panel Display (display type)
F/W Firmware (the whole MCU program embedded in an application)
GTF [VESA] General Timing Formula
H/W Hardware
I2C Trademark of Philips, Inter Integrated Circuit Bus
IEC International Electrotechnical Commission
ISO International Organization for Standardization
LCD Liquid Crystal Display
MCI Monitor Command Interface (Workgroup)
MCCS Monitor Control Command Set
MCU Micro Controller Unit (Embedded in application)
MT I2C Bus Master Transmitter Communication Mode
MR I2C Bus Master Receiver Communication Mode
OSD On Screen Display
P&D [VESA] Video Plug and Display Standard
RAM Random Access Memory
ROM Read Only Memory
SR I2C Slave Receiver Communication Mode
ST I2C Slave Transmitter Communication Mode
SSC [VESA] Software Standard Committee
S/W Software
USB Universal Serial Bus (serial communication)
VBE-SCI Video Bios Extension-Serial Communication Interface
VCP Virtual Control Panel (Access bus)
VDIF [VESA] Video Display Identification Format
VESA Video Electronics Standards Association

I2C Bus notation: (case sensitive)
Code Description Comment
S Start bit Generated by the master to start communication (Bus becomes BUSY)
XX Data byte, hexadecimal Made of 8 data bits, may be sent or received by the master
a Acknowledge bit This bit is generated in the opposite way than the data bits
n Non acknowledge bit Signals the end of the data transfer, a stop bit should follow to free the bus
P Stop bit Signals the end of the communication, the bus becomes free.

VESA DDC/CI Standard Page 6 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Table of Contents
1. OVERVIEW ..9

1.1 SUMMARY ..9
1.2 BACKGROUND...9
1.3 STANDARD OBJECTIVES ..9
1.4 REFERENCES DOCUMENTS ..9

2. DDC2BI SYSTEM ARCHITECTURE .. 11

2.1 DDC2BI INTRODUCTION .. 11
2.2 DDC2BI DISPLAY DEVICE.. 11
2.3 DDC2BI GRAPHIC HOST ... 11
2.4 DISPLAY DEPENDENT DEVICES .. 11
2.5 FIXED I2C SLAVE ADDRESS DEVICES ... 11

3. DDC2BI H/W IMPLEMENTATION ... 12

3.1 DISPLAY DEVICE ... 12
3.2 GRAPHIC HOST ... 12
3.3 DISPLAY DEPENDENT DEVICES ... 12

3.3.1 External Display Dependent Devices: ...12

3.3.2 Internal Display Dependent Devices: ..12
3.4 FIXED ADDRESS I2C DEVICES.. 12

4. DDC2BI S/W IMPLEMENTATION ... 13

4.1 GRAPHIC HOST TO DISPLAY DEVICE MESSAGES .. 13
4.2 DISPLAY DEVICE TO GRAPHIC HOST MESSAGES .. 13
4.3 DEFINITION AND USE OF THE “NULL MESSAGE” ... 14
4.4 COMMUNICATION BETWEEN THE HOST AND ITS DEVICES... 14

4.4.1 Communication Error Recovery ..14

4.4.2 Message Buffer Size Requirements ...14
4.5 I2C BUS TIMINGS .. 14
4.6 ACCESS BUS MESSAGES SUPPORT.. 15

4.6.1 System Messages ..15

4.6.2 Power Management ...15

4.6.3 ID String ...15

4.6.4 Capability String ..15

4.6.5 Vendor Specific Messages ...16

4.6.6 Application Specific Messages ...17

4.6.7 Hot Plugging mechanism ...17

5. DDC2BI SUPPORT OF DISPLAY DEPENDENT DEVICES.. 18

5.1 EXTERNAL DISPLAY DEPENDENT DEVICE .. 18
5.1.1 Message sent to the External Device..18

5.1.2 Message replied from the External Device...18
5.2 INTERNAL DISPLAY DEPENDENT DEVICE ... 18

5.2.1 Message sent to the Internal Device...18

5.2.2 Message replied from the Internal Device ..18
5.3 DETECTION OF DISPLAY DEPENDENT DEVICE.. 18
5.4 EXAMPLE OF INTERNAL AND EXTERNAL DEVICE COMMUNICATION... 19
5.5 DEPENDENCIES BETWEEN THE DISPLAY AND INTEGRATED DEVICES ... 19

6. DDC2BI SYSTEM ARCHITECTURE .. 20

6.1 MULTIPLE VIDEO CHANNEL SUPPORT AND IMPLEMENTATION ... 20
6.2 TELEVISION/HOME THEATER SUPPORT AND SPECIFIC COMMANDS .. 20
6.3 VIDEO SWITCH BOXES.. 20
6.4 MULTIPLE VIDEO OUTPUT EXPANDER BOXES.. 20
6.5 VIDEO PROJECTION DISPLAYS.. 20

VESA DDC/CI Standard Page 7 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

7. DDC2BI COMPLIANCE .. 21

7.1 EXISTING DISPLAY DESIGNS.. 21
7.2 NEW DISPLAY DESIGNS .. 21
7.3 EXISTING GRAPHIC HOST SYSTEMS ... 21
7.4 NEW GRAPHIC HOST SYSTEMS ... 21

8. DDC2BI FLAT PANEL DISPLAYS .. 22

8.1 EDID SUPPORT.. 22
8.2 SPECIFIC CONTROL SUPPORT.. 22
8.3 POWER MANAGEMENT SUPPORT .. 22
8.4 FPDI-2 AND P&D INTERFACES ... 22

9. DDC2B+ SYSTEM ARCHITECTURE... 23

9.1 DDC2B+ INTRODUCTION .. 23
9.2 DDC2B+ DISPLAY DEVICE.. 23
9.3 DDC2B+ GRAPHIC HOST ... 23
9.4 FIXED I2C SLAVE ADDRESS DEVICES ... 23

10. DDC2B+ H/W IMPLEMENTATION... 23

10.1 DISPLAY DEVICE ... 23
10.2 GRAPHIC HOST ... 23

11. DDC2BI S/W IMPLEMENTATION .. 23

12. DDC2B+ COMPLIANCE .. 23

13. DDC2AB SYSTEM ARCHITECTURE ... 24

13.1 DDC2AB INTRODUCTION.. 24
13.2 DDC2AB DISPLAY DEVICE ... 24
13.3 DDC2AB GRAPHIC HOST ... 24
13.4 FIXED I2C SLAVE ADDRESS DEVICES ... 24

14. DDC2AB H/W IMPLEMENTATION .. 24

14.1 DISPLAY DEVICE ... 24
14.2 GRAPHIC HOST ... 24

15. DDC2AB S/W IMPLEMENTATION... 24

16. DDC2AB COMPLIANCE.. 24

17. APPENDIX A - DDC2BI DEVELOPMENT SUPPORT TOOLS ... 25

17.1 DISPLAY DEVICES S/W IMPLEMENTATION .. 25
17.2 GRAPHIC HOST S/W IMPLEMENTATION... 25
17.3 EXISTING DDC2BI GRAPHIC SYSTEMS.. 25
17.4 EXISTING DDC2BI DISPLAYS.. 25

18. APPENDIX B - COLOR ADJUSTMENTS.. 28

19. APPENDIX C - NEW COMMANDS AND VCP SUPPORT... 29

20. APPENDIX D - DMPS AND MCCS POWER MANAGEMENT HANDLING ... 30

21. APPENDIX E - ANSWERS TO COMMONLY ASKED QUESTIONS... 31

22. APPENDIX F - I2C BUS IMPLEMENTATION ON GRAPHIC HOST... 33

23. APPENDIX G - DDC2BI BASIC FUNCTION IMPLEMENTATION ... 39

VESA DDC/CI Standard Page 8 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

24. APPENDIX H - OTHER SOURCE CODE FILES AVAILABLE... 43

25. APPENDIX I - HOST S/W DRIVER IMPLEMENTATION.. 43

VESA DDC/CI Standard Page 9 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

1. OVERVIEW

1.1 Summary
All the Display Data Channel Levels described in this document allow the display to interact with its graphic host.
They all have provisions to support existing and future EDID, DDC, VBE-SCI & MCCS standards.

1.2 Background
DDC2B capable graphic hosts have limited and monodirectionnal dialog capabilities with the display device.
DDC2Bi, 2B+ and 2AB offer similar display control interfaces based on I2C bus:

- DDC2Bi is a S/W upgrade of DDC2B graphic hosts using I2C single master communication.
- DDC2B+ is an upgrade of DDC2B graphic hosts using I2C master/slave communication.
- DDC2AB is based on Access Bus standard and is an I2C multi-master communication.

1.3 Standard Objectives
DDC2Bi was developed by VESA to meet, exceed and / or complement certain criteria. These criteria are set forth
as Standard Objectives as follows :

• Provide display controls using the DDC2B H/W standard, making DDC2Bi Displays compatible with
existing and pervasive DDC2B compliant graphic hosts.

• Support Microsoft Plug and Play definition.
• Compatible with existing DDC levels.
• Ensure scaleable, low cost, fast market acceptance and implementation.
• Provide information in a compact and scaleable format to allow the graphic sub-system to be

configured based on the capabilities of the attached display.
• Provide for communication between the graphic host and other display dependent devices.
• Provide for integration of display dependent devices in the display device.
• Scaleable to Flat Panel Display Interfaces.

1.4 References Documents
Note : Versions identified here are current, but users of this standard are advised to ensure they have the latest
versions of referenced standards and documents.

• VESA, Display Data Channel Standard, V 3.6p, September 97
• VESA, Monitor Control Command Set, V 1.0p, September 97
• Access Bus Specification V 3.0, Sept 95
• VESA, Extended Display Identification Data, V 2.1, September 97
• VESA, Plug & Display Standard, V 1.0, June 97
• VESA, Video BIOS Extensions For Display Data Channel - VBE/SCI - Standard.
• VESA, Video Image Area Definition Standard, Revision 1.0, August 12th 1993
• Microsoft / Intel Plug and Play ISA Specification, Version 1.0, May 28th 1993.
• Microsoft / Intel Plug and Play Errata and Clarification Document, 12/10/93.

VESA DDC/CI Standard Page 10 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

This table summarizes the DDC level upgrade requirements for both the Graphic Host and the Display Device.

