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I. Introduction 

The new microsatellite launchers technology with liquid or hybrid propulsion needs very light 

devices including the oxygen cryogenic tank  that are one of the most part of the complete 

system. Whereas metals were extensively used as tank materials
1,2

, the composite technology 

appears more promising but also raises new technological challenges.  The main one is related 

to its compability with the liquid ergol. to tThe ignition and combustion of the carbon-epoxy 

material in contact with the liquid oxygen
3
 is a part of this challenge. The oxygen tank 

pressure
4
, the oxygen concentration

5,6,7
, and temperature

8
 are keys parameters in the ignition 

and combustion processes. Temperature increase can be originated from multiple phenomena 

as: a particle impact
1
, a fast liquid compression

9
, friction

1
 between liquid and solid wall or 

mechanical resonance due to vibrations
1
. The main drawback of composites is their low 

performance with respect to combustion. The process of polymer matrix decomposition is the 

major factor to trigger the ignition. However the fiber is also highly responsible in the heat 

transfer within the heating area. Gerzeski
10

 found that most of metallic materials (aluminium 

alloys, nickel) satisfies the mechanical impact test due to their high thermal conductivity at 

temperature of -196 ° C (77K). This has led to the development of composite materials with 

the same resin, and different fibers
10,11,12

. Therefore, composites capable of meeting the 

compatibility liquid oxygen standard must have high ignition temperature of the resin and a 

high thermal conductivity of the composite, and therefore of the fiber. 

This study focuses on the thermal conductivity measurement of three composites constituted 

from the same epoxy resin (5052-4 RTM BMI) and different carbon fibers, namely the XN15, 

YSH70 and CN90. Each composites samples are removed from a plate in the form of 

cylindrical samples of R=1.5 cm and thickness e=3 mm. Each sample is constituted from the 

same number of folds (about 40) and the winding process lead to orientate the fibers in the [-

45, 0, 45, 90]°, which allows to assume homogenous In-plane properties. The measured 

density of the fibers and the resin are reported in Tab. 1. As reported in the paper of Reed and 

Golda
14

, epoxy resins contract from 0.85 to 1.2 % on cooling from 300 to 4K. Therefore the 

density will be further considered as a constant on the [300-77] K temperature range. On the 

other hand, the coefficient thermal expansion in the same temperature range is lower than 

0.5x10
-6

 K
-1

. Therefore, the fiber density will be considered as a constant. The measured 

composite density differs less than 4% from the calculated value starting from the fiber 

volume fraction. It means that the volume fraction is slightly higher than the real value. 

As reported in 
13,14

, the specific heat of epoxy is 1110 J.kg
-1

.K
-1

 at 300 K and it is about 380 

J.kg
-1

.K
-1
   77 K. In addition, the specific heat of graphite is

15
 644 J.kg

-1
.K

-1
 at 300 K and it is 

about 109 J.kg
-1

.K
-1

 at 77 K.  

The specific heat of the composite has been measured at 300 K and it is calculated starting 

from the fiber volume fraction f. The results are reported in the first column of Tab. 2. A very 

slight difference (less than 2%) appears that comes, as also reported for the density, from a 

very small overestimation of the fiber volume fraction. The specific heat of the composite at 

Mis en forme : Exposant



77 K is then calculated starting from the values for the carbon fiber and the resin at that 

temperature and also from the fiber volume fraction with 2% correction term. Results are 

reported in the second column of Tab. 2. 

 

Composite 

Fiber density 

(kg.m
-3

) 

@300K/77K 

Resin 

density 

(kg.m
-3

) 

@300K/77K 

Fiber 

longitudinal 

thermal 

conductivity 

kf (W.m
-1

.K
-1

) 

@300K 

Fiber 

volume 

fraction f 

Composite 

density (kg.m
-3

) 

@300K 

Meas./Calc. 

XN15/Epoxy 1850 1210 3.2 0.568 1516/1573 

YSH70/Epoxy 2150 1210 250 0.586 1783/1760 

CN90/Epoxy 2190 1210 400 0.609 1788/1807 

Tab. 1. Measured density of the fiber and the resin at 300 K and 77 K, measured thermal 

conductivity of the fiber at 300K and measured composite density at 300 K with comparison 

with the calculated one. 

 

T0 [K] XN 15/epoxy YSH 70/epoxy CN 90/epoxy 

300 

(measured/calculated) 

836/845 829/836 817/826 

77 (calculated with 

2% correction) 

232 228 219 

Tab. 2. Measured/calculated specific heat in [J.K
-1

.kg
-1

] of the three composites at 300 K. 

Calculated value at 77 K with 2% correction term coming from the fiber volume fraction 

overestimation. 

