

## 926 EFA

## Designing PIC<sup>®</sup> Microcontroller Circuits for EFT/ESD Compatibility - I



## **Objectives**

- Get basic understanding of EMC with emphasis on
  - Electrostatic Discharge (ESD)
  - Electrical Fast Transients
- Understand component selection criteria
- Get some guidelines on component placement

- EMC overview
- What is ESD?
- What is EFT?
- Component selection
- Component placement
- Microcontroller systems















# **Overview of EMC**

### EMC- Electromagnetic Compatibility

- Capability of an electronic system to function compatibly with other electronic systems and not produce or be susceptible to interference
- A system is electromagnetically compatible if:
  - It does not cause interference with other systems
  - It is not susceptible to emissions from other systems
  - It does not cause interference with itself



# **IEC Standards**

- 60601 -> Medical electrical equipment
- 61000-3 -> Electromagnetic Compatibility
- 61000-4-2 -> ESD
- 61000-4-3 -> Radiated Electromagnetic Field
- 61000-4-4 -> EFT/Burst
- 61000-4-5 -> Surge
- 61000-4-6 -> RF Field Conducted disturbances
- 61000-4-11 -> Voltage dips and interruptions



## **Cost of Addressing EMC**



Concept Design Layout Prototype Testing Production



## **Microchip EMC resources**

- EMC Newsletter
  - Available on Appliance and Automotive design center
- EMC Webinars





## **Noise fundamentals**





EMC Newsletter

Issue 2: Every Loop is an antenna, like it or not



## **Noise fundamentals**

#### Internal

• Switching (for Gaussian system 3dB  $_{BW=}\frac{0.35}{t_r}$ )





# What is ESD?



**EMC** Newsletter

Issue 1: What is ESD?



## What is ESD?

#### Discharge of Static Electricity





# Why do we care for ESD?





# Why do we care for ESD?

### Common Static Voltages

| Static Voltage as a function of Relative<br>Humidity (RH) | 20% RH kV | 80% RH kV |
|-----------------------------------------------------------|-----------|-----------|
| Walking across a vinyl floor                              | 12        | 0.25      |
| Walking across a synthetic carpet                         | 35        | 1.5       |
| Picking up a polyethylene bag                             | 20        | 0.6       |
| Sliding a styrene box on carpet                           | 18        | 1.5       |
| Removing mylar tape from a PC board                       | 12        | 1.5       |
| Triggering a vaccum solder remover                        | 8         | 1.0       |
| Aerosol circuit freeze spray                              | 15        | 5.0       |



## ESD

## ESD a "Context Sensitive" issue

- Semiconductor
- Manufacturing
- End user





## ESD

- Semiconductor perspective
  - JESD22-A114B for HBM
  - JESD22-A115A for MM
  - Refer: Microchip Overview, Quality Systems And Customer Interface Systems Handbook
  - Manufacturing perspective
    - Anti static work station
    - Wrist band
    - Grounded systems



# IEC 61000-4-2

- End User perspective
- The "System Level" standard defines
  - Test voltage waveform
  - Range of test levels
  - Test equipment
  - Test set-up
  - Test procedure











| Contact Discharge |                   | Air Discharge |                   |
|-------------------|-------------------|---------------|-------------------|
| Level             | Test Voltage (kV) | Level         | Test Voltage (kV) |
| 1                 | 2                 | 1             | 2                 |
| 2                 | 4                 | 2             | 4                 |
| 3                 | 6                 | 3             | 8                 |
| 4                 | 8                 | 4             | 15                |
| Х                 | Special           | Х             | Special           |



#### IEC 61000-4-2 Waveform Parameters

| Level | Voltage<br>(kV) | First<br>Peak<br>Current<br>(A) | Rise<br>time tr<br>nS | Current<br>at 30nS<br>(A) | Current<br>at 60nS<br>(A) |
|-------|-----------------|---------------------------------|-----------------------|---------------------------|---------------------------|
| 1     | 2               | 7.5                             | 0.7 to 1              | 4                         | 2                         |
| 2     | 4               | 15                              | 0.7 to 1              | 8                         | 4                         |
| 3     | 6               | 22.5                            | 0.7 to 1              | 12                        | 6                         |
| 4     | 8               | 30                              | 0.7 to 1              | 16                        | 8                         |