From To Graphic Host
H/W upgrade

Graphic Host
S/W upgrade

Display Monitor
H/W upgrade

Display Monitor
S/W upgrade

DDC1 DDC2B I2C Bus Single
Master (2 I/Os)

BIOS I2C Slave address
A0/A1 support

DDC2B driver

DDC2B DDC2Bi No upgrade DDC.DLL driver 6E/6F Slave address
support

DDC2Bi driver
(Simplified Access Bus)

DDC2B DDC2B+ 50/51 Slave
address support

Access Bus Host driver
(single device)

6E/6F Slave address
support

Access Bus driver

DDC2B DDC2AB 50/51 Slave
address support

Access Bus Host driver
(full spec)

6E/6F Slave address
support

Access Bus driver

VESA DDC/CI Standard Page 11 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

DDC2Bi Display Control Interface Level

2. DDC2Bi System Architecture

2.1 DDC2Bi Introduction
This protocol relies on the DDC2B H/W definition and the Access Bus messages protocol.
The graphic host behaves as an I2C Single Master Host.
The display device behaves as an I2C Slave Device.
The DDC2Bi is a modification of the Access Bus Multi-Master protocol to fit Single Master communication.

2.2 DDC2Bi Display Device
The DDC2Bi display is considered a Fixed Address Access Bus Display Device (0x6E/6F), and uses only I2C Slave
Mode to communicate with the graphic host.
Like DDC2B+, only one display device per video channel is supported.

2.3 DDC2Bi Graphic Host
The DDC2Bi graphic host is considered as an I2C single master capable device.
The “virtual” I2C slave address of the host is 0x50/51.

2.4 Display Dependent Devices
A display dependent device is geographically located around the display and follows the same DDC2Bi data
protocol as the display device. Pointer, Calibration and Audio devices are example of display dependent devices.

These devices can be classified in two groups:
- External to the display device, can be attached or detached from the DDC/I2C bus (“add-on” device).
- Internal to the display device (integrated, “all-in-one” device).

2.5 Fixed I2C Slave Address Devices
This category of device groups all the existing stand-alone and “brainless” I2C slave devices, such as memories, TV
tuners, audio processors, etc. These ICs can coexist and be connected to the DDC/I2C bus. However, it is strongly
recommended to limit their number, and locate them in the COMPUTER. These devices are not expected to support
hot-plugging nor to follow the DDC2Bi data protocol, and as such, must be considered a custom device.
No 10-bit I2C bus slave devices can be present on the DDC/I2C Bus.

VESA DDC/CI Standard Page 12 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

3. DDC2Bi H/W Implementation

3.1 Display Device
The H/W requirements are similar to DDC2B capable display.

3.2 Graphic Host
H/W requirements are similar to DDC2B capable host.

3.3 Display Dependent devices
Display dependent devices are classified in two types:

3.3.1 External Display Dependent Devices:
These devices are connected to the DDC/I2C Bus: As such, to avoid conflict with the Display Slave address, a fixed
I2C address is defined for the device. The address range is 0xF0..FF: up to 8 additional external display dependent
devices can be added on the DDC bus. As such, the 10 bit I2C addressing mode is NOT SUPPORTED.

Examples of External Display Dependent Devices (connected on the DDC/I2C Bus:)
I2C Slave
Address

Display Dependent
Device Type

Example

0xF0/F1 Pointer Touch Screen, Light pen or Remote Control Track Ball
0xF2/F3 Audio Device Speaker/Microphone
0xF4/F5 Serial Communication Home Network IF (power line modem)
0xF6/F7 Calibration Device Luminance Probe or Colorimeter
0xF8/F9 Input Device IR Keyboard and Remote control pad (shared IR channel)
0xFA/FB Reserved Reserved for future use
0xFC/FD Reserved Reserved for future use
0xFE/FF Reserved Reserved for future use

3.3.2 Internal Display Dependent Devices:
The external device may be integrated inside the display device structure, and as such becomes part of the display
H/W platform, not directly connected to the DDC/I2C bus.
The device dependent function is accessed thought the display device. (See the chapter 5 for more details.)

Technical clarification: Internal and external display dependent devices can coexist without conflict.

3.4 Fixed address I2C devices
These devices can be connected to the same I2C/DDC bus, and must have a 7 bit I2C slave address.
The I2C address is defined and registered by Philips or ABIG.

Example of fixed I2C address devices:
I2C Slave Address I2C Device I2C Slave Address I2C Device
0x12/13 Smart Battery Charger 0x80/81 Audio Processor
0x14/15 Smart Battery Selector 0x40/41 PAL/NTSC Encoder
0x16/17 Smart Battery 0xA0/A1 DDC2B Monitor (memory)

VESA DDC/CI Standard Page 13 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

4. DDC2Bi S/W Implementation
A DDC2Bi system follows the Access Bus 3.0 specification with the following modifications:

4.1 Graphic Host to Display Device Messages
In order to tell the display that the received message is of DDC2Bi type, the Source Address Byte bit 0 is set to 1.

Example: The graphic host wants to enable the Display Application Messages
 The graphic host sends an “Enable Application Report” message:

Access Bus: Host to Display: MT to SR
Dest Source Length Data/Cmd Data Checksum
6E 50 82 F5 01 48
I2C Sequence: S-6Ea-50a-82a-F5a-01a-48a-P

DDC2Bi: Host to Display: MT to SR
Dest Source Length Data/Cmd Data Checksum
6E 51 82 F5 01 49
I2C Sequence: S-6Ea-51a-82a-F5a-01a-49a-P

Technical Clarification: The Access Bus spec does not use Odd Source I2C addresses, thus allowing both types of
communication to coexist (See spec point 2.1.4: “I2C Addressing”, page 2-3).

Note: Based on the DDC spec V3.2p, spec point 7.4 “Additional DDC Protocols”, it is recommended for the host to
start reading the EDID using the DDC2B method before using the DDC2Bi protocol to interact with the display.

4.2 Display Device to Graphic Host Messages
When the graphic host expects an answer from the display, the host READS the answer message at the display
device Slave Address 0x6F. Note that the checksum is still computed by using the 0x50 virtual host address.

Example: The graphic host wants to get the Display Self-Test Report:
 The graphic host sends an “Application Test” Message:

Access Bus: Host to Display, MT to SR
Dest Source Length Data/Cmd Checksum
6E 50 81 B1 0E
I2C Sequence: S-6Ea-50a-81a-B1a-0Ea-P

DDC2Bi: Host to Display, MT to SR
Dest Source Length Data/Cmd Checksum
6E 51 81 B1 0F
I2C Sequence: S-6Ea-51a-81a-B1a-B1a-0Fa-P

The “Application Test Reply” Message is read by the Host:

Access Bus: Display to Host, MT to SR
Dest Source Length Data/Cmd Data/Status Checksum
50 6E 82 A1 00 1D
I2C Sequence: S-50a-6Ea-82a-A1a-00a-1Da-P

DDC2Bi: Display to Host, Slave Transmit to Master Receive
Dest Source Length Data/Cmd Data/Status Checksum
6F 6E 82 A1 00 1D
I2C Sequence: S-6Fa-6Ea-82a-A1a-00a-1Dn-P
In this example, the display returns its current status [00], indicating no problem.

VESA DDC/CI Standard Page 14 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

4.3 Definition and use of the “Null Message”
A NULL message can be defined as an Access Bus message without any data bytes, i.e., the “length byte” is 0x80:

DDC2Bi: Display to Host, ST to MR
Dest Source Length Checksum
6F 6E 80 BE
I2C Sequence: S-6Fa-6Ea-80a-BEn-P

The NULL message is used in the following cases:
- To detect that the display is DDC2Bi capable (by reading it at 0x6F I2C slave address)
- To tell the host that the display does not have any answer to give to the host (not ready or not expected)
- The “Enable Application Report” has not been sent before using Application Messages

4.4 Communication between the Host and its Devices
Several basic rules apply to the DDC2Bi host and its devices in order to have good communication performances.

4.4.1 Communication Error Recovery
With DDC2Bi, there is no concept of retrials when a communication fails (bus error, bad checksum):
It is the responsibility of the host to re-send its message and try to get an answer from the display again.
If the communication fails, the host MUST wait 40msec and then retry at least once to communicate with the
device.

4.4.2 Message Buffer Size Requirements
The host must be able to send AND receive messages of any size. The absolute maximum is 127+4=131 bytes.

It is recommended to have independent transmit and receive buffers in order to simplify the implementation of error
recovery and retrial mechanism in case of failed communication.

Note: For simpler implementation, it is possible for the host to systematically try to read an answer after any sent
messages to the display.

Obviously, a device must properly send and receive all its supported messages. This determines the maximum
internal data communication buffer size for proper display operation.

The device must acknowledge all received data bytes from the host, even if the message is larger than the maximum
size supported by the device.

If the host attempts to read more data bytes than specified by the “length byte”, extra bytes of any dummy value will
be read, in order to avoid a “hang” situation. However, the Host is responsible to read the right number of bytes.

Technical clarification: With DDC2Bi, it is possible to share the same memory in the device for both the receive
and transmit buffers, due to the smart host communication error recovery mechanism.

Note: Since DDC2Bi does not use the Access Bus “Assign Address” message, the buffer size may be much smaller.

4.5 I2C Bus timings
The host must implement I2C bus error recovery systems (see appendix for examples).
The host must abort and perform an error recovery if the SCL line is stretched low by other devices for more than 2
msec, as specified in the Access Bus Spec 3.0 (for master systems).
Since devices are slave devices and not driving the SCL line, they do NOT need to implement a 2msec SCL Low
Watchdog system, but must make sure that in a worst-case timing situation, the device does not stretch the clock
low over 2 msec (i.e. MCU maximum interrupt latency). The SCL clock stretching duration should be kept as short
as possible.

VESA DDC/CI Standard Page 15 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Technical Clarification: When the host sends a message to the display, the host must wait at least 40 msec before
trying to read an answer from the display in order to avoid I2C bus bandwidth overhead (40msec stands for the
Access Bus Response Timing specification). Since the display commands are initiated by the end-user, the 40msec
response latency (equivalent of several video frames or one keyboard scan debouncing period) is not critical.
(See Access Bus Spec Point 2.1.8.2 Response Timing, Page 2-9.) If other I2C devices are on the bus, the time-
interleaved message method is easier to implement on the host side.

4.6 Access Bus Messages Support
Some simplifications can be done based on DDC2Bi functionality and are described hereafter.

4.6.1 System Messages
The following Access Bus System messages are NOT required:
System Message Name CMD
RESET F0
ATTENTION E0
ASSIGN ADDRESS F2
PRESENCE CHECK F7
All OPTIONAL Access Bus System messages are NOT required by DDC2Bi.

Note: Application Messages must be enabled by the “Enable Application Report” message.

4.6.2 Power Management
If the power management can be controlled by DDC2Bi, it must be handled by using the MCCS code, not by using
the Access Bus Power Management system.
If the MCCS solution must coexist with DPMS, some guidelines are shown in Appendix of this document.
However, if the host supports both MCCS and DPMS, both methods must be used by the OS to notify the display of
any change in the requested power management level.

4.6.3 ID String
The ID String must be unique per device, and Vendor/Model Names must be consistent with EDID information.

