

Fachbereich Systems Engineering

Grundlagen - Labor

GL-MultiSim_2: Einführung in das Programm "Multisim" 2.Teil¹

Versuchsziele:

- <u>Wechselspannungsanalyse</u>: Berechnung des Strom- und Spannungsverhalten einer Schaltung in einem betrachteten Frequenzbereich
- Richtige Auswahl der Simulationsarten
- Kennenlernen der verschiedenen Strom- und Spannungsquellen
- Vertiefen der Kenntnisse an Hand von Schaltungsbeispielen.

Version 1.2, Februar 2008 / Egger Fritz

¹ Der 1.Teil behandelt die Gleichspannungsanalyse.

1.	Analysearten	1-3
	1.1 AC-Analyse (Frequenzanalyse)	1-3
	1.2 Monte Carlo Analyse	1-3
	1.3 Worst Case Analyse	1-3
	1.4 Fourier Analyse	1-3
	1.5 Spezielle Analysen	1-3
2.	Wechselspannungs- und Wechselstromquellen	1-4
	2.1 Quellen mit sinusförmigem Verlauf	1-4
	2.2 Quellen mit rechteckförmigem Verlauf	1-5
	2.3 Quellen mit beliebigem Signalverlauf	1-6
	2.4 Gesteuerte Quellen	1-6
	2.5 Quellen mit moduliertem Signal	1-6
3.	Übungen mit Wechselspannungs- und Wechselstromquellen	1-7
	3.1 Brückengleichrichter	1-7
	3.2 Sperrträgheit einer Diode	1-8
	3.3 Transistorkennlinienfeld	1-9
4.	Die AC- Analyse (Fequenzanalyse)	1-10
	4.1 Einstellungen der AC-Analyse	1-10
	4.2 Amplituden u. Frequenzgang eine RC - Tiefpasses	1-11
	4.3 Bodediagramm eines RC-Tiefpasses	1-13
	4.4 Bandpassfilter mit Operationsverstärker	1-13
5.	Die Monte Carlo Analyse	1-15
6.	Der Postprozessor	1-17
	r	
7.	Der Schaltungsassistent	1-19
8	Konvergenznrobleme und Analysefebler	1_20
0.		1-20
9.	Literaturverzeichnis	1-21

1. Die verschiedenen Analysearten:

Im 1.Teil der Einführung wurden bereits Analysearten zur Simulation und Berechnung elektronischer Schaltungen im Gleichspannungs- bzw. Zeitbereich vorgestellt wie z.B. die

- **DC-Operating Point Analyse (Arbeitpunktanalyse)**
- Transienten Analyse (Zeitbereichsanalyse)
- **Parameter Sweep Analyse** (Parameteranalyse)
- DC-Sweep Analyse und
- Temperatur Analyse

Im 2.Teil der Einführung soll nun das Frequenzverhalten elektronischer Schaltungen mit Hilfe folgender Simulationsarten untersucht werden:

1.1 <u>AC Analysis (Frequenz-Analyse)</u>

Hier wird das Verhalten einer Schaltung als Funktion der Frequenz berechnet. Nach erfolgter Berechnung stehen alle Spannungen und Ströme nach Betrag und Phase der Schaltung im betrachteten Frequenzbereich zu Verfügung und können mit dem Diagrammfenster "*Grapher View*" dargestellt und gedruckt werden.

1.2 <u>Monte Carlo-Analyse:</u>

Mit dieser statistischen Analyse kann untersucht werden, wie sich ändernde Bauteileigenschaften (wie zB. die Toleranz) auf das Verhalten einer Schaltung auswirken. Hierbei werden mehrere Analysedurchläufe ausgeführt und bei jedem Durchlauf die Bauteilparameter entsprechend der eingestellten Verteilungsart und Toleranz variiert. Die Monte Carlo Analyse lässt sich mit dem DC-Sweep, dem AC-Sweep und der Transienten-Analyse verbinden.

1.3 Worst Case Analyse

Diese Analyse zeigt das Schaltungsverhalten bei minimaler und maximaler Abweichung der Bauteilparameter in Bezug auf die vorgegebene Toleranz.

