
MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 1/52
12/06/02

Content

 1 Introduction .. 3
1.1 Scope of this document..3
1.2 References ...3

2 Abbreviations ... 4
3 Context .. 4
4 General description.. 5

4.1 Protocol description..5
4.2 Data Encoding..7
4.3 MODBUS data model ...7
4.4 MODBUS Addressing model ..9
4.5 Define MODBUS Transaction...9

5 Function Code Categories ... 11
5.1 Public Function Code Definition ...12

6 Function codes descripitons .. 12
6.1 01 (0x01) Read Coils..12
6.2 02 (0x02) Read Discrete Inputs..14
6.3 03 (0x03) Read Holding Registers ...16
6.4 04 (0x04) Read Input Registers ...17
6.5 05 (0x05) Write Single Coil ..19
6.6 06 (0x06) Write Single Register ...20
6.7 07 (0x07) Read Exception Status (Serial Line only).................21
6.8 08 (0x08) Diagnostics (Serial Line only)...................................23
6.9 11 (0x0B) Get Comm Event Counter (Serial Line only)............27
6.10 12 (0x0C) Get Comm Event Log (Serial Line only)...............29
6.11 15 (0x0F) Write Multiple Coils...31
6.12 16 (0x10) Write Multiple registers ...33
6.13 17 (0x11) Report Slave ID (Serial Line only)34
6.14 20 / 6 (0x14 / 0X06) Read File Record35
6.15 21 / 6 (0x15 / 0x06) Write File Record37
6.16 22 (0x16) Mask Write Register ...39
6.17 23 (0x17) Read/Write Multiple registers41
6.18 24 (0x18) Read FIFO Queue ..44
6.19 43 (0x2B) Encapsulated Interface Transport45
6.20 43 / 14 (0x2B / 0x0D) Read Device Identification47

7 MODBUS Exception Responses ... 51

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 2/52
12/06/02

Document modifications

 Month-Year Modifications
1.0 May 02 Creation

1.1 Nov 02 Fix editorial problems (Mask Write registers, ..)

Add chapter 4.4 "Modbus addressing model"
Add function codes more dedicated for serial line products: fc 7,8,11,12,17,24.

modbus.org http://www.modbus.org/ 3/52
12/06/02

1 Introduction

1.1 Scope of this document
MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model, that provides client/server communication
between devices connected on different types of buses or networks.
The industry’s serial de facto standard since 1979, Modbus continues to enable millions of automation devices to communicate. Today,
support for the simple and elegant structure of MODBUS continues to grow. The Internet community can access MODBUS at a reserved
system port 502 on the TCP/IP stack.
MODBUS is a request/reply protocol and offers services specified by function codes. MODBUS function codes are elements of
MODBUS request/reply PDUs. The objective of this document is to describe the function codes used within the framework of MODBUS
transactions.

MODBUS is an application layer messaging protocol for client/server communication between devices connected on different types of
buses or networks.
It is currently implemented using:

� TCP/IP over Ethernet.
� Asynchronous serial transmission over a variety of media (wire : EIA/TIA-232-E, EIA-422, EIA/TIA-485-A; fiber, radio, etc.) See [2]

for transmission order detail.
� MODBUS PLUS, a high speed token passing network.

TCP

Modbus on TCP

MODBUS APPLICATION LAYER

IP

Ethernet
Physical layer

Ethernet II /802.3

EIA/TIA-232 or
EIA/TIA-485

Master / Slave

Physical layer

MODBUS+ / HDLC

Other

Other

Figure 1: MODBUS communication stack

1.2 References
1. RFC 791, Internet Protocol, Sep81 DARPA
2. MODBUS Protocol Reference Guide Rev J, MODICON, June 1996, doc # PI_MBUS_300

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 4/52
12/06/02

2 Abbreviations

ADU Application Data Unit
HDLC High level Data Link Control
HMI Human Machine Interface
IETF Internet Engineering Task Force
I/O Input/Output
IP Internet Protocol
MAC Medium Access Control
MB MODBUS Protocol
MBAP MODBUS Application Protocol
PDU Protocol Data Unit
PLC Programmable Logic Controller
TCP Transport Control Protocol

3 Context

The MODBUS protocol allows an easy communication within all types of network architectures.

PLC PLCHMI I/ O I/ O I/ ODrive

MODBUS ON TCP/IP

Gateway Gateway Gateway

M
O

D
B

U
S

O
N

 M
B

+

M
O

D
B

U
S

O
N

 R
S2

32

M
O

D
B

U
S

O
N

 R
S4

85

Device

HMI

PLC PLC

Drive

I/ O
I/ O

I/ O

I/ O

Device

MODBUS COMMUNICATION

Figure 2: Example of MODBUS Network Architecture

Every type of devices (PLC, HMI, Control Panel, Driver, Motion control, I/O Device…) can use MODBUS protocol to initiate a remote
operation.
The same communication can be done as well on serial line as on an Ethernet TCP/IP networks. Gateways allow a communication
between several types of buses or network using the MODBUS protocol.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 5/52
12/06/02

4 General description

4.1 Protocol description
The MODBUS protocol defined a simple protocol data unit (PDU) independent of the underlying communication layers. The mapping of
MODBUS protocol on specific buses or network can introduce some additional fields on the application data unit (ADU).

Additional address Function code Data Error check

ADU

PDU

Figure 3: General MODBUS frame

The MODBUS application data unit is built by the client that initiates a MODBUS transaction. The function indicates to the server what kind
of action to perform. The MODBUS application protocol establishes the format of a request initiated by a client.
The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the range of 1 ... 255 decimal (128 – 255 reserved
for exception responses). When a message is sent from a Client to a Server device the function code field tells the server what kind of
action to perform.
Sub-function codes are added to some function codes to define multiple actions.
The data field of messages sent from a client to server devices contains additional information that the server uses to take the action
defined by the function code. This can include items like discrete and register addresses, the quantity of items to be handled, and the
count of actual data bytes in the field.
The data field may be nonexistent (of zero length) in certain kinds request, in this case the server does not require any additional
information. The function code alone specifies the action.
If no error occurs related to the MODBUS function requested in a properly received MODBUS ADU the data field of a response from a
server to a client contains the data requested. If an error related to the MODBUS function requested occurs, the field contains an
exception code that the server application can use to determine the next action to be taken.
For example a client can read the ON / OFF states of a group of discrete outputs or inputs or it can read/write the data contents of a group
of registers.
When the server responds to the client, it uses the function code field to indicate either a normal (error-free) response or that some kind of
error occurred (called an exception response). For a normal response, the server simply echoes the original function code.