4.6.4 Capability String
This table describes each capability string field and their support by DDC2Bi.
(For more details, See Access Bus Spec 3.0, 2.1.6 Capabilities Information, Page 2-5.)

Field Comment
prot() Mandatory
type() Mandatory
model() Mandatory
pwr() Not used by DDC2Bi. If the MCCS power management is supported, the VCP code MUST be

present in the vcp() field
edid() Mandatory. Can be of any version/revision because its size is scaleable using “bin xxx()” keyword.

The Capability String EDID can be different from DDC2B EDID, but MUST share the SAME
common information (except for Version & Revision Fields)

vdif() Optional use in DDC2Bi. Its data must be consistent with EDID() information
cmds() Mandatory.
vcp() Mandatory. If MCCS power management is supported, the corresponding VCP code must be put

in.
vcpname() Used to define specific additional VCP code not referenced in MCCS standard. All codes not

described in the MCCS specification should be described using this field. (See notes)
custom fields Additional vendor specific fields can be added in the capability string.

The keyword must be compatible with the Access Bus Capability String Syntax
The keyword shall be approved by VESA in order to avoid conflict with other vendors.

Important: Generic PC host S/W must discard any unsupported capability fields by default.

VESA DDC/CI Standard Page 16 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Note: vcpname() is a special field to define some control codes that are not fully defined in the Access Bus or
MCCS specification. Some non-MCCS codes described here are DDC2Bi specific.
DDC2Bi devices must use the vcpname() field to define user accessible vendor specific controls. Such specific
controls must be notified and approved by VESA in order to avoid code conflict between different vendors. This is
for the benefit of the end-user in addition to the cohesion of the system and its interoperability.

Non-MCCS control codes (but defined in Access Bus specification) and support:
VCP Code Function Standard
0x14 Select Color Preset All temperatures must be put using vcpname(). The order to

enumerate them must be the same as in the EDID. See
appendix.

0x62 Audio Speaker Volume Still acceptible and valid to this method; however, it is
recommended to use the “Audio” internal display dependent
device.

0x64 Audio Microphone Volume same remark as above
0x66 On Screen Display Enable/Disable Used to enable/disable the OSD display function
0x68 OSD Language Select vcpname() should enumerate the list of the possible language

selections, using the three-letter country-name codes defined by
the ISO/IEC specification 3166

4.6.5 Vendor Specific Messages
Also, as defined in the Access Bus specification (2.1.10.1 Command coding, Page 2-13):
- “Data Stream messages” are vendor specific (“Protocol Flag” bit 7 of “Length byte” cleared)
- All “control/status messages” (except 0xC0-C8 vendor specific) are reserved for future versions of DDC2Bi

Technical Recommendation: If the vendor uses a different serial communication channel (i.e. RS232) to set-up the
display during production, it is suggested to implement an I2C alternate method (using for example 0xC0/C1
commands), where the factory messages are encapsulated.
Both communication channels can co-exist at the same time for backward compatibility.

Example: RS232 is used in factory, and the adjustment machine wants to get the current Contrast value:

“GetContrast Message”, host to display (assume a 4 byte message)
XX XX XX XX

Then, the display returns the contrast value to the PC: (3 byte message)
YY YY YY

These messages can be encapsulated in DDC2Bi as follows:

Factory message from Host to Display (code C0)
Dest Source Length Data/Cmd Data Data Data Data Checksum
6E 51 85 C0 XX XX XX XX CHK
I2C Sequence: S-6Ea-51a-85a-C0a-XXa-XXa-XXa-XXa-CHKa-P
Note: CHK is the Access Bus checksum

Factory message read by Host from Display: (code C1)
Dest Source Length Data/Cmd Data Data Data Checksum
6F 51 84 C1 YY YY YY CHK’
I2C Sequence: S-6Fa-51a-84a-C1a-YYa-YYa-CHK’n-P

The advantage of this solution is that it offers standard factory communication using existing DDC2B H/W (which
is supported by most existing and future systems) without the need for specific after-service communication boxes.

VESA DDC/CI Standard Page 17 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Furthermore, it may eliminate the removal of the monitor’s plastic cover, and the I2C Bus 100kbps generally offers
higher communication speed than most current factory serial communication.

Technical detail: Access Bus Vendor Command codes (0xC0..C8) must NOT be declared in the cmd() field of the
Capability String.

It is recommended to add a “Write EDID” vendor command message in the display since this method is more secure
than using the “VSYNC signal write protect” method.

4.6.6 Application Specific Messages
The display does not have to initiate any message by itself:
- “Timing Report” message is sent only after the host sends “Get Timing Report” message.
- “Key Report” message is sent only after the host sends “Get Key Report” message.

MCCS Cross Reference Table
MCCS Host Message Access Bus Message(s) Comment
Get_Display_Status Get Timing Report,

Timing Report
The MCCS Message format (6 data bytes) is recommended;
however, old Access Bus Timing Report message (5 bytes) is
valid implementation

Get_Supported Controls Capability String
Get_Max Get_VCP, VCP_Reply
Get_Current Get_VCP, VCP_Reply
Set_Current Set_VCP
Get_Possible Capability (vcpname) Abbreviations for capability string to be defined

Note: It is useful to implement both the Keyboard and OSD Enable/Disable commands so that the host can
automatically disable them when the control application is active.

4.6.7 Hot Plugging mechanism
DDC2Bi supports hot plugging, provided the display can detect a disconnection of the video cable. When the
display detects an “unplug” event, it resets its DDC2Bi function and disables the Application Message Reports.

The host should regularly poll the device ID String to check for device presence (i.e. every 6 sec).

If the DDC2Bi slave address is not acknowledged after “trial and error recovery” attempts, the host must consider
that the DDC2Bi function is no longer available (detached).

If the DDC2Bi slave address is acknowledged but a NULL message is returned in place of a application reply
message, the host must consider that a new DDC2Bi device has been attached.

Anytime a DDC2Bi device is attached, the host should get the both the ID String and Capability String, then enable
the Application Message Report.

Note: It is possible for the host to reduce I2C bus traffic by saving (i.e. Registry) a string table containing capability
strings, indexed by the ID String (unique for each display). As such, when a registered display is hot plugged, the
host reads the capability string from the registry without having to use the I2C Bus.

VESA DDC/CI Standard Page 18 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

5. DDC2Bi Support of Display Dependent Devices
The DDC2Bi communication allows optional addition of display dependent devices.
As an example, a touch screen device is used in this chapter.

There are 2 different ways to implement the touch screen:
- As a slave device using the DDC2Bi protocol, but located at a different I2C slave address (e.g. 0xF0/F1)
- As integrated/embedded in the display device H/W architecture (unique I2C address for both: 0x6E/6F)

Note: In a multiple display configuration with touch screen devices, it is necessary to know which touch-screen
matches which display. This is possible with DDC2Bi because there is a unique DDC bus per video channel.

5.1 External Display Dependent Device
In this example, the implementation is simple: a fixed I2C Slave address is defined for the touch screen device
(0xF0/F1). The application specific touch screen commands are defined in the Access Bus Locator Device Protocol
spec.

5.1.1 Message sent to the External Device
The “source byte” (0x51) is replaced by the odd device address (i.e. 0xF1)

5.1.2 Message replied from the External Device
The “source byte” (0x6E) is logically replaced by the even device address (i.e. 0xF0)

5.2 Internal Display Dependent Device
When the touch screen is integrated in the display device, there is only one I2C Slave address (0x6E/6F) shared by
both the display and the touch screen. In this configuration, the message discrimination/routing is done as follows:

5.2.1 Message sent to the Internal Device
The “source byte” (0x51) is replaced by the external device odd address (i.e. 0xF1).

5.2.2 Message replied from the Internal Device
The “source byte” (0x6E) address byte of the Access Bus message is 0xF0.
Except for the destination I2C address, the communication of a display dependent device is the SAME for both
internal and external devices.

5.3 Detection of Display Dependent Device
The device detection is done by attempting to access the external I2C address first (acknowledge).
Then the host must detect the presence of an internal device by sending an “Identification Request” to the internal
device and check if the “Identification Reply” is successful. If not, a NULL message will be returned, meaning no
internal devices are present.

VESA DDC/CI Standard Page 19 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

5.4 Example of Internal and External Device Communication
We will consider both situations where the touch screen is external or internal:

Example: The graphic host wants to get the Touch Screen Self-Test Report:
 The graphic host sends an “Application Test” Message:

External: Host to Touch Screen
Dest Source Length Data/Cmd Checksum
F0 F1 81 B1 31
I2C Sequence: S-F0a-F1a-81a-B1a-31a-P

Internal:Host to Touch Screen
Dest Source Length Data/Cmd Checksum
6E F1 81 B1 AF
I2C Sequence: S-6Ea-F1a-81a-B1a-AFa-P

The “Application Test Reply” Message is read by the Host:

External: Touch Screen to Host
Dest Source Length Data/Cmd Data/Status Checksum
F1 F0 82 A1 00 83
I2C Sequence: S-F1a-F0a-82a-A1a-00a-83n-P

Internal:Touch Screen to Host
Dest Source Length Data/Cmd Data/Status Checksum
6F F0 82 A1 00 83
I2C Sequence: S-6Fa-F0a-82a-A1a-00a-83n-P

In this example, the touch screen returns its current status [00], indicating no problem.

5.5 Dependencies between the Display and Integrated devices
Some commands sent to the display, such as those concering power management, may affect integrated devices.

Technical Clarification: When the host communicates with an internal device, the host MUST read any expected
answer from the internal device before attempting to communicate with the display. This allows for cost optimized
implementations, where both the display device and the internal device are sharing the same communication buffer.
(RAM optimization on Display MCU)

VESA DDC/CI Standard Page 20 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

6. DDC2Bi System Architecture
This chapter provides some examples of DDC2Bi system implementations.

6.1 Multiple Video Channel Support and Implementation
A unique DDC I2C bus for each video channel MUST be implemented.

6.2 Television/Home Theater Support and Specific Commands
Specific dedicated functions exist in the MCCS specification.

6.3 Video Switch Boxes
Video switch boxes allow a single display to be attached to more than one computer system. System designers
should assume that the video channel is linked with the DDC bus, meaning that switching the video channel from
one host to another will also apply to the DDC channel.

6.4 Multiple Video Output Expander Boxes
Expander boxes are used to generate multiple video outputs from a single source. They may:
- Send the same video to multiple displays (school or conference rooms). This is a video “duplicator” system..
- Split the video to make a 3x3 video wall (using 9 displays). This is a video “splitter” system..
The expander box should primarily behave as a single display for the benefit of the host application S/W.

In both examples, it is good design practice to put a DDC2Bi “hub” that will have one DDC channel going to the
PC and a separate independent I2C bus (I2C master) going to each attached display. This hub could build the correct
EDID and properly translate and dispatch the DDC2Bi display control commands to each attached display device.

