Instruction Timing

18.1 About instruction timing

The timing information in this chapter covers each instruction in addition to interactions
between instructions. It also contains information about factors that influence timings.

When looking at timings, it is important to understand the role that the system
architecture plays. Every instruction must be fetched and every load/store must go out
to the system. These factors are described along with intended system design, and the
implications for timing.

18-2 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

18.2

Processor instruction timings

Instruction Timing

Table 18-1 shows the Thumb-2 subset supported in the ARMv7-M architecture. It
provides cycle information including annotations to explain how instruction stream
interactions affect timing. System effects, such as running code from slower memory,

are also considered.

Table 18-1 Instruction timings

Instruction type Size Cycles count Description

Data operations 16 1 (+P2if PC is destination) =~ ADC, ADD, AND, ASR, BIC, CMN, CMP, CPY, EOR,
LSL, LSR, MOV, MUL, MVN, NEG, ORR, ROR, SBC,
SUB, TST, REV, REVH, REVSH, SXTB, SXTH, UXTB,
and UXTH. MUL is one cycle.

Branches 16 1+Pa B<cond>, B, BL, BX, and BLX. No BLX with immediate.
If branch taken, pipeline reloads (two cycles are added).

Load-store Single 16 26 (+P2 if PC is destination) ~ LDR, LDRB, LDRH, LDRSB, LDRSH, STR, STRB, and
STRH, and T variants.

Load-store 16 1+Nb (+P2 if PC loaded) LDMIA, POP, PUSH, and STMIA.

Multiple

Exception 16 - BKPT stops in debug if debug enabled, fault if debug

generating disabled.
SVC faults to SVCall handler (see ARMv7-M architecture
specification for details).

Data operations 32 1 (+P2if PC is destination) ~ ADC{S}. ADD{S}, CMN, RSB{S}, SBC{S}, SUB{S},

with immediate CMP, AND{S}, TST, BIC{S}, EOR{S}, TEQ, ORR{S},
MOV{S}, ORN{S}, and MVN({S}.

Data operations 32 1 MOVW, MOVT, ADDW, and SUBW. MOVW and MOVT

with large have a 16-bit immediate (so can replace literal loads from

immediate memory). ADDW and SUBW have a 12-bit immediate (so
also can replace many from memory literal loads).

Bit-field 32 1 BFI, BFC, UBFX, and SBFX. These are bitwise operations

operations that enable control of position and size in bits. These both
support C/C++ bit fields (in structs) in addition to many
compare and some AND/OR assignment expressions.

Data operations 32 1 (+P2if PC is destination) =~ ADC{S}. ADD{S}, CMN, RSB{S}, SBC{S}, SUB{S},

with 3 register

CMP, AND{S}, TST, BIC{S}, EOR{S}, TEQ, ORR{S},
MOV{S}, ORN{S}, and MVN{S}. No PKxxx
instructions.

ARM DDI 0337E

Copyright © 2005, 2006 ARM Limited. All rights reserved.

18-3

Instruction Timing

Table 18-1 Instruction timings (continued)

Instruction type Size Cycles count Description

Shift operations 32 1 ASR{S}, LSL{S}, LSR{S}, ROR{S}, and RRX{S}.

Miscellaneous 32 1 REV,REVH, REVSH, RBIT, CLZ, SXTB, SXTH, UXTB,
and UXTH. Extension instructions same as corresponding
ARM v6 16-bit instructions.

Table Branch 16 4+4Pa Table branches for switch/case use. These are LDR with
shifts and then branch.

Multiply 32 lor2 MUL, MLA, and MLS. MUL is one cycle and MLA and
MLS are two cycles.

Multiply with 32 3-7¢ UMULL, SMULL, UMLAL, and SMLAL. Cycle count

64-bit result based on input sizes. That is, ABS(inputs) < 64K
terminates early.

Load-store 32 - Supports Format PC+/-imm12, Rbase+imm12,

addressing Rbase+/-imm8, and adjusted register including shifts. T
variants used when in Privilege mode.

