

928 PGN

Managing Power, Ground, and Noise

Class Agenda

- Project Definition
- Analog Design
- Digital Design
- Pulling it all together

Definition of Project

Has Analog and Digital Content

• Functions:

- Measures Weight with Specified Load Cell
- Displays results with LEDs
- Communication to Computer through RS-232 Interface
- PWM fan Motor Driver on board

Analog/Digital System

Analog Layout #1

Analog Board : First Pass Test Results

Low-Noise Design

- Device Noise Created by the devices
 - Resistors Reduce Values were possible
 - Op amps Use Lower-Noise Amplifiers
 - Power Supply Replace or Filter Switching Devices
- Emitted Noise Externally Injected
 - Layout Keep analog and digital Separate
 - Environment Shield or change orientation

Device Noise

Resistors

$$V_{RN} = \sqrt{4KTR(BW)}$$
 {Vrms}

K = Boltzman's Constant = 1.38e⁻²³ JK⁻¹

- T = Temperature in Kelvin
- R = Resistance in Ohms

(BW) = Noise Bandwidth in Hz

• 1 k
$$\Omega$$
 = 4 nV / \sqrt{Hz}

Amplifiers

- MCP604 Specification 29nV/ √ Hz @ 10 kHz
- MCP6024 Specification 10nV/ √ Hz @ 10 kHz

Long Traces: Antenna

 Trace going into 10-bit or 12-bit ADC input is longer than a few inches

Analog Layout #2

Analog Application Board #2 Test Results

Low-Noise Design

- Device Noise Created by the devices
 - Resistors Reduce Values were possible
 - Op amps Use Lower-Noise Amplifiers
 - Power Supply Replace or Filter Switching Devices
- Emitted Noise Externally Injected
 - Layout Keep analog and digital Separate
 - Environment Shield or change orientation
- Conducted Noise In the Circuit Traces
 - Use a Continuous Ground Plane
 - Filter Signal traces
 - Filter Supply traces

Conducted Noise

- Ground and Power
 - 50 Hz or 60 Hz
 - Ground and Supply Current Return Paths
- Solution: By-pass, Choke supply line
- Signal Path
 - Digital Switching
 - Noise generated by previous device
- Solution: Analog Filter, Re-layout

Discontinuous Ground Plane

 Interrupted Ground Plane on the Back Side of the Board

Bypass Capacitors No Black Magic Here

- As close to the device as possible
- Analog Circuits
 - Reduce power supply noise
 - Enhance Chip's Power Supply Rejection (PSR)
- Digital Circuits
 - Low Frequency system clocks have high frequency glitches

Bypass Capacitors for Analog

12-bit A/D Converter Capacitor Response 0 **1M** 1nf Impedance (-20 100k Ceramic **0.01µf** PSR (dB) 10k -40 Ceramic 1k -60 100 $1\mu f$ 10 -80 Tantalum 1 100 1k 10k 100k **10M** 1M1k 10k 100k 1M10M**Frequency** (Hz) **Frequency** (Hz)

Assume: Supply = 5V ± 20 mV (all white noise)

- To bring the noise to $\pm 1/4$ LSB (± 0.61 mV)
- PSR < 30.3 dB

Bypass Capacitors for Digital

Bypass Capacitor Types

- Filters Noise at High Frequency
 - Ceramic Small Case size, Inexpensive,
 Good Stability, Low Inductance
 - NPO
 - X7R
 - Acts as a Charge Reservoir for Fast Changes
 - Tantalum Electrolytic Small size, Large Values, Medium Inductance

ESR

ESL

Low-Pass Filter Missing

 Add anti-aliasing (or Low-Pass) Filter at the input of the ADC

Noise Reduction with Low-Pass Analog Filter

Analog Application Circuit

Slide 24

Analog Layout #3

Analog Application Board #3 Test Results

X Histogram 1200 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 2236 Span Control Statistics: Min Code = 2236 Automatic Span Adjust Span Locked Max Code = 2236 Min Code Span = 1 Max Code Mean = 2236 Std Dev = 0.00

Code Width of Noise = 1

(total samples = 1024)

How many bits?