#### IEC 61000-4-2 Selection Of Test Levels

| Class | Min RH | Antistatic<br>material | Synthetic<br>Material | Peak<br>Voltage kV |
|-------|--------|------------------------|-----------------------|--------------------|
| 1     | 35     | $\checkmark$           |                       | 2                  |
| 2     | 10     | $\checkmark$           |                       | 4                  |
| 3     | 50     |                        | $\checkmark$          | 8                  |
| 4     | 10     |                        | $\checkmark$          | 15                 |



#### IEC 61000-4-2 Test set-up (Floor Standing Equipment)





**IEC 61000-4-2 Test Points** 

- Electrically isolated metallic sections
- Control or keyboard area and any other point of man-machine interface
- Indicators, LEDs, slots, grilles, connector hoods, etc.



# **ESD Strategy**

- Material selection
- Determine first point of contact
- Limit the current
- Low- inductance ground



# What is EFT?



EMC Newsletter

Issue 1: What is EFT?



# What is Electrical Fast Transients (EFT)?

 Bursts of interference pulses simulates inductively loaded switches.





# IEC 61000-4-4

- The "System Level" standard defines
  - Test voltage waveform
  - Range of test levels
  - Test equipment
  - Test set-up
  - Test procedure











| Level | Power Supply<br>Ports |                        | I/O signal, data and<br>control Ports |                        |
|-------|-----------------------|------------------------|---------------------------------------|------------------------|
|       | Voltage<br>Peak kV    | Repetition<br>rate kHZ | Voltage Peak<br>kV                    | Repetition rate<br>kHZ |
| 1     | 0.5                   | 5                      | 0.25                                  | 5                      |
| 2     | 1                     | 5                      | 0.5                                   | 5                      |
| 3     | 2                     | 5                      | 1.0                                   | 5                      |
| 4     | 4                     | 2.5                    | 2.0                                   | 5                      |
| X     | Special               | Special                | Special                               | Special                |



IEC 61000-4-4 Selection of Test Levels

- Test level selection criteria
  - Well-protected environment
  - Protected environment
  - Typical industrial environment
  - Severe industrial environment

- -> Level 1
- -> Level 2
- -> Level 3
- -> Level 4



## IEC 61000-4-4 Test equipment

- Polarity: Positive/ Negative
- Asynchronous to power supply
- Coupling
  - Power supply ports
    - Internal: Asymmetric: L, N, PE, L-N, L-PE,
    - N-PE, L-N-PE, 3phase
  - I/O and communication ports
    - Capacitive coupler



#### IEC 61000-4-4 Test set-up (Power Supply ports)





#### IEC 61000-4-4 Test set-up (Data I/O ports)





## **EFT Strategy**

- Line filters
- Transient protectors
- Isolation transformers
- Voltage regulators
- Isolated high power circuit



## IEC 61000-(4-2 Vs 4-4)

| Characteristics | ESD<br>(4-2)      | EFT<br>(4-4)                 |
|-----------------|-------------------|------------------------------|
| Max Voltage     | Up to 15kV        | Up to 4kV                    |
| Energy          | <10mJ             | <= 300mJ                     |
| Rep Rate        | Single<br>Impulse | Multiple<br>Pulses @<br>5KHz |
| Spectrum        | ~1GHz             | ~ 100MHz                     |



## **Component Selection**




### **Resistor Model**





$$\label{eq:starsess} \begin{split} & \underline{\text{Example}} \\ & \text{Metal film, axial resistor} \\ & \text{R} = 1.00 \ \text{M}\Omega \pm 1\% \\ & \text{L}_{\text{S}} \approx 5 \ \text{nH} \\ & \text{C}_{\text{P}} \approx 0.5 \ \text{pF} \end{split}$$



