
when either the input or output is shorted. Internal to the LM117 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25V or less and $10\mu\text{F}$ capacitance. Figure 3 shows an LM117 with protection diodes included for use with outputs greater than 25V and high values of output capacitance.

$$V_{OUT} = 1.25V \left(1 + \frac{R2}{R1}\right) + I_{ADJ}R2$$

D1 protects against C1 D2 protects against C2

FIGURE 3. Regulator with Protection Diodes

When a value for $\theta_{(H-A)}$ is found using the equation shown, a heatsink must be selected that has a value that is less than or equal to this number.

 $\theta_{(H-A)}$ is specified numerically by the heatsink manufacturer in the catalog, or shown in a curve that plots temperature rise vs power dissipation for the heatsink.

HEATSINKING TO-263, SOT-223 AND TO-252 PACKAGE PARTS

The TO-263 ("S"), SOT-223 ("MP") and TO-252 ("DT") packages use a copper plane on the PCB and the PCB itself as a heatsink. To optimize the heat sinking ability of the plane and PCB, solder the tab of the package to the plane.

Figure 4 shows for the TO-263 the measured values of $\theta_{(J-A)}$ for different copper area sizes using a typical PCB with 1 ounce copper and no solder mask over the copper area used for heatsinking.

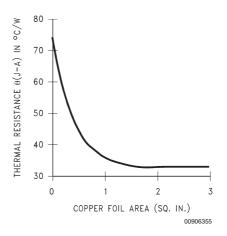


FIGURE 4. $\theta_{(J-A)}$ vs Copper (1 ounce) Area for the TO-263 Package

As shown in the figure, increasing the copper area beyond 1 square inch produces very little improvement. It should also be observed that the minimum value of $\theta_{(J-A)}$ for the TO-263 package mounted to a PCB is 32°C/W.

As a design aid, *Figure 5* shows the maximum allowable power dissipation compared to ambient temperature for the TO-263 device (assuming $\theta_{(J-A)}$ is 35°C/W and the maximum junction temperature is 125°C).

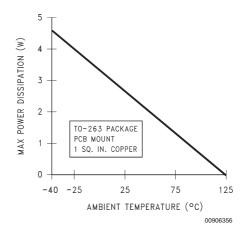


FIGURE 5. Maximum Power Dissipation vs T_{AMB} for the TO-263 Package

Figure 6 and Figure 7 show the information for the SOT-223 package. Figure 7 assumes a $\theta_{(J-A)}$ of 74°C/W for 1 ounce copper and 51°C/W for 2 ounce copper and a maximum junction temperature of 125°C.

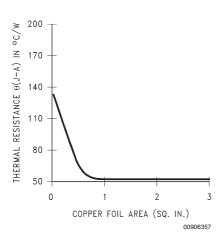


FIGURE 6. $\theta_{\text{(J-A)}}$ vs Copper (2 ounce) Area for the SOT-223 Package

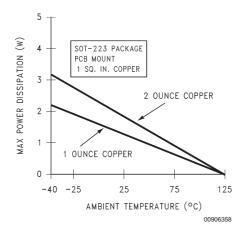


FIGURE 7. Maximum Power Dissipation vs T_{AMB} for the SOT-223 Package

The LM317 regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the LM317 must be within the range of 0°C to 125°C. A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. To deter-

mine if a heatsink is needed, the power dissipated by the regulator, $\mathbf{P}_{\mathrm{D}},$ must be calculated:

$$I_{IN} = I_L + I_G$$

$$\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{IN} - \mathsf{V}_\mathsf{OUT}) \; \mathsf{I}_\mathsf{L} + \mathsf{V}_\mathsf{IN} \mathsf{I}_\mathsf{G}$$

Figure 8 shows the voltage and currents which are present in the circuit.

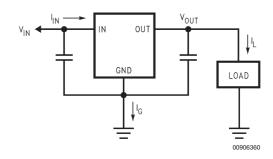


FIGURE 8. Power Dissipation Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, $T_{\rm R}({\rm max})$:

$$T_{R}(max) = T_{J}(max) - T_{A}(max)$$

where $T_J(max)$ is the maximum allowable junction temperature (125°C), and $T_A(max)$ is the maximum ambient temperature which will be encountered in the application.

