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1. Ratings of transistors 

1.1. Maximum ratings of transistors 

For transistors, the maximum allowable current, voltage, power dissipation and other 

parameters are specified as maximum ratings. 

In designing a transistor circuit, understanding maximum ratings is crucial to ensure that 

transistors operate within the target operating time and with sufficient reliability. 

One of the characteristics of semiconductor devices including transistors is that their electrical 

characteristics are very sensitive to temperature. Therefore, the maximum ratings are 

determined by considering the temperature rise of the device. When a voltage applied to a 

transistor is constant, its electrical conductivity increases with the ambient temperature. 

Consequently, a current flowing through the transistor increases, increasing the power 

consumed. This, in turn, causes the temperature to rise further. If the temperature exceeds a 

limit, the transistor is eventually damaged. 

In order to ensure the expected useful life and reliability of transistors, their maximum ratings 

must not be exceeded. Since the maximum ratings are limited by the materials, circuit designs, 

and manufacturing conditions used, they differ from transistor to transistor. For transistors, the 

maximum ratings are defined based on the absolute maximum rating approach. 

The absolute maximum ratings are the highest values that must not be exceeded during 

operation even instantaneously. When two or more ratings are specified, two ratings can not be 

applied to the transistor at the same time. 

Exposure to a condition exceeding a maximum rating may cause permanent degradation of its 

electrical characteristics. Care should be exercised as to supply voltage bounces, variations in 

the characteristics of circuit components, possible exposure to stress higher than the maximum 

ratings during circuit adjustment, changes in ambient temperature, and input signal 

fluctuations. 

The maximum ratings of transistors are mainly decided with respect to emitter, base, and 

collector currents, terminal-to-terminal voltages, collector power dissipation, junction 

temperature, and storage temperature. These parameters are interrelated and cannot be 

considered separately. They also depend on external circuit conditions. 
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1.2. Voltage ratings 

A transistor composes an input/output circuit containing an emitter, base or collector. Either 

terminal is used as a common terminal in the circuit. Therefore, the collector-base voltage VCB, 

collector-emitter voltage VCE, and emitter-base voltage VEB ratings are specified for transistors. 

There are two types of breakdown voltages that determine the voltage ratings: those inherent 

to a transistor such as V(BR)CBO and V(BR)CEO and those dependent on the base circuit conditions 

such as V(BR)CER and V(BR)CEX. 

 

(1) Collector voltage ratings  

(a) 

 

 

 

(b) 

 

  
(c) 

 

 

(d) 

 

 

 
(e) 
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Figure 1.1 Collector breakdown voltages  

   The collector voltage ratings are important since bipolar transistors are generally used in   

   the common-base or common-emitter configuration. 

   Figure 1.1 shows various collector breakdown voltages specified for bipolar transistors,     

   which  are defined as: 

V(BR)CBO : Collector-base breakdown voltage with emitter open 

V(BR)CEO : Collector-emitter breakdown voltage with base open 

V(BR)CES : Collector-emitter breakdown voltage with base short-circuited to emitter 

V(BR)CER : Collector-emitter breakdown voltage with resistor between base and emitter 

V(BR)CEX : Collector-emitter breakdown voltage with base and emitter reverse-biased 
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   The collector breakdown voltages have the following relationship:  

    V(BR)CBO > V(BR)CES > V(BR)CEX > V(BR)CER > V(BR)CEO 

   The values of V(BR)CEO and V(BR)CES are almost the same. 

 

 

(a)  Collector-base breakdown voltage with emitter open: V(BR)CBO 

－ Common-emitter avalanche breakdown voltage (VB) － 

 

   V(BR)CBO is equivalent to the characteristics of the collector-base diode of a transistor. 

   When the collector and base terminals are biased in the reverse direction, a very small cut 

 -off current (ICBO) flows between the collector and base. As the reverse voltage is increased, 

 the electric field in the depletion region of the pn junction increases.  

As a result, minority carriers gain sufficient energy from the electric field and the minority 

carriers collide with silicon atoms in the depletion region, which break the covalent bonds and 

generate electron-hole pairs. When the electric field is strong enough, the charge carriers are 

accelerated to high enough speeds to knock other bound electrons free, creating more free 

charge carriers. This knocking-out process continues, rapidly increasing the current and 

creating avalanche multiplication. This avalanche breakdown phenomenon limits the  

maximum voltage that can be applied to a transistor. 

