Реклама на сайте English version  DatasheetsDatasheets

KAZUS.RU - Электронный портал. Принципиальные схемы, Datasheets, Форум по электронике

Новости электроники Новости Литература, электронные книги Литература Документация, даташиты Документация Поиск даташитов (datasheets)Поиск PDF
  От производителей
Новости поставщиков
В мире электроники

  Сборник статей
Электронные книги
FAQ по электронике

  Datasheets
Поиск SMD
Он-лайн справочник

Принципиальные схемы Схемы Каталоги программ, сайтов Каталоги Общение, форум Общение Ваш аккаунтАккаунт
  Каталог схем
Избранные схемы
FAQ по электронике
  Программы
Каталог сайтов
Производители электроники
  Форумы по электронике
Удаленная работа
Помощь проекту

Прецизионный измеритель перемещения

Один из перспективных путей создания высокоточных приборов контроля перемещения - использование индуктивных преобразователей с цифровым отсчетом результата измерения. Известны индуктивные измерители линейного перемещения, в которых с целью повышения чувствительности использован фазочувствительный детектор на транзисторах. Такие преобразователи имеют повышенный коэффициент передачи только вблизи точки равновесия измерительного моста, а в остальной части измерительного интервала они сравнимы по чувствительности с традиционными устройствами.

Описаны устройства для контроля перемещения, в которых обмотки датчика включены в измерительный мост с балластными резисторами. Такие устройства без точной настройки и оптимизации режима работы не обеспечивают высокой точности и стабильности результатов измерения. Известны также частотные индуктивные преобразователи с обмотками, включенными в колебательный контур генератора высокой частоты. Частота выходного сигнала таких преобразователей пропорциональна измеряемому перемещению. Подобные устройства также не имеют преимуществ по чувствительности в сравнении с другими.

В Институте геотехнической механики АН УССР разработан и исследован простой индуктивный измеритель перемещения, обеспечивающий высокую чувствительность, точность и стабильность результатов измерения при изменении параметров его элементов. Индуктивный измеритель перемещения (см. схему на рис. 1). содержит преобразователь с дифференциальными обмотками LI, L2, кольцевой диодный детектор VD3-VD6, выходной индикатор Р1, генератор прямоугольного напряжения на транзисторах VT1, VT2 и трансформаторе Т1.



Параллельные цепи последовательно соединенных дифференциальных обмоток LI, L2,индуктивного датчика и конденсаторов С1, С2 измерительного моста включены в цепь положительной обратной связи генератора. Такое включение автоматически обеспечивает работу преобразователя перемещений в резонансном режиме, то есть когда индуктивное сопротивление скомпенсировано емкостным и полное сопротивление каждой цепи практически равно активному сопротивлению обмоток. Через измерительный мост протекает переменный ток, по форме близкий к синусоидальному, поскольку добротность контура весьма высока. Благодаря наличию диодов VD1, VD2 ток контура непосредственно протекает через эмиттерный переход открытого в соответствующий полупериод транзистора генератора. Второй транзистор в это время закрыт.

Генератор прямоугольных импульсов работает практически без нагрузки, поэтому при его запуске ток в контуре, начиная с первого же такта, достигает установившегося значения. Транзисторы работают без смещения, что обеспечивает их переключение вблизи момента перехода тока контура "через нуль", т. е. преобразователь работает в резонансном режиме, при котором чувствительность измерителя перемещения максимальна.



На рис. 2 схематически изображена конструкция собственно датчика измерителя. Катушки L1 и L2 размещены на двух Ш-образных элементах 2 маг-нитопровода, установленных с зазором. В зазоре между элементами размещен якорь 1, изготовленный в виде пластины из ферромагнитного материала, Якорь механически связывают коромыслом 3 с перемещающимся звеном контролируемого механизма.

Для определения вида математического выражения, определяющего выходной ток преобразователя In, проведены необходимые теоретические исследования, в результате которых получена следующая упрощенная формула:



In=(0,9Um/ХL+R) * (AwLo/(V(AwLo)2+r2)
где Um - амплитудное значение напряжения питания,
XL-индуктивное сопротивление одной катушки преобразователя, R- сопротивление микроамперметра Р1;
A=dh/h - отношение смещения якоря к зазору между якорем и полюсом магнитопровода в исходном положении (см. рис. 2).
L( ) - индуктивность одной катушки при среднем положении якоря, r - активное сопротивление одной катушки (r1=r2);
w - угловая частота генератора.

Экспериментальные исследования преобразователя подтвердили достоверность полученного выражения. Для проверки работоспособности и технических характеристик индуктивности измерителя перемещения проведены лабораторные испытания нескольких макетных образцов в комплексе измерительной системы микробарометра. Установлено, что надежный запуск и устойчивая работа генератора обеспечиваются при напряжении источника питания 0,3 В и более при температуре в пределах от -5 до +50 °С. Работа измерителя при более низкой температуре не проверялась.

