Реклама на сайте English version  DatasheetsDatasheets

KAZUS.RU - Электронный портал. Принципиальные схемы, Datasheets, Форум по электронике

Новости электроники Новости Литература, электронные книги Литература Документация, даташиты Документация Поиск даташитов (datasheets)Поиск PDF
  От производителей
Новости поставщиков
В мире электроники

  Сборник статей
Электронные книги
FAQ по электронике

  Datasheets
Поиск SMD
Он-лайн справочник

Принципиальные схемы Схемы Каталоги программ, сайтов Каталоги Общение, форум Общение Ваш аккаунтАккаунт
  Каталог схем
Избранные схемы
FAQ по электронике
  Программы
Каталог сайтов
Производители электроники
  Форумы по электронике
Удаленная работа
Помощь проекту

Контроллер графического ЖКИ высокого разрешения

При проектировании систем с использованием жидкокристаллических модулей (ЖКМ) высокого разрешения (320х200 пикселов и более), перед разработчиком встает проблема выбора контроллера для него. Некоторые из ЖКМ с разрешением 320х200 имеют встроенный контроллер, но ЖКМ более высокого разрешения выпускаются без встроенного контроллера, и для их использования в систему нужно ставить плату контроллера. Такие платы выпускаются многими зарубежными фирмами, они построены на базе специализированных БИС типа SED1330/1335 (Epson) и обладают обширным набором функций (поддержка курсора, вывод текста с использованием знакогенератора и т.п.). Но эти платы имеют два существенных недостатка: 1) Они достаточно дороги - стоят около 100...130 USD; 2) Из-за низкого спроса на такие контроллеры они поставляются в Россию только на заказ, поэтому задержка при разработке системы составит в лучшем случае месяц. Это же относится и к SED1335.

        Выходом из данной ситуации является разработка собственного контроллера ЖКМ на основе элементной базы, доступной в данный момент. Основные принципы построения такого контроллера и будут рассмотрены ниже.

 

Работа с ЖКМ

        Жидкокристаллический модуль состоит из двух основных частей: собственно жидкокристаллического индикатора и платы драйверов индикатора. Плата драйверов соединяется с ЖКИ линейками контактов для столбцов и строк. Пример структуры ЖКМ приведен на рис. 1.


Рис 1. Структура ЖКМ 320х240

        Рассмотрим ЖКМ 320х240 пикселов. Наиболее часто в качестве драйверов для индикаторов такого разрешения используются микросхемы HD66206 или пара HD66204/HD66205 (Hitachi). Они предназначены для обеспечения работы до 80 строк или столбцов ЖКИ. Поэтому для модуля 320х240 нужно 4 драйвера столбцов и 3 драйвера строк. Внутренние регистры драйверов имеют входы и выходы каскадирования, позволяющие представить их в виде одного многоразрядного регистра, что и сделано на рис. 1.

        Для вывода данных на ЖКИ необходимо выполнить следующую последовательность действий:

  1. Подать очередную тетраду данных на входы D3...D0 ЖКМ. Стробировать их импульсом по входу CL1. При этом увеличивается значение счетчика в драйверах X и в соответствии с его значением селектором выбирается та тетрада регистра R1,   в которую будет записано значение D3...D0. Этот пункт выполняется до тех пор, пока R1 не будет заполнен полностью, то есть 80 раз;
  2. Подать импульс на вход CL2. Это приведет к записи содержимого регистра R1 в регистр R2, сбросу счетчика, а также сдвигу регистра R3. Если в R1 записывалась первая строка изображения, то на вход FLM (First Line Marker) необходимо заранее подать "1". Это единичное значение по спаду CL2 запишется в младший разряд R3, и на первой строке ЖКИ высветится изображение, соответствующее содержимому R1. После подачи первого импульса CL2, сигнал FLM снимается. При поcледующих импульсах CL2 единичный бит продвигается по R3, и отображаемая строка продвигается вниз по экрану. Таким образом, для отрисовки всего экрана требуется 240 раз выполнить пункты 1-2.

        Описанная последовательность иллюстрируется на рис. 2.

Рис. 2. Сигналы ЖКМ

        Кроме описанных, на ЖКМ подаются следующие сигналы:

    DISPOFF - сигнал выключения ЖКИ. Активный уровень низкий. При подаче активного уровня на этот вход ЖКИ гаснет.

    M - сигнал управления полярностью напряжения, подаваемого на жидкие кристаллы. Подача постоянного напряжения на ЖК может привести к выходу их из строя. Поэтому полярность прикладываемого напряжения нужно периодически менять. Рекомендуемый период сигнала М зависит от конкретного типа ЖКИ. Многие ЖКМ имеют встроенную схему формирования сигнала М на основе CL2 и FLM.

    VDD, VSS, Vo, VEE - напряжения питания логики и матрицы ЖК модуля.

        По рассмотренному принципу работают монохромные ЖКМ с разрешением до 640х240. Дисплеи большего разрешения обычно разбиваются на две панели: верхнюю и нижнюю. Делается это для уменьшения частоты управляющих сигналов. При этом обе панели управляются одними и теми же сигналами, но имеют разные шины данных: 4 разряда для верхней панели и 4 разряда для нижней, и верхняя и нижняя панель заполняются одновременно. Такая организация позволяет для управления ЖКМ 640х480 использовать сигналы той же частоты, что и для 640х240, не теряя при этом в частоте обновления.

 

Разработка контроллера ЖКМ

        Контроллер ЖКМ должен содержать ОЗУ для хранения содержимого экрана и таблицы знакогенератора, ПЗУ для хранения таблицы символов и блок управления, который будет регенерировать ЖКИ и выполнять другие функции, свойственные контроллерам ЖКМ.