The avalanche multiplication coefficient, M, can be empirically determined and given by 

Equation 1-1: 

M =
1

 1 - ( 
VCB 
VB

 )
n  ･･･････････････････････････････････････････････････････････････････････  (1–1) 

   The current amplification factor, α, is: 

α = α0 M ････････････････････････････････････････････････････････････････････････････････  (1–2) 

         VB   :  Breakdown voltage 

         VCB  :  Collector-base voltage 

         α0   :  Common-base current amplification factor at a voltage that does not cause     

              avalanche multiplication 

         n    :  Dependent on the type of a transistor; 2 to 4 for PNP transistors and 2 to 3 for 

                NPN transistors 
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   VB is determined by the dopant concentration on the high-resistivity side of a junction. 

   The higher the dopant concentration, the smaller the VB value. The maximum breakdown 

   voltage is determined by VB. It should be noted, however, that the maximum V(BR)CBO    

   value specified as an absolute maximum rating is a voltage at the specified current. The  

   maximum  V(BR)CBO  value is smaller than VB. 

   The temperature coefficient of VB is positive because it is related to carrier mobility. Since  

   ICBO increases with temperature, the V(BR)CBO value may become smaller in the low-current  

   region at high temperature. 

   In a common-base configuration, the collector current IC is calculated as follows: 

IC = α IE + M ICBO ･･･････････････････････････････････････････････････････････････････････  (1–3) 

 

 

(b) Collector-emitter breakdown voltage with base open: V(BR)CEO 

   － Common-emitter avalanche breakdown voltage (VA) － 

 

   In a common-emitter configuration, avalanche breakdown occurs when the common- 

   emitter current amplification factor (β) is infinite. 

   β can be calculated as follows using α0:  

β = 
α0 M

 1 - α0 M 
 ･･････････････････････････････････････････････････････････････････････････････  (1–4) 

   When α0M = 1 (i.e., M = 1/α0), β becomes infinite, causing an avalanche multiplication    

  process to occur.  

   When the voltage applied across the collector and emitter terminals is high, carriers        

   diffuse into the collector from the base. As a result, the base-emitter diode of a transistor    

   is forward-biased, causing the transistor to turn on. When the collector-base voltage VCB     

   reaches VA, the number of carriers generated by avalanche multiplication equals the         

   number of carriers (γ β0 = α0) that are injected at an emitter injection efficiency of γ and     

   transported to the  depletion region at a base transport factor of β0. This causes the         

   collector current to continue flowing without the need for a base current supply. 

   Because M = 1/α0, Equation 1-1 can be restated as: 

α0 = 1 - ( 
 VCB 

VB

 )

n

 ････････････････････････････････････････････････････････････････････････  (1–5) 
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   Solving Equation 1-5 for the common-emitter avalanche breakdown voltage VA at which   

   α0M = 1 gives: 

VA = VB
n

 √ 1 - α0  ≈ V(BR)CEO ･･･････････････････････････････････････････････････････････  (1–6) 

 

   At a collector voltage lower than VA, the base current IB flows in the forward direction,     

   causing β to be positive. At a collector voltage higher than VA, the base current IB flows in the 

   reverse direction, causing β to be negative. Figure 1.2 shows the relationship between β and 

   the current amplification factor α as a function of the collector voltage. When the input base  

   current is constant, the collector current IC of a transistor in a common-emitter configuration 

   can be calculated as follows: 

IC = β IB + ( β + 1 ) M ICBO ････････････････････････････････････････････････････････････  (1–7) 

         β : Common-emitter current amplification factor 

 

   The temperature dependence of V(BR)CEO is determined by the temperature dependence of 

   VB, α0, and ICBO (ICEO). In this case, the temperature coefficient is positive or negative. 