 

The In-plane  and transverse 
 
k

^
 thermal conductivity are measured at 77K and 300K using 

the hot disk technique. The thermal resistance Rc at the interface between the probe and the 

material is a key parameter that needs also to be identified as well as for the heat capacity of 

the probe. An inverse technique is implemented that lead to identify the unknown parameters 

based on experimental data and a heat transfer model consistent with the experiment. For 

information
16,17

, the longitudinal thermal conductivity of the fibers at 300 K is reported in 

Tab. 1 and the thermal conductivity kr of the epoxy resin is 0.1 W.m
-1

.K
-1

 at 80 K and it is 

0.25 W.m
-1

.K
-1

 at 0.25300 K. 

 

II. Thermal conductivity measurements 

In-plane and transverse thermal conductivity of the composite are measured using a hot probe 

type method known as the hot disk technique
18,19,20,21

. The sensor is made of nickel foil in the 

form of a bifilar spiral covered on both sides with an insulating layer of Kapton. The 

thicknesses of the foil and the Kapton layer are 10 and 25 µm, respectively, the effective 

diameter of the bifilar spiral is r0 = 3.189mm and the radius of the heating area is 20 mm. 

The thermal sensor is placed between two pieces of the sample material and is then heated by 

a constant electrical current i. The probe constitutes both heat source and temperature sensor. 

The time-dependent resistance of the thermal probe sensor element, during the transient 

recording, is expressed as: 

 R t( ) = R0 T0( ) 1+a T0( )DT t( )( )  (1) 

Code de champ modifié

Code de champ modifié

Code de champ modifié

Code de champ modifié



where R0 is the resistance of the probe element at the initial temperature T0
, a T0( )  is the 

temperature coefficient of resistance (TCR) that is calibrated prior to the experiment and 

T(t) is the temperature increase of the probe during the heating.  

The probe resistance R0 and TCR  have been accurately measured for the temperature range 

of interest and data are reported in Tab. I. 

Classical assumptions are that the heat flux related to the Joule’s effect is uniform all over the 

probe area at each time t during the experiment and that it is measured the average 

temperature T  of the probe. 

T0 [K] R0 (T0) [] (T0) [K
-1

] x 10
-3

 

80 1.049 11.593 

300 5.313 5.098 

Tab. 3. Probe resistance and TCR at 80 K and 300 K. 

To record the potential difference variations at the sensor, which normally are of the order of 

a few millivolts during the transient recording, a bridge arrangement is used in order to have a 

current i holding constant through the probe. 

Heat diffusion in the sample rests on the classical linear heat diffusion equation in cylindrical 

coordinates. Heat flux j0 2 = R0 i 2 2  is imposed at one face of the sample by the thermal 

probe, whereas the temperature at the other face is maintained at the constant value T0. It is 

finally assumed that the circumference area is perfectly insulated (in practice, the heating 

duration is chosen so that heat diffusion length does not exceed the sample radius R). 

Using the experimental symmetry, it is allowed to consider only one of the two samples 

located at both sides of the thermal probe. Applying the Laplace transform on the time 

variable and the Hankel transform on the radial coordinate, an analytical expression for the 

spatial average sensor temperature T t( ) is found as: 

 T t( ) = L-1 Z p( )( )
j0

2
  (2) 

In this relation p denotes the Laplace variable and L-1 ( )  is the inverse Laplace transform 

that is calculated from the de Hoog algorithm. The transfer function Z(p) is given by : 

 Z p( ) =
1

p

1

Cs p+
1

Rc + F p( )

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

 , (3) 

where Cs is the probe heat capacity that leads to a delay in the thermal response and Rc is the 

thermal contact resistance at the interface between the probe and the sample. Function F(p) is 

given by: 

 F p( ) =
r0

R

æ

èç
ö

ø÷

2

F0 a0 , p( ) + F0 an, p( )
4 J1 an r0( )éë ùû

2

R2 an

2 J0 an R( )éë ùû
2

n=1

N

å  , (4) 

where J0 ( )  and J1 ( )  are the first and second order Bessel functions of second specie and: 
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With: 

    (6) 

And: 

 an =

0 if n = 0

p n+
1
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  (7) 

In addition of the two thermal conductivity  and 
 
k

^
, the probe capacity Cs and the thermal 

resistance Rc at the probe-sample interface are unknown. In order to assess the identification 

feasibility, the dimensionless sensitivity functions Xq t( ) = q dT t( ) dqéë ùû  for the four 

parameters   are calculated and plotted in Fig. 1.  