If the expander box supports both “duplicator” and “splitter” modes, the modes can be controlled by the host using a
custom VCP code (using vcpname keyword in the capability string).

For instance, in splitter mode, DDC2Bi can be used to address each display individually by considering them as
“internal only” display dependant devices. In the example of the 3x3 wall display, this could be done by using free
addresses (“source byte”) 00/01, 02/03, 04/05 for the top row, 06/07, 08/09, 0A/0B for the middle, and 0C/0D,
0E/0F, 10/11 for the bottom.

For the duplicator mode, the previous enumeration could correspond to the video output channel number of the
expander box.

Note: Since the expander box is relaying messages to its attached displays, the response time must be increased from
40msec to 120msec.

6.5 Video Projection Displays
Video projectors are display devices and can support DDC2Bi.
If a secondary monitor display can be connected to the video projector, a number of implementations are possible
and can vary in complexity. One solution would be to consider the video projector as a multiple video expander box.

VESA DDC/CI Standard Page 21 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

7. DDC2Bi Compliance
Compliance with the VESA DDC2Bi Standard requires that the requirements of all sections are met.

7.1 Existing Display Designs
Existing display designs (any DDC layer) will not conflict with a DDC2Bi capable host.

7.2 New Display Designs
DDC2Bi does not interfere with any other DDC communication layer.
DDC2B+ or 2AB displays can be easily modified to support DDC2Bi, but new designs need only support the
DDC1/2B/2Bi layers for cost reduction/simplification.

However, it is recommended to put a 12 to 15 kOhm pull-up resistor on both SDA and SCL signal lines in order to
achieve optimum communication speed in a noisy environment, or when a VGA expander cable is used.

Technical clarification: Placing a 12k Ohm resistor in parallel sharpens the rising edges at the display side without
significantly affecting the equivalent resistor on the bus or the maximum sinking current, thus allowing for
optimum communication.

7.3 Existing Graphic Host Systems
Existing host systems (any DDC layers) are not in conflict with DDC2Bi capable displays.

7.4 New Graphic Host Systems
New host designs shall not use less than 2.2k Ohm (5%) pull-up resistor on both SDA and SCL lines.

VESA DDC/CI Standard Page 22 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

8. DDC2Bi Flat Panel Displays
Flat panel displays can implement DDC2Bi regardless of their configuration and system architecture, since the
DDC2Bi I2C slave address is the same and unique per video channel: It is independent of the cable or physical
connector interface.

8.1 EDID Support
The EDID data (regardless of its version, revision and size) may be extracted from the “capability string”.

8.2 Specific Control Support
DDC2Bi supports flat panel specific controls such as backlight level, video inversion, power management,
luminance adjustments, power controls (currently as vendor specific VCP code), etc.

8.3 Power Management Support
Some flat panel displays are critically sensitive to hot plugging and power cycling sequences. Using DDC2Bi, the
power management control is handled by the MCCS dedicated display control code. The power sequencing and
timings become transparent to the computer/graphic system, since they are completely handled by the display. Also,
since DDC2Bi requires an intelligent device on the flat panel board, some S/W protections (for safety) can be
implemented.

Flat Panel Specific Code:
VCP Code Description Comments
0xF6 Back light Power Level 00 means that the back light is deactivated

8.4 FPDI-2 and P&D Interfaces
Using DDC2Bi, the P&D interface can be built from FPDI-2 Main 20-Pin interface without requiring the additional
8-pin connector, thus giving more flexibility and easier implementation.

Graphic
Controller

TMDS
XMTR

TMDS
RCVR

Timing
ASIC

DDC2Bi
Device

PWR

PWR

PWR

Row
Drive

Col
Drive

DDC

VDD1

VDD2

VCONT

Timing Valid

Backward compatibility is technically possible. This solution makes the flat panel display an abstract device, and
can be considered as a normal display. No technology specific signal is used between the graphic host and the flat
panel display. Display dependent devices (i.e. touch screen) and backlight controls can be added to the DDC2Bi
interface. In the example of an external monitor connected to a laptop, the same EDID and I2C address can be used
for both the monitor and the laptop display, since each one has its own specific DDC/I2C bus.

VESA DDC/CI Standard Page 23 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

DDC2B+ Display Control Interface Level

9. DDC2B+ System Architecture

9.1 DDC2B+ Introduction
This protocol relies fully on the Access Bus Specification, but with support for only one Access Bus Device (i.e.
display device) on the bus (master slave communication). This can be performed by either a simplified H/W
implementation or an intensive S/W polling solution on the graphic controller host.

9.2 DDC2B+ Display Device
The requirements for the DDC2B+ display are the same as DDC2AB.

9.3 DDC2B+ Graphic Host
The DDC2B+ graphic host is considered as an I2C master-slave capable device following the Access Bus spec.
The I2C slave address of the host is 0x50/51.
The host must only support I2C master/slave comunication which means that only one Access Bus device (i.e. the
display device) is supported.

9.4 Fixed I2C Slave Address Devices
All I2C Fixed I2C Slave Address devices are defined and reserved by Access Bus Industry Group (ABIG).

10. DDC2B+ H/W Implementation

10.1 Display Device
The H/W requirements are similar to DDC2AB capable displays.

10.2 Graphic Host
The requirements are similar to a DDC2AB capable host.

11. DDC2Bi S/W Implementation
A DDC2B+ system must comply with the Access Bus 3.0 specification.

12. DDC2B+ Compliance
Compliance with the VESA DDC2B+ Standard requires that the requirements of all sections are met.

VESA DDC/CI Standard Page 24 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

DDC2AB Display Control Interface Level

13. DDC2AB System Architecture

13.1 DDC2AB Introduction
This protocol relies fully on the Access Bus specification. This allows for the support of multiple Access Bus devices
such as keyboards, pointer devices, etc.

13.2 DDC2AB Display Device
The requirements are defined in the Access Bus specification 3.0.

13.3 DDC2AB Graphic Host
The DDC2AB graphic host is considered as an I2C multi-master/slave capable device following the Access Bus
spec.
The I2C slave address of the host is 0x50/51.

13.4 Fixed I2C Slave Address Devices
All I2C Fixed I2C Slave Address Devices are defined and reserved by ABIG.

14. DDC2AB H/W Implementation

14.1 Display Device
The H/W requirements are similar to DDC2AB capable displays.

14.2 Graphic Host
The requirements are described in the Access Bus 3.0 specification.

15. DDC2AB S/W Implementation
A DDC2AB system must comply with the Access Bus 3.0 specification.

16. DDC2AB Compliance
Compliance with the VESA DDC2AB Standard requires Access Bus compliance.

VESA DDC/CI Standard Page 25 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

17. APPENDIX A - DDC2Bi Development Support Tools
Note: Appendixes are NOT part of the standard.

This appendix describes the available tools for developing, testing, and debugging DDC2Bi systems.

17.1 Display Devices S/W Implementation
The implementation of DDC2Bi on a DDC2B+ capable display is very simple, as the exchanged messages between
the graphic host and the display are very similar. Typical memory increase in the display DDC MCU is
approximately 50 ROM bytes, and 1 RAM bit (detection flag of the 0x51 “source byte”). Also, if the Display
supports only DDC2Bi by simplifying the DDC2B+ MCU F/W code, the required memory will be significantly less.

Flowcharts, C source code and application notes are available from the VESA ftp site, as well as some Windows
tools (below) for testing and debugging the DDC2Bi display function.

DCP.EXE: Display Control Panel is a DDC2Bi debugging tool
PND.EXE: Plug and Display is an end-user tool to demonstrate the DDC2Bi function

17.2 Graphic Host S/W Implementation
DDC2Bi operation requires the graphic host to be DDC2B capable.

The current S/W implementation on existing computers is using a DLL that gives access to the I2C bus I/O port
lines of a graphic controller, using 4 simple functions: GetSDA(), SetSDA(), GetSCL(), SetSCL().
(The final DLL specification is under development and linked with the VESA SSC committee. In future host
designs, the DLL will use some low level BIOS function as described in the VBE-SCI specification.)
DDC2Bi capable monitors, sample Windows S/W and source code are all available for demonstration/verification
purposes.

17.3 Existing DDC2Bi Graphic Systems
The following list is for guidance/information only. ALL DDC2B COMPLIANT GRAPHICS CARDS ARE
DDC2BI CAPABLE.
The following graphics cards are compatible with the P&D and DCP Windows Demonstration Tools
DDC2Bi Hosts Status Contact
Number 9 Reality 332, PCI Available Computer shops, VESA Rep.
“All Path” S3D Virge, PCI Available Computer shops
Toshiba Brezza 133 (S3D Virge) Available Shops (T-Zone, Comp USA)
Diamond Viper 330 (nVidia Riva 128) Available Shops (Fry’s Electronics), VESA Rep.
Most “S3D Virge On Board” Graphics Cards Available Computer shops

17.4 Existing DDC2Bi Displays
This list is for guidance/information only.
DDC2Bi displays tested and compatible with P&D and DCP Windows Demonstration Tools
DDC2Bi Displays Status Contact
Panasonic 17” (HV9) Available VESA Representative

VESA DDC/CI Standard Page 26 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

This is an overview of the Plug and Display (P&D) user interface (available at VESA FTP server).
This graphic interface is for illustration and example purposes only, and is not part of the standard.

P&D Tool main user interface

P&D Tool, demonstration of the Automatic Video Mode Resolution Algorithm, using EDID data

VESA DDC/CI Standard Page 27 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

P&D Tool, color adjustment main control panel

P&D Tool, geometry adjustment control panel

This application was used for the DDC2Bi proof of concept on real systems.
The low level interface source code is enclosed in this document.

VESA DDC/CI Standard Page 28 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

18. APPENDIX B - Color Adjustments
Note: Appendixes are NOT part of the standard.

There is currently an on-going discussion regarding the implementation of color matching functionality on the
computer. However, the performance of such a system depends on its flexibility. Below is an example using MCCS
codes and EDID as a possible solution.

Upon completion of this study, this appendix may be merged into a future DDC-CI revision.

EDID: The EDID has a provision to describe 3 White Points (W0xy, W1xy, W2xy)

Assume: W0[0.3, 0.4]
W1[0.5, 0.6]
W2[0.7, 0.8]

MCCS: The Graphic host has a provision to control the Display Device color adjustments using the MCCS codes.
As an example, we will consider the R, G, B Gain controls.
Using GetVCP() and SetVCP(), we can get the RGB gains for each white point.

Wx (R gain, G gain, B Gain)
W0 (10, 20, 30)
W1 (40, 50, 60)
W2 (70, 80, 90)

DDC2Bi: Using the Capability String “vcpname(xx(9300,6500,5000))”, we can get
the corresponding 3 White Point Temperatures.