1.4 <u>Fourier-Analyse</u>

Diese Analyse ermöglicht die Untersuchung der DC-Anteile innerhalb einer Schaltung, der Grundwelle und der Harmonischen eines Zeitbereichssignals. Voraussetzung für diese Berechnung ist eine vorangegangene Transientenanalyse mit ausreichender Simulationszeit, so dass der eingeschwungene Zustand erreicht wird.

1.5 Spezielle Analysen:

- Rausch- (Noise-)Analyse
- Pol-Nulstellen-Analyse
- Transferfunktion-Analyse
- Empfindlichkeits- (Sensitivity-) Analyse
- Verzerrung- (Distorsion-) Analyse

Informationen zu den speziellen Analysen finden Sie in den Literatur- Hinweisen.

2. Die verschiedenen Wechselspannungs- u. Wechselstromquellen:

Bei Multisim stehen neben den bereits bekannten Gleichspannung- und Gleichstromquellen (DC_Power, DC_Current, Piecewise_Linear_Voltage/Current) in den Bibliotheken **SIGNAL_VOLTAGE_SOURCES bzw. SIGNAL_CURRENT_SOURCES** verschiedene Wechselspannungs- und Wechselstromquellen zur Verfügung. Es ist darauf zu achten, daß nicht mit jeder Quelle bei jeder Simulationsart brauchbare Ergebnisse erzielt werden!

2.1 Quellen mit sinusförmigem Verlauf:

■ AC_Power, AC-Voltage bzw. AC_Current

sind Quellen mit sinusförmiger Ausgangsspannung bzw. -Strom. Ein Doppelklick mit der linken Maustaste auf das Bauteil ermöglicht die Eingabe folgender Attribute:

AC_VOLTAGE Label Display Value Fault Pins Voltage (Pk): Voltage Offset: Frequency (F): Time Delay: Damping Factor (1/sec): Phase: AC Analysis Magnitude: AC Analysis Phase: Distortion Frequency 1 Magnitude: Distortion Frequency 2 Magnitude: Distortion Frequency 2 Phase: Distortion Frequency 2 Phase: Tolerance:	User Fields 1 V 0 V 1 H12 0 Sec[1 H12 0 Sec[0 Sec[0 °	Voltage (Peak) Spitzenwert der Wechselspannung Frequency (F) Frequenz der Wechselspannung → werden bei einer Transienten- Analyse (Analyse im Zeitbereich) benötigt! AC-Magnitude Effektivwert der Wechselspannung AC-Phase Phasenlage der Wechselspannung → werden bei einer AC-Analyse (Analyse im Frequenzbereich) benötigt!
U	Voltage (PK)	Damping Factor

Time Delay

Frequency

t

Voltage Offset

Beachten Sie: Bei der Quelle AC_Power wird die Amplitude der Wechselspannung als Effektivwert (V_{RMS}) definiert!

2.2 Quellen mit rechteckförmigem Verlauf (Pulsquellen):

■ Clock_Voltage, Clock-Current

Sind sehr einfache Quellen mit Impulsförmiger Ausgangsspannung bzw. –Strom. Ein Doppelklick mit der linken Maustaste auf das Bauteil ermöglicht die Eingabe folgender Attribute:

■ Pulse_Voltage, Pulse-Current

Sind Quellen mit denen eine beliebige Rechteck-, Trapez- oder Dreieckförmige Ausgangsspannung bzw. – strom eingestellt werden kann. Ein Doppelklick mit der linken Maustaste auf das Bauteil ermöglicht die Eingabe folgender Attribute:

PULSE_VOLTAGE	X	
Label Display Value Fault Pins Initial Value: Pulsed Value: Delay Time: Fault Time: Fault Time: Pulse Width:	User Fields -1 V 5 V 0.1 sec 1 nsec 1 nsec 0.5 sec	Initial u. Pulsed ValueAmplitudenwerte der Rechteckspannung Periode Frequenz der Rechteckspannung Pulse Width Duty Cycle → werden bei einer Transienten-Analyse (Analyse im Zeitbereich) benötigt!
Period: AC Analysis Magnitude: AC Analysis Phase: Distortion Frequency 1 Magnitude: Distortion Frequency 1 Phase: Distortion Frequency 2 Magnitude: Distortion Frequency 2 Phase: Tolerance:	1 sec * 1 V * 0 * 0 V * 0 V * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	 AC-MagnitudeEffektivwert der Rechteckspannung AC-Phase Phasenlage der Rechteckspannung → werden bei einer AC-Analyse (Analyse im Frequenzbereich) benötigt!
Replace OK	Cancel Info Help	