Function code Data Request

Client Server

Initiate request

Perform the action
Initiate the response

Receive the response
Function code Data Response

Figure 4: MODBUS transaction (error free)

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 6/52
12/06/02

For an exception response, the server returns a code that is equivalent to the original function code with its most significant bit set to logic
1.

Client Server

Initiate request

Error detected in the action
Initiate an error

Exception Function code Receive the response Exception code

Function code Data Request

Figure 5: MODBUS transaction (exception response)

� Note: It is desirable to manage a time out in order not to indefinitely wait for an answer which will perhaps never arrive.

The size of the Modbus PDU is limited by the size constraint inherited from the first Modbus implementation on Serial Line network (max.
RS485 ADU = 256 bytes).
Therefore, MODBUS PDU for serial line communication = 256 - Server adress (1 byte) - CRC (2 bytes) = 253 bytes.

Consequently :
RS232 / RS485 ADU = 253 bytes + Server adress (1 byte) + CRC (2 bytes) = 256 bytes.
TCP MODBUS ADU = 253 bytes + MBAP (7 bytes) = 260 bytes.

The MODBUS protocol defines three PDUs. They are :

• MODBUS Request PDU, mb_req_pdu

• MODBUS Response PDU, mb_rsp_pdu

• MODBUS Exception Response PDU, mb_excep_rsp_pdu

The mb_req_pdu is defined :

mb_req_pdu = { function_code, request_data), where

function_code - [1 byte] MODBUS function code

request_data - [n bytes] This field is function code dependent and usually contains information such as

 variable references, variable counts, data offsets, sub-function codes etc.

The mb_rsp_pdu is defined :

 mb_rsp_pdu = { function_code, response_data), where

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 7/52
12/06/02

function_code - [1 byte] MODBUS function code

response_data - [n bytes] This field is function code dependent and usually contains information

 such as variable references, variable counts, data offsets, sub-function codes, etc.

The mb_excep_rsp_pdu is defined :

 mb_excep_rsp_pdu = { function_code, request_data), where

exception-function_code - [1 byte] MODBUS function code + 0x80

exception_code - [1 byte] MODBUS Exception Code Defined in table

 below.

4.2 Data Encoding
• MODBUS uses a ‘big-Endian’ representation for addresses and data items. This means that when a numerical quantity larger than a

single byte is transmitted, the most significant byte is sent first. So for example

 Register size value
 16 - bits 0x1234 the first byte sent is 0x12 then 0x34

� Note: For more details, see [1] .

4.3 MODBUS data model
MODBUS bases its data model on a series of tables that have distinguishing characteristics. The four primary tables are:

Primary tables Object type Type of access Comments

 Discretes Input Single bit Read-Only This type of data can be provided by an I/O system.

Coils Single bit Read-Write This type of data can be alterable by an application program.

Input Registers 16-bit word Read-Only This type of data can be provided by an I/O system

Holding Registers 16-bit word Read-Write This type of data can be alterable by an application program.

The distinctions between inputs and outputs, and between bit-addressable and word-addressable data items, do not imply any application
behavior. It is perfectly acceptable, and very common, to regard all four tables as overlaying one another, if this is the most natural
interpretation on the target machine in question.
For each of the primary tables, the protocol allows individual selection of 65536 data items, and the operations of read or write of those
items are designed to span multiple consecutive data items up to a data size limit which is dependent on the transaction function code.
It’s obvious that all the data handled via MODBUS (bits, registers) must be located in device application memory. But physical address in
memory should not be confused with data reference. The only requirement is to link data reference with physical address.
MODBUS logical reference number, which are used in MODBUS functions, are unsigned integer indices starting at zero.

• Implementation examples of MODBUS model

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 8/52
12/06/02

The examples below show two ways of organizing the data in device. There are different organizations possible, all are not described in
this document. Each device can have its own organization of the data according to its application

Example 1 : Device having 4 separate blocks
The example below shows data organization in a device having digital and analog, inputs and outputs. Each block is separate from each
other, because data from different block have no correlation. Each block is thus accessible with different MODBUS functions.

Input Discrete

MODBUS access

Device application memory

MODBUS SERVER DEVICE

MODBUS RequestCoils

Input Registers

Holding
Registers

Figure 6 MODBUS Data Model with separate block

Example 2: Device having only 1 block
In this example, the device have only 1 data block. A same data can be reached via several MODBUS functions, either via a 16 bits
access or via an access bit.

Device application memory

MODBUS SERVER DEVICE

MODBUS Request

Input Discrete

MODBUS access

Coils

Input Registers

Holding
Registers

R
W

R

W

Figure 7 MODBUS Data Model with only 1 block

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 9/52
12/06/02

4.4 MODBUS Addressing model

The Modbus application protocol defines precisely PDU addressing rules.

In a Modbus PDU each data is addressed from 0 to 65535.
It also defines clearly a Modbus data model composed of 4 blocks that comprises several elements numbered from 1 to n.

In the Modbus data Model each element within a data block is numbered from 1 to n.
Afterwards the Modbus data model has to be bound to the device application (IEC 1131 object, or other application model).

The mapping between the Modbus data model and the device application is totally device specific.

Discrete Input

Coils

Input Registers

Holding Registers

MODBUS data modelDevice application

1
.
.
.
1
.
5
.
1
2
.

MODBUS PDU addresses

1
.
.
55

Read Registers 54

Read Registers 1

Read coils 4

Read input 0

MODBUS StandardApplication specific
Mapping

Figure 8 MODBUS Addressing model

The previous figure shows that a MODBUS data numbered X is addressed in the MODBUS PDU X-1.