Based on this data, the graphic host can deduce the following:

W0[9300] = (0.3, 0.4) = (10, 20, 30)
W1[6500] = (0.5, 0.6) = (40, 50, 60)
W2[5000] = (0.7, 0.8) = (70, 80, 90)

We can use polynomial interpolation using the temperature as reference.

(The P&D.exe Windows 95 utility implements such interpolation and can be used for investigation.)

Advantages:
- The end-user can directly select the white temperature
- The corresponding gains are automatically adjusted
- The corresponding (x,y) coordinates are known (interpolated)
- The user white temperatures can be saved in the Registry (user preference).
- Using the other EDID RGB chromacity coordinates, it is possible to interpolate any point on the color space.

Web Pointers to learn more about colors:

http://www.inforamp.net/~poynton/Poynton-colour.html
http://cctpwww.cityu.edu.hk/public/graphics/g3_display.htm http://www.yarc.com/colortut.htm

VESA DDC/CI Standard Page 29 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

19. APPENDIX C - New Commands and VCP support
Note: Appendixes are NOT part of the standard.

This section gives suggestions of additional commands that MAY be part of the specification in future.

TV specific commands that may be supported in future:
TV tuner control
TV close caption and EDS data sent to the graphic host
TV remote control feedback to the PC when connected

GTF alternate timing values return and selection (For optimum use of the display capability)

Video timing notification from host to display device (and configuration procedure using serial communication)

Gamma values adjustments (theory)

VESA DDC/CI Standard Page 30 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

20. APPENDIX D - DMPS and MCCS Power Management Handling
Note: Appendixes are NOT part of the standard.

While DPMS and MCCS can coexist on the display side, conflict can result if it is not handled properly by the host.
For best results, if the host supports both power management systems, then both should be used together, as follows:

In a display supporting both DPMS and MCCS, the suggested rules are:

A. The GetVCP(power management) always returns the current physical monitor power state.
B. By default, the DPMS solution is used.
C. The MCCS solution is used over DPMS once the host has sent “Enable Application Report” message,
 AND has set the power management level using the SetVCP() command message.
D. When the video cable is DISCONNECTED (e.g. sensing VGA Pin 9), DPMS is used.
 If the “Disable Application Report” message is received by the display, DMPS is used.

This Appendix may be part of the specification in future version once the concept is fully validated.

The implementation in the Graphic Host driver is possible (ACPI-On Now Power Management) using:

DWORD __cdecl GetMonitorPowerStateCaps(DEVNODE devnode)

 Parameters:
 None.

 Returns:
 Bitmask of:
 CM_POWERSTATE_D0
 CM_POWERSTATE_D1
 CM_POWERSTATE_D2
 CM_POWERSTATE_D3

For more information, see:

http://www.microsoft.com/hwdev/pcfuture/ondisp.htm

Note that DDC2Bi can control the backlight using the DDC channel, as required for LCD screens.
(See “OnNow“ spec: http://www.microsoft.com/hwdev/ONNOW.HTM#pmSPECS)

When the display uses the DPMS mode by default, using “GetVCP(0xD6)” will then report the Display Current
power management level, regardless of the power management request’s source. As such, if the monitor enters into
a safety mode (X-Ray protect, for example), Power Off mode will automatically follow. If the host then sends
GetVCP(0xD6), the display will naturally respond 00.
Zero power and host wake-up by a device: If the host is in stand-by mode, a device could wake-up the host
(interrupt) by sending the Start/Stop bit sequence on the I2C bus (currently under investigation)

VESA DDC/CI Standard Page 31 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

21. APPENDIX E - Answers To Commonly Asked Questions
Note: Appendixes are NOT part of the standard.
Dxx, Gxx, Sxx = Display Device, Graphic Host, System Related Questions
Ref. # Question Answer
D01 Current displays cannot return from

DDC2AB+ back to DDC2B mode.
What about DDC2Bi?

DDC2Bi is identical to DDC2B+ in this regard. However, if the
display is capable of decoding both A0/A1 and 6E/6F addresses,
such a problem does not exist for DDC2Bi and DDC2AB+.

S01 Does DDC2Bi support hot plugging? Yes, by regularly checking the device ID or I2C Address
acknowledge. This is the classic method.

D02 Does DDC2Bi requires additional slave
address decoding in the Display H/W?

No, the 6E/6F address is the same as DDC2B+, except that the 6F
address had been previously undefined.

G01 What are the main advantages of
DDC2Bi compared to DDC2B+ ?

DDC2B+ requires an intensive CPU S/W polling method to
emulate host slave addressing (with interrupts disabled) and can
disturb other computer functions.
DDC2Bi uses the I2C single master function (like DDC2B) and
does not require additional CPU bandwidth. Furthermore, no
interrupts are suspended during the communication.

S02 What is the minimum I2C bus speed? From the Access Bus Spec 3.0, chapter 2.1.8 Timing Rules,
Paragraph 2.1.8.2 “Bus Timing”: No device can stretch the clock
low more than 2 msec. However, except for the host, all devices
shall have an I2C byte H/W interface and minimize any clock
stretching delays.
NOTE: The “2msec time-out” S/W implementation in a device is
NOT required in DDC2Bi mode (no multi-master mode)

D03 Why not use the A0/A1 I2C address? Because it would be in conflict with Extended EDID definition in
the VESA DDC Standard. Other AX addresses cannot be used
because of current P&D and FPDI standards. Also, some other
possible devices (e.g. 24LC21) may be connected on the same bus
and decode all AX I2C addresses.

S05 What is the advantage of DDC2Bi
compare to DDC2B?

Color Matching and Abstract Implementation is possible,
regardless of the video channel implementation and display type.
Possibility to perform specific color adjustments and save the
display settings host hard disk drive for each user profile. (User
registry in the case of Win95.)

G03 Is DDC2Bi host S/W graphic card
dependant?

For existing graphics cards in the market, a DLL should be
created and used. The DLL is graphic controller chipset
dependent, and its identification can be done though PCI ID
process. In the future, VBE-SCI will provide a unique interface
using the BIOS and will be independent of the chipset.

S06 Does the DDC2Bi host S/W depend on
the monitor used?
Does the monitor vendor need to supply
the DLL to the OS?

No, the host S/W is generic, and will work with any display that
complies to the DDC2Bi specification.
The DLL may be supplied with the control panel software, i.e.
with the graphic board driver software.

S07 What would one need to demonstrate the
operation of DCP.exe and PND.exe?

See Appendix A of this specification.
The described graphics cards (Number 9, Diamond, All path) are
tested and working as expected with DDC2Bi displays.

D04 Can we ship monitors with DDC2Bi
function enabled while the spec is still at
proposal stage?

The new DDC spec (in voting process) allows other custom serial
bus protocols to dialog between the host and the display.
DDC2Bi will be in TOTAL HARMONY with the DDC
specification. Displays could have DDC2Bi disabled during
production, then re-enabled with an I2C custom command on the
end-user’s PC when the proposal becomes a standard.

VESA DDC/CI Standard Page 32 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Ref. # Question Answer
D06 Can a DDC2AB monitor able to support

DDC2Bi environment?
Yes, and this does not require a long development time.

D07 Does modifying the monitor’s DDC2AB
software to DDC2Bi reduce the ROM size in
the MCU?

If DDC2Bi is supported INSTEAD of DDC2B+/AB, then yes, it
will cost less ROM and RAM in the monitor MCU.
RAM savings come from the communication buffers, since the
“Assign address” message is no longer necessary. Also, sharing
the Receive/Transmit communication buffers can now be done,
which can save additional memory..
ROM savings come from the capability string (no pwr() field),
and some Access Bus system messages are no longer required,
such as Reset/Attention/PresenceCheck, etc.

S08 Where can I get the Access Bus spec? The VESA Office has the Access Bus specification in the Word
format. Contact the VESA office at (408) 435.0333 for more
detail.

S09 Is there any conflict with USB? Not really, and in fact, in the monitor achitecture, DDC2Bi makes
things simpler for USB: If the display design has to optionnally
support USB HUB + function, then the USB HUB can translate
USB monitor commands into DDC2Bi commands and interface
with the main monitor MCU using the same DDC wires.

G05 How can I test my graphics card
DDC2Bi drivers?

One solution is to contact DDC2Bi Display manufacturers, or test
with the DDC2Bi monitors that are at the VESA Meeting Room.

G06 Why is DDC2Bi likely to have faster
market acceptance than Access Bus?

There is one other subtle but significant difference between
Access bus and DDC2Bi. The way Access Bus implements the
I2C interface may require a license/royalty payment to the
I2C/Access Bus patents holder. DDC2Bi does not - it is
implemented in the S/W only, with the CPU toggling the bits on
an I/O port.
Since Access bus is multi-master, the graphics controller would
have to implement the I2C-like interface in hardware, resulting in
a potentially large licensing and royalty fee to the patent holder.
The license/royalty issue was probably enough to prevent many
companies from implementing the Access bus.

S10 Who should develop the drivers and
application for Control interface on the
OS?

It would seem that the graphics board vendors would be the
logical choice for this activity. This control panel could support
and subsequently display vendor specific control windows to the
end-user, but only if monitor vendor/product ID is detected. For
example, Windows 95 supports such a feature in their current
Control Panel system.

G04 How does one get started? Use the existing demo tools and the existing source codes: They
will greatly accelerate the S/W development.

VESA DDC/CI Standard Page 33 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

22. APPENDIX F - I2C Bus Implementation on Graphic Host
Note: All Appendixes are not part of the standard.

This source code is extracted from SGS-THOMSON demonstration tools (P&D and DCP). They can be reused for
quick implementation of I2C bus on graphic host systems. This code is for guidance only, and is not part of the
standard. Code written in Microsoft Visual C++ 4.0 and tested on various Monitors. This code may evolve in the
future, and it is recommended to get the latest S/W from the VESA FTP server.

This code generates a global object of type CI2C and is named I2C.
This code statically link with a DDC.DLL which purpose is very similar to VBE-SCI specification.