Load-store Single 32 2b (+Pa if PC is destination) =~ LDR, LDRB, LDRSB, LDRH, LDRSH, STR, STRB, and
STRH, and T variants. PLD and PLI are both hints and so
act as a NOP.

Load-store 32 1+Nb (+P2 if PC is loaded) STM, LDM, LDRD, and STRD.

Multiple

Load-store Special 32 1+Nb LDREX, STREX, LDREXB, LDREXH, STREXB,
STREXH, CLREX. These fault if no local monitor (is IMP
DEF). LDREXD and STREXD are not included in this
profile.

Branches 32 1+Pa B, BL, and B<cond>. No BLX (1) because it always
changes state. No BX]J.

System 32 1-2 MSR(2) and MRS(2) replace MSR/MRS but also do more.
These access the other stacks and also the status registers.
CPSIE/CPSID 32-bit forms are not supported.

No RFE or SRS.

System 16 1-2 CPSIE and CPSID are quick versions of MSR(2)
instructions and use the standard Thumb-2 encodings, but
only permit use of i and f and not a.

Extended32 32 1 NOP and YIELD (hinted NOP). No MRS (1), MSR (1), or
SUBS (PC return link).

18-4 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Instruction Timing

Table 18-1 Instruction timings (continued)

Instruction type Size Cycles count Description

Combined Branch 16 1+Pa CBZ.

Extended 16 0-1d IT and NOP (includes YIELD).

Divide 32 2-12¢ SDIV and UDIV. 32/32 divides both signed and unsigned

with 32-bit quotient result (no remainder, it can be derived
by subtraction). This earlies out when dividend and divisor
are close in size.

Sleep 32 1+WfE WFI, WFE, and SEV are in the class of hinted NOP
instructions that control sleep behavior.

Barriers 16 1+Bsg ISB, DSB, and DMB are barrier instructions that ensure
certain actions have taken place before the next instruction
is executed.

Saturation 32 1 SSAT and USAT perform saturation on a register. They
perform three tasks. They normalize the value using shift,
test for overflow from a selected bit position (the Q value)
and set the xPSR Q bit. Saturation refers to the largest
unsigned value or the largest/smallest signed value for the
size selected.

a. Branches take one cycle for instruction and then pipeline reload for target instruction. Non-taken branches are 1 cycle total.
Taken branches with an immediate are normally 1 cycle of pipeline reload (2 cycles total). Taken branches with register
operand are normally 2 cycles of pipeline reload (3 cycles total). Pipeline reload is longer when branching to unaligned 32-bit
instructions in addition to accesses to slower memory. A branch hint is emitted to the code bus that permits a slower system
to pre-load. This can reduce the branch target penalty for slower memory, but never less than shown here.

b. Generally, load-store instructions take two cycles for the first access and one cycle for each additional access. Stores with
immediate offsets take one cycle.

c¢. UMULL/SMULL/UMLAL/SMLAL use early termination depending on the size of source values. These are interruptible
(abandoned/restarted), with worst case latency of one cycle. MLAL versions take four to seven cycles and MULL versions
take three to five cycles. For MLAL, the signed version is one cycle longer than the unsigned.

d. IT instructions can be folded.

e. DIV timings depend on dividend and divisor. DIV is interruptible (abandoned/restarted), with worst case latency of one cycle.
When dividend and divisor are similar in size, divide terminates quickly. Minimum time is for cases of divisor larger than
dividend and divisor of zero. A divisor of zero returns zero (not a fault), although a debug trap is available to catch this case.

f. Sleep is one cycle for the instruction plus as many sleep cycles as appropriate. WFE only uses one cycle when event has
passed. WFI is normally more than one cycle unless an interrupt happens to pend exactly when entering WFL

g. ISB takes one cycle (acts as branch). DMB and DSB take one cycle unless data is pending in the write buffer or LSU. If an
interrupt comes in during a barrier, it is abandoned/restarted.