4.5 Define MODBUS Transaction
The following state diagram describes the generic processing of a MODBUS transaction in server side.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 10/52
12/06/02

Validate function
code

Validate data
value

ExceptionCode_3

Wait for a MB
indication

ExceptionCode_2

ExeptionCode_1

Send Modbus
Exception
Response

ExceptionCode_4_5_6

Execute MB
function

Send Modbus
Response

Validate data
Address

ExceptionCode_3

ExceptionCode_2

ExeptionCode_1

ExceptionCode_4_5_6

[Invalid]

[Invalid]

[Invalid]

[valid]

[Invalid]

[Valid]

[valid]

[Valid]

[Receive MB indication]

Figure 9 MODBUS Transaction state diagram

Once the request has been processed by a server, a MODBUS response using the adequate MODBUS server
transaction is built.
Depending on the result of the processing two types of response are built :
� A positive MODBUS response :

� the response function code = the request function code

� A MODBUS Exception response (see chapter 7):
� the objective is to provide to the client relevant information concerning the error detected during the

processing ;
� the exception function code = the request function code + 0x80 ;
� an exception code is provided to indicate the reason of the error.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 11/52
12/06/02

5 Function Code Categories

There are three categories of MODBUS Functions codes. They are :

Public Function Codes

• Are well defined function codes ,
• guaranteed to be unique,
• validated by the modbus.org community,
• publically documented
• have available conformance test,
• are documented in the MB IETF RFC,
• includes both defined public assigned function codes as well as unassigned function codes reserved for future use.

User-Defined Function Codes
• there are two ranges of user-defined function codes, ie 65 to 72 and from 100 to 110 decimal.
• user can select and implement a function code without any approval from modbus.org
• there is no guarantee that the use of the selected function code will be unique
• if the user wants to re-position the functionality as a public function code, he must initiate an RFC to introduce the change into the

public category and to have a new public function code assigned.
Reserved Function Codes

• Function Codes currently used by some companies for legacy products and that are not available for public use.

 User Defined Function codes

1

65

100
110

72
 User Defined Function codes

PUBLIC function codes

PUBLIC function codes

PUBLIC function codes

127

Figure 10 MODBUS Function Code Categories

Remark : in the public range of function codes some can be reserved.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 12/52
12/06/02

5.1 Public Function Code Definition

Function Codes
code Sub code (hex) page

Physical Discrete Inputs Read Discrete Inputs 02 02 13

Read Coils 01 01 11

Write Single Coil 05 05 18

Write Multiple Coils 15 0F 30

Bit access
Internal Bits

 Or
 Physical coils

Physical Input Registers Read Input Register 04 04 16

Read Holding Registers 03 03 15

Write Single Register 06 06 19

Write Multiple Registers 16 10 32

Read/Write Multiple Registers 23 17 40

Mask Write Register 22 16 39

16 bits
access

Internal Registers
 Or

Physical Output
Registers

Read FIFO queue 24 18 43

Read File record 20 6 14 42

Data
Access

File record access Write File record 21 6 15 44

Read Exception status 07 07 20

Diagnostic 08 00-18 21

Get Com event counter 11 OB 26

Get Com Event Log 12 0C 28

Report Slave ID 17 11 34

Diagnostics

Read device Identification 43 14 2B 46

Other Encapsulated Interface Transport 43 2B 44

6 Function codes descripitons

6.1 01 (0x01) Read Coils
This function code is used to read from 1 to 2000 contiguous status of coils in a remote device. The Request PDU specifies the starting
address, ie the address of the first coil specified, and the number of coils. In the PDU Coils are addressed starting at zero. Therefore coils
numbered 1-16 are addressed as 0-15.
The coils in the response message are packed as one coil per bit of the data field. Status is indicated as 1= ON and 0= OFF. The LSB of
the first data byte contains the output addressed in the query. The other coils follow toward the high order end of this byte, and from low
order to high order in subsequent bytes.
If the returned output quantity is not a multiple of eight, the remaining bits in the final data byte will be padded with zeros (toward the high
order end of the byte). The Byte Count field specifies the quantity of complete bytes of data.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 13/52
12/06/02

Request
Function code 1 Byte 0x01
Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of coils 2 Bytes 1 to 2000 (0x7D0)

Response

Function code 1 Byte 0x01
Byte count 1 Byte N*

Coil Status n Byte n = N or N+1

*N = Quantity of Outputs / 8, if the remainder is different of 0 ⇒ N = N+1
Error

Function code 1 Byte Function code + 0x80
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete outputs 20–38:

Request Response

Field Name (Hex) Field Name (Hex)

Function 01 Function 01
Starting Address Hi 00 Byte Count 03
Starting Address Lo 13 Outputs status 27-20 CD
Quantity of Outputs Hi 00 Outputs status 35-28 6B
Quantity of Outputs Lo 13 Outputs status 38-36 05

The status of outputs 27–20 is shown as the byte value CD hex, or binary 1100 1101. Output 27 is the MSB of this byte, and output 20 is
the LSB.
By convention, bits within a byte are shown with the MSB to the left, and the LSB to the right. Thus the outputs in the first byte are ‘27
through 20’, from left to right. The next byte has outputs ‘35 through 28’, left to right. As the bits are transmitted serially, they flow from LSB
to MSB: 20 . . . 27, 28 . . . 35, and so on.
In the last data byte, the status of outputs 38-36 is shown as the byte value 05 hex, or binary 0000 0101. Output 38 is in the sixth bit
position from the left, and output 36 is the LSB of this byte. The five remaining high order bits are zero filled.

� Note: The five remaining bits (toward the high order end) are zero filled.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 14/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadDiscreteOutputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Outputs ≤ 0x07D0

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Outputs == OK

ExceptionCode = 04

Request Processing

Figure 11: Read Coils state diagram

6.2 02 (0x02) Read Discrete Inputs
This function code is used to read from 1 to 2000 contiguous status of discrete inputs in a remote device. The Request PDU specifies the
starting address, ie the address of the first input specified, and the number of inputs. In the PDU Discrete Inputs are addressed starting at
zero. Therefore Discrete inputs numbered 1-16 are addressed as 0-15.
The discrete inputs in the response message are packed as one input per bit of the data field. Status is indicated as 1= ON; 0= OFF. The
LSB of the first data byte contains the input addressed in the query. The other inputs follow toward the high order end of this byte, and
from low order to high order in subsequent bytes.
If the returned input quantity is not a multiple of eight, the remaining bits in the final data byte will be padded with zeros (toward the high
order end of the byte). The Byte Count field specifies the quantity of complete bytes of data.

