Ферриты и аксессуары RM 7, RM 7 LP Core and accessories Series/Type: B65819, B65820, B65659 Date: May 2017 © EPCOS AG 2017. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited. EPCOS AG is a TDK Group Company. #### Сердечник и аксессуары | Individual parts | Part no. | Page | |----------------------------|---|---| | Adjusting screw | B65659 | 7 | | Core | B65819 | 3 | | Clamps | B65820 | 6 | | Insulating washer 1 | B65820 | 6 | | Coil former | B65820 | 5 | | Core | B65819 | 3 | | Threaded sleeve (glued-in) | | | | Insulating washer 2 | B65820 | 6 | | | | | | RM 7 low profile: Core | B65819P | 7 | | | Adjusting screw Core Clamps Insulating washer 1 Coil former Core Threaded sleeve (glued-in) Insulating washer 2 RM 7 low profile: | Adjusting screw Core B65819 Clamps B65820 Insulating washer 1 Coil former B65820 Core B65819 Threaded sleeve (glued-in) Insulating washer 2 B65820 RM 7 low profile: | #### Core B65819 - To IEC 62317-4 - Сердечник без центрального отверстия для применения в трансформаторах - Delivery mode: sets #### Магнитные характеристики (в комплекте) | | С | без | | |---------------------------------------|------------|-----------|------------------| | | отверстием | отверстия | | | ΣΙ/Α | 0.75 | 0.7 | mm ⁻¹ | | l _e | 29.8 | 30.4 | mm | | l _e
Α _e
Δ | 40 | 43 | mm ² | | A_{min} | | 39 | mm ² | | V _e | 1190 | 1310 | mm ³ | #### Приблизительно. вес (в комплекте) | m | 6.5 | 7.2 | g | |---|-----|-----|---| #### **Зазор** (A_L значения / примеры воздушных зазоров) | Material | A _L value | s
approx.
mm | μ _e | Ordering code ¹⁾ -A with center hole -N with threaded sleeve -J without center hole | |----------|----------------------|--------------------|----------------|--| | N41 | 160 ±5% | 0.30 | 90 | B65819J0160J041 | | | 250 ±5% | 0.18 | 141 | B65819J0250J041 | | N48 | 250 ±3% | 0.16 | 148 | B65819+0250A048 | | | 315 ±3% | 0.12 | 187 | B65819+0315A048 | ¹⁾ Замените + на кодовую букву "А "или" Н " для требуемой версии. RM 7 Core B65819 #### Без зазора | Material | A _L value | μ _e | P _V | Ordering code | |----------|----------------------|----------------|----------------------------------|------------------------| | | nH | | W/set | -J without center hole | | N30 | 5000 +30/–20% | 2810 | | B65819J0000R030 | | T38 | 10000 +40/–30% | 5630 | | B65819J0000Y038 | | N49 | 1900 +30/–20% | 1070 | < 0.22 (50 mT, 500 kHz, 100 °C) | B65819J0000R049 | | N87 | 2700 +30/–20% | 1520 | < 0.77 (200 mT, 100 kHz, 100 °C) | B65819J0000R087 | | N97 | 2700 +30/–20% | 1520 | < 0.58 (200 mT, 100 kHz, 100 °C) | B65819J0000R097 | | N95 | 3300 +30/–20% | 1860 | < 0.65 (200 mT, 100 kHz, 100 °C) | B65819J0000R095 | Другие значения AL/воздушные зазоры и материалы, доступные по запросу — см. Примечания по обработке на стр. 9. #### Аксессуары В65820 #### **Coil former** Material: GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085: F ±max. рабочая температура 155 °C), цветовой код черный Sumikon PM 9630® [E41429 (M)], SUMITOMO BAKELITE CO LTD Solderability: to IEC 60068-2-20, испытания $T\Pi$, способ 1 (aging 3): 235 °C, 2 s Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 °C, 3.5 s Обмотка: см. раздел Примечания по обработке, 2.1 Штырьки: Квадратные булавки Соответствующие зажимные и изоляционные шайбы см. на стр. 6. | Разделы | A _N mm ² | I _N