//
// i2c.h : header file
extern "C" {
extern void enableSerialPort(void); // to select the external I2C bus
extern void disableSerialPort(void); // to restore the internal I2C bus
extern BOOL IsHWSupported(void); // to detect if the DLL works with the H/W
};

// Some I2C error code
#define SCL_TIMEOUT 1
#define BAD_NACK 2
#define NOT_IDLE 4
#define SLVADR_NACK 8

// ARLO may also occur when we want to send a data bit 1 and we see a 0 on the bus
#define ARLOSS 16

// Access Bus layer error only
#define BAD_CHECKSUM 32
#define BAD_MESSAGE 64

///
// CI2C view
class CI2C : public CObject
{
public:
BOOL Configure(BYTE LptNb); // Select printer port (no more used)
CI2C() { DLL_Loaded = TRUE; HWAccess = IsHWSupported(); if(!HWAccess) return;

enableSerialPort();Configure(1);SetSpeed(10);};
~CI2C() { UnloadDLL(); if(!HWAccess) return; disableSerialPort();};
// DLL Implementation to detect the PCI ID numbers
WORD WGetVendorID();
WORD WGetDeviceID();
BOOL HWAccess;
// ACCESS BUS LAYER MANAGEMENT COMMUNICATION
BYTE AbTransfer(BYTE SlvAdr, BYTE *ptr, BYTE& L, BYTE HostAdr = 0x50); // Data tranfer
// HIGH LEVEL I2C BUS MANAGEMENT COMMUNICATION
BYTE Transfer(BYTE SlvAdr, WORD& Length, BYTE* ptr, BOOL Stop = TRUE, BOOL AbMsg = FALSE, BOOL Forced = FALSE); // Data
tranfer
BYTE SendBlock(WORD Length, BYTE* ptr);
BYTE ReadBlock(WORD Length, BYTE* ptr, BOOL Ack = FALSE);
// BYTE LEVEL I2C BUS MANAGEMENT COMMUNICATION
BYTE ReadByte(BYTE& byte, BOOL Ack = TRUE, BOOL Forced = FALSE); // Send one data byte
BYTE SendByte(BYTE byte, BOOL Forced = FALSE); // Read one data byte, clean or not
// BIT LEVEL I2C BUS MANAGEMENT COMMUNICATION
BYTE ReadBit(BYTE& Bit); // Read one bit on I2C
BYTE SendStart(BOOL Forced = FALSE); // Generate a Start bit,
BYTE SendStop(BOOL Forced = FALSE); // Generate a Stop bit,
BYTE SendBit(BYTE bit, BOOL Forced = FALSE); // Send one data bit,
void ErrorRecovery(BYTE Status); // When an I2C error occur,
void NineStop(); // Generate 9 stop bits on the bus
// I/O H/W INTERFACE LEVEL I2C BUS MANAGEMENT COMMUNICATION
BYTE WGetSDA();
BYTE WGetSCL();
void WSetSDA(BYTE Level = 1);
void WSetSCL(BYTE Level = 1);
// DLL related functions
BOOL DLL_Loaded;
BOOL LoadDLL();
BOOL UnloadDLL();
HINSTANCE _hDdcLibrary;
// TIME LEVEL I2C BUS MANAGEMENT COMMUNICATION
inline BOOL WaitSCLHigh(INT Delay = 2); // Timeout delay in milisecond (getcurrenttime)
BOOL SetSpeed(WORD speed); // I2C Speed Calibration for I2C: 100 kHz (CPU independent)
WORD GetSpeed(); // Get current I2C speed
inline void WaitHalfClock(); // Wait half clock period for sampling data properly
inline void Wait(); // Wait routine, in miliseconds...
// For speed calibration: Identical functions but no real I2C communication
BYTE VoidReadByte(BYTE& byte, BOOL Ack = TRUE, BOOL Forced = FALSE); // Send one data byte
BYTE VoidSendByte(BYTE byte, BOOL Forced = FALSE); // Read one data byte, clean or not
BYTE VoidReadBit(BYTE& Bit); // Read one bit on I2C
BYTE VoidSendBit(BYTE bit, BOOL Forced = FALSE); // Send one data bit, clean or not
// Internal variables
WORD LoopCounter; // The adjusted loop counter for speed adjustment... speed calibration
BYTE buf; // The byte buffer for serialization
};

VESA DDC/CI Standard Page 34 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

///
// I2C.cpp : implementation file
#include "stdafx.h"
#include "i2c.h"
#include "conio.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

// MARKER // statically linked DLL functions. (only here)
extern "C" {
extern BYTE GetSCL(void);
extern BYTE GetSDA(void);
extern void SetSCL(BYTE Level);
extern void SetSDA(BYTE Level);
extern WORD GetVendorID(void);
extern WORD GetDeviceID(void);
};

////////////////////////////
// ACCESS BUS/DDC2Bi LAYER
BYTE CI2C::AbTransfer(BYTE DestAdr, BYTE *ptr, BYTE& L, BYTE HostAdr)
// If Apli = TRUE, bit7 of length = 1
{ // Tranfer to the internal buffer

WORD Lgth;
BYTE Chksum;
BYTE AbMsg[256];
BYTE Status;

if((DestAdr & 0x01)==0) // Send data in access bus format
{

AbMsg[0] = HostAdr; // Sent from host
AbMsg[1] = L; // Length including bit 7
Chksum = DestAdr ^ HostAdr ^ L; // Temporary

Lgth = L & 0x7F;
for(WORD i = 0; i < Lgth; i++){ AbMsg[i+2] = ptr[i]; Chksum ^= ptr[i]; };

AbMsg[Lgth+2] = Chksum; Lgth += 3;
return Transfer(DestAdr, Lgth, AbMsg);

};

////////////////////////////////////
// Receive mode (proprietary mode)
L = 0;
Status = 0;
ErrorRecovery(0); // Force Idle Mode on the bus: SDA and SCL must be high

// Normally here, it should be okay...
Status |= SendStart(); // Generate a Start Bit
if(Status!=0) {ErrorRecovery(0); return Status;};

Status |= SendByte(DestAdr); // Send the destination slave address
if(Status!=0)
{

ErrorRecovery(0);
if(Status & BAD_NACK) Status |= SLVADR_NACK;
return Status; // No acknowledge received

};

// Here, we have to check if the acknowledge is successful...
// Receive mode
BYTE byte;

Status |= ReadByte(byte);
ptr[0] = byte;
if(Status!=0) {ErrorRecovery(0); return Status;};

Status |= ReadByte(byte);
ptr[1] = byte;
if(Status!=0) {ErrorRecovery(0); return Status;};

Lgth = (byte & 0x7F)+1; // Add checksum to read

Status |= ReadBlock(Lgth, ptr + 2); // fill all extra byte from offset 2
Status |= SendStop(); // Send Stop for the send of the communication

// We have to compute the checksum...
Chksum = 0x50; for(int i=0; i<(Lgth+2); i++) Chksum ^= ptr[i];

if(Chksum!=0) Status |= BAD_CHECKSUM; // Bad Checksum

// We check that the header is 6E hex
if(ptr[0] != 0x6E) Status |= BAD_MESSAGE;

if(Status==0) L = ptr[1]; // Hazard for 8x length value...
if(Status==BAD_CHECKSUM) L = ptr[1];

VESA DDC/CI Standard Page 35 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Lgth = L & 0x7F;
// Here, Data must start at ptr[0] instead of ptr[2]... (addendum)
for(i = 0; i<Lgth; i++) ptr[i] = ptr[i+2];

return Status;
};

///
// I2C Plateform
BOOL CI2C::Configure(BYTE LptNb) // Select printer port
{ // obsolete, used when LPT port was used to make I2C bus.

LoopCounter = 10; // Slow speed...

WSetSDA(1);
WaitHalfClock();
WSetSCL(1); // to configure the data as output... for good SCL behaviour?

ErrorRecovery(0); // Make sure that SDA and SCL are set...
return TRUE;

};

//////////////////////////////////////
// DLL related functions
BOOL CI2C::LoadDLL()
{ DLL_Loaded = TRUE; // in the future will be used for DLL dynamic linking

return DLL_Loaded;
};

BOOL CI2C::UnloadDLL() { return TRUE; }

///
// HIGH LEVEL I2C BUS MANAGEMENT COMMUNICATION
BYTE CI2C::Transfer(BYTE SlvAdr, WORD& Length, BYTE* ptr, BOOL Stop, BOOL AbMsg, BOOL Forced) // Data tranfer
{ BYTE Status;

ErrorRecovery(0);

// Normally here, it should be okay...
Status = SendStart(); // Generate a Start Bit
if(Status!=0) {ErrorRecovery(0); return Status;};

Status |= SendByte(SlvAdr); // Send the destination slave address
if(Status!=0)
{

ErrorRecovery(0);
if(Status & BAD_NACK) Status |= SLVADR_NACK;
return Status; // No acknowledge received

};

// Here, we have to check if the acknowledge is successful...
if((SlvAdr & 0x01)!=0)
{ // Receive mode

Status |= ReadBlock(Length, ptr);
if(Status!=0) {ErrorRecovery(0); return Status;};

}
else
{ // Transmit mode

Status |= SendBlock(Length, ptr);
if(Status!=0) {ErrorRecovery(0); return Status;};

};

if(Stop) Status |= SendStop(); // No restart expected
return Status;

};

BYTE CI2C::SendBlock(WORD Length, BYTE* ptr)
{ BYTE Status = 0;

for(WORD i = 0; i < Length; i++)
{ Status |= SendByte(ptr[i]);

if(Status!=0) return Status;
};
return 0;

};

BYTE CI2C::ReadBlock(WORD Length, BYTE* ptr, BOOL Ack) // Ack is no more used! full stop!
{ BYTE Status = 0;

for(WORD i = 0; i<Length; i++)
{ Status |= ReadByte(ptr[i], (i!=(Length-1)));

if(Status!=0) return Status;
};
return 0;

};

///
// BYTE MANIPULATION FUNCTIONS
BYTE CI2C::ReadByte(BYTE& byte, BOOL Ack, BOOL Forced) // Send one data byte, clean or not
{ BYTE b0,b1,b2,b3,b4,b5,b6,b7;

BYTE Status;
Status = ReadBit(b7); Status |= ReadBit(b6); Status |= ReadBit(b5); Status |= ReadBit(b4);
Status |= ReadBit(b3); Status |= ReadBit(b2); Status |= ReadBit(b1); Status |= ReadBit(b0);
Status |= SendBit(!Ack);

byte = b7*128 + b6*64 + b5*32 + b4*16 + b3*8 + b2*4 + b1*2 + b0; // I’m a bit lazy...
return Status;

};

BYTE CI2C::SendByte(BYTE byte, BOOL Forced) // Read one data byte, clean or not
{ BYTE ack = 0;

VESA DDC/CI Standard Page 36 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

BYTE Status;
Status = SendBit(byte&128); Status |= SendBit(byte&64); Status |= SendBit(byte&32); Status |= SendBit(byte&16);
Status |= SendBit(byte&8); Status |= SendBit(byte&4); Status |= SendBit(byte&2); Status |= SendBit(byte&1);
Status |= ReadBit(ack);
if(ack==1) Status |= BAD_NACK;
return Status;

};

//////////////////////////
// I2C BIT MANIPULATION
BYTE CI2C::SendStart(BOOL Forced) // Generate a Start bit, clean or rude ?
{ //Assert SDA==1

WSetSDA(1);
Wait();

if(WGetSDA()==0) return NOT_IDLE; // should not occur, have to generate 9 stop bit?
Wait();
if(!WaitSCLHigh()) return SCL_TIMEOUT;
Wait(); // Delay between stop and start? TBD...