Request

Function code 1 Byte 0x02

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Inputs 2 Bytes 1 to 2000 (0x7D0)

Response

Function code 1 Byte 0x02

Byte count 1 Byte N*

Input Status N* x 1 Byte

*N = Quantity of Inputs / 8 if the remainder is different of 0 ⇒ N = N+1

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 15/52
12/06/02

Error
Error code 1 Byte 0x82

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read discrete inputs 197 – 218:

Request Response

Field Name (Hex) Field Name (Hex)

Function 02 Function 02
Starting Address Hi 00 Byte Count 03
Starting Address Lo C4 Inputs Status 204-197 AC
Quantity of Inputs Hi 00 Inputs Status 212-205 DB
Quantity of Inputs Lo 16 Inputs Status 218-213 35

The status of discrete inputs 204–197 is shown as the byte value AC hex, or binary 1010 1100. Input 204 is the MSB of this byte, and input
197 is the LSB.
The status of discrete inputs 218–213 is shown as the byte value 35 hex, or binary 0011 0101. Input 218 is in the third bit position from the
left, and input 213 is the LSB.

� Note: The two remaining bits (toward the high order end) are zero filled.

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadDiscreteInputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Inputs ≤ 0x07D0

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Inputs == OK

ExceptionCode = 04

Request Processing

Figure 12: Read Discrete Inputs state diagram

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 16/52
12/06/02

6.3 03 (0x03) Read Holding Registers
This function code is used to read the contents of a contiguous block of holding registers in a remote device. The Request PDU specifies
the starting register address and the number of registers. In the PDU Registers are addressed starting at zero. Therefore registers
numbered 1-16 are addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the binary contents right justified within each byte.
For each register, the first byte contains the high order bits and the second contains the low order bits.

Request

Function code 1 Byte 0x03
Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 1 to 125 (0x7D)

Response

Function code 1 Byte 0x03
Byte count 1 Byte 2 x N*

Register value N* x 2 Bytes

*N = Quantity of Registers
Error

Error code 1 Byte 0x83
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read registers 108 – 110:

Request Response

Field Name (Hex) Field Name (Hex)

Function 03 Function 03
Starting Address Hi 00 Byte Count 06
Starting Address Lo 6B Register value Hi (108) 02
No. of Registers Hi 00 Register value Lo (108) 2B
No. of Registers Lo 03 Register value Hi (109) 00
 Register value Lo (109) 00
 Register value Hi (110) 00
 Register value Lo (110) 64

The contents of register 108 are shown as the two byte values of 02 2B hex, or 555 decimal. The contents of registers 109–110 are 00 00
and 00 64 hex, or 0 and 100 decimal, respectively.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 17/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007D

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 13: Read Holding Registers state diagram

6.4 04 (0x04) Read Input Registers
This function code is used to read from 1 to approx. 125 contiguous input registers in a remote device. The Request PDU specifies the
starting register address and the number of registers. In the PDU Registers are addressed starting at zero. Therefore input registers
numbered 1-16 are addressed as 0-15.
The register data in the response message are packed as two bytes per register, with the binary contents right justified within each byte.
For each register, the first byte contains the high order bits and the second contains the low order bits.
Request

Function code 1 Byte 0x04
Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Input Registers 2 Bytes 0x0001 to 0x007D

Response

Function code 1 Byte 0x04
Byte count 1 Byte 2 x N*

Input Registers N* x 2 Bytes

*N = Quantity of Input Registers

Error

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 18/52
12/06/02

Error code 1 Byte 0x84
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read input register 9:

Request Response

Field Name (Hex) Field Name (Hex)

Function 04 Function 04
Starting Address Hi 00 Byte Count 02
Starting Address Lo 08 Input Reg. 9 Hi 00
Quantity of Input Reg. Hi 00 Input Reg. 9 Lo 0A
Quantity of Input Reg. Lo 01

The contents of input register 9 are shown as the two byte values of 00 0A hex, or 10 decimal.

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

ReadInputRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007D

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 14: Read Input Registers state diagram

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 19/52
12/06/02

6.5 05 (0x05) Write Single Coil
This function code is used to write a single output to either ON or OFF in a remote device.
The requested ON/OFF state is specified by a constant in the request data field. A value of FF 00 hex requests the output to be ON. A
value of 00 00 requests it to be OFF. All other values are illegal and will not affect the output.
The Request PDU specifies the address of the coil to be forced. Coils are addressed starting at zero. Therefore coil numbered 1 is
addressed as 0. The requested ON/OFF state is specified by a constant in the Coil Value field. A value of 0XFF00 requests the coil to be
ON. A value of 0X0000 requests the coil to be off. All other values are illegal and will not affect the coil.

The normal response is an echo of the request, returned after the coil state has been written.
Request

Function code 1 Byte 0x05
Output Address 2 Bytes 0x0000 to 0xFFFF

Output Value 2 Bytes 0x0000 or 0xFF00

Response

Function code 1 Byte 0x05
Output Address 2 Bytes 0x0000 to 0xFFFF

Output Value 2 Bytes 0x0000 or 0xFF00

Error

Error code 1 Byte 0x85
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write Coil 173 ON:

Request Response

Field Name (Hex) Field Name (Hex)

Function 05 Function 05
Output Address Hi 00 Output Address Hi 00
Output Address Lo AC Output Address Lo AC
Output Value Hi FF Output Value Hi FF
Output Value Lo 00 Output Value Lo 00

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 20/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02

YES

NO

ExceptionCode = 03
YES

ENTRY

WriteSingleOutput == OK

MB Server Sends mb_rsp

NO

YES

Output Value == 0x0000
OR 0xFF00

Function code
supported

Output Address == OK

Request Processing

Figure 15: Write Single Output state diagram

6.6 06 (0x06) Write Single Register
This function code is used to write a single holding register in a remote device.
The Request PDU specifies the address of the register to be written. Registers are addressed starting at zero. Therefore register
numbered 1 is addressed as 0.
The normal response is an echo of the request, returned after the register contents have been written.