 

 

(c)  Common-emitter breakdown voltages under different base circuit conditions: V(BR)CER,    

      V(BR)CES, and V(BR)CEX 

 

   When the base terminal is connected to the emitter terminal through a resistor (RB) as    

   shown in Figure 1.1 (d), the collector cut-off current MICBO flows through the internal base   

   resistor rb and the external resistor RB. If the resulting voltage drop MICBO(RB + rb) causes the 

   base-emitter junction to be forward-biased, emitter injection occurs, leading to collector- 

 emitter breakdown. 

   The voltage at which this breakdown occurs, V(BR)CER, is calculated as follows: 

V(BR)CER = VB
n√ 1 - 

 ICBO ( RB + rb ) 

Vd

 ･･･････････････････････････････････････････････････  (1–8) 

 

       Vd  :  Base-emitter threshold voltage  
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   VCER is logarithmically inversely proportional to RB. Therefore, a transistor exhibits the     

   highest breakdown voltage when RB = 0. V(BR)CES represents the collector-emitter           

   breakdown voltage with base and emitter short-circuited (see Figure 1.1 (c)). 

   When the base terminal is open-circuited (i.e., when RB = ∞), the transistor behavior is    

   determined by β. At this time, the cut-off current MICBO flows through the base terminal of a 

   transistor, causing a collector current equal to (β + 1)MICBO to flow. Breakdown occurs at a  

   collector-emitter voltage that causes β to become infinite. This common-emitter voltage is   

   defined above as the common-emitter avalanche voltage VA. 

   When RB is a non-zero value, the breakdown voltage is between VA and VB. 

   When emitter injection begins, the current     

   amplification factor α (= α0M) becomes greater  

   than unity while β becomes negative. Figure 1.2 

   indicates that when VCE > VA, β negatively      

   increases as VCE decreases. At the breakdown   

   point, emitter injection occurs, causing IC to     

   increase sharply. Due to internal resistance, an   

   increase in IC causes a drop in collector voltage,  

   which, in turn, causes an increase in β and IC. 

 

Figure 1.2 Collector voltage vs. 

current amplification factor 

   This phenomenon occurs continuously, showing negative resistance characteristics, and    

   causes the breakdown voltage to approach VA as  β tends to ∞. 

   Figure 1.3 (a) shows the relationship between RB and breakdown voltage. Figure 1.3 (b)   

   shows the relationships between V(BR)CER and RB and between lCER and RB. All these curves  

   depict the same characteristics. 

   When RE is connected to the emitter as shown in Figure 1.1 (e), RE produces a negative 

   feedback effect, causing the breakdown voltage VA’ to increase according to Equation 1-9. 

   When the base and emitter terminals are reverse-biased as shown in Figure 1.1 (f), a    

   transistor exhibits the highest breakdown voltage at a collector-emitter voltage when      

   emitter injection occurs, as is the case with V(BR)CER. As the collector-emitter voltage       

   increases, VEB produces a negative feedback effect, causing the breakdown voltage to     

   approach VA asymptotically. At this time, the maximum voltage of VCEX, which is given by  

   Equation 1-10, is greater than V(BR)CES. 
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(a) 

 
 

 

(b) 

Figure 1.3 Relationship between RB and breakdown voltage 

 

VA' = VB
n√ 1 - 

α0 RB 

 RB + RE 
 ････････････････････････････････････････････････････････････････  (1–9) 

V(BR)CEX = VB
n√ 1 - 

ICBO rb 

 Vd + VEB 
  ･････････････････････････････････････････････････････････  (1–10) 

 

(2) Emitter-base voltage rating 

   The emitter-base breakdown voltage with collector open-circuited, V(BR)EBO, is             

 qualitatively  similar to V(BR)CBO. However, since a typical transistor has high dopant          

 concentration in the emitter layer, V(BR)EBO is a few volts. When the breakdown voltage is    

 lower than about 6 V, Zener breakdown occurs due to the tunneling effect instead of the     

 avalanche breakdown described so far. 

   Care should be exercised to ensure that the base-emitter junction is not reverse-biased    

 at  an excessive voltage since this voltage generally degrades or damages a transistor. 

