

927 EFB

Designing PIC® Microcontroller Circuits for EFT/ESD Compatibility - II

What is EMC?

- EMC- Electromagnetic Compatibility
 - Capability of an electronic system to function compatibly with other electronic systems and not produce or be susceptible to interference
 - A system is electromagnetically compatible if:
 - It does not cause interference with other systems
 - It is not susceptible to emissions from other systems
 - It does not cause interference with itself

Objectives

- Focus on EMC subgroups, Discuss PCB layout effect.
 - "It is not susceptible to emissions from other systems"
 - Electrical Fast Transients (EFT)
 - Electro Static Discharge (ESD)
 - "It does not cause interference with itself"
- Explain power and ground planning

Agenda

- PCB layout fundamentals
- Ground (/ Power) Planning
- Case Studies

Microchip EMC resources

- EMC Newsletter
 - Available on Appliance and Automotive design center
- EMC Webinars

PCB Layout Fundamentals

EMC Newsletter

Issue 2

PCB Layout

- Main Goal
 - Connect nodes

- For EMC performance
 - Minimize impedance in intended path
 - Maximize impedance in unintended path

PCB Layout Trace

- Trace
 - Low frequency = wire,
 - High frequency = Inductor

PCB Layout Trace Resistance

- Trace resistance is based on:
 - Trace length (x)
 - Trace thickness (t)
 - Trace width (w)

$$ρ = Resistivity$$
 $≈ 680 (nΩ-in), Cu (copper)$

 $t \approx 0.00137 \text{ in/oz, } Cu$

$$R \approx \frac{x}{w} \cdot (0.50 \text{ m}\Omega/), \quad 1 \text{ oz Cu}$$

PCB Layout Trace Inductance

For PCB traces

 $L \approx x (5 \text{ nH/in}) \ln(1 + 2\pi \text{ h/w})$, with ground plane

 $L \approx x (10 \text{ nH/in}) \ln(1 + 2\pi \text{ h/w})$, parallel ground return trace

10

PCB Layout Trace

- Trace Width Variation?
 - Trace resistance $\propto \frac{1}{w}$
 - Trace inductance $\propto \frac{1}{w}$

PCB Layout Trace Corners

Right angle corners

PCB Layout Vias

- Vias
 - Each via introduces ~2nH & ~0.5pF
 - Causes impedance mismatches and signal delays

PCB Layout Vias

Via impedances are quite important

 d_1 = via diameter

 d_2 = via pad diameter

 d_3 = ground clearance hole diameter

h = height of via (e.g., board thickness)

R ≈
$$\begin{aligned} h &(870 \text{ n}\Omega\text{-in}) \\ d_1^2 \\ C \approx & h d_2 \varepsilon_r (1.4 \text{ pF/in}) \\ d_3 - d_2 \end{aligned}$$

$$L \approx h (5 \text{ nH/in}) \ln(1 + 4 \text{ h/d}_1)$$

PCB Layout Fundamentals

- PCB Capacitor
 - Two conductors separated by dielectric
 - Low inductance capacitor

Two Layer PCB

PCB Layout Trace Capacitance

- Capacitance
 - Is caused by an electric field between two conductors
 - Depends on
 - Geometry
 - Separation
 - Dielectric (εr)

PCB Layout Trace Capacitance

Without ground plane

PCB Layout Fundamentals

Watch out for these antennas

Loop antenna

Dipole antenna

Transmission line

Radiation depends on A, L, I & f

PCB Layout Loop Inductance

- Inductance Is Based on Magnetic Flux
 - Loop Area
 - Geometry

 $L \approx (5 \text{ nH/in}) (2 \text{ x} \ln(2 \text{ y/d}) + 2 \text{ y} \ln(2 \text{ x/d}))$, single rectangular loop

 $L \approx 2\pi x (5 \text{ nH/in}) (ln(16 \text{ x/d}) - 2)$, single circular loop

Multi Layer Boards

- Use Multi-layer boards
 - Dedicated surface (s) to power and ground
 - Minimizes loop areas
 - Minimizes signal return path
 - Minimizes cross talk
 - May provide 10x to 1000x improvement

Two Layer Board

- Two layer board can achieve 95% effectiveness of Multi layer board
 - Route GND/ VDD traces carefully
 - Ground plane in selective area
 - Routing of critical signals
 - Return path for critical signals
- May provide optimum Cost to Performance ratio

Board Design Approach

- Identify the power/ ground sources and critical signals
- Partition layout into functional blocks
- Position all components with critical signal adjacent to each other
- Route power and ground traces
- Route critical signals and their return paths
- Route rest of the board

Example usage of PCB building blocks

Power entry & MOV (TS) location

Tips & Tricks Power, Ground & PCB Layout

PCB Layout Grounding

- Two most used grounding techniques
 - Single Point

Multi Point

- •Preferred for low frequency
- •No ground loops

- •Preferred for high frequency
- •Lesser parasitic inductance & capacitance

PCB Layout - Hybrid Grounding

- Hybrid Ground
 - Single point ground for analog system
 - Multi-point ground / grid for digital system
 - Capacitor for high frequency only ground
 - Inductor for low frequency only ground