Request

Function code 1 Byte 0x06
Register Address 2 Bytes 0x0000 to 0xFFFF

Register Value 2 Bytes 0x0000 or 0xFFFF

Response

Function code 1 Byte 0x06
Register Address 2 Bytes 0x0000 to 0xFFFF

Register Value 2 Bytes 0x0000 or 0xFFFF

Error

Error code 1 Byte 0x86
Exception code 1 Byte 01 or 02 or 03 or 04

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 21/52
12/06/02

Here is an example of a request to write register 2 to 00 03 hex:
Request Response

Field Name (Hex) Field Name (Hex)

Function 06 Function 06
Register Address Hi 00 Register Address Hi 00
Register Address Lo 01 Register Address Lo 01
Register Value Hi 00 Register Value Hi 00
Register Value Lo 03 Register Value Lo 03

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02

YES

NO

ExceptionCode = 03
YES

ENTRY

WriteSingleRegister == OK

MB Server Sends mb_rsp

NO

YES

0x0000 ≤ Register Value ≤ 0xFFFF

Function code
supported

Register Address == OK

Request Processing

Figure 16: Write Single Register state diagram

6.7 07 (0x07) Read Exception Status (Serial Line only)
This function code is used to read the contents of eight Exception Status outputs in a remote device.
The function provides a simple method for accessing this information, because the Exception Output references are known (no output
reference is needed in the function).
The normal response contains the status of the eight Exception Status outputs. The outputs are packed into one data byte, with one bit per
output. The status of the lowest output reference is contained in the least significant bit of the byte.
Request

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 22/52
12/06/02

Function code 1 Byte 0x07

Response

Function code 1 Byte 0x07
Output Data 1 Byte 0x00 to 0xFF

Error

Error code 1 Byte 0x87
Exception code 1 Byte 01 or 04

Here is an example of a request to read the exception status:

Request Response

Field Name (Hex) Field Name (Hex)

Function 07 Function 07
 Output Data 6D

In this example, the output data is 6D hex (0110 1101 binary). Left to right, the outputs are OFF–ON–ON–OFF–ON–ON–OFF–ON. The
status is shown from the highest to the lowest addressed output.

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

ReadExceptionStatus == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 17: Read Exception Status state diagram

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 23/52
12/06/02

6.8 08 (0x08) Diagnostics (Serial Line only)
MODBUS function code 08 provides a series of tests for checking the communication system between a client (Master) device and a
server (Slave), or for checking various internal error conditions within a server.
The function uses a two–byte sub-function code field in the query to define the type of test to be performed. The server echoes both the
function code and sub-function code in a normal response. Some of the diagnostics cause data to be returned from the remote device in
the data field of a normal response.
In general, issuing a diagnostic function to a remote device does not affect the running of the user program in the remote device. User
logic, like discrete and registers, is not accessed by the diagnostics. Certain functions can optionally reset error counters in the remote
device.
A server device can, however, be forced into ‘Listen Only Mode’ in which it will monitor the messages on the communications system but
not respond to them. This can affect the outcome of your application program if it depends upon any further exchange of data with the
remote device. Generally, the mode is forced to remove a malfunctioning remote device from the communications system.

The following diagnostic functions are dedicated to serial line devices.

The normal response to the Return Query Data request is to loopback the same data. The function code and sub-function codes are also
echoed.
Request

Function code 1 Byte 0x08
Sub-function 2 Bytes
Data N x 2 Bytes

Response

Function code 1 Byte 0x08
Sub-function 2 Bytes

Data N x 2 Bytes

Error

Error code 1 Byte 0x88
Exception code 1 Byte 01 or 03 or 04

6.8.1 Sub-function codes supported by the serial line devices

Here the list of sub-function codes supported by the serial line devices. Each sub-function code is then listed with an example of the data
field contents that would apply for that diagnostic.

Sub-function code

Hex Dec

Name

00 00 Return Query Data

01 01 Restart Communications Option

02 02 Return Diagnostic Register

03 03 Change ASCII Input Delimiter

04 04 Force Listen Only Mode

 05.. 09 NOT USED

0A 10 Clear Counters and Diagnostic Register

0B 11 Return Bus Message Count

0C 12 Return Bus Communication Error Count

0D 13 Return Bus Exception Error Count

0E 14 Return Slave Message Count

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 24/52
12/06/02

0F 15 Return Slave No Response Count

10 16 Return Slave NAK Count

11 17 Return Slave Busy Count

12 18 Return Bus Character Overrun Count

13 19 PRIVATE

14 20 PRIVATE

 21 ... RESERVED

00 Return Query Data
The data passed in the request data field is to be returned (looped back) in the response. The entire response message should be
identical to the request.

Sub-function Data Field (Request) Data Field (Response)
00 00 Any Echo Request Data

01 Restart Communications Option
The remote device serial line port must be initialized and restarted, and all of its communications event counters are cleared. If the port is
currently in Listen Only Mode, no response is returned. This function is the only one that brings the port out of Listen Only Mode. If the port
is not currently in Listen Only Mode, a normal response is returned. This occurs before the restart is executed.
When the remote device receives the request, it attempts a restart and executes its power–up confidence tests. Successful completion of
the tests will bring the port online.
A request data field contents of FF 00 hex causes the port’s Communications Event Log to be cleared also. Contents of 00 00 leave the
log as it was prior to the restart.

Sub-function Data Field (Request) Data Field (Response)
00 01 00 00 Echo Request Data
00 01 FF 00 Echo Request Data

02 Return Diagnostic Register
The contents of the remote device’s 16–bit diagnostic register are returned in the response.

Sub-function Data Field (Request) Data Field (Response)
 00 02 00 00 Diagnostic Register Contents

03 Change ASCII Input Delimiter
The character ‘CHAR’ passed in the request data field becomes the end of message delimiter for future messages (replacing the default
LF character). This function is useful in cases of a Line Feed is not required at the end of ASCII messages.

Sub-function Data Field (Request) Data Field (Response)
00 03 CHAR 00 Echo Request Data

04 Force Listen Only Mode
Forces the addressed remote device to its Listen Only Mode for MODBUS communications. This isolates it from the other devices on the
network, allowing them to continue communicating without interruption from the addressed remote device. No response is returned.
When the remote device enters its Listen Only Mode, all active communication controls are turned off. The Ready watchdog timer is
allowed to expire, locking the controls off. While the device is in this mode, any MODBUS messages addressed to it or broadcast are
monitored, but no actions will be taken and no responses will be sent.
The only function that will be processed after the mode is entered will be the Restart Communications Option function (function code 8,
sub-function 1).