 

(3) Measurement of voltage ratings 

   The maximum voltage that appears across a given terminal pair is measured by           

 applying a specified current to a specific terminal under specified conditions. Generally, the   

 peak of a half sine wave (e.g., curve tracer) for measurement is adjusted to the specified    

 current value. A DC current must not be used for measurement since a DC current could     

 inflict thermal damage  to a device. 
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1.3. Current ratings 

Transistors have plural current ratings: IEmax or the maximum current that can flow through 

the base-emitter junction in the forward direction and ICmax or the maximum current that can 

flow through the collector-base junction in the reverse direction. For most transistors, ICmax and 

IEmax are equal. These current ratings are determined, primarily considering the following: 

(1) Current that does not lead to an excessive increase in junction temperature, which is 

caused by a device’s power dissipation due to a collector-emitter voltage 

(2) Current at which the DC current gain hFE is reduced to one-half to one-third of the peak 

(Current at which hFE ≈ 10 for medium-power switching transistors and hFE ≈ 3 for 

high-power switching transistors) 

(3) Current at which internal wires burn out 

Generally, the maximum base current lBmax is: 

 

 

1.4. Temperature ratings 

The reliability of a transistor is determined by the constituent materials and the maximum 

junction temperature, Tj(max).  

The maximum junction temperature must be considered not only in terms of the functional 

operation of the transistor but also in terms of its reliability such as device degradation and 

lifetime.  

Generally, the degradation of the transistor accelerates as the junction temperature increases. 

Let A and B be constants intrinsic to a transistor. Then, the average life in hours of operation, 

Lm, and the junction temperature in Kelvin (K), Tj, have the following relationship: 

log Lm ≈ A +
B

  Tj 

 ･････････････････････････････････････････････････････････････････････････  (1–11) 

The maximum allowable junction temperature of a transistor is determined, considering its 

failure rate and reliability. Storage temperature, Tstg, is specified as a range over which a 

transistor can be stored without voltage application. The materials that constitute the transistor 

and their reliability also determine the storage temperature range. 

  

IBmax= 
1

2
 ～ 

1

6
 × ICmax 
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1.5. Power ratings 

The electric power dissipated inside a transistor is converted into thermal energy, increasing 

its internal temperature. 

The power dissipation of a transistor at a given operating point is the sum of the collector 

power dissipation PC (= ICVCB) and the emitter power dissipation (= IEVBE). Generally, VCB is 

greater than VBE since the base and emitter terminals are forward-biased. PC = IC (VCB+VBE) ≃ 

ICVCE, Because IC ≃ IE  

The maximum collector power dissipation PC(max) of a transistor is limited by the maximum 

junction temperature Tj(max) and the reference operating temperature TO (either the ambient 

temperature Ta or the case temperature Tc). These parameters have the following relationship 

using the thermal resistance Rth: 

PCmax = 
 Tj max - TO 

Rth

 ･･････････････････････････････････････････････････････････････････････  (1–12) 

Thermal resistance is a variation in junction temperature divided by the variation in power 

dissipation. It is a physical property that represents an object’s difficulty of dissipating heat. To 

handle large power dissipation, transistors with a large PC(max) rating are required. Thermal 

design is particularly important for power transistor applications. 

Generally, PC(max) is rated at an ambient temperature (Ta) of 25°C, or at a case temperature 

(TC) of 25°C when a heat sink is expected to be attached to the package case. The junction-to-

ambient thermal resistance Rth(j–a) and the junction-to-case thermal resistance Rth(j–c) can be 

calculated using Equation 1-12. 
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1.6. Safe operating area (SOA) 

The safe operating area (SOA) is defined as the regions in which a transistor can operate 

without self-damage or degradation. 

The range of a transistor’s usability is limited by the maximum ratings such as the maximum 

voltage, maximum current, and maximum collector power dissipation. However, transistors in 

high-power amplifiers or circuits driving inductive loads might be degraded or damaged even 

when they are used within individual maximum ratings. This is attributable to the secondary 

breakdown of the transistor. 

Therefore, transistor-based circuits should be designed, taking SOAs into account. 

  

(1) Secondary breakdown (S/B) 

   Figure 1.4 shows secondary breakdown curves. Secondary breakdown is a failure mode    

   that  occurs over certain voltage and current conditions (VS/b and Is/b) when the current is   

   increased beyond the conditions of primary breakdown. This results in a sharp drop in the   

   collector-emitter voltage, causing a transistor to plunge into a low-impedance region and be 

   destroyed in a few microseconds or less. Both VCEO and VCBO have secondary breakdown    

   points, regardless of whether the base-emitter is forward-or reverse-biased. 