### **Resistor Impedance**





## Resistors

### SMT & Thin film resistors

- Good for high frequency response
- Not good for ESD protection. May arc around resistor.
- Metal film suitable for high power density or high accuracy circuits
- Wire wound resistors suitable for high power handling circuits
  - Don't use in high frequency sensitive circuits



# **Capacitors - Construction**

- Electrolytic winds metal foil spirally between thin layer of dielectric
- Tantalum block of dielectric with plates and pins attached
- Ceramic multiple parallel metal plates in a ceramic dielectric



## **Capacitors - Construction**





- Self Resonance (f<sub>0</sub>)
  - Impedance of inductor equals that of capacitor
  - Magnitudes of the impedance are same but opposite in sign
  - Net impedance of the circuit is the resistance





### **Capacitor Impedance**





## **Tantalum Capacitor Model**



Example SMT tantalum capacitor  $C = 10 \ \mu F \pm 20\%$ W.V. = 10 V





#### Tantalum Capacitor Impedance









Type Electrolytic Tantalum Paper Mica Ceramic Capacitors Approx. Max Frequency 100 kHz 1 MHz 5 MHz 500 MHz 1 GHz



- To provide low impedance for shunting or diverting noise currents to ground
  - Frequency content must be below self resonance frequency
- Sometimes multiple capacitors are needed to provide wider frequency filtering
- Frequent mistake is to make capacitance bigger to fix problem



- Electrolytic & Tantalum
  - Higher capacitance values
  - Low frequency filtering
  - Used for bulk charge storage
  - Electrolytic have high inductance
  - Tantalum have low ESR
- Ceramic capacitors
  - Smaller values of capacitance
  - Maintain ideal behavior up to much higher freq
  - Mid to high frequency filtering









### Bypass

- Shunts undesirable frequencies before they reach susceptible circuits
- Watch self resonance frequency as well as high impedance circuits
- Low impedance loads draw energy away from bypass capacitor
- Usually larger capacitance from electrolytic or tantalum capacitors



### Decoupling

- Devices that are switching couple noise onto the power supply (VDD & GND)
- Decoupling capacitors filter high frequency noise on power supply entering a device
- Should be placed as close to the power pins on the device
- Ceramic capacitors are usually used for decoupling because of the fast rise and fall times and their low ESR



- No parasitic inductance<sup>0</sup>
  - No difference between leaded & SMT
- Open loop: rod inductor
  - Magnetic field passes through air
- Closed loop: toroid
  - Magnetic field passes through core









- Open loop inductors increase EMI
- Closed loop inductors have very little susceptibility to external noise
- When using inductors to solve EMC issues
  - Usually only useful on signals that are DC or change infrequently
  - Impedance of load circuit is low
    - Parallel capacitors are better for high impedance loads



- Two types of core material
  - Iron: useful for low frequency (kHz)
  - Ferrite: useful for high frequency (MHz)
- Ferrite bead is a single turn inductor
  - Provide ~10dB attenuation at high frequencies
  - Low attenuation or resistive at low frequencies
  - Check frequency / impedance curve



#### **Transient Suppression Devices Comparison**

| Device       | V/I<br>curve            | Speed | Energy<br>cap | Loss | Cost           |
|--------------|-------------------------|-------|---------------|------|----------------|
| Ideal        | Sharp/<br>Flat          | Fast  | Infinite      | None | Free           |
| MOV          | Sharp/<br>Non-<br>Lin   | Med   | High          | High | Low            |
| SAD          | Sharp/<br>Flat          | Fast  | Low           | Low  | Mod            |
| GDT          | Erratic/<br>Non-<br>Lin | Slow  | High          | Low  | Mod to<br>High |
| Thyristor    | Sharp/<br>Flat          | Med   | High          | Low  | Mod            |
| Spark<br>Gap | Erratic/<br>Non-<br>Lin | Slow  | High          | Low  | Low            |



# Metal Oxide Varistor (MOV)

- Voltage Dependant Resistor
- Higher capacitance (Typ 1500 pF)
- High power handling capability
  - E.g. 6500 Amps @ 8 X 20 uS Pulse for 20mmMOV
- Short If fails
- Higher Leakage E.g. 5 mA @ operating V
- Performance degrades with transients