// The real start sequence
WSetSDA(0);
Wait(); // seems better for 4 us delay due to calibration
WaitHalfClock(); // SDA FallingEdge
WSetSCL(0);
Wait(); // SCL low half period
return 0;

};

BYTE CI2C::SendBit(BYTE bit, BOOL Forced) // Send one data bit, clean or not
{ // Assert(SCL==0)

WSetSCL(0); // SCL forced low optionnal
Wait(); // Delay optionnal
WSetSDA(bit); // update SDA
Wait(); // wait half period

if(!WaitSCLHigh()) return SCL_TIMEOUT; // Here is the delay for clock stretching
WaitHalfClock(); // Wait SCL
// if(GetSDA()!=bit) return ARLOSS;
WSetSCL(0);
Wait();
return 0;

};

BYTE CI2C::ReadBit(BYTE& Bit) // Read one bit on I2C
{ WSetSCL(0); // SCL forced low

Wait(); // Delay
WSetSDA(1); // Raise SDA, for the other guy to handle it low or not
Wait();
WaitSCLHigh(); // Here is the delay for clock stretching ***
WaitHalfClock(); // Wait SCL
Bit = WGetSDA(); // Sampling SDA
WSetSCL(0); // Add-on
Wait();
return 0;

};

BYTE CI2C::SendStop(BOOL Forced) // Generate a Stop bit, clean or not..
{ WSetSCL(0);

Wait();
WSetSDA(0);
Wait();
if(!WaitSCLHigh()) return SCL_TIMEOUT;
WaitHalfClock();
WSetSDA(1);
WaitHalfClock();
return 0;

};

void CI2C::ErrorRecovery(BYTE Status) // When an I2C error occur,
{ // What we want is to recover any stuck situation...

for(int i=0; i<9; i++) // Maximum 9 stop bits...
{ if((WGetSDA()==1)&(WGetSCL()==1)) break;

SendStop();
};

}

void CI2C::NineStop()
{ if(!HWAccess) return;

enableSerialPort();
for(BYTE i=0; i<9; i++) SendStop();

};

/////////////////////////////////////
// H/W DEPENDENT LOW LAYER ROUTINES
BYTE CI2C::WGetSDA() // Working
{ if(!HWAccess) return 1;

if(GetSDA()==0) return 0; else return 1;
};

BYTE CI2C::WGetSCL() // Working
{ if(!HWAccess) return 1;

if(GetSCL()==0) return 0; else return 1;
};

VESA DDC/CI Standard Page 37 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

void CI2C::WSetSDA(BYTE Level) // Working
{ if(!HWAccess) return;

if(Level==0) SetSDA(0); else SetSDA(1);
};

void CI2C::WSetSCL(BYTE Level) // Working
{ if(!HWAccess) return;

if(Level==0) SetSCL(0); else SetSCL(1);
};

///
// TIME DEPENDENT LOW LEVEL ROUTINES
BOOL CI2C::WaitSCLHigh(INT Delay) // Timeout delay for polling in msec
{ // the timeout is 2 msec at 100 kHz; WaitHalfClock is 5 us

// 2000 / 5 us = 400 times wait halfclock... Get Current Time doesn't work
WSetSCL(1); // Want to release SCL anyway

for(WORD i=0; i<500; i++) // timeout of 400 half bit =
{ if(WGetSCL()==1) break;

WaitHalfClock();
};
return (WGetSCL()==1);

};

//////////////////////
// Speed calibration
void CI2C::WaitHalfClock() // Wait half clock period for sampling data properly
{ Wait(); Wait(); };

void CI2C::Wait() // Wait routine, in miliseconds...
{ BYTE j; for(BYTE i= 0;i<LoopCounter;i++, j++); }

WORD CI2C::GetSpeed() { return LoopCounter;}; // Get current I2C speed

BOOL CI2C::SetSpeed(WORD speed) // Calibration for I2C speed at nominal 100 kHz
{ WORD NbByte;

DWORD Time0, Time;
BYTE byte;
NineStop(); // Error Recovery

// 981 bytes around 1000 should be 100 msec.
for(BYTE LoopCounter = 1; LoopCounter<255; LoopCounter++)
{ Time0 = GetCurrentTime();

for(NbByte=0;NbByte<100;NbByte++) // Send 100 bytes
{ VoidSendByte(0xFF); // Envoyer FF et NACK

VoidReadByte(byte, FALSE);
};

// Here 100x9x10 us should have elapsed = 18 msec limit
Time = GetCurrentTime() - Time0; if(Time>=18) break; // We have reached the speed limit!

};
LoopCounter++; // Final evaluation
ErrorRecovery(0);
return TRUE;

}

/////////
// For I2C bus speed calibration
BYTE CI2C::VoidReadByte(BYTE& byte, BOOL Ack, BOOL Forced) // Send one data byte
{ BYTE b0,b1,b2,b3,b4,b5,b6,b7;

BYTE Status = 0;
Status |= VoidReadBit(b7); Status |= VoidReadBit(b6); Status |= VoidReadBit(b5); Status |= VoidReadBit(b4);
Status |= VoidReadBit(b3); Status |= VoidReadBit(b2); Status |= VoidReadBit(b1); Status |= VoidReadBit(b0);
Status |= VoidSendBit(!Ack);

byte = b7*128 + b6*64 + b5*32 + b4*16 + b3*8 + b2*4 + b1*2 + b0;
return Status;

};

BYTE CI2C::VoidSendByte(BYTE byte, BOOL Forced) // Read one data byte
{ BYTE Status = 0;

BYTE ack = 0;
Status |= VoidSendBit(byte&128); Status |= VoidSendBit(byte&64); Status |= VoidSendBit(byte&32);
Status |= VoidSendBit(byte&16); Status |= VoidSendBit(byte&8); Status |= VoidSendBit(byte&4);
Status |= VoidSendBit(byte&2); Status |= VoidSendBit(byte&1); Status |= VoidReadBit(ack);
if(ack==1) Status |= BAD_NACK;
return Status;

};

BYTE CI2C::VoidSendBit(BYTE bit, BOOL Forced) // Send one data bit, clean or not
{// Assert(SCL==0)

WSetSCL(1); // SCL forced low optionnal
Wait(); // Delay optionnal
WSetSDA(1); // update SDA
Wait(); // wait half period

if(!WaitSCLHigh()) return SCL_TIMEOUT; // Here is the delay for clock stretching
WaitHalfClock(); // Wait SCL
// if(GetSDA()!=bit) return ARLOSS;
WSetSCL(1);
Wait();
return 0;

};

BYTE CI2C::VoidReadBit(BYTE& Bit) // Read one bit on I2C
{ WSetSCL(1); // SCL forced low

Wait(); // Delay
WSetSDA(1); // Raise SDA, for the other guy to handle it low or not

VESA DDC/CI Standard Page 38 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Wait();
WaitSCLHigh(); // Here is the delay for clock stretching ***
WaitHalfClock(); // Wait SCL
Bit = WGetSDA(); // Sampling SDA
WSetSCL(1); // Add-on
Wait();
return 0;

};

WORD CI2C::WGetVendorID() { return GetVendorID(); };

WORD CI2C::WGetDeviceID() { return GetDeviceID(); };

VESA DDC/CI Standard Page 39 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

23. APPENDIX G - DDC2Bi Basic Function Implementation
Note: All Appendix are not part of the standard.

This source code is extracted from SGS-THOMSON demonstration tools (P&D and DCP). They can be reused for
quick implementation of I2C bus on graphic host systems. This code is for guidance only, and is not part of the
standard. Code written in Microsoft Visual C++ 4.0 and tested on various Monitors. (see VESA FTP server)
This code create a global object of class CAB and named AB.
This code uses the resources of the I2C global object which is the lower layer S/W interface.

/////////////////////////////////
// ab.h : header file (DDC2Bi functions)

#define NOT_SUPPORTED 128
#define OTHER_ERROR 128
// Do we have to specify the number of communication retrials in case of failures?

///
// CAB
class CAB : public CObject
{
public:
CAB() { LinkEnabled = FALSE; };

///////////////////
// ACCESS BUS LAYER MANAGEMENT COMMUNICATION
BYTE GetSelfTestReport(BYTE& Flags, BYTE *ptr, BYTE& Length); // Application Test

//////////////////////////////
// CMD functions
// VCP manipulation functions
BYTE GetVCP(BYTE VCP, WORD& Cur, WORD& Max, BOOL& Temporary); // We have to check it exists!
BYTE SetVCP(BYTE VCP, WORD& Cur);
BYTE ResetVCP(BYTE VCP);
BYTE EnVCP(BYTE VCP, BOOL Enable); // Enable/Disable VCP feature
BYTE SaveCurrentSettings();

////////////////////////////////
// MORE FRIENDLY EXTRACTED INFO FROM CAPABILITY
BYTE GetID(CString& ProtRev, CString& ModuleRev, CString& VendorName, CString& ModuleName, DWORD& DevNb);
// This is just the ID String extracted for immediate reuse without headaches

BYTE GetProt(CString& Prot);
BYTE GetType(CString& Type);
BYTE GetPrev(CString& Prev);
BYTE GetEDID(BYTE* edid, WORD& Length);
BYTE GetVDIF(BYTE* edid, WORD& Length);
BYTE GetCmds(CString& Cmds);
BYTE GetVCP(CString& Vcp);
BYTE GetVCPNames(CString& VcpNames);

// SYSTEM CONFIGURATION LAYER COMMAND SET
// IT SIMPLY UPDATE THE OBJECT INTERNAL VARIABLES
BYTE Reset(); // Send reset message
BYTE GetID(); // Get ID String
BYTE GetCapability(); // Get Capability String (limited to 8 kb buffer)
BYTE IsPresent(); // Presence Check (ACK 6E/6F)
BYTE EnableAppReport(BOOL Enable = TRUE); // Enable application report

// VERY LOW LEVEL COMMANDS
BOOL IsAck(BYTE I2C_Adr); // Check if a guy is acknowledging the selected I2C address
BOOL GetPotential(BOOL& DDC2B, BOOL& DDC2AB, BOOL& SEB);
BYTE SendAbMsg(BYTE *ptr, BYTE L = 0x81); // Data tranfer
BYTE GetAnswer(BYTE *ptr, BYTE& Length); // Get answer from device

// Error management
CString GetErrorMsg(BYTE Status); // Translate all status flags for user string
void Wait(BYTE msec);
void NineStops();

// For configuration
BYTE ConfigureDevice(); // Send all the monitor access bus system commands to configure it
BOOL IsEnabled(); // Tells the application if a display device is present
public:
BYTE Msg[512]; // Shared Buffer for transmit or receive data