mm | A_R value $\mu\Omega$ | Pins | Ordering code | |---------|--------------------------------|----------------------|-------------------------|------|-----------------| | 1 | 22.4 | 36.0 | 55.4 | 8 | B65820W1008D001 | | 2 | 21.9 | 36.0 | 56.5 | 8 | B65820W1008D002 | Hole arrangement View in mounting direction FRM0314-J-E Аксессуары В65820 #### Зажим - С клеммой заземления, изготовленной из пружинной стали (луженой) толщиной 0,4 мм - Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 °C, 2 s Изолирующая шайба 1 между сердечником и формирователем катушки - Для компенсации допуска и для изоляции - Made of polyarylate film (UL 94 V-0, insulation class to IEC 60085: E 120 °C), 0.08 mm thick Aryphan F685, [E167358 (M)], natural color, LOFO HIGH TECH FILM GMBH Изолирующая шайба 2 для двухслойных печатных плат | | Ordering code | |--|-----------------| | Зажим (код заказа на штуку, требуется 2) | B65820B2001X000 | | Изолирующая шайба 1 (упаковка катушки, PU = 1 катушка) | B65820A5000X000 | | Изолирующая шайба 2 (насыпная) | B65820D2005X000 | #### Зажим # #### Изолирующая шайба 1 #### Изолирующая шайба 2 Please read *Cautions and warnings* and *Important notes* at the end of this document. #### **Accessories** B65659 ## Регулировочный винт ■ Трубный сердечник с резьбой и основной тормоз из GFR политерефталат Pocan B3235® [E245249 (M)], LANXESS AG | Figure | Tube core ∅ × length (mm) | l Material | Color code | Ordering code | |--------|----------------------------|------------|------------|-----------------| | | ≈ ∧ iongai (iiiii) | Material | 00101 0040 | | | а | 2.62×3.6 | N22 | red | B65659F0001X023 | | b | 2.75×4.4 | N22 | black | B65659F0003X023 | | С | 2.82 × 4.4 | N22 | yellow | B65659F0004X023 | b а С #### RM 7 »Low Profile« #### B65819P Core ■ To IEC 62317-4 ■ Для компактных трансформаторов ■ Без центрального отверстия ■ Режим доставки: наборы Магнитные характеристики (за комплект) $\Sigma I/A = 0.52 \text{ mm}^{-1}$ $= 23.5 \, \text{mm}$ $= 45.3 \text{ mm}^2$ $A_{min} = 39.6 \text{ mm}^2$ V_e $= 1060 \text{ mm}^3$ Прибл. вес 5,7 г / комплект #### Без зазора | Material | A _L value | μ_{e} | P _V | Ordering code | |----------|----------------------|-----------|----------------------------------|-----------------| | | nH | | W/set | | | T38 | 11500 +40/–30% | 4750 | | B65819P0000Y038 | | N49 | 2400 +30/–20% | 990 | < 0.21 (50 mT, 500 kHz, 100 °C) | B65819P0000R049 | | N92 | 2600 +30/–20% | 1070 | < 0.63 (200 mT, 100 kHz, 100 °C) | B65819P0000R092 | | N87 | 3300 +30/–20% | 1360 | < 0.57 (200 mT, 100 kHz, 100 °C) | B65819P0000R087 | Другие значения AL/воздушные зазоры и материалы доступны по запросу - см. Комментарии к обработке на стр. 9. #### Ферриты и аксессуары #### Предостережения и предупреждения #### Механическое напряжение и монтаж Ферритовые сердечники должны соответствовать механическим требованиям во время сборки и для растущего числа применений. Поскольку ферриты являются керамическими материалами, необходимо знать об особом поведении при механической нагрузке. As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast temperature changing or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads can cause cracks or failure of the ferrite cores. Подробную информацию см. в книге данных, глава "Общие - Определения, 8.1". #### Влияние комбинации ядер на величину AL Напряжения в сердечнике влияют не только на механические, но и на магнитные свойства. Очевидно, что начальная проницаемость зависит от состояния напряжения сердцевины. Чем выше напряжения в сердцевине, тем ниже значение начальной проницаемости. Таким образом, среда для встраивания должна обладать максимально возможной эластичностью. Подробную информацию см. в книге данных, глава "Общие - Определения, 8.1". #### Нагрев Ферриты могут нагреваться во время работы при более высоких плотностях потока и более высоких частотах. #### NiZn-материалы Магнитные свойства NiZn-материалы могут необратимо изменяться в высоких магнитных полях. #### Ферритовые Аксессуары EPCOS ферритовые аксессуары были разработаны и оценены только в сочетании с ферритовыми сердечниками EPCOS. EPCOS explicitly points