   The secondary breakdown points (VS/b and IS/b) vary along the locus shown in Figure 1.4  

   depending on the base bias condition. Since secondary breakdown is an energy-dependent   

   phenomenon, the secondary breakdown curve varies depending on the width of the pulse    

   applied. This curve determines the SOA for pulse operation. Figure 1.5 shows the            

   relationship between the pulse width and the secondary breakdown trigger power. 

   The narrower the pulse width, the higher the secondary breakdown trigger power and the 

   lower the secondary breakdown energy (i.e., the trigger energy, or the energy absorbed by a 

   transistor before it is triggered into secondary breakdown). Secondary breakdown is         

   considered to occur when a current concentrates in a small spot, causing local heating (i.e.,  

   a hot spot) and leading to local thermal runaway. The causes of current concentration        

   include a voltage drop and uneven lateral temperature distribution in the base layer.  

   Also, an uneven base width and junction defects can trigger current concentration. 
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Figure 1.4 Collector current-voltage 

characteristics showing the secondary 

breakdown curve 

Figure 1.5 Pulse width vs. ES/B and PS/B 

 

(2) Forward-bias secondary breakdown 

   When the base and emitter terminals are forward-biased, a hot spot occurs due to current 

   concentration around the emitter layer. 

   This is because the horizontal base current traveling immediately below the emitter layer  

   causes a voltage drop in the base layer, leading to a higher forward bias near the edges of   

   the emitter layer than in the center section. This, in turn, results in a higher minority carrier 

   injection and therefore a higher current density at the edges of the emitter layer. 

   When minority carriers cross the depletion layer in the collector, a power loss occurs and   

   heat is generated locally. This induces further current concentration and results in a hot spot, 

   eventually leading to secondary breakdown. 
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Figure 1.8 
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Relationship between secondary breakdown and transistor characteristics 

   When the base and emitter terminals of a transistor are forward-biased, the secondary    

   breakdown trigger current IS/B is closely related to its characteristics. Generally, when        

   carriers are injected into the base layer from the emitter layer, they fan out in a cone-shaped 

   pattern before reaching the collector-base junction. Therefore, if the carrier transit time      

   through the base is long, the carriers further fan out before reaching the depletion layer in   

   the collector, decreasing the current density. As a result, hot spots are less likely to occur.    

   The carrier transit time is determined by the base width and the drift field in the base        

   layer. There is a strong negative correlation between the IS/B and fT characteristics of a      

   transistor irrespective of the pulse width. 

   Figure 1.9 shows the IS/B-vs-fT curve. 

 

 

Figure 1.9 IS/B vs. fT 

 

(3) Reverse-bias secondary breakdown 

   When the base and emitter terminals are reverse-biased, the direction of a voltage drop in 

   the base layer is opposite to the direction when they are forward-biased. Consequently, the  

   carriers injected from the emitter concentrate in the center section of the emitter layer as    

   shown in Figure 1.8. The state of carrier concentration differs, depending on the type of     

   transistor. Carriers concentrate in one spot at the center of the emitter in the case of a ring- 

   shaped emitter and along the center line of the emitter in the case of a comb-shaped emitter. 

   A higher reverse bias causes a higher current concentration in a very small area at the     

   center of the emitter. Therefore, the trigger energy (i.e., the energy absorbed by a transistor 

   before going into secondary breakdown) under reverse-bias operation is much less than the  

   trigger energy under forward-bias operation. As is the case with forward-bias operation      

   described above, the carriers injected from the emitter fan out. Therefore, the base width    

   and the drift field in the base layer closely correlate to secondary breakdown. 
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   Reverse-bias secondary breakdown primarily occurs when a transistor circuit has an       

   inductive load. The secondary breakdown trigger energy ES/B depends on the inductance L   

   and the base-emitter conditions as shown in Figure 1.10. 