Beachten Sie:

Durch entsprechende Wahl der "*Rise- und Fall-Time*" können mit dieser Quelle auch dreieckförmige Signale generiert werden. Dabei darf jedoch der Wert für die **Pulsweite** ("*Pulse-Width*") **nicht auf 0** gesetzt werden! Man wählt für die Pulsweite eine extrem kurze Zeit, beispielsweise 1ns oder1 ps.

2.3 Quellen mit beliebigem Signalverlauf:

■ Piecewise_Linear_Voltage, Pieceweise_Linear_Current

Sind Quellen bei denen eine Ausgangsspannung bzw. – strom mit beliebigem Verlauf eingestellt werden können. → siehe Teil 1

2.4 Gesteuerte Quellen:

Gesteuerte Quellen sind ideale Quellen, deren Ausgangsgrößen von einer zweiten Größe (Strom oder Spannung) und einem zusätzlichen Steuerfaktor linear abhängen. Diese Quellen stehen in der Bibliothek "Controlled Voltage / Current_Sources" zu Verfügung. (zB.: Spannungsgesteuerte Spannungsquelle oder Stromgesteuerte Spannungsquelle.....)

U

2.5 Quellen mit moduliertem Signal:

■ FM-Voltage, AM_Voltage,...

Sind Quellen, welche ein Amplitudenmoduliertes bzw. Frequenzmoduliertes Signal liefern.

1 Mho

3. Verschiedene Übungen mit Wechselspannungs- u. Wechselstromquellen:

3.1 Aufgabe 1: Brückengleichrichter

Erstellen Sie die nachfolgende Schaltung und verwenden Sie als Brückengleichrichter vier Si-Gleichrichter vom Typ 1N4001. Der Glättungskondensator C1 ist mit 47 μ F, der Lastwiderstand R1 mit 1k Ω zu dimensionieren. Speisen Sie die Schaltung mit einer sinusförmigen Eingangsspannung mit einer Amplitude von 24V_{eff} und einer Frequenz von 50 Hz.

Schaltung:

Aufgabenstellung:

Es ist die Zeitabhängigkeit der Ausgangsspannung U_a über zweieinhalb Perioden der Wechselspannung zu analysieren und im Vergleich zur Eingangsspannung U_e darzustellen. In einem zweiten Diagramm ist der Strom durch die Diode D_1 und der Strom durch den Glättungskondensator C_1 darzustellen.

Hinweise:

→ Es ist eine Transientenanlyse von 0 bis 50 ms (2,5 x Periodenlänge bzw. 2,5 / 50 Hz = 50 ms) vorzunehmen.

→ Um eine bessere Auflösung zu erreichen ist die Rechnerschrittweite unter Maximum Time Step (TMAX) auf 10us zu begrenzen.

Dass Simulationsergebnis lässt die gleichrichtende Wirkung dieser Brückenschaltung und insbesondere den glättenden Einfluss des verwendeten Kondensators C1 erkennen. Ebenso ersichtlich ist das Nachladen des Kondensators, welches kurzzeitig zu erheblichen Belastungen der Dioden führt.

3.2 Aufgabe 2: Sperrträgheit einer Diode:

Nachfolgendes Bild zeigt eine Schaltung zur Untersuchung der Sperrträgheit von Halbleiterdioden. Speisen Sie die Schaltung mit einer rechteckförmigen Spannung mit folgender Charakteristik: $V_{min} = -2V$, $V_{max} = 5V$, Frequenz = 10kHz, Tastverhältnis = 1:1 Anstiegs- und Abfallzeit = 0ms Schaltung:

Aufgabenstellung

- a) Es ist der zeitliche Verlauf der Spannung vor (U_1) und nach (U_2) der Diode graphisch darzustellen und daraus die Schaltzeiten in Sperrbereich (Speicherzeit) mittels zweier Cursor zahlenmäßig auszuwerten.
- b) Ersetzen Sie die Diode 1N4001 durch eine Schaltdiode vom Typ 1N4148 und wiederholen Sie die Analyse. Inwiefern ändert sich die Sperrträgheit? Begründen Sie diese Änderung!
- **Hinweise**: \rightarrow Da sich die Schaltung erst nach ca. 2,5 ms in einem stabilen (eingeschwungenen) Zustand befindet (Ladung des Kondensators) ist der Analysebereich erst danach anzusetzen. In den Transientenanalyse-Einstellungen ist der Parameter *Start Time* mit 2,8 ms und der Parameter *End Time mit* 3 ms zu wählen. Es ergibt sich somit für die Darstellung ein Zeitspanne von 200us (=2 Perioden).

 \rightarrow Die Rechnerschrittweite anpassen!

3.3 Aufgabe 3: Transistorkennlinienfeld

Simulieren Sie das Ausgangskennlinienfeld des Transistors BC107BP für Stromsteuerung $I_C=f(U_{CE}, I_B)$.

3.3.1 IV-Analysator

Für die einfache Darstellung einer Strom-Spannungskennlinie bzw. eines Kennlinienfeldes bietet Multisim unter den virtuellen Instrumenten einen so genannten "*IV-Analysator*". An diesem Messgerät lässt sich das zu untersuchende Bauelement auswählen (Diode, Bipolar-Transistor oder FET) und es können einige Simulationsparameter eingestellt werden.

3.3.2 DC-Sweep-Analyse

Für eine detaillierte Darstellung bzw. eine genauere Untersuchung der Kennlinien eignet sich jedoch eine DC-Sweep-Analyse besser. Verwenden Sie folgenden Messaufbau:

Aufgabenstellung

Stellen Sie die 6 Kurvenscharen in den Bereichen $I_C = 0 - 200$ mA und $U_{CE} = 0 - 5V$ dar.

Variieren Sie Kollektor-Emitterspannung mit Hilfe der DC-Sweep Analyse in einen Bereich von 0 – 5V (in 0,01 V Schritten) und wählen Sie als geeignete Werte für I_B die Ströme 0,1 / 0,3 / 0,5 / 0,7 / 0,9 und 1,1 mA.

Hinweis:

Verwenden Sie in den DC-Sweep-Einstellungen die 2. Quelle um den Basisstrom zu variieren.

DC Sweep Analysis

4. Die AC- Analyse (Frequenzanalyse)

Bei den AC-Analysen berechnet Multisim im Frequenzbereich der konfigurierten Quellen die Kleinsignal-Antwort der Schaltung (linearisiert im Arbeitspunkt). Die Berechnungen der Simulation beinhalten unter anderem Ströme und Spannungen nach Betrag und Phase, so dass z.B. Bode Diagramme erzeugt werden können.

4.1 Einstellungen für eine AC-Analyse:

requency Parameters Output	Analysis Options	Summary		
Start frequency (FSTART)	1	Hz	•	Reset to default
Stop frequency (FSTOP)	1	MHz	-	
Sweep type	Decade 💌			
Number of points per decade	100			
Vertical scale	Logarithmic 💌			

- Legen Sie die Werte f
 ür den zu untersuchenden Frequenzbereich fest ("Start- und Stop-Frequency")
- Definieren Sie den "Sweep-Typ" (Linear, Decade oder Oktave)
- Geben Sie im Feld "**Number of Points**" die Anzahl der zu berechnenden Punkte ein. Bei einem linearen Durchlauf entspricht die dort eingetragene Zahl der Gesamtzahl der berechneten Punkte. Bei einem logarithmischen Durchlauf entspricht sie der Anzahl der berechneten Punkte pro Decade (Oktave).
- Im Feld "Vertical Size" lässt sich bestimmen, in welchem Maßstab die ausgegebenen Werte dargestellt werden sollen (linear, logarithmisch, dB,)
- Beachten Sie, dass in der Schaltung mindestens eine AC-Quelle enthalten ist! In dieser Quelle muss das Attribut "AC-Analysis Magnitude" bzw. "AC-Analysis Phase" definiert sein!