Using the calculated values for $T_{R}(\text{max})$ and $P_{D},$ the maximum allowable value for the junction-to-ambient thermal resistance (θ_{JA}) can be calculated:

$$\theta_{JA} = T_{R}(max)/P_{D}$$

If the maximum allowable value for θ_{JA} is found to be $\geq\!92^\circ\text{C/W}$ (Typical Rated Value) for TO-252 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θ_{JA} falls below these limits, a heatsink is required.

As a design aid, *Table 1* shows the value of the θ_{JA} of TO-252 for different heatsink area. The copper patterns that we used to measure these $\theta_{JA}s$ are shown at the end of the Application Notes Section. *Figure 9* reflects the same test results as what are in the *Table 1*

Figure 10 shows the maximum allowable power dissipation vs. ambient temperature for the TO-252 device. Figure 11 shows the maximum allowable power dissipation vs. copper area (in²) for the TO-252 device. Please see AN1028 for power enhancement techniques to be used with SOT-223 and TO-252 packages.

TABLE 1. θ_{JA} Different Heatsink Area

Layout	Copper Area		Thermal Resistance
	Top Side (in²)*	Bottom Side (in ²)	(θ _{JA} °C/W) TO-252
1	0.0123	0	103
2	0.066	0	87
3	0.3	0	60
4	0.53	0	54
5	0.76	0	52
6	1	0	47
7	0	0.2	84
8	0	0.4	70
9	0	0.6	63

www.national.com

TABLE 1. θ_{JA} Different Heatsink Area (Continued)

Layout	Copper Area		Thermal Resistance
10	0	0.8	57
11	0	1	57
12	0.066	0.066	89
13	0.175	0.175	72
14	0.284	0.284	61
15	0.392	0.392	55
16	0.5	0.5	53

Note: * Tab of device attached to topside of copper.

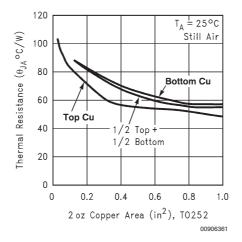


FIGURE 9. θ_{JA} vs 2oz Copper Area for TO-252

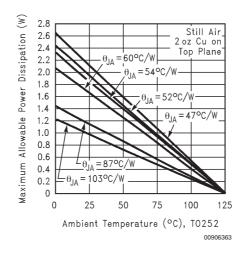


FIGURE 10. Maximum Allowable Power Dissipation vs. Ambient Temperature for TO-252

11 www.national.com



FIGURE 11. Maximum Allowable Power Dissipation vs. 2oz Copper Area for TO-252

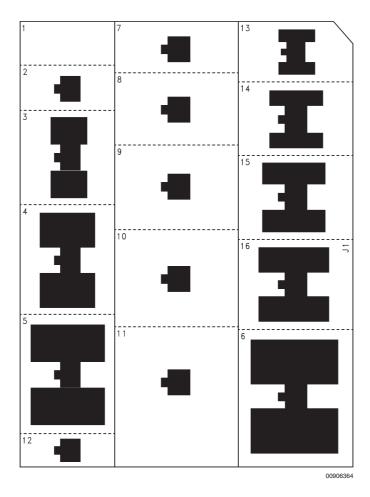


FIGURE 12. Top View of the Thermal Test Pattern in Actual Scale

www.national.com 12

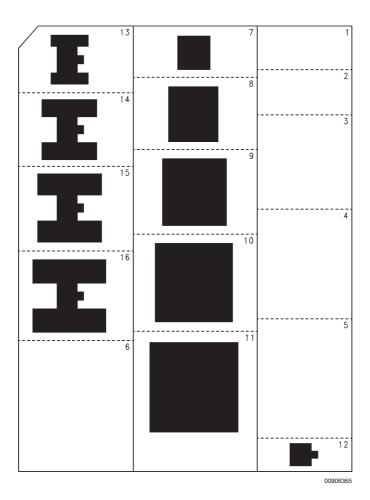


FIGURE 13. Bottom View of the Thermal Test Pattern in Actual Scale