12-bits

Analog Design Conclusions

• Use

- Low-noise devices
- Uninterrupted ground plane
- Low-pass anti-aliasing filter
- By-pass all devices
 - Place the capacitors as close to the power pins of the devices as possible.

Adding the Digital System

Schematic of the Digital Section

First Pass Combined Layout

Application Board #4

Combined Analog/Digital Test-Board Results

Code Width of Noise = 35

(total samples = 1024)

Identify the Noise Sources

- Device and Conducted noise sources
 - Switching noise generated by fast rise time signals
 - Switching noise generated by high voltage/current switching
- External noise sources
 - Externally generated Electro-Magnetic Interference or EMI
 - Externally generated Radio-Frequency Interference or RFI

Identify the Noise Sources

PCB Capacitance

- Decrease "L" or Increase "d" $C = \frac{w \cdot L \cdot e_0 \cdot e_r}{d}$
- Put Ground Guard Between Traces

pF

PCB Trace Resistance

Conducted Noise Pathway: Ground

- Pathway:
 - Fast rise time currents react with trace inductance to generate noise voltages
 - High currents react with trace resistance to generate noise voltages

Conducted Noise Pathway: Power

• Fast rise time generate noise

High currents generate noise

Conducted Noise Corrective Action: Power II

- Use low-pass filtering to isolate noise
 - Circuits on their own power traces
 - Creates higher series impedances
 - Bypass capacitors
 - present a low shunt impedance

Radiated Noise: EMI

Pathway: EMI

- Adjacent traces create unintended capacitors
- Adjacent traces create unintended transformers
- Corrective Action: EMI
 - Increased distance
 - Decrease common area

Mapping Out the Plan

- Draw design sections
- Add the connections

Revising the Plan

- Route to maximize isolation
 - Between noisy and sensitive blocks
 - Keep runs short

Revising the Plan Again

Identify additional isolation requirements

Re-layout the Board

- Layout the board using the plan
 - Isolation each section
 - Plan routing of power and ground for each section
 - Isolate sensitive signals from fast- and highcurrent signals
 - Identify wide traces
 - Identify short and wide traces

Application Board #5

Complete Board Layout

al Layout

New Composite Board Test Results

Code Width of Noise = 1

(total samples = 1024)

System Solution: What You Should Do

- Use low-noise analog parts
- Use an uninterrupted analog ground plane
- Filter the ADC with an analog low-pass filter
- Bypass all devices properly
- Develop a power and ground plan for the whole circuit
- Use software to create quiet times for conversions
- Use separate analog and digital voltage regulators
- Isolate noisy sections

References

- Reference Books
 - <u>High-speed Digital Design: A Handbook of Black Magic</u>, Howard Johnson and Martin Graham, Prentice Hall, 1993.
 - <u>Noise Reduction Techniques in Electronic Systems</u>, Henry Ott, John Wiley, N.Y., 1998.
 - <u>The RF Capacitor Handbook</u>, from American Technical Ceramics Inc.
 - The Circuit Designer's Companion, by Tim Williams
 - <u>Reference Data for Engineers</u>, 7th edition Edward C. Jordan, Editor in chief
 - <u>ABC's of Transformers & Coils</u>, by Edward J. Bukstein

Additional References

- Reference Application Notes
 - ADN 007, Techniques that Reduce System Noise in ADC Circuits
 - AN681, Reading and Using Fast Fourier Transforms (FFTs)
 - AN699, Anti-Aliasing, Analog Filters for Data Acquisition Systems
 - AN695, Interfacing Pressure Sensors to Microchip's Analog Peripherals
 - AN688, Layout Tips for 12-Bit A/D Converter Application
 - AN823, Analog Design in a digital World using Mixed Signal Controllers
- Web Addresses
 - http://www.csee.umbc.edu/~plusquel/650/slides/crosstalk1.html
- FilterLab[®] Active Filter Design Software
 - Down-loadable at www.microchip.com
 - Active, op amp filters