 

 

Figure 1.10 Dependence of secondary breakdown trigger energy ES/B 
on the load inductance and base-emitter conditions 

 

(4) Deterioration and destruction of a transistor due to secondary breakdown 

   The impact of secondary breakdown on the electrical characteristics depends on the type  

   of  transistor. When the applied voltage is low, if the power is shut off at the moment        

   secondary  breakdown occurs, it may not change even if secondary breakdown occurs again. 

   However, even with occurrence of S/B once, characteristics may be degraded or destroyed,  

   so it is necessary to be careful. If a transistor is electrically degraded or destroyed by        

   secondary breakdown, VEBO, VCBO, and VCEO tend to have a soft locus or be short-circuited.  

   A collector-emitter short-circuit in particular is a distinctive failure caused by secondary      

   breakdown that results in pinholes in the emitter. In addition, the secondary breakdown      

   ruggedness might be affected even if the electrical characteristics are not degraded. This is  

   due to a decrease in secondary breakdown trigger energy ES/B, which indicates that the      

   transistor is close to destruction. 
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1.7. SOA test methods 

There are many SOA test methods. The method that suits the intended purpose is used 

according to the circuit configuration and operating conditions. 

Measuring SOA directly will cause transistor deterioration and breakdown. For this reason, it 

is important to measure the state just before the secondary breakdown and check the SOA. 

There are three major types of SOA test methods: 

 (1) Secondary breakdown (S/B) method 

 (2) Latching method 

 (3) Transient thermal resistance method 

The following subsections describe the practical applications of each SOA test method. 

 

(1) Secondary breakdown method  

   A voltage and a current are applied between the collector and base or between the        

   collector and emitter of a transistor to measure the time when it goes into secondary        

   breakdown. This test requires an adequate protection circuit to prevent deterioration of      

   the transistor. 

   An improvement of the above method is the TS/B method shown in Figure 1.13, which is   

   used to obtain a forward-bias SOA when the width of the applied pulse is relatively long or   

   when a current close to a direct current is used. A transistor is operated at a specified        

   temperature (either case temperature or ambient temperature) by applying the specified VCE 

   and IC with the base and emitter terminals forward-biased. The parameter measured by this 

   method is the operating time required until IC fluctuates more than ±10% or exceeds the    

   specified final value. This measurement is repeated to obtain the operating time at many    

   IC-VCE points. A plot of this parameter on the IC-VCE curve provides an SOA locus. 
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(2) Latching method 

   The latching method places a transistor in the saturation region under the specified        

   constant-current or inductive load conditions in order to determine whether the operating    

   waveform lies within the safe operating area. This method can be used to observe oscillation 

   and other phenomena that occur when a transistor goes into secondary breakdown. 

 

Figure 1.14 Reverse-bias SOA test circuit (latching method) 

 

(3) Transient thermal resistance method (ΔVBE and ΔVCE method) 

   Since secondary breakdown occurs due to a local temperature rise in the junction of a     

   transistor, the triggering of secondary breakdown can be identified by measuring the         

   junction temperature. Figure 1.15 shows an example. The temperature coefficient of the     

   junction forward voltage is measured in advance. By measuring the difference in forward    

   voltage before and after the application of electric power, a rise in junction temperature and 

   thus transient thermal resistance can be obtained. 

   This method provides a narrower SOA compared with the two methods described above   

   and cannot be used to measure reverse-bias SOA. 
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1.8. Forward-bias safe operating area (FBSOA) 

Figure 1.16 and Figure 1.17 show examples of forward-bias SOA. The SOA shows the voltage 

and current ranges over which a transistor is expected to operate without self-damage. 

The DC areas shown in the SOA indicate the bounding voltage and current conditions for 

continuous DC operation. In addition to the continuous rating, separate SOA curves are plotted 

for short-duration pulse conditions. Pulsed operation provides greater allowable power 

dissipation than DC operation, but is tolerated only for the period of time indicated. 

As shown in Figure 1.16 and Figure 1.17, the low-voltage region is limited by thermal 

resistance whereas the high-voltage region is limited by secondary breakdown. In the thermally 

limited region, PC is constant and hence I = PV
-1

. Therefore, the bounding line for the thermally 

limited region has a degree of -45 degrees when plotted on a double logarithmic graph as 

shown in Figure 1.16. 