Sub-function Data Field (Request) Data Field (Response)
00 04 00 00 No Response Returned

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 25/52
12/06/02

10 (0A Hex) Clear Counters and Diagnostic Register
The goal is to clear all counters and the diagnostic register. Counters are also cleared upon power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0A 00 00 Echo Request Data

11 (0B Hex) Return Bus Message Count
The response data field returns the quantity of messages that the remote device has detected on the communications system since its last
restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0B 00 00 Total Message Count

12 (0C Hex) Return Bus Communication Error Count
The response data field returns the quantity of CRC errors encountered by the remote device since its last restart, clear counters
operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0C 00 00 CRC Error Count

13 (0D Hex) Return Bus Exception Error Count
The response data field returns the quantity of MODBUS exception responses returned by the remote device since its last restart, clear
counters operation, or power–up.
Exception responses are described and listed in chapter 7.

Sub-function Data Field (Request) Data Field (Response)
00 0D 00 00 Exception Error Count

14 (0E Hex) Return Slave Message Count
The response data field returns the quantity of messages addressed to the remote device, or broadcast, that the remote device has
processed since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0E 00 00 Slave Message Count

15 (0F Hex) Return Slave No Response Count
The response data field returns the quantity of messages addressed to the remote device for which it has returned no response (neither a
normal response nor an exception response), since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 0F 00 00 Slave No Response Count

16 (10 Hex) Return Slave NAK Count
The response data field returns the quantity of messages addressed to the remote device for which it returned a Negative Acknowledge
(NAK) exception response, since its last restart, clear counters operation, or power–up. Exception responses are described and listed in
Appendix A.

Sub-function Data Field (Request) Data Field (Response)
00 10 00 00 Slave NAK Count

17 (11 Hex) Return Slave Busy Count
The response data field returns the quantity of messages addressed to the remote device for which it returned a Slave Device Busy
exception response, since its last restart, clear counters operation, or power–up.

Sub-function Data Field (Request) Data Field (Response)
00 11 00 00 Slave Device Busy Count

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 26/52
12/06/02

18 (12 Hex) Return Bus Character Overrun Count
The response data field returns the quantity of messages addressed to the remote device that it could not handle due to a character
overrun condition, since its last restart, clear counters operation, or power–up. A character overrun is caused by data characters arriving at
the port faster than they can be stored, or by the loss of a character due to a hardware malfunction.

Sub-function Data Field (Request) Data Field (Response)
00 12 00 00 Slave Character Overrun Count

20 (14 Hex) Clear Overrun Counter and Flag
Clears the overrun error counter and reset the error flag.

Sub-function Data Field (Request) Data Field (Response)
00 14 00 00 Echo Request Data

6.8.2 Example and state diagram

Here is an example of a request to remote device to Return Query Data. This uses a sub-function code of zero (00 00 hex in the two–byte
field). The data to be returned is sent in the two–byte data field (A5 37 hex).

Request Response

Field Name (Hex) Field Name (Hex)

Function 08 Function 08
Sub-function Hi 00 Sub-function Hi 00
Sub-function Lo 00 Sub-function Lo 00
Data Hi A5 Data Hi A5
Data Lo 37 Data Lo 37

The data fields in responses to other kinds of queries could contain error counts or other information requested by the sub-function code.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 27/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

Diagnostic == OK

MB Server Sends mb_rsp

NO

YES

Function code supported
AND

Subfunction code supported

ExceptionCode = 03

Data Value == OK
NO

YES

Request Processing

Figure 18: Diagnostic state diagram

6.9 11 (0x0B) Get Comm Event Counter (Serial Line only)
This function code is used to get a status word and an event count from the remote device's communication event counter.
By fetching the current count before and after a series of messages, a client can determine whether the messages were handled normally
by the remote device.
The device’s event counter is incremented once for each successful message completion. It is not incremented for exception responses,
poll commands, or fetch event counter commands.
The event counter can be reset by means of the Diagnostics function (code 08), with a sub-function of Restart Communications Option
(code 00 01) or Clear Counters and Diagnostic Register (code 00 0A).
The normal response contains a two–byte status word, and a two–byte event count. The status word will be all ones (FF FF hex) if a
previously–issued program command is still being processed by the remote device (a busy condition exists). Otherwise, the status word
will be all zeros.
Request

Function code 1 Byte 0x0B

Response

Function code 1 Byte 0x0B
Status 2 Bytes 0x0000 to 0xFFFF

Event Count 2 Bytes 0x0000 to 0xFFFF

Error

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 28/52
12/06/02

Error code 1 Byte 0x8B
Exception code 1 Byte 01 or 04

Here is an example of a request to get the communications event counter in remote device:

Request Response

Field Name (Hex) Field Name (Hex)

Function 0B Function 0B
 Status Hi FF
 Status Lo FF
 Event Count Hi 01
 Event Count Lo 08

In this example, the status word is FF FF hex, indicating that a program function is still in progress in the remote device. The event count
shows that 264 (01 08 hex) events have been counted by the device.

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

GetCommEventCounter == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 19: Get Comm Event Counter state diagram

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 29/52
12/06/02

6.10 12 (0x0C) Get Comm Event Log (Serial Line only)
This function code is used to get a status word, event count, message count, and a field of event bytes from the remote device.
The status word and event counts are identical to that returned by the Get Communications Event Counter function (11, 0B hex).
The message counter contains the quantity of messages processed by the remote device since its last restart, clear counters operation, or
power–up. This count is identical to that returned by the Diagnostic function (code 08), sub-function Return Bus Message Count (code 11,
0B hex).
The event bytes field contains 0-64 bytes, with each byte corresponding to the status of one MODBUS send or receive operation for the
remote device. The remote device enters the events into the field in chronological order. Byte 0 is the most recent event. Each new byte
flushes the oldest byte from the field.
The normal response contains a two–byte status word field, a two–byte event count field, a two–byte message count field, and a field
containing 0-64 bytes of events. A byte count field defines the total length of the data in these four fields.
Request

Function code 1 Byte 0x0C

Response

Function code 1 Byte 0x0C
Byte Count 1 Byte N*
Status 2 Bytes 0x0000 to 0xFFFF

Event Count 2 Bytes 0x0000 to 0xFFFF

Message Count 2 Bytes 0x0000 to 0xFFFF

Events (N-6)x 1 Byte

*N = Quantity of Events + 3 x 2 Bytes, (Length of Status, Event Count and Message Count)
Error

