From Grant McFarland's Stanford Web Page:
http://Jumunhum.stanford.edu/~farland/notes.html

CLA and Ling Adders

1 Introduction

One of the most popular designs for fast integer adders are Carry-Look-Ahead adders. Rather than
waiting for carry signals to ripple from the least significant bit to the most significant bit, CLA
adders divided the inputs into groups of r bits and implement the logic equations to determine if
each group will generate or propagate a carry. By combining the generate and propagate signals of
r groups at with each successive stage of logic, a CLA adder can derive the carrys into each bit in
order log, n gates instead of order n for a ripple carry adder. This paper discusses the design of a
very simple 32 bit CLA adder, some improvements that can be made to that adder, and a variation
of CLA adders known as Ling adders.

2 A Simple CLA Adder

An overview of the adder’s 4 stages is shown in figure 1 with stage 1 and the top and stage 4 at
the bottom. In stage 1 the local generate and propagate signals for each bit are created. In stage
2 these signals are combined to create generate and propagate signals out of each group of 3 bits.
In stage 3 the group signals are combined into 9 bit block signals. In stage 4 the carry into each
block is calculated and these signals begin traveling back up the adder tree. In stage 3 the carry
into each group is created, and in stage 2 the carry into each bit is created. Finally, stage 1 uses
the local carry signals to calculate the final sum bits.

L T

Group 10 Group 9 Group 8 Group 7 Group 6 Group 5 Group 4 Group 3 Group 2 Group 1 Group 0
GG10 GG9 GG8 GG7 GG6 GG5 GG4 GG3 GG2 GG1 GGO
PG10 PG9 PG8 PG7 PG6 PG5 PG4 PG3 PG2 PG1
CG10 CG9 CG8 CG7 CG6 CG5 CG4 CG3 CG2 CG1
Block 3 Block 2 Block 1 Block 0
GB3 PB3 GB2 PB2 GB1 PB1 GBO
CB2 CB1
&— Cout L1 cB3

Figure 1: CLA Adder

rutenbar
From Grant McFarland's Stanford Web Page: http://umunhum.stanford.edu/~farland/notes.html

2.1 Generate and Propagate Signals

In the first stage of logic the adder must calculate the local generate and propagate signals (g;
and p;) which tell if each bit will generate a carry into the next bit or propagate a carry from the
previous bit.

g = ab; (1)
pi = a;+b; (2)

In stage 2 these signals are then combined into group generates and propagates (GG, and PG;) for
each of the ten groups as follows:

GGy = g1+ pi(go+ pocin) (3)
GG1‘ = g4+ pi(gs+ p3g2) (4)
GGI(; = ¢31 + P31(g30 + P30929) (5)
PGy = papaps (6)
PGy = prpeps (M)
PGI(; = P31P30P29 (8)

where ¢y is the carry in signal to the least significant bit. Since ¢jy is included in GGg, no group
propagate signal from group 0 is needed. The group propagate signals are formed with a simple 3
input AND gate. The group generate signals are formed with the fanin-3 generate gate shown in
figure 2. In stage 3 these signals are used to create the block generate and propagate signals (G'B;
and PB;).

GBy = GG+ PGy(GGy + PG GG) (9)
GBy = GG+ PGs(GG4+ PG4GG3) (10)
GBy, = GGg+ PGs(GGr + PG-GGe) (11)
GBs = GGio+ PGGGy (12)
PB; = PG5PG4PGs (13)
PB, = PGsPG:PGq (14)
PBs = PG1oPGy (15)

All the blocks can use the same fanin-3 generate gate and 3 input AND gate used in the previous
stage except for block 3 which contains only two groups. Its propagate signal requires only a 2
input OR, and its generate is create using a fanin-2 generate gate shown in figure 3. Having created
the block generate and propagate signals, the adder begins to finally create the true carry signals.

gl

_|

p3

T

g2

wo-d
e oo

Figure 2: Fanln-3 Generate Gate

T
pl D~ b—GgO
K

e
z 1_1. K {>@—DGGO

;’:]

b b

gl

Figure 3: Fanln-2 Generate Gate

3

2.2 Carry Signals

In stage 4 the block generate and propagate signals are used to create the carry signals into each

block (C'By).