However, the bounding line for the S/B-limited region deviates from the iso-power line of “PC 

= const” and has an exponent ranging from -1.5 to -4, depending on the type of transistor. It 

should be noted that since IS/B = PV
–N

 in this region, a transistor tolerates less power 

dissipation. 

 

 

Figure 1.15 Transient thermal resistance method (ΔVBE method) 
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Figure 1.16 SOA for Transistor A 

and an example of SOA derated 

for TC = 100°C 

Figure 1.17 SOA for Transistor B 

and an example of SOA derated 

for TC = 80°C 

 

The SOA becomes smaller as temperature rises. Therefore, the SOA must be derated as 

shown in Figure 1.18. When temperature rises, the thermally limited region is far more affected 

by the S/B-limited region. Figure 1.18 shows an example of derating curves for the S/B-limited 

and thermally limited regions over the case temperature. Now, let’s consider the derating of the 

SOA at TC = 100°C. Figure 1.16 shows that, at TC = 100°C, the thermally limited and S/B-

limited SOA curves are derated by 40% and 49% respectively. As a result, the SOA for DC 

operation is more limited at TC = 100°C than at 25°C as indicated by the dashed line. For the 

transistor shown in Figure 1.17, when VCE is low and in the thermally limited region, a derating 

curve for the thermally limited region should be used. 

The temperature derating of the S/B-limited region depends on the transistor structure as 

shown in Figure 1.18. The derating curve for the S/B-limited region shown in Figure 1.18 

should be used when the S/B-limited SOA lies in the high-VCE region. 

Take Transistor B of Figure 1.17 for example and let the derating percentage for the thermally 

limited region at a case temperature (TC) of 80°C be dT. Then, dT is calculated as follows: 

dT = 
100

 Tj - 25 
 ( Tj - TC )   ( % )  ････････････････････････････････････････････････････････  (1–13) 

Substituting a maximum junction temperature of 150°C for Tj, dT is calculated to be 56%. 

Suppose that Transistor B is a triple-diffused transistor. Then, Figure 1.18 (b) shows that, at 
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150°C, the S/B-limited region of the SOA must be derated by 50%. 

Hence, dS/B = 
2

5
 ( 150 - TC ) + 50 %. At TC = 80°C, dS/B is calculated to be 78%, In Figure 

1.17, the SOA boundary derated at TC = 80°C is shown by the dashed line. 

 

(a) Epitaxial transistors (b) Triple-diffused transistors 

  

Figure 1.18 Examples of temperature derating of the safe operating area 
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1.9. Reverse-bias safe operating area (RBSOA) 

The reverse-bias SOA is more difficult to 

determine than the forward-bias SOA. 

However, the reverse-bias SOA is as 

important as the forward-bias SOA, because 

in switching circuits with an inductive load or 

DC-DC converters, the base and emitter 

terminals of the transistor are frequently 

reverse-biased at high voltage. 

Since the worst load condition is given by 

an inductive load, the reverse-bias SOA is 

generally obtained by using the load 

condition C of the test circuit shown in Figure 

1.14. Figure 1.19 (a) shows the IC–L curves 

of a transistor under the specified reverse-

bias conditions. 

Figure 1.19 (b) and Figure 1.19 (c) show 

the IC-VBB2 and IC-RBB2 curves respectively. 

For simple circuits with an inductive load, 

Figure 1.19 can be used to measure the 

SOA. For complicated circuits, however, it is 

necessary to calculate effective inductance 

and use the curves of Figure 1.20. 

However, it is extremely difficult to obtain 

an SOA like the ones shown in Figure 1.19 

because it is no easy task to calculate 

effective inductance in an actual circuit. At 

our company, the SOA is specified under the 

selected IC, L, RBB2, VBB2, and other 

conditions for different transistor 

applications. Transistors whose load 

characteristics are outside the region shown 

in Figure 1.20 are regarded as defective. 

  (a) Dependence on inductance L 

 

  (b) Dependence on the base resistor RBB2 

 

  (c) Dependence on the base voltage VBB2  

 

 Figure 1.19 Examples of reverse-bias SOAs 

 

 

  Figure 1.20 Example of a reverse-bias SOA 
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