Error code 1 Byte 0x8C
Exception code 1 Byte 01 or 04

Here is an example of a request to get the communications event log in remote device:

Request Response

Field Name (Hex) Field Name (Hex)

Function 0C Function 0C
 Byte Count 08
 Status Hi 00
 Status Lo 00
 Event Count Hi 01
 Event Count Lo 08
 Message Count Hi 01
 Message Count Lo 21
 Event 0 20
 Event 1 00

In this example, the status word is 00 00 hex, indicating that the remote device is not processing a program function. The event count
shows that 264 (01 08 hex) events have been counted by the remote device. The message count shows that 289 (01 21 hex) messages
have been processed.
The most recent communications event is shown in the Event 0 byte. Its content (20 hex) show that the remote device has most recently
entered the Listen Only Mode.
The previous event is shown in the Event 1 byte. Its contents (00 hex) show that the remote device received a Communications Restart.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 30/52
12/06/02

The layout of the response’s event bytes is described below.
What the Event Bytes Contain
An event byte returned by the Get Communications Event Log function can be any one of four types. The type is defined by bit 7 (the
high–order bit) in each byte. It may be further defined by bit 6. This is explained below.

• Remote device MODBUS Receive Event
The remote device stores this type of event byte when a query message is received. It is stored before the remote device
processes the message. This event is defined by bit 7 set to logic ‘1’. The other bits will be set to a logic ‘1’ if the corresponding
condition is TRUE. The bit layout is:

Bit Contents
0 Not Used
1 Communication Error
2 Not Used
3 Not Used
4 Character Overrun
5 Currently in Listen Only Mode
6 Broadcast Received
7 1

• Remote device MODBUS Send Event
The remote device stores this type of event byte when it finishes processing a request message. It is stored if the remote device
returned a normal or exception response, or no response. This event is defined by bit 7 set to a logic ‘0’, with bit 6 set to a ‘1’. The
other bits will be set to a logic ‘1’ if the corresponding condition is TRUE. The bit layout is:

Bit Contents
0 Read Exception Sent (Exception Codes 1-3)
1 Slave Abort Exception Sent (Exception Code 4)
2 Slave Busy Exception Sent (Exception Codes 5-6)
3 Slave Program NAK Exception Sent (Exception Code 7)
4 Write Timeout Error Occurred
5 Currently in Listen Only Mode
6 1
7 0

• Remote device Entered Listen Only Mode
The remote device stores this type of event byte when it enters the Listen Only Mode. The event is defined by a content of 04 hex.

• Remote device Initiated Communication Restart
The remote device stores this type of event byte when its communications port is restarted. The remote device can be restarted
by the Diagnostics function (code 08), with sub-function Restart Communications Option (code 00 01).
That function also places the remote device into a ‘Continue on Error’ or ‘Stop on Error’ mode. If the remote device is placed into
‘Continue on Error’ mode, the event byte is added to the existing event log. If the remote device is placed into ‘Stop on Error’
mode, the byte is added to the log and the rest of the log is cleared to zeros.
The event is defined by a content of zero.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 31/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

GetCommEventLog == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 20: Get Comm Event Log state diagram

6.11 15 (0x0F) Write Multiple Coils
This function code is used to force each coil in a sequence of coils to either ON or OFF in a remote device. The Request PDU specifies
the coil references to be forced. Coils are addressed starting at zero. Therefore coil numbered 1 is addressed as 0.
The requested ON/OFF states are specified by contents of the request data field. A logical '1' in a bit position of the field requests the
corresponding output to be ON. A logical '0' requests it to be OFF.
The normal response returns the function code, starting address, and quantity of coils forced.
Request PDU

Function code 1 Byte 0x0F
Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Byte Count 1 Byte N*

Outputs Value N* x 1 Byte

*N = Quantity of Outputs / 8, if the remainder is different of 0 ⇒ N = N+1
Response PDU

Function code 1 Byte 0x0F
Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Error

Error code 1 Byte 0x8F
Exception code 1 Byte 01 or 02 or 03 or 04

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 32/52
12/06/02

Here is an example of a request to write a series of 10 coils starting at coil 20:
The request data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary). The binary bits correspond to the outputs in the
following way:
Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1
Output: 27 26 25 24 23 22 21 20 – – – – – – 29 28
The first byte transmitted (CD hex) addresses outputs 27-20, with the least significant bit addressing the lowest output (20) in this set.
The next byte transmitted (01 hex) addresses outputs 29-28, with the least significant bit addressing the lowest output (28) in this set.
Unused bits in the last data byte should be zero–filled.

Request Response

Field Name (Hex) Field Name (Hex)

Function 0F Function 0F
Starting Address Hi 00 Starting Address Hi 00
Starting Address Lo 13 Starting Address Lo 13
Quantity of Outputs Hi 00 Quantity of Outputs Hi 00
Quantity of Outputs Lo 0A Quantity of Outputs Lo 0A
Byte Count 02
Outputs Value Hi CD
Outputs Value Lo 01

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

WriteMultipleOutputs == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Outputs ≤ 0x07B0
AND

Byte Count = N*

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Outputs == OK

ExceptionCode = 04

*N = Quantity of Outputs / 8, if the
remainder is different of 0 ⇒ N = N+1

Request Processing

Figure 21: Write Multiple Outputs state diagram

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 33/52
12/06/02

6.12 16 (0x10) Write Multiple registers
This function code is used to write a block of contiguous registers (1 to approx. 120 registers) in a remote device.
The requested written values are specified in the request data field. Data is packed as two bytes per register.
The normal response returns the function code, starting address, and quantity of registers written.