CB; = GBy (
CB, = GB;+ PB,GBy (
CBs = GBy+ PBy(GBy + PBiGBy) (

Couvr = GBs+ PB3CBs (

where Copr is the overflow carry out of the entire adder. These signals then begin to travel back
up the adder stages, first forming the carry into each group (C'G;) in stage 3. For block 2 these
equations are as follows:

CGg = OBy (20)
CGr = GGg+ PGeCB, (21)
CGs = GGr+ PGr(GGg+ PGCBy) (22)

In stage 2 these group carry signals are used to form the local carry into each bit (¢;). For group
8 these equations are as follows:

ce3 = CGsg (23)
c24 = g23+ p23CGi (24)
€25 =G24+ p2a(g23 + p23CGy) (25)

All of these signals can be created using the fanin-3 and fanin-2 generate gates shown in figures 2
and 3. This means each center group and block will use one fanin-3 gate and one OR gate to create
generate and propagate signals for the stage below, and one fanin-3 gate and one fanin-2 gate to
create carry signals for the stage above. The wiring of these groups and blocks is shown in figure
4 for group 1. hen the local carry signals reach stage 1, they are used to create the final sum bits
(s;) according to the equations:

t; = a; Db (26)
s; = ;P (27)

2.8 Critical Path

The worst case inputs for this adder are when a; @ b; = 1 for all the input bits and then cyy is
toggled. The local generate signals require 3 series transistors to form. For an N bit CLA adder
combining r groups at each level, the generate signals must travel up [log, N| — 1 levels of r + 1
series transistors each. Then the signal travels down [log, N| — 2 levels of no more than r + 1

g4 p4 c4 g3 p3 c3 g2 p2 c2

U 0 T U o @0 0 0
T |
. || 1
Gate Il Gate Il Gate |
J
0
CG1
U
GG1 PG1

Figure 4: Group 1

series transistors. Final, the XOR to form the local sums takes 2 series transistors. Therefore, the
maximum number of series transistors in the critical path can be written as:

T = 3+ (Tlog, NT = 1)(r+1) + ([log, N] = 2)(r +1) +2 (28)
Ty = (2[log, N]=3)(r+1)+5 (29)
For a 32 bit adder with » = 3 as described in this paper this equation gives a maximum of 25

transistors. The true critical path is 24 transistors since block 3 contains only 2 groups instead of
3. The critical path is shown in table 1. Although faster designs are possible, this adder has the

Operation Signal | Delay | Total

Local Generate g 3 3
Group Generate | GG| 4 7
Block Generate G B, 4 11
Block Carry CBs 4 15
Group Carry GGho 3 18
Local Carry €31 4 22
Local Sum S31 2 24

Table 1: Simple CLA Critical Path

advantage of a relatively simple layout and wiring. The next section discusses changes which can

be made in this design to improve performance.

3 An Improved CLA Adder

The critical path delay of the simple CLA adder design presented in the previous section can be
reduced significantly at the price of making the layout and wiring more complex.

3.1 Single Stage Group Generate

The first improvement to be made is using a single complex gate to create the group generate
and propagate signals in a single stage directly from the adder inputs. In the simple design the
expression used for the group 1 generate signal was as follows:

GGy = ga+ pa(gs + psg2) (30)

Expanding this in terms of the adder inputs gives:
GGy = asby + (ag + ba)[asbs + (as + bs)azbs] (31)

This equation can be implemented by an NMOS network containing 4 series transistors followed by
an inverter. The PMOS network must implement the complement of this function, which normally
would also require 4 series transistors. However, the relation ¢; p; = p; can be used to simply the
expression for GG as follows:

GGy = 7aps+73(p3 + 72)] (32)
GGy = m+7aP+75:0) (33)
GGy = @by + (a5 + by)[@zbs + (@3 + b3) (@3 + ba)] (34)

This simplified expression can be implemented by a PMOS network with 3 series transistors followed
by an inverter. The gate implementing the group generate for group 1 is shown in figure 5. The
gate implementing the group propagate is shown in figure 6. This change reduces the total number
of series transistors used in forming the group generate signals from 7 to 5.