PCB Layout Power lines

Poor- Daisy Chain

Best-Single Point

PCB Layout Power Lines

PCB Layout - Grounding

Typical Approach

Ground Planning

Identify ground type requirements

Microcontroller

Med-Low noise, Sensitive

Analog

Low noise, Very Sensitive

Triac / Relay

High noise Low Sensitivity

Seven segment display

Med-High noise, Low Sensitivity

Ground Planning

Suggested approach

PCB Layout Power Traces

- Power Traces
 - Loop size
 - Verify return paths

PCB Layout Power Traces Layout

PCB Layout Power Traces (Grid)

Alternate (to Planes) routing example

Case Study

Application

- Test Applications
 - Cost Sensitive Applications (Single layer Printed Circuit Boards (PCB))
 - Typical Application
 - Uses microcontroller and some digital glue logic
 - Uses some analog blocks
 - Does power control through Relays / Triacs
 - Uses transformerless power supply

IEC 61000-4-4 Test set-up (Power Supply ports)

Case Study Data Analysis Fail code

- (1) POR reset
- (2) RAM fail
- (3) Non POR reset
- (4) Misexecution
- (5) Program memory corruption
- (6) Data EE corruption
- NF No Fail at 4400V (Max for test equipment)

Case #1 Data

Coupling mode	Case #1 FailV	
L+	650 ⁽²⁾	
L-	900 ⁽²⁾	
N+	$800^{(2,3)}$	
N-	$450^{(2,3)}$	
LN+	1400 ⁽²⁾	
LN-	900 ⁽³⁾	

- Daughter board Rev 1 to Rev 2
 - Reset pin layout
 - Power and ground planning
 - PCB capacitor between power and ground
 - Optimized decoupling capacitor

Case #2 Data

Coupling mode	Case #1 FailV	Case #2 FailV	
L+	650 ⁽²⁾	4200 ⁽³⁾	
L-	900 ⁽²⁾	2100 ⁽³⁾	
N+	$800^{(2,3)}$	3000 ⁽²⁾	
N-	450 ^(2,3)	3700 ⁽³⁾	
LN+	1400 ⁽²⁾	3100 ^(2,3)	
LN-	900 ⁽³⁾	1500 ⁽³⁾	

- Mother board Rev 1 to Rev 2
 - Transient suppressor layout and placement
 - Isolated power and ground (Digital, Analog and High power)
 - Power and ground planning
 - PCB capacitor between power and ground
 - Common mode choke (PCB component)
 - Ground ring around sensitive signals

Case #3 Data

Coupling mode	Case #1 FailV	Case #2 FailV	Case #3 FailV
L+	650 ⁽²⁾	4200 ⁽³⁾	2900 ⁽²⁾
L-	900 ⁽²⁾	2100 ⁽³⁾	1500 ⁽²⁾
N+	$800^{(2,3)}$	3000 ⁽²⁾	1000 ⁽²⁾
N-	450 ^(2,3)	3700 ⁽³⁾	3000 ⁽²⁾
LN+	1400 ⁽²⁾	3100 ^(2,3)	NF
LN-	900 ⁽³⁾	1500 ⁽³⁾	1900 ⁽³⁾

Case #4 & #5

Case #4 Data

Coupling mode	Case #1 FailV	Case #2 FailV	Case #3 FailV	Case #4 FailV
L+	650 ⁽²⁾	4200 ⁽³⁾	2900 ⁽²⁾	NF
L-	900 ⁽²⁾	2100 ⁽³⁾	1500 ⁽²⁾	3400 ^(1,3)
N+	$800^{(2,3)}$	3000 ⁽²⁾	1000 ⁽²⁾	NF
N-	450 ^(2,3)	3700 ⁽³⁾	3000 ⁽²⁾	NF
LN+	1400 ⁽²⁾	3100 ^(2,3)	NF	NF
LN-	900 ⁽³⁾	1500 ⁽³⁾	1900 ⁽³⁾	2400 ^(1, 3)

- Case #4 to Case #5 changes
 - Same HW setup as case #4 except
 - Different load on power supply (Relay off)
 Or
 - Modified power supply to support higher load

Case #4 & #5 Data

		=			
Coupling mode	Case #1 FailV	Case #2 FailV	Case #3 FailV	Case #4 FailV	Case #5 FailV
L+	650 ⁽²⁾	4200 ⁽³⁾	2900 ⁽²⁾	NF	NF
L-	900 ⁽²⁾	2100 ⁽³⁾	1500 ⁽²⁾	3400 ^(1,3)	NF
N+	$800^{(2,3)}$	3000 ⁽²⁾	1000 ⁽²⁾	NF	NF
N-	450 ^(2,3)	3700 ⁽³⁾	3000 ⁽²⁾	NF	NF
LN+	1400 ⁽²⁾	3100 ^(2,3)	NF	NF	NF
LN-	900 ⁽³⁾	1500 ⁽³⁾	1900 ⁽³⁾	2400 ^(1, 3)	NF

Suggested Layout for PICmicro

Summary

- Reviewed tips & tricks to improve the system susceptibility against EFT/ ESD
- PCB layout and ground planning is very important.
- Hopefully case study will clarify the implementation side
- Many fixes for EFT & ESD helps for other EMC issues

Top Fixes

Suggested approach

Top Fixes

Best

Top Fixes

Microchip EMC resources

- EMC Newsletter
 - Available on Appliance and Automotive design center
- EMC Webinars