        Требуемую емкость ОЗУ можно вычислить по следующей формуле:

    CОЗУ = W x H x K / 8 + CЗГ,

где W - ширина экрана в пикселах, Н - высота экрана в пикселах, K - количество видеостраниц, CЗГ - емкость ОЗУ знакогенератора.

        Главной задачей блока управления контроллера является регенерация содержимого видеоОЗУ на ЖКИ. Частота регенерации, требуемая для обеспечения ровного, немерцающего изображения, обратно пропорциональна времени реакции ЖКИ и обычно составляет 30...70 Гц. Зависимость частоты передачи тетрад данных от частоты регенерации выражается формулой:

Fтет = W x H x Fрег / 4 для однопанельных дисплеев,

Fтет = W x H x Fрег / 8 для двухпанельных дисплеев.

        Очевидно, что частота считывания данных из ОЗУ будет равна половине Fтет для однопанельных дисплеев и Fтет для двухпанельных. Fтет для ЖКМ 320х240 при частоте регенерации 60 Гц составит 1.152 МГц. В принципе существуют микроконтроллеры, способные обеспечить такую частоту, но вычислительных ресурсов для выполнения других операций у них не останется. При увеличении разрешения частота будет расти, и использование микроконтроллера для регенерации будет все более и более нереальным.

        Дешевле и логичнее для регенерации содержимого ОЗУ на ЖКИ использовать ПЛИС. Алгоритмически задача регенерации является простейшей, и быстродействия самой "медленной" ПЛИС будет достаточно для ее реализации. В результате получаем следующую структуру контроллера ЖКМ:

Рис. 3. Структура контроллера ЖКМ

        Флэш служит для хранения данных: прошивки ПЛИС, таблицы символов, изображений, иконок и т.д. Микроконтроллер выполняет команды извне: отрисовку линий, вывод текста, поддержка курсора, вывод изображений, закрашивание областей. Требования к МК и флэш определяются требованиями конкретной системы: может оказаться достаточным только выводить текст, а может потребоваться и реализация Embedded OpenGL.

        ПЛИС занимается только тем, что регенерирует ЖКИ. Использование нескольких страниц в видеоОЗУ позволяет перерисовывать одну страницу, пока отображается другая. Это снижает требования к быстродействию МК. ПЛИС также обеспечивает "прозрачные" запись и считывание содержимого ОЗУ микроконтроллером, что позволяет ему работать с видеоОЗУ как со своим собственным внешним ОЗУ.

        Внешний вид опытного образца контроллера ЖКМ, построенного по описанной схеме, представлен на рис. 4.

Рис. 4. Опытный образец контроллера с подключенным ЖКМ HDM3224-1-500F

        Контроллер предназначен для обеспечения работы как однопанельного ЖКМ 320х240 (HDM3224-1-500F фирмы Hantronix), так и двухпанельного 640х480 (PG640480FRT-ANN-I фирмы Powertip). Для каждого из них имеется отдельный разъем и отдельная схема формирования напряжения питания для ЖК.

        В этом контроллере команды управления принимаются по RS-232C микроконтроллером AT89S53. Он имеет SPI-интерфейс и большую память программ, что позволяет реализовать полный набор функций.

        Схема регенерации построена на основе FPGA EPF8282 фирмы Altera. Она сравнительно дешева и обладает достаточной емкостью для реализации соответствующего цифрового автомата. При включении системы микроконтроллер считывает конфигурацию из флэш AT45D081A и загружает ее в ПЛИС.

        Микросхема флэш-памяти AT45D081A емкостью 8 Мбит может хранить более 25 монохромных изображений разрешением 640х480 пикселов. Для большинства задач этого должно быть достаточно.

        Контроллер имеет две страницы памяти: отображаемую и записываемую. Переключение страниц осуществляется микроконтроллером. Для хранения содержимого экрана разрешением 640х480 нужно 38400 байт, поэтому для хранения двух страниц используется ОЗУ емкостью 128КБайт.

        Волович Александр

        Лаборатория интеллектуальных измерительных приборов


C этой схемой также часто просматривают:

Контроллер шагового двигателя
Контроллер двухцветного светового шнура Flexilight
Вывод бегущей строки на ЖКИ дисплей 2х24
Малогабаритный частотомер-цифровая шкала до 200 МГц с ЖКИ дисплеем
Автоматический контроллер для просмотра стереоизображения.
Низкочастотный синусоидальный генератор с шагом сетки 0,01 Гц
Применение кода RC-5
Автомобильные часы-термометр-вольтметр
Имитатор touch-memory DS1990A

Главные категории

Arduino


Аудио


В Вашу мастерскую


Видео


Для автомобиля


Для дома и быта


Для начинающих


Зарядные устройства


Измерительные приборы


Источники питания


Компьютер


Медицина и здоровье


Микроконтроллеры


Музыкантам


Опасные, но интересные конструкции


Охранные устройства


Программаторы


Радио и связь


Радиоуправление моделями


Световые эффекты


Связь по проводам и не только...


Телевидение


Телефония


Узлы цифровой электроники


Фототехника


Шпионская техника



Реклама на KAZUS.RU


Последние поступления

Подключение энкодера к микроконтроллеру PIC

Счётчик людей в помещении, управляющий освещением

Велокомпьютер на микроконтроллере PIC16F628A

Устройство ввода-вывода на микроконтроллера

Два термометра на PIC16F628A и DS18B20

Светодиодные часы с циферблатом

Двоичные часы

Два вывода микроконтроллера PIC управляют шестью светодиодами

Цифровой программируемый таймер на микроконтроллере PIC16F628A

Устройство рисования в воздухе на ATtiny2313



© 2003—2024 «KAZUS.RU - Электронный портал»