## Hybrid TVS





### **Quiz time**









EMC Newsletter

Issue 2: The art or Science of component placement



# **Floor Planning**

- Partition into functional areas
  - Separate different signals
    - Low frequency vs. high frequency
    - Low power vs. high power
  - Separate different functions
    - Analog vs. digital
    - Supply vs. signal
    - Power driver vs. signal conditioning



# **Floor Planning**

- Add isolation
  - Make high frequency signal paths
    - Short
    - Near the PCB edge connector
  - Use guard rings and traces
  - Add spacing between sections
- Do not use auto routers for analog / power sections



# **Circuit Segmentation**

- Circuit Segmentation
  - Physically separate circuits to reduce coupling
  - High current or high switching frequency circuits should be close to power supply





# Decoupling

#### Power supply decoupling





### **Capacitor Placement**

### Place bulk capacitors close to demand





### **Component Placement**

 Keep susceptible component away from PCB edge





### **Component Placement**

 Keep interfacing components close to PCB edge





### **Ferrite Bead Placement**







## **Component Placement**

#### Switcher & Load location





## **Power Line Filter Placement**

#### • Power line filter location



Poor



Good



# **Floor Planning**

High Power / Frequency Components Placed Near Connector

Separate Digital and Analog Portions of the Circuit







## **Floor Planning**




### **Quiz time**





## **Tips & Tricks**

#### **Microcontroller Circuits**





- I/O pins
- Interrupt pins
- Reset pin
- Power supply
- Oscillator
- Brown Out Reset (BOR)
- Watch Dog Timer (WDT)



#### Microcontroller Circuits I/O Pins





#### Interrupt Pins

- Edge triggered interrupts susceptible to noise
- Use level triggered type or sample interrupt pin inside ISR
- Use line terminations to reduce reflections, ringing or overshoot which can cause false interrupts
- Carefully route connections to interrupt traces/pins to reduce cross-talk



#### Reset Pins

- A series resistor to limit the amount of current entering the MCLR pin due to ESD or EOS
- A decoupling capacitor to attenuate high frequency noise
- Recommends pull-up resistor to VDD of <40 K $\Omega$





#### Reset Pins

#### MCLR is also VPP for programming

 If not performing ICSP<sup>™</sup> programming of the device in circuit, add diode to VDD for additional ESD protection





#### Reset Pins

- Some devices has a fuse setting to disable MCLR
- If MCLR functionality is not required then disable it.
- If MCLR disabled then..





- Single Supply Programming (PGM pin)
  - If Single Supply Programming (LVP) is enabled then...





#### External Watch Dog / Reset Control





### Power Supply

- Any noise on the power supply will enter all circuits on the board
- Must have adequate decoupling caps AND bulk charge storage caps







#### Microcontroller Circuits Oscillator

#### Oscillator

- Oscillator circuits are generally high impedance
- Susceptible to high frequency signal cross-talk or noise
  - Can induce jitter, out of spec duty cycle or complete oscillator failure





# Flow chart for WDT based reset recovery





## **Code for WDT recovery**

#### EXAMPLE 2: "PATTERN MATCHING" WDT RESET ROUTINE IN 'C'

```
const unsigned char PATTERN[]={"!@#$%^&*"}; //shift + <1 thru 8> on a 101 keyboard.
unsigned char Location [8] = {0,0,0,0,0,0,0,0};
unsigned char i;
void main (void)
       for (i = 0; i < 8;)
               if (Location[i] != PATTERN[i])
                                                // pattern match?
                                                       // no, then break
                       break;
               else i++;
                                                       // yes, then check next
       if (i != 8)
                                                       // all done
                                                      // no, then write pattern...
               for (i = 0; i < 8; i++)
                                                    // to RAM locations ...
                       Location[i] == PATTERN[i]; // and ...
               while(1):
                                                       // wait for WDT timeout
        else for (i = 0; i < 8; i++)
                                                       // yes, then clear RAM
               Location[i] = 0;
// Rest of the code
```