out that EPCOS ferrite accessories or EPCOS ferrite cores may not be compatible with those of other manufacturers. Any such combination requires prior te-sting by the customer and will be at the customer's own risk. EPCOS assumes no warranty or reliability for the combination of EPCOS ferrite accessories with cores and other accessories from any other manufacturer. #### Обработка замечаний The start of the winding process should be soft. Else the flanges may be destroyed. - Too strong winding forces may blast the flanges or squeeze the tube that the cores can not be mounted any more. - Too long soldering time at high temperature (>300 °C) may effect coplanarity or pin arrangement. - Not following the processing notes for soldering of the J-leg terminals may cause solderability problems at the transformer because of pollution with Sn oxyde of the tin bath or burned insulation of the wire. For detailed information see chapter "Processing notes", section 2.2. - The dimensions of the hole arrangement have fixed values and should be understood as a recommendation for drilling the printed circuit board. For dimensioning the pins, the group of holes can only be seen under certain conditions, as they fit into the given hole arrangement. To avoid problems when mounting the transformer, the manufacturing tolerances for positioning the customers' drilling process must be considered by increasing the hole diameter. 9 #### **Cautions and warnings** #### Отображение кодов заказа для продуктов EPCOS The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes. ## Symbols and terms | Symbol | Meaning | Unit | |---------------------|--|------------------------------| | A | Поперечное сечение катушки | mm ² | | A_{e} | Эффективное магнитное поперечное сечение | mm ² | | A_L | Коэффициент индуктивности; $A_L = L/N^2$ | nH | | A_{L1}^{-} | Minimum inductance at defined high saturation (₄) | nH | | A _{min} | Минимальное сечение сердечника | mm ² | | A_N | Сечение обмотки | mm ² | | A_R | Коэффициент сопротивления; $A_R = R_{Cu}/N^2$ | $\mu\Omega = 10^{-6} \Omega$ | | В | RMS value of magnetic flux density | Vs/m ² , mT | | ΔΒ | Flux density deviation | Vs/m ² , mT | | Ê | Peak value of magnetic flux density | Vs/m ² , mT | | ΔÂ | Peak value of flux density deviation | Vs/m ² , mT | | B_{DC} | DC magnetic flux density | Vs/m ² , mT | | B_R | Remanent flux density | Vs/m ² , mT | | B_S | Saturation magnetization | Vs/m ² , mT | | C_0 | Winding capacitance | F = As/V | | CDF | Core distortion factor | mm ^{-4.5} | | DF | Relative disaccommodation coefficient DF = d/μ_i | | | d | Disaccommodation coefficient | | | Ea | Activation energy | J | | f | Frequency | s ^{−1} , Hz | | f _{cutoff} | Cut-off frequency | s−1, Hz | | f _{max} | Upper frequency limit | s ^{−1} , Hz | | f _{min} | Lower frequency limit | s−1, Hz | | f _r | Resonance frequency | s ^{−1} , Hz | | f_{Cu} | Copper filling factor | | | g | Air gap | mm | | Н | RMS value of magnetic field strength | A/m | | Ĥ | Peak value of magnetic field strength | A/m | | H_{DC} | DC field strength | A/m | | H _c | Coercive field strength | A/m | | h | Hysteresis coefficient of material | 10 ^{−6} cm/A | | h/μ_i^2 | Relative hysteresis coefficient | 10 ⁻⁶ cm/A | | I | RMS value of current | Α | | I_{DC} | Direct current | Α | | Î | Peak value of current | Α | | J | Polarization | Vs/m ² | | k | Boltzmann constant | J/K | | k ₃ | Third harmonic distortion | | | k _{3c} | Circuit third harmonic distortion | | | L | Inductance | H = Vs/A | #### Symbols and terms | Symbol | Meaning | Unit | |----------------------|---|-----------------| | Δ L/L | Relative inductance change | Н | | L_0 | Inductance of coil without core | Н | | L _H | Main inductance | Н | | L_p | Parallel inductance | Н | | L _{rev} | Reversible inductance | Н | | L _s | Series inductance | Н | | l _e | Effective magnetic path length | mm | | I _N | Average length of turn | mm | | N | Number of turns | | | P_{Cu} | Copper (winding) losses | W | | P _{trans} | Transferrable power | W | | P _V | Relative core losses | mW/g | | PF | Performance factor | | | Q | Quality factor (Q = $\omega L/R_s$ = 1/tan δ_l) | | | R | Resistance | Ω | | R_{Cu} | Copper (winding) resistance (f = 0) | Ω | | R _h | Hysteresis loss resistance of a core | Ω | | ΔR_h | R _h change | Ω | | R _i | Internal resistance | Ω | | R _p | Parallel loss resistance of a core | Ω | | R_s | Series loss resistance of a core | Ω | | R _{th} | Thermal resistance | K/W | | R _V | Effective loss resistance of a core | Ω | | s | Total air gap | mm | | Т | Temperature | °C | | ΔT | Temperature difference | K | | T_{C} | Curie temperature | °C | | t | Time | s | | t_v | Pulse duty factor | | | tan δ | Loss factor | | | tan δ_l | Loss factor of coil | | | tan δ_r | (Residual) loss factor at H $ ightarrow$ 0 | | | tan $\delta_{\rm e}$ | Relative loss factor | | | tan δ_h | Hysteresis loss factor | | | tan δ/μ _i | Relative loss factor of material at H \rightarrow 0 | | | U | RMS value of voltage | V | | Û | Peak value of voltage | V | | V _e | Effective magnetic volume | mm ³ | | Z | Complex impedance | Ω | | Z _n | Normalized impedance $ Z _n = Z /N^2 \times \varepsilon (I_e/A_e)$ | Ω/mm | ## Symbols and terms | Symbol | Meaning | Unit | |-------------------------|---|--------------------| | α | Temperature coefficient (TK) | 1/K | | α_{F} | Relative temperature coefficient of material | 1/K | | α_{e} | Temperature coefficient of effective permeability | 1/K | | ϵ_{r} | Relative permittivity | | | Φ | Magnetic flux | Vs | | η | Efficiency of a transformer | | | η_{B} | Hysteresis material constant | mT-1 | | η _i | Hysteresis core constant | $A^{-1}H^{-1/2}$ | | $\lambda_{\sf S}$ | Magnetostriction at saturation magnetization | | | u | Relative complex permeability | | | ι_0 | Magnetic field constant | Vs/Am | | ι_{a} | Relative amplitude permeability | | | ^l app | Relative apparent permeability | | | μ_{e} | Relative effective permeability | | | l _i | Relative initial permeability | | | ι_{p}' | Relative real (inductive) component of $\overline{\mu}$ (for parallel components) | | | ι
μ <mark>p</mark> " | Relative imaginary (loss) component of $\overline{\mu}$ (for parallel components) | | | ι_{r} | Relative permeability | | | \mathfrak{u}_{rev} | Relative reversible permeability | | | ι _s ' | Relative real (inductive) component of $\overline{\mu}$ (for series components) | | | ι _s " | Relative imaginary (loss) component of $\overline{\mu}$ (for series components) | | | ι_{tot} | Relative total permeability | | | | derived from the static magnetization curve | | |) | Resistivity | Ω m $^{-1}$ | | ΣΙ/Α | Magnetic form factor | mm ⁻¹ | | ^t Cu | DC time constant $\tau_{Cu} = L/R_{Cu} = A_L/A_R$ | s | | ω | Angular frequency; ω = 2 Π f | s ⁻¹ | All dimensions are given in mm. #### Important notes The following applies to all products named in this publication: - 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application. - 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. - 3. The warnings, cautions and product-specific notes must be observed. - 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices. - 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. - We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products. - 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI). - 7. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.