Cycle count information:
. P = pipeline reload
. N = count of elements

ARM DDI 0337E Copyright © 2005, 2006 ARM Limited. All rights reserved. 18-5

Instruction Timing

. W =sleep wait
. B = barrier clearance.

In general, each instruction takes one cycle (one core clock) to start executing as shown
in Table 18-1 on page 18-3. Additional cycles can be taken because of fetch stalls.

18-6 Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

Instruction Timing

18.3 Load-store timings

This section describes how best to pair instructions. This achieves more reductions in
timing.

STR Rx,[Ry,#imm] is always one cycle. This is because the address generation is
performed in the initial cycle, and the data store is performed at the same time as
the next instruction is executing. If the store is to the store buffer, and the store
buffer is full, the next instruction is delayed until the store can complete. If the
store is not to the store buffer (such as to the Code segment) and that transaction
stalls, the impact on timing is only felt if another load or store operation is
executed before completion.

LDR Rx!,[any] is not normally pipelined. That is, base update load is generally at
least a two-cycle operation (more if stalled). However, if the next instruction does
not require to read from a register, the load is reduced to one cycle. Non register
reading instructions include CMP, TST, NOP, and non-taken IT controlled
instructions.

LDR PC,[any] is always a blocking operation. This means minimally two cycles
for the load, and three cycles for the pipeline reload. So at least five cycles (more
if stalled on the load or the fetch).

LDR Rx,[PC,#imm] might add a cycle because of contention with the fetch unit.

TBB and TBH are also blocking operations. These are minimally two cycles for
the load, one cycle for the add, and three cycles for the pipeline reload. This
means at least six cycles (more if stalled on the load or the fetch).

LDR any are pipelined when possible. This means that if the next instruction is
an LDR or non-base updating STR, and the destination of the first LDR is not
used to compute the address for the next instruction, then one cycle is removed
from the cost of the next instruction. So, an LDR might be followed by an STR,
so that the STR writes out what the LDR loaded. More multiple LDRs can be
pipelined together. Some optimized examples:

— LDRRO,[R1]; LDR R1,[R2] - normally three cycles total
— LDRRO,[R1,R2]; STR RO,[R3,#20] - normally three cycles total
— LDRRO,[R1,R2]; STR R1,[R3,R2] - normally three cycles total

— LDRRO,[R1,R5]; LDR R1,[R2]; LDR R2,[R3,#4] - normally four cycles
total.

ARM DDI 0337E

Copyright © 2005, 2006 ARM Limited. All rights reserved. 18-7

Instruction Timing

STR with register offset cannot be pipelined after. STR can only be pipelined
when after an LDR, but nothing can be pipelined after the store. Even a stalled
STR normally only take two cycles, because of the store buffer (bit band, data
segment, and unaligned).

LDREX and STREX can be pipelined exactly as LDR. Because STREX is treated
more like an LDR, it can be pipelined as explained for LDR. Equally LDREX is
treated exactly as an LDR and so can be pipelined.

LDRD, STRD cannot be pipelined with preceding or following instructions.
However, the two words are pipelined together. So, three cycles when not stalled.

LDM, STM cannot be pipelined with preceding or following instructions.
However, all elements after the first are pipelined together. So, a three element
LDM takes 2+1+1 or 5 cycles when not stalled. Similarly, an eight element store
takes nine cycles when not stalled. When interrupted, LDM and STM instructions
continue from where left off when returned to. The continue operation adds one
or two cycles to the first element to get started.

Unaligned Word or Halfword Loads or stores add penalty cycles. A byte aligned
halfword load or store adds one extra cycle to perform the operation as two bytes.
A halfword aligned word load or store adds one extra cycle to perform the
operation as two halfwords. A byte-aligned word load or store adds two extra
cycles to perform the operation as a byte, a halfword, and a byte. These numbers
increase if the memory stalls. A STR or STRH cannot delay the processor because
of the store buffer.

18-8

Copyright © 2005, 2006 ARM Limited. All rights reserved. ARM DDI 0337E