Основные факторы, дестабилизирующие работу преобразователя,- изменение напряжения питания и температуры. Поэтому питать преобразователь следует от стабилизатора напряжения. Температурная погрешность устройства в интервале от +5...40°C не превышает 5% на каждые 10°С, причем смещение нулевой точки отсутствует, что особенно важно при использовании преобразователя для индикации рассогласования в компенсационных измерительных системах.



Чувствительность измерителя изменяется незначительно при изменении емкости конденсаторов измерительного моста в пределах от 0,01 до 0,18 мкФ (рис. 3). При этом автоматически устанавливается резонансная частота, определяемая параметрами последовательных LC-цепей. Изменение индуктивности каждой из обмоток, вызванное перемещением якоря в рабочем зазоре, не превышает 10 % номинального значения. Поскольку смещение якоря от нейтрального положения вызывает увеличение индуктивности одной из обмоток и уменьшение индуктивности другой на одно и то же значение, то резонансная частота практически не изменяется. От напряжения питания она зависит очень слабо. Результаты экспериментальных исследований показывают, что при изменении напряжения питания на 33 % уход частоты не превышает 0,25 %.

Описанный измеритель отличается от известных простотой устройства, экономичностью, высокими метрологическими характеристиками и с успехом применяется в высокоточных микробарометpax, выпускаемых рижским опытным заводом "Гидрометприбор". Он может быть использован при точных измерениях перемещения и в других областях техники. Основные технические характеристики Рабочий интервал перемещения, мм +-0,5 Разрешающая способность, мм, не хуже ......... 1Е10-7 Температурная погрешность, мм/°С 3Е10-3 Потребляемая мощность, Вт. . . 7Е10-3 Трансформатор Т1 генератора намотан на магнитопроводе Ш4х4 из феррита 2000НМ и содержит три обмотки по 100 витков провода ПЭВ-1 0,12. Катушки L1, L2 датчика состоят из 500 витков провода ПЭВ-1 0,12 каждая. Магнитопровод датчика - два блока Ш4х4 из феррита 2000НМ. Индикатор Р1 - микроамперметр М4205 с током полного отклонения стрелки 30 мкА и нулем посредине шкалы.

Обе части магнитопровода датчика с катушками крепят к основанию посредством специальных скоб с винтами, позволяющих изменять величину воздушного зазора. Его устанавливают с помощью калиброванных пластин. Якорь датчика изготовлен из пермаллоя и имеет сечение 5х0,3 мм.

В преобразователе могут быть использованы практически любые маломощные транзисторы и диоды. Однако применение кремниевых приборов связано с увеличением падения напряжения на р-n переходах, что требует увеличения напряжения питания.

При номиналах и типах элементов. указанных на схеме рис. 1, измеритель потребляет ток около 5 мА, а его чувствительность при воздушном зазоре 2h= 1 мм в магнитопроводе датчика и сопротивлении микроамперметра 0,5 кОм равна 3,5 мкА/мкм, что почти в десять раз превышает чувствительность известных датчиков при равнозначных начальных условиях и соответствует требованиям прецизионных измерений перемещения подвижных элементов барометрических приборов. При использовании описанного прибора в компенсационных измерительных системах стабилизировать напряжение питания не требуется.

Источник: РАДИО № 5. 1986 г.


C этой схемой также часто просматривают:

Быстродействующий измеритель температуры
Измеритель R, C, L на микросхемах
ИЗМЕРИТЕЛЬ МОЩНОСТИ
ПРИСТАВКА-ИЗМЕРИТЕЛЬ LC К ЦИФРОВОМУ ВОЛЬТМЕТРУ
ИЗМЕРИТЕЛЬ ЕМКОСТИ №1
ГЕНЕРАТОР СТАБИЛЬНОГО ТОКА
Генератор пилообразного напряжения
УСТРОЙСТВО КОНТРОЛЯ ДВИЖУЩИХСЯ ЧАСТЕЙ
Широкополосный апериодический усилитель ВЧ

Главные категории

Arduino


Аудио


В Вашу мастерскую


Видео


Для автомобиля


Для дома и быта


Для начинающих


Зарядные устройства


Измерительные приборы


Источники питания


Компьютер


Медицина и здоровье


Микроконтроллеры


Музыкантам


Опасные, но интересные конструкции


Охранные устройства


Программаторы


Радио и связь


Радиоуправление моделями


Световые эффекты


Связь по проводам и не только...


Телевидение


Телефония


Узлы цифровой электроники


Фототехника


Шпионская техника



Реклама на KAZUS.RU




Последние поступления

USB измеритель LC на микроконтроллере

Электронный строительный уровень

Тестер UTP из 10 деталей со знакосинтезирующим ЖКИ

Цифровой термометр

Карманный осциллограф на микроконтроллере

Встраиваемый измеритель тока и напряжения на PIC12F675

Вольтметр до 30 вольт на MSP430

Прибор для контроля многожильных кабелей

4-канальный логический анализатор на PIC микроконтроллере

Частотомер на микроконтроллере



© 2003—2017 «KAZUS.RU - Электронный портал»