3.2 Carry Select Mux

The second improvement eliminates the need to travel back up the adder tree after the block carrys
have been formed. This is done by generating two sets of sum bits. One set assumes the carry into
each block will be 0, and the other set assumes it will be 1. This can occur in parallel with the
generation of the block carrys which are then used to control a mux which selects the proper set of
sum bits. This is the same method used in carry select adders.

b4

a4

b4

iibi
11,
jj:ji
177"
{

Figure 5: CLA Group Generate

il

b4

b3 D)

Y

a4

a3 ()

o
0

D@—D -

N [S A N

a4 D——— ——— b4
a3 O—— ——— b3
a2 O——— ——— b2

Figure 6: CLA Group Propagate

7

In the simple CLA adder the equations implemented by group carry, local carry, and final sum
stages for bit 23 are as follows:

823 = 1oz b 23 (35)
S93 = t23 S%) CGS (36)
823 = t23 @ [GG7 —I_ PG?(GGG —I_ PGGCBQ):I (37)

This expression is converted to a mux controlled by C'By by defining the signals CG Fg and C'GTs:

CGFy = GGr+ PG:GGyg (38)
CGTs = GGr+ PG:(GGs+ PGe) (39)

The signal CGFy is the carry into group 8 assuming the block carry is zero, and C'G'Ty assumes
the block carry is one. The final sum bit is then written as:

593 = CB2 [CGFg D t23] + CB2 [CGTg D t23] (40)
Using these signals, the other sum bits of the group are written in similar fashion.

s34 = CBsg[(g23 + p2sCGFs) & tag] + CBal(g23 + pesCGTs) & tag] (41)
sos = CBa[(g24 + paa(gas + p2sCGFR)) B taa] + CBa[(g24 + p2a(g23 + p2sCGTs)) & taa] (42)

Because the signals C'G'Fg and C'GTy will appear after the local generate and propagate signals,
the critical path delay can be further reduced by applying the same principal to make the inputs
to the mux controlled by the block carry muxes controlled by C'GFg and CGTg. This also allows
the simplification of ¢; + p; = p; to be applied.

s33 = CBy[CGFglas + CGFylya) +

C By [CGTstzs + CGTxlas)] (43)
s3a = CBo[CGFs(g23 D tag) + CGFs(paz D tas)] +

CBa[CGTs(g23 & t2a) + CGTs(pas & tas)] (44)
S95 = C—BQ{WFS[(QM + p2ages) @ tas] + CGFg[(g24 + paapas) @ tas]} +

CBy{CGTs[(g24 + p2ag23) & tas] + CGTs[(g24 + paapas & tas]} (45)

The 3 bit slice which implements these functions is shown for group 8 in figure 7. sing the bit slice
eliminates the need to go back up the adder tree after forming the block carrys, and reduces the
critical path after the block carrys to a single mux delay.

Because of the reduced delay from the formation of the block carrys to the final sum output, Copr
can no longer be implemented as a function of C'By as shown in equation 19 without becoming the
critical path. To avoid this a fanin-4 generate gate is used to form Cpopr directly from the block
generates and propagates.

Covr = GBs 4+ PBs[GBy + PB2(GBy + PB1GBy)] (46)

This gate is shown in figure 8 and removes C'orr from the critical path.

125 924 p24 t24 923 p23 123

N 2
\—L—,

S25 S24 S23

Figure 8: Fanln-4 Generate Gate

3.3 Critical Path

With a single stage group generate the critical path must still pass up [log, N] — 1 levels. Of
these the first level will contain r + 2 series transistors and the others r 4+ 1. The carry select
mux eliminates the need to travel back up the levels of the adder to form the local carries. The
mux delay from the arrival of the control signal is counted as one series transistor to form the
complement of the control signal and one transistor to pass the input to the output. The number
of series transistors in the critical path is therefore:

Ty = ([log, N1~ 1)(r + 1) +3 (47)

For the 32 bit adder shown here with » = 3 this gives 15 series transistors. Using the single stage
group generate eliminates 2 series transistors, and the carry select mux reduces the delay from the
formation of the block carries from 9 series transistors to 2. The total critical path is reduced by 9
series transistors from a total of 24 to 15. The new critical path is shown in table 2.

Operation Signal | Delay | Total
Group Generate | GG| 5 5
Block Generate | GB, 4 9

Block Carry CBs 4 13

Result Mux S31 2 15

Table 2: Improved CLA Critical Path

4 A Ling Adder

One final improvement that can be made to CLA design is the use of a pseudo-carry as proposed
by Ling[1, 2]. This method allows a single local propagate signal to be removed from the critical
path. To show how this is done the group generate signal for group 1 is shown below:

GG = g4 + pags + papsge (48)

Ling observed that each term in GG contains py except for the very first term which is simply g4.
However, py can still be factored out of this expression by noting that g; = p;g;.