// Internal Backup data for working operation
BYTE IdStr[64]; // ID String (fixed size)
BYTE CapaStr[9000]; // Capability String
WORD CapaLgth; // the size of the capability string

// VCP Remote Information
BOOL LinkEnabled; // The access Bus application layers are working
BYTE Delay; // A latency programmable delay
BOOL IsVCPSupported(BYTE VCP); // Is a VCP control available (getVCP check way)
};

VESA DDC/CI Standard Page 40 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

///
// ab.cpp : implementation file

#include "stdafx.h"
#include "ab.h"

#include "i2c.h"
extern CI2C I2C;

#define delay 20

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///////////////////
// ACCESS BUS LAYER MANAGEMENT COMMUNICATION
// GENERIC ACCESS BUS COMMANDS

BYTE CAB::IsStillThere() // Check if the display is still there (EDID ID identical and 6E
{

if(!IsEnabled()) return OTHER_ERROR;

Msg[0] = 0xF1;
BYTE Length = 0x81;
BYTE Status = SendAbMsg(Msg, Length);
if(Status!=0) return Status;

Wait(delay);

BYTE BlkLgth;
Status = GetAnswer(Msg, BlkLgth);
if(Status != 0) return Status;

for(int i = 0; i<28; i++) if(IdStr[i] != Msg[i+1]) return OTHER_ERROR;
return 0;

};

//////////////////////////////
// CMD functions
// VCP manipulation functions
BYTE CAB::GetVCP(BYTE VCP, WORD& Cur, WORD& Max, BOOL& Temporary)
{ if(!IsEnabled()) return OTHER_ERROR;

Msg[0] = 0x01;
Msg[1] = VCP; // VCP code
BYTE Length = 0x82;
BYTE Status = SendAbMsg(Msg, Length);
if(Status !=0) return Status;

Wait(delay);

BYTE BlkLgth;
Status = GetAnswer(Msg, BlkLgth);
if(Status != 0) return Status;

// I should check the op-code normally... let's do it later (I've written the reminder!)
Max = Msg[4] * 256 + Msg[5];
Cur = Msg[6] * 256 + Msg[7];
Temporary = (Msg[3]!=0);

if(Msg[1] != 0) { Max = Cur = 0; return OTHER_ERROR; };
return 0;

};

BYTE CAB::SetVCP(BYTE VCP, WORD& Cur)
{ if(!IsEnabled()) return OTHER_ERROR;

Msg[0] = 0x03;
Msg[1] = VCP; // VCP code
Msg[2] = HIBYTE(Cur);
Msg[3] = LOBYTE(Cur);

BYTE Length = 0x84;
return SendAbMsg(Msg, Length);

};

BYTE CAB::ResetVCP(BYTE VCP)
{ if(!IsEnabled()) return OTHER_ERROR;

Msg[0] = 0x09;
Msg[1] = VCP; // VCP code

BYTE Length = 0x82;
BYTE Status;
Status = SendAbMsg(Msg, Length);
if(Status != 0) return Status;

// New add-on not tested
BYTE BlkLgth;
Status = GetAnswer(Msg, BlkLgth);
return Status;

};

BYTE CAB::EnVCP(BYTE VCP, BOOL Enable) // Enable/Disable VCP feature
{ if(!IsEnabled()) return OTHER_ERROR;

VESA DDC/CI Standard Page 41 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

if(Enable) Msg[0] = 0x0B; else Msg[0] = 0x0A;
Msg[1] = VCP; // VCP code

BYTE Length = 0x82;
BYTE status;
status = SendAbMsg(Msg, Length);

// New add-on not tested: if VCP Reply to discard
BYTE BlkLgth;
status = GetAnswer(Msg, BlkLgth);
return status;

};

BYTE CAB::SaveCurrentSettings()
{ if(!IsEnabled()) return OTHER_ERROR;

Msg[0] = 0x0C;

BYTE Length = 0x81;
return SendAbMsg(Msg, Length);

};

////////////////////////////////
// SYSTEM CONFIGURATION LAYER COMMAND SET

BYTE CAB::GetID() // Get ID String
{

Msg[0] = 0xF1;
BYTE Length = 0x81;
BYTE Status = SendAbMsg(Msg, Length);
if(Status!=0) return Status;

Wait(delay);

BYTE BlkLgth;
Status = GetAnswer(Msg, BlkLgth);
if(Status != 0) return Status;

for(int i = 0; i<28; i++) IdStr[i] = Msg[i+1]; // copy this stuff
return 0;

};

BYTE CAB::GetCapability() // Get Capability String (limited to 8 kb buffer)
{

BYTE Status, BlkLgth, i,test;
BYTE Length = 0x83;
WORD Ofst = 0x0000;

CapaLgth = 0; // restart from scratch

for(test=0; ; Ofst += BlkLgth, test++)
{

Msg[0] = 0xF3;
Msg[1] = HIBYTE(Ofst);
Msg[2] = LOBYTE(Ofst);
Length = 0x83;

Status = SendAbMsg(Msg, Length);
if(Status != 0) return Status; // Error management...

if(test==200) return 128;
// check the loop: overflow watchdog used! If the capability string exceed 200 segments, stop it!

Wait(delay); // typical wait for message to be ready!
Status = GetAnswer(Msg, BlkLgth);
if(Status != 0) return Status;
BlkLgth &= 0x7F;
BlkLgth -= 3; // Number of data bytes for the capability string
if(BlkLgth==0) { CapaLgth = Ofst; break;}; // finished!
for(i=0; i<BlkLgth; i++) CapaStr[Ofst+i] = Msg[i+3];
Wait(delay); // To be sure...

};
return 0;

};

BYTE CAB::EnableAppReport(BOOL Enable) // Enable application report
{

Msg[0] = 0xF5;
if(Enable) Msg[1] = 0x01; else Msg[1] = 0x00; // Enable/Disable application report
BYTE Length = 0x82;
BYTE Status = SendAbMsg(Msg, Length);
if(Status==0) LinkEnabled = Enable;
return Status;

};

BYTE CAB::GetSelfTestReport(BYTE& Flags, BYTE *ptr, BYTE& Length) // Application Test
{

Msg[0] = 0xB1;
Length = 0x81;
BYTE Status = SendAbMsg(Msg, Length);
if(Status !=0) return Status;

Wait(delay);
BYTE BlkLgth;
Status = GetAnswer(ptr, BlkLgth);
if(Status != 0) return Status;

VESA DDC/CI Standard Page 42 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

Length = BlkLgth & 0x7F; // All data message including flags
Flags = ptr[1]; // Self Test Result

// I should check the op-code normally... let's do it later (I've written the reminder!)
return 0;

};

////////////////////////////////
// VERY LOW LEVEL COMMANDS
BOOL CAB::GetPotential(BOOL& DDC2B, BOOL& DDC2AB, BOOL& SEB)
{

DDC2B = IsAck(0xA0) & IsAck(0xA1);
DDC2AB = IsAck(0x6E);
SEB = IsAck(0x6F);
return 0;

};

BOOL CAB::IsAck(BYTE I2C_Adr) // Check if a guy is acknowledging the selected I2C address
{

BYTE Status, buf;
WORD Length = 0;
Status = I2C.Transfer(I2C_Adr, Length, &buf, TRUE); // Data tranfer
return (Status==0); // Check if ok

};

BYTE CAB::SendAbMsg(BYTE *ptr, BYTE L) // Data tranfer
{ // Translate for Access Bus slave mode functions

return I2C.AbTransfer(0x6E, ptr, L, 0x51); // Data tranfer
};

BYTE CAB::GetAnswer(BYTE *ptr, BYTE& Length) // Get answer from device
{ // The goal of this function is to read the Ab message from the 6F device

return I2C.AbTransfer(0x6F, ptr, Length, 0x51); // Data tranfer in proprietary mode
};

////////////////////////////////
// Error Mangagement
CString CAB::GetErrorMsg(BYTE Status) // Translate all status flags for user string
{

CString Txt = "Errors: ";
if(Status & SCL_TIMEOUT) Txt += "SCL_TIMEOUT ";
if(Status & BAD_NACK) Txt += "BAD_NACK ";
if(Status & NOT_IDLE) Txt += "NOT_IDLE ";
if(Status & SLVADR_NACK) Txt += "SLVADR_NACK ";
if(Status & ARLOSS) Txt += "ARLOSS ";
if(Status & BAD_CHECKSUM) Txt += "BAD_CHECKSUM ";
if(Status & BAD_MESSAGE) Txt += "BAD_MESSAGE ";
if(Status & 128) Txt += " OTHER_ERROR";
if(Status==0) Txt = "No errors";
return Txt;

};

// seems working not that bad
void CAB::Wait(BYTE msec)
{

DWORD Time0 = GetCurrentTime();
for(; (GetCurrentTime() - Time0) < msec;);

};

void CAB::NineStops() { I2C.NineStop(); };

BOOL CAB::IsEnabled() // Tells the application if a display device is present
{ return LinkEnabled; };

BOOL CAB::IsVCPSupported(BYTE VCP)
{

WORD Cur,Max;
BOOL Temp;
if(GetVCP(VCP, Cur, Max, Temp)!=0) return FALSE; // If error: unsupported
if(Max==0) return FALSE;
return TRUE; // yes, this VCP definitely exist!

};

VESA DDC/CI Standard Page 43 of 43
Copyright 1997, 1998 Video Electronics Standards Association Version 1

24. APPENDIX H - Other source code files available
Note: All Appendix are not part of the standard.

Here is a list of existing source code available in the VESA FTP server:

I2C.CPP The I2C Bus Class described above
AB.CPP The higher level communication interface object, descibed above
EDID.CPP The EDID data editor object (1.0 and 1.1)
COLORTUNE.CPP The White Color Interpolation Formulas

DCP.EXE Display Control Pannel Debugging Tool for Windows 95/Menphis
PND.EXE Plug and Display End User Utility for Windows 95/Memphis
DDC.DLL The driver interface used by above applications to drive S3D Virge chipset
DDC.C The DLL source code. (prototype)

25. APPENDIX I - Host S/W driver implementation
Note: All Appendix are not part of the standard.

A discussion is currently on going to define the best S/W architecture on the host operating system in order to have
the possibility to have multiple applications sharing the same I2C bus without conflict, and be H/W independent.
This topic is not part of this standard.

The communication can be split in different layers.
The lowest layer is directly driving the H/W and implement the functions described in the VBE-SCI specification.
Higher layers must deal with multiple I2C bus on the same graphic hosts and also multiple graphic host support
Hihest layer will interface with multiple Applications.
Then, any application using the I2C bus will call the highest S/W layer.

 *** End of Standard ***