## **Resets - Sources**

- POR Power-On Reset (VDD slope)
- MCLR Master Clear Reset (pin voltage)
- WDT Watch Dog Timer Reset (time-out period)
- BOR Brown-Out Reset (VDD voltage)
- Software reset instruction (PIC18 only)
- Stack Condition (PIC18 only)



## **Identifying Reset Source**

| Condition                                        | Program<br>Counter    | RCON<br>Register | RI | то | PD | POR | BOR | STKFUL | STKUNF |
|--------------------------------------------------|-----------------------|------------------|----|----|----|-----|-----|--------|--------|
| Power-on Reset                                   | 0000h                 | 01 1100          | 1  | 1  | 1  | 0   | 0   | u      | u      |
| MCLR Reset during normal<br>operation            | 0000h                 | 0u uuuu          | u  | u  | u  | u   | u   | u      | u      |
| Software Reset during normal<br>operation        | 0000h                 | 00 uuuu          | 0  | u  | u  | u   | u   | u      | u      |
| Stack Full Reset during normal<br>operation      | 0000h                 | 0u uu11          | u  | u  | u  | u   | u   | u      | 1      |
| Stack Underflow Reset during<br>normal operation | 0000h                 | 0u uu11          | u  | u  | u  | u   | u   | 1      | u      |
| MCLR Reset during SLEEP                          | 0000h                 | 0u 10uu          | u  | 1  | 0  | u   | u   | u      | u      |
| WDT Reset                                        | 0000h                 | 0u 01uu          | 1  | 0  | 1  | u   | u   | u      | u      |
| WDT Wake-up                                      | PC + 2                | uu 00uu          | u  | 0  | 0  | u   | u   | u      | u      |
| Brown-out Reset                                  | 0000h                 | 01 11u0          | 1  | 1  | 1  | 1   | 0   | u      | u      |
| Interrupt wake-up from SLEEP                     | PC + 2 <sup>(1)</sup> | uu 00uu          | u  | 1  | 0  | u   | u   | u      | u      |

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'



## Defensive Software EMC Newsletter

Issue 4

- Periodic refresh of ports
- Polling inputs
- "Noise Proof" input scan

- Update All ports, once every 50/60 Hz or once in main
- Token passing or subroutine counters
- Reset based recovery
  - Simple State Machine
- Use the watchdog timer
  - Known reset loop, Fill unused memory with "goto \$"



## Summary

- IEC 61000-4-4 is a common system level standard for EFT/ Burst.
- IEC 61000-4-2 is a common system level standard for ESD.
- Many other standards are similar to this.
- Various systems requires various levels of protections



## Summary

- Reviewed tips & tricks to improve the system susceptibility against EFT/ ESD
- Component selection and placement is very important.
- Looked at some important tips for microcontroller circuits
- Many fixes for EFT & ESD helps for other EMC issues



## **Top Fixes**



Slide 43



## **Top Fixes**





## **Top Fixes**

#### Reset Pins

- A series resistor to limit the amount of current entering the MCLR pin due to ESD or EOS
- A decoupling capacitor to attenuate high frequency noise
- Recommends pull-up resistor to VDD of <40K $\Omega$





## **Microchip EMC resources**

- EMC Newsletter
  - Available on Appliance and Automotive design center
- EMC Webinars





## **EMC References**

- The Designer's Guide to Electromagnetic Compatibility by Daryl Gerke and Bill Kimmel EDN (www.ednmag.com)
- Noise Reduction Techniques in Electronic Systems by Henry W. Ott
- Printed Circuit Board Design Techniques for EMC Compliance by Mark I. Montrose
- Microchip MASTERs classes 720EMC, 719NRT, 649PCB, 844EMC



## **Standards Web Site**

- Federal Communications Commission www.fcc.gov
- International Electrotechnical Commission www.iec.ch
- MIL Standards (military) www.mil-standards.com
- Society of Automotive Engineers www.sae.org