Voltage (Pk):	1	V	÷
Voltage Offset:	0	V	*
Frequency (F):	1	kHz	÷
Time Delay:	0	sec	+
Damping Factor (1/sec):	0	-	
Phase:	0		
AC Analysis Magnitude:	5	V	
AC Analysis Phase:	0	•	
Distortion Frequency 1 Magnitude:	0	V	<u></u>
Distortion Frequency 1 Phase:	0	•	
Distortion Frequency 2 Magnitude:	0	V	+
Distortion Frequency 2 Phase:	0	•	
Tolerance:	0	%	

4.2 Aufgabe 4: Amplituden und Phasengang eines RC-Tiefpasses:

Im Folgenden soll ein RC-Tiefpaßfilter 1. Ordnung näher untersucht werden. Gegeben ist folgende Tiefpassschaltung mit einer Grenzfrequenz von $f_g = 159$ Hz.

Erstellen Sie ein Simulationsprofil für eine Frequenzanalyse (AC-Analysis) in einem Bereich von 1Hz bis 100 kHz. Die Frequenz soll logarithmisch durchlaufen werden. Die Anzahl der Berechnungspunkte wird mit 100 Punkten pro Dekade festgelegt.

Die Eingangsspannung U_e sei eine sinusförmige Spannung mit einer Amplitude von 5 V_{eff} .

 a.) Stellen Sie den Verlauf der <u>Ausgangsspannung U_a und deren Phasengang in</u> <u>Abhängigkeit von der Frequenz f</u> dar. Die Ausgangsspannung soll dabei im linearen Maßstab dargestellt werden.

[→] wie z.B. in den Quellen AC_Power, AC_Voltage, AC_Current, Pulse_Voltage, Pulse_Current,etc.

Simulationsergebnis Ausgangsspannung (Magnitude) und Phasenverlauf (Phase) in Abhängigkeit der Frequenz:

b.) Ändern Sie die Simulationseinstellungen so, dass die <u>Ausgangsspannung des RC-</u> <u>Gliedes im logarithmischen Maßstab</u> angezeigt wird:

 c.) Ändern Sie nun die Simulationseinstellungen so, dass die <u>Ausgangsspannung in</u> <u>Dezibel</u> (dB) angezeigt wird (→ entspricht der Berechnungsformel 20.log10(V_{out}/1))

4.3: Bodediagramm eines RC-Tiefpasses:

Für die einfache Darstellung eines Frequenzganges bietet Multisim unter den virtuellen Instrumenten einen so genannten "*Bode-Plotter*" an.

4.4 Aufgabe 5: Bandpassfilter, realisiert mit Operationsverstärker

Im Folgenden soll ein Bandpassfilter 2.Ordnung näher untersucht werden. Gegeben ist folgende Operationsverstärkerschaltung:

Ein Operationsverstärker vom Typ LM358N (bzw. **OP221GP in der Studentenversion**) ist ein Dual-Operationsverstärker (2-fach-OPV). Dies bedeutet, dass in einem Gehäuse zwei einzelne Verstärker ("A" und "B") untergebracht sind welche von einer gemeinsamen Betriebsspannung versorgt werden (siehe nebenstehende Pinbelegung).

PIN CONNECTIONS

Wird aus der Bauteilbibliothek "*Analog / OPAMP*" ein Operationsverstärker vom Typ LM358N ausgewählt, so kommt eine Abfrage nach dem gewünschten Typ A oder B. Beachten Sie, das der OPV vom Typ U1A die Anschlüsse Pin 2, 3 und 1 bzw. der Typ U1B die Anschlusspins 5,6 und 7 besitzt.

<u>Achtung:</u> Werden beide OPV's in einer Schaltung verwendet so braucht die Betriebsspannung V_{CC}/V_{EE} (Gnd) nur einmal angeschlossen werden!

Aufgabenstellung:

Erstellen Sie ein Simulationsprofil für eine Frequenzanalyse (AC-Analysis) in einem Bereich von 10 kHz bis 100 kHz. Die Frequenz soll logarithmisch durchlaufen werden. Achten Sie auf eine ausreichende Anzahl von Berechnungspunkten. Die Eingangsspannung U_e sei eine sinusförmige Spannung mit einer Amplitude von 2 V_p bzw. 2V_{eff}.

a) Stellen Sie den Verlauf der "Ausgangsspannung U_a " und deren Phasengang in Abhängigkeit der Frequenz f dar. Bestimmen Sie dabei die "Mittenfrequenz f_M " und die "Verstärkung v" (bei f_M) des Bandpassfilters.

b) Stellen Sie den "**Dämpfungsverlauf** A" (in dB) des Filters dar und bestimmen Sie dessen "**Bandbreite** B".

c) Stellen Sie den zeitlichen Verlauf von Ein- und Ausgangsspannung nach einer Einschwingzeit von 1ms dar. Die Signalfrequenz der Eingangsspannung betrage 40 kHz. Bestimmen Sie die Phasenverschiebung zwischen U_e und U_a.

5. Die Monte Carlo Analyse

Mit dieser statistischen Analyse lässt sich untersuchen, wie sich ändernde Bauteileigenschaften auf das Gesamtverhalten einer Schaltung auswirken. Es werden Mehrfachsimulationen ausgeführt, und bei jeder Simulation werden Bauteilparameter entsprechend ihrer Verteilungsart und Parametertoleranz, die in das Dialogfeld eingegeben wurden, statistisch verteilt.

Die erste Simulation wird immer mit den Nennwerten der Bauteile durchgeführt. Bei weiteren Simulationen wird ein Deltawert statistisch zum Nennwert addiert oder subtrahiert. Die Wahrscheinlichkeit der Addition eines bestimmten Deltawertes hängt von der Wahrscheinlichkeitsverteilung ab.

→ Gleichmäßige Verteilung: lineare Verteilung innerhalb des Toleranzbereiches

→ Gaußsche Verteilung: Verteilung nach der Wahrscheinlichkeitsfunktion $p_{(x)} =$ (siehe Mathematik-Vorlesung)

Aufgabe 6:

Untersuchen Sie mit Hilfe einer Monte Carlo Analyse, wie sich die Verstärkung, die Mittenfrequenz und der Phasengang der vorangegangene Bandbassfilter-Schaltung verhält, wenn die die Kapazitätswerte der beiden Kondensatoren C1 und C2 in einem Toleranzbereich von +/- 20% variiert werden.

Wählen Sie 10 Simulationsdurchläufe bei gleichförmiger Verteilung innerhalb des Toleranzbereiches.

Monte Carlo An	ılysis	×
1odel tolerance list Analysis Paramet	Analysis Parameters Analysis Options Summary	
Analysis	AC Analysis Edit Analysis	
Number of runs	10	
Output variable	V(4) Change Filter Expression	
Collating Function	MAX Threshold 0	
Output Control	es on one plot	

Parameter Type Parameter	Device Parameter	-	Mo	del tolerance Current list of	list Analysis Paran tolerances	neters Analysis Options Summary	
Device Type Name Parameter Description Tolerance Tolerance Type	Capacitor			Model cc2 cc1	Parameter capacitance capacitance	Tolerance Instance value: 10%, Distribution: Uniform Instance value: 10%, Distribution: Uniform	
Distribution	Uniform	-		<			

Ergebnis der Monte Carlo Analyse:

6. Postprozessor

Der Postprozessor ermöglicht die Durchführung zusätzlicher Berechnungen auf der Basis von Simulationsergebnissen und Signalformen. So können die Ergebnisse auf die unterschiedlichste Weise manipuliert werden. Unter anderem stehen folgende Möglichkeiten zu Verfügung:

- Arithmetische und trigonometrische Operatoren
- Infinitesimal- und algebraische Operatoren
- Boolesche Logikoperatoren
- Vektoroperatoren
- Komplexe mathematische Funktionen

Aufgabe 7 - Parallelschwingkreis

Als Beispiel wählen wir einen von einer Stromquelle getriebenen Parallelschwingkreis. Als Quelle wählen Sie eine Stromquelle namens "*A_Current*" mit einem Effektivwert des Wechselanteils von 0,1A.

Bauteilwerte: $L1 = 25 \mu H$, $R1 = 1k\Omega$, C1 = 1nF

Schaltung:

Aufgabenstellung:

Erstellen Sie eine geeignete AC-Analyse für einen logarithmischen Durchlauf der Frequenz mit einer Gesamtzahl von 1000 Berechnungspunkten pro Dekade. Startfrequenz: 100 kHz Stopfrequenz: 10MHz

Stellen sie mit Hilfe des Postprozessors den Verlauf der Spannung U_S , den Verlauf des Realteiles **REAL**(U_S) sowie den Verlauf des Imaginärteiles **IMAG**(U_S) der Spannung am Parallelschwingkreis dar.

Der Aufruf des Postprozessors erfolgt über "*Simulate"* → "*Postprozessor"* oder über die Schaltfläche

Einstellungen am Postprozessor:

■ Im Register "*Expression*" kann nun im Fenster "*Expressions*" mit Hilfe der Schaltfläche "Add" die gewünschte mathematische Funktion zusammengestellt werden (z.B.: IMAG(V(1)).

■ Im Register "Graph" können dann im "*Expressions selected*"- Fenster die Funktionen ausgewählt werden, welche nach Betätigen der "*Calculate*"- Schaltfläche im Grafikfenster dargestellt werden sollen.

Postprocessor		Postprocessor				
Expression Graph		Expression Gra	aph			
Select simulation results Variables	Functions	Pages:	Order 1 F	Name Post_Process_Page_1	Display Yes	Add Delete
	Integral() j0 j0 kelvin ke le length() in() lnQ() kelvin	Diagrams:	Order	Name Post_Process_Diagram_1	Type Graph	Add Delete
Set default Delete Refresh Copy variable to expression Default Analysis:ac01 Expressions	Copy function to expression	Expressions a	vailable	Expressions se (V(1) real(V(1)) imag(V(1))	lected	
Order Expressions 1 V(1) 2 real(V(1)) 3 imag(V(1)) 4	Add			<		
		Calculate	Close			Help

Ergebnisse im Grafikfenster:

 Stellen Sie in einer Grafik den Impedanzverlauf Z dar und bestimmen Sie die Bandbreite B des Schwingkreises.

7. Der Schaltungsassistent (nicht in der Studentenversion verfügbar)

Hilfestellung beim Entwickeln von Schaltungen bietet das Programmteil "Circuit Wizard". Diese Option beinhaltet fertige Filter-, Operationssverstärker-, Transistor- und

Timerschaltungen bei welchen diverse Parameter wie Verstärkungsfaktor, Grenzfrequenz, etc. vorgegeben werden können.

7.1 Aufgabe 8: Astabiler Multivibrator realisiert mit Timer IC 555

Erstellen Sie mit dem Timer IC 555 eine astabile Multivibrator-Scahltung für eine Frequenz von 5kHz und einem Duty-Cycle von 60%. Überprüfen Sie die Funktionstüchtigkeit der Schaltung mit einer Transientenanalyse.

8. Konvergenzprobleme und Analysefehler

Wenn der Simulator in Multisim gelegentlich eine Simulation oder Analyse nicht ausführen kann, liegt dies an mehreren Gründen, die aber einfach zu beheben sind. Multisim berechnet nichtlineare Schaltungen mit der Newton-Raphson-Methode. Wenn eine Schaltung nichtlineare Bauteile enthält, ist die mehrfache Iteration einer Reihe von linearen Gleichungen erforderlich, um die Nichtlinearitäten zu berücksichtigen. Der Simulator nimmt zunächst die Knotenspannungen an und berechnet dann die Zweigströme basierend auf den Leitwerten in der Schaltung. Anschließend werden die Knotenspannungen mit den Zweigströmen neu berechnet. Dieser Zyklus wird solange wiederholt, bis alle Kontenspannungen und Zweigströme innerhalb der benutzerdefinierten Toleranzen liegen, d.h. Konvergenz erreicht

wird. Die Toleranzen und Iterationsgrenzwerte für die Analyse können Sie in den Registern "Analysis Options \rightarrow Use Custom Settings" in jeder Analyseart angeben.