Request

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 0x0001 to 0x0078

Byte Count 1 Byte 2 x N*

Registers Value N* x 2 Bytes value

*N = Quantity of Registers
Response

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 1 to 123 (0x7B)

Error

Error code 1 Byte 0x90

Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to write two registers starting at 2 to 00 0A and 01 02 hex:

Request Response

Field Name (Hex) Field Name (Hex)

Function 10 Function 10
Starting Address Hi 00 Starting Address Hi 00
Starting Address Lo 01 Starting Address Lo 01
Quantity of Registers Hi 00 Quantity of Registers Hi 00
Quantity of Registers Lo 02 Quantity of Registers Lo 02
Byte Count 04
Registers Value Hi 00
Registers Value Lo 0A
Registers Value Hi 01
Registers Value Lo 02

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 34/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

WriteMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Registers ≤ 0x007B
AND

Byte Count == Quantity of Registers x 2

Function code
supported

Starting Address == OK
AND

Starting Address + Quantity of Registers == OK

ExceptionCode = 04

Request Processing

Figure 22: Write Multiple Registers state diagram

6.13 17 (0x11) Report Slave ID (Serial Line only)
This function code is used to read the description of the type, the current status, and other information specific to a remote device.
The format of a normal response is shown in the following example. The data contents are specific to each type of device.
Request

Function code 1 Byte 0x11

Response
Function code 1 Byte 0x11
Byte Count 1 Byte

Slave ID device specific

Run Indicator Status 1 Byte 0x00 = OFF, 0xFF = ON

Additional Data

Error
Error code 1 Byte 0x91
Exception code 1 Byte 01 or 04

Here is an example of a request to report the ID and status:

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 35/52
12/06/02

Request Response

Field Name (Hex) Field Name (Hex)

Function 11 Function 11
 Byte Count Device Specific
 Slave ID Device Specific

 Run Indicator Status 0x00 or 0xFF

 Additional Data Device Specific

MB Server Sends mb_exception_rsp EXIT

ExceptionCode = 04

MB Server receives mb_req_pdu

ExceptionCode = 01

NO

YES

ENTRY

ReportSlaveID == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

Request Processing

Figure 23: Report slave ID state diagram

6.14 20 / 6 (0x14 / 0X06) Read File Record
This function code is used to perform a file record read. All Request Data Lengths are provided in terms of number of bytes and all Record
Lengths are provided in terms of registers.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to 9999 decimal or 0X0000 to 0X270F. For
example, record 12 is addressed as 12.
The function can read multiple groups of references. The groups can be separating (non-contiguous), but the references within each group
must be sequential.
Each group is defined in a separate ‘sub-request’ field that contains 7 bytes:

The reference type: 1 byte (must be specified as 6)
The File number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be read: 2 bytes.

The quantity of registers to be read, combined with all other fields in the expected response, must not exceed the allowable length of
MODBUS messages: 256 bytes.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 36/52
12/06/02

The normal response is a series of ‘sub-responses’, one for each ‘sub-request’. The byte count field is the total combined count of bytes in
all ‘sub-responses’. In addition, each ‘sub-response’ contains a field that shows its own byte count.
Request

Function code 1 Byte 0x14
Byte Count 1 Byte 0x07 to 0xF5 bytes

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFF

Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F

Sub-Req. x, Register Length 2 Bytes N
Sub-Req. x+1, ...

Response
Function code 1 Byte 0x14
Resp. data Length 1 Byte 0x07 to 0xF5

Sub-Req. x, File Resp. length 1 Byte 0x07 to 0xF5

Sub-Req. x, Reference Type 1 Byte 6

Sub-Req. x, Record Data N x 2 Bytes

Sub-Req. x+1, ...

Error
Error code 1 Byte 0x94
Exception code 1 Byte 01 or 02 or 03 or 04 or 08

Here is an example of a request to read two groups of references from remote device:
� Group 1 consists of two registers from file 4, starting at register 1 (address 0001).
� Group 2 consists of two registers from file 3, starting at register 9 (address 0009).

Request Response

Field Name (Hex) Field Name (Hex)

Function 14 Function 14
Byte Count 0C Resp. Data length 0E
Sub-Req. 1, Ref. Type 06 Sub-Req. 1, File resp. length 05
Sub-Req. 1, File Number Hi 00 Sub-Req. 1, Ref. Type 06
Sub-Req. 1, File Number Lo 04 Sub-Req. 1, Record. Data Hi 0D
Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Record. Data Lo FE
Sub-Req. 1, Record number Lo 01 Sub-Req. 1, Record. Data Hi 00
Sub-Req. 1, Record Length Hi 00 Sub-Req. 1, Record. Data Lo 20
Sub-Req. 1, Record Length Lo 02 Sub-Req. 2, File resp. length 05
Sub-Req. 2, Ref. Type 06 Sub-Req. 2, Ref. Type 06
Sub-Req. 2, File Number Hi 00 Sub-Req. 2, Record. Data Hi 33
Sub-Req. 2, File Number Lo 03 Sub-Req. 2, Record. Data Lo CD
Sub-Req. 2, Record number Hi 00 Sub-Req. 2, Record. Data Hi 00
Sub-Req. 2, Record number Lo 09 Sub-Req. 2, Record. Data Lo 40
Sub-Req. 2, Record Length Hi 00
Sub-Req. 2, Record Length Lo 02

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 37/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03

YES

ENTRY

ReadGeneralReference == OK

MB Server Sends mb_rsp

NO

YES

0x07 ≤ Byte Count ≤ 0xF5

Function code
supported

Reference Type == OK
AND

File Number == OK
AND

Record number == OK
AND

Starting Address + Register length == OK

ExceptionCode = 04

Request Processing

For each Sub-Req

Figure 24: Read File Record state diagram

6.15 21 / 6 (0x15 / 0x06) Write File Record
This function code is used to perform a file record write. All Request Data Lengths are provided in terms of number of bytes and all Record
Lengths are provided in terms of the number of 16-bit words.
A file is an organization of records. Each file contains 10000 records, addressed 0000 to 9999 decimal or 0X0000 to 0X270F. For
example, record 12 is addressed as 12.
The function can write multiple groups of references. The groups can be separate, ie non–contiguous, but the references within each
group must be sequential.
Each group is defined in a separate ‘sub-request’ field that contains 7 bytes plus the data:

The reference type: 1 byte (must be specified as 6)
The file number: 2 bytes
The starting record number within the file: 2 bytes
The length of the record to be written: 2 bytes
The data to be written: 2 bytes per register.

The quantity of registers to be written, combined with all other fields in the query, must not exceed the allowable length of MODBUS
messages: 256 bytes.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 38/52
12/06/02

The normal response is an echo of the request.
Request

Function code 1 Byte 0x15
Request data length 1 Byte 0x07 to 0xF5

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFF

Sub-Req. x, Record Number 2 Bytes 0x0000 to 0x270F

Sub-Req. x, Record