 
Fig. 1. Dimensionless sensitivity for , 

 
k

^
 , Rc and Cs according to art R2 . Numerical 

values for this simulation are: R=1.5 cm, e=3mm,  , 
  
k

^
= 3W.m-1.K-1

 , 

  
R

c
=10-4 K.m2.W-1

, 
  
C

s
= 20 J.K-1.m-2

. 
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The sensitivity functions for the two thermal conductivities are not fully linear dependant (as 

also demonstrated by plotting their ratio in the inset of the figure). The sensitivity for Cs is 

close to zero on the quasi-total time range. Finally the sensitivity of the Rc varies only at the 

short times and then remains constant. As represented in the inset of the figure, the sensitivity 

functions for kr and Rc are linear independant only at the first instants, which comrequires to 

identify both parameters separately considering the first part of the data. 

Therefore, Cs is measured from an experiment with the probe alone at the two investigated 

temperatures (330 K and 77 K), for a given time step. It is found 
  
C

s
= 26 ± 0.5 J.K-1.m-2

 at 

300 K and 
  
C

s
= 20 ± 0.5 J.K-1.m-2

 at 77 K and it is assumed that those values do not change 

significantly when the probe is inserted between both parts of the composite. 

 

III. Results 
 

The sampling time interval is noted Dt  and the number of data is N for the duration of the 

experiment. The four parameters have been identified minimizing the objective function 

  
J = e

i

2

i=1

N

å = Y
i
- T

i( )
2

i=1

N

å , i.e., the quadratic differencegap between the measured temperature 

Yi = Y i Dt( ) and the simulated one Ti
  obtained from relation (2)(2). The minimization is 

achieved using the Levenberg-Marquardt algorithm. Results are reported in Tab. II. The 

measured temperature and the simulated one starting from the identified parameters are 

plotted in Fig. II. 

The fit between measures and simulations is almost perfect; the residuals are low with a 

whitewith noise featuring (the auto-correlation function being close to a Dirac function). The 

value of the objective function at the end of the identification process is less than 10
-5

 and the 

residuals do not reveal a bias in the heat transfer model. The standard deviations for the 

identified parameters are classically calculated from: sq = XT X( )
-1

s
T

2
 with 

X = X kr( ) X kz( ) X Rc( ) X Cs( )é
ëê

ù
ûú

 where X q( )  denotes the sensitivity vector, of 

length N, for q = kr ,kz,Rc ,Cséë ùû . Furthermore, the noise standard deviation is approximated 

from the value of the objective function 
  
J

min
 at the end of the identification process as: 

s
T

2 = Jmin N . 

 

XN 15/epoxy 

T0 [K]  [W.m
-1

.K
-1

] 
 
k

^
 [W.m

-1
.K

-1
] Rc [m

2
.K.W

-1
] 

77 0.479 ±0.051 0.203 ±0.005 (5.231 ±0.210)x10
-4

 

300 1.794 ±0.030 0.886 ±0.004 (4.409 ±0.100)x10
-4

 

YSH 10/epoxy 

77 28.02 ±0.25     0.168 ±0.020 (1.400 ±0.10)x10
-4

 

300 152.78 ±0.90 0.456 ±0.020 (3.699 ±0.30)x10
-4

 

CN 90/epoxy 

77 49.85 ±0.91   0.324 ±0.035 (4.032 ±0.10)x10
-4

 

300 230.22 ±1.20   0.602 ±0.030 (4.429 ±0.20)x10
-4
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Tab. 4. Identified In-plane and transverse thermal conductivity and thermal resistance at the 

interface between the material and the probe. 

 

  

  

Fig. 2. First row: measured temperature 
 
Y t( )  during the transient hot disk experiment and 

simulated temperature 
 
T t( ) with identified parameters reported in Tab. 4 at 77 K and 300 K. 

Second row: residuals 
 
e t( ) . 

IV. Conclusions 
 

The measured In-plane thermal conductivity of the three composites follows well the carbon 

fibre longitudinal thermal conductivity at room temperature. Obviously, the epoxy resin being 

less conductive than the fibre, the composite thermal conductivity is lower than that of the 

fibre itself. Using the classical mixing law for the in plane thermal conductivity it is found the 

theoretical value as: . Using the fibre volume fraction, the longitudinal 

thermal conductivity of the fibre at 300 K in Tab. 1 and that of the resin at 300 K, we found 

the theoretical value of  for the three composites at 300 K as:  for the 



XN15/epoxy,  for the YSH10/epoxy and  for the 

CN90/epoxy. These values are consistent with the measured ones reported in Tab. 4. Using 

the measured values at 77 K, it comes that the thermal conductivity of the carbon fibrer can be 

estimated from the previous mixing law and the epoxy thermal conductivity at 77 K. We 

found: 
  
k

XN15,77K
= 0.76W.m-1.K-1 , 

  
k

YSH70,77K
= 47.74 W.m-1.K-1  and 

  
k

CN90,77K
= 81.77 W.m-1.K-1

. Ignition test realized on the three composites showed that only the CN90/epoxy passed the 

test. This suggests that the thermal conductivity of carbon/epoxy material for liquid oxygen 

storage purpose must be equal or greater than . 
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