Wenn Spannungen und Ströme nicht innerhalb einer angegebenen Iterationszahl konvergieren, wird eine Fehlermeldung angezeigt, und die Simulation wird abgebrochen. Zu den typischen Meldungen

stolil Allatysis Options			
obal DC Transient Device Advanced			
	ON		
Absolute error tolerance [ABSTOL]		1e-012	Amperes
Voltage error tolerence [VNTOL]		1e-006	Volts
Charge error tolerance [CHGTOL]		1e-014	Coulombs
Relative error tolerance [RELTOL]		0.001	
Minimum conductance [GMIN]		1e-012	Mho
Minimum acceptable ratio of pivot [PIVREL]		0.001	
Minimum acceptable pivot [PIVTOL]		1e-013	
Operating temperature [TEMP]		27	•⊂
Shunt resistance from analog nodes to ground [RSHUNT]		1e+012	Ω
Transient analysis supply ramping time [RAMPTIME]		0	Seconds
Fractional step allowed by code model inputs between iterations [CONVSTEP]		0.25	
Absolute step allowed by code model inputs between iterations [CONVABSSTEP]		0.1	
Enable convergence assistance for code models [CONVLIMIT]			
Print simulation statistics [ACCT]			
Restore to Recommended Settings			
		~	1

■ Singuläre Matrix

gehören:

- Fehler bei Gmin-Anstufung
- Fehler bei Quellenabstufung
- Iterations-Grenzwert erreicht.

<u>Problemlösungen:</u> Stellen Sie zunächst fest, welche Analyse das Problem verursacht (beachten Sie, das die DC-Arbeitspunkt- Analyse häufig als erster Schritt bei anderen Analysen durchgeführt wird).

→ Prüfen Sie die Schaltungstopologie und die Verbindungen. Stellen Sie sicher, dass

- die Schaltung korrekt verdrahtet ist und keine "in der Luft hängende" Knoten oder verstreute, nichtverdrahtete Bauteile enthält
- die Zahl 0 nicht mit dem Buchstaben O verwechselt wurde
- die Schaltung einen Masseknoten besitzt und von jedem Knoten in der Schaltung ein DC-Pfad zur Masse führt. Einzelne Schaltungsbereiche dürfen nicht durch Transformatoren, Kondensatoren usw. von der Masse isoliert sein.
- Kondensatoren und Stromquellen nicht in Reihe geschaltet sind
- Induktivitäten und Spannungsquellen nicht Parallel geschaltet sind

Die häufigsten Fehlermeldungen betreffen folgende Einstellungen:

→ Absolute Stromfehlertoleranz (ABSTOL): Die Standard-Einstellung beträgt 1.0e-12 A und ist für die meisten integrierten Schaltungen mit Bipolar-Transistoren geeignet. In der Regel sind die Werte 6 bis 8 Größenordnungen kleiner als das Stromsignal in der Schaltung. Bei MOS-Bauteilen ist dieser Wert auf 1.0e-10 A zu ändern, wenn eine Fehlermeldung ausgegeben wird.

→ Minimaler Leitwert (GMIN): Einstellung des in einem beliebigen Stromzweig verwendeten minimalen Leitwerts, wobei NICHT mit dem Wert "0" gearbeitet werden darf. Eine Erhöhung dieses Wertes (z.B. um den Faktor 10) kann die Lösungskonvergenz erhöhen, jedoch auch die Simulationsgenauigkeit verringern. Die Standart-Einstellung beträgt 1.0e-12 Mho und soll nicht geändert werden. ("Mho" ist die amerikanische Bezeichnung für den Leitwert S)

→ Analogknoten-Shunt-Widerstand (RSHUNT): Fügt an allen analogen Knoten in der Schaltung diverse Widerstände zur Masse ein. Durch Reduzierung dieses Wertes wird die Simulationsgenauigkeit reduziert. Die Standard-Einstellung beträgt "deaktiviert" und hat einen Wert von 1.0e+12, wenn sie aktiviert ist. Der Widerstand muss auf einen sehr großen Wert eingestellt sein. Gibt das Programm eine Fehlermeldung mit "Kein DC-Pfad zur Masse" oder "Matrix ist nahezu singulär" aus, erhöhen bzw. verringern Sie diesen Wert.

Literaturverzeichnis - deutschsprachige Bücher:

PC-Elektronik-Labor von Herbert Bernstein Franzis –Verlag , ISBN 3-7723-5307-X