GGy = pGG3 (49)
GG] = ga+ g3+ psp2 (50)

The Ling group generate signal (GG?Y) is simpler and can be calculated more quickly than the CLA
group generate signal. When expanded out the CLA and Ling group generates are as follows:

GG = agby + (aq + ba)[asbs + (as + b3)azbs] (51)
G’GﬁlK = a4b4 + a3b3 + (a3 + b3)a2b2 (52)

10

The gate used to implement the group generate signal is shown in figure 9 and has one less series
transistor than the equivalent CLA gate shown in figure 5. he Ling group propagate signals (PG?Y)

GG1

a4 Dl

b4 Do

a3D—{ ——J b3

Figure 9: Ling Group Generate

are formed using the same gates as in the CLA design, but they are shifted one bit to the right.
The CLA and Ling group propagate signals for group one are shown below.

PGy = papsps (53)
PGT = pspapi (54)

These Ling group generate and propagate signals are then combined in the same manner as before
to create block carry signals.

CB: = GB

CB; = GB;+PBGB;

CB: = GB,+ PB(GB; + PBGB)

Chur = GB+ PBIGB; + PB(GB: + PBIGBY)]

55
56
57

(
(
(
(58

)
)
)
)

The true Coyr is simply p31C§p which could be formed with a simple AND gate, but this would
make it the critical path. Instead, the final group generate signal (GG1g) is formed using the CLA
expression rather than the Ling group generate. Also the final group propagate (PG7,) is formed
with a 4 input AND instead of a 3 input AND to include p3;. These changes allow the true Copr
to be formed from the block generate and propagate signals as shown above without making it the
critical path.

11

The final change that must be implemented to complete the Ling adder is to insert into the sum
logic the local propagate signal which was factored out of each group generate. This is done simply
by ANDing the CGFE; and C'GTY signals formed from the Ling group generate and propagates
with the local propagate signal of the most significant bit of the previous group. This change is
shown in figure 10 which depicts the sum selection logic for group 8 of the Ling adder.

4.1 Critical Path

The only difference in the critical path of the improved CLA and the Ling adder is the use of the
Ling group generate is the first stage as shown in table 3. This allows the group generate signals
to be formed in r + 1 series transistors instead of r + 2. The changes in the sum selection logic are
off the critical path and have no effect on the total delay. Therefore, the series transistors in the
critical path can be written as:

Ty = ([log, NT = 1)(r + 1) 42 (59)

For a 32 bit adder with » = 3 the net improvement of a Ling adder over the improved CLA adder
is a total delay of 14 series transistors instead of 15.

Operation Signal | Delay | Total
Group Generate | GG| 4 4

Block Generate | GB, 4 8
Block Carry CBs 4 12
Result Mux S31 2 14

Table 3: Ling Critical Path

12

e}

Y—anN
O<I» ¥
ag

A

2t
T

Figure 10: Ling Sum Selection Slice

13

GGGGGG

GGGGGG

References

[1]

[2]

H. Ling. High speed binary parallel adder. IEEE Transactions on Computers, EC-15(5):799—
802, October 1966.

H. Ling. High speed binary adder. IBM Journal of Research and Developement, 25(3):156-166,
May 1981.

R. Brent and H. Kung. A regular layout for parallel adders. IFEFE Transactions on Computers,
C-31(3):260-264, March 1982.

G. Bewick, P. Song, G. DeMicheli, and M. Flynn. Approaching a nanosecond: A 32-bit adder.
In Proceedings of the International Conference on Computer Design, pages 221-224, 1988.

I. Hwang and A. Fisher. A 3.1ns 32b CMOS adder in multiple output domino logic. In
International Solid State Circuits Conference, pages 140-141, 1988.

A. Omondi. Computer Arithmetic Systems: Algorithms, Architecture and Implementations.
Prentice Hall, 1994.

N. Quach and M. Flynn. High-speed addition in CMOS. Technical Report CSL-TR-90-415,
Stanford University, February 1990.

S. Waser and M. Flynn. Introduction to Arithmetic for Digital Systems Designers. Holts,
Rinehart and Winston, 1982.

14

	From Grant McFarland's Stanford Web Page: http://umunhum:
	stanford:
	edu/~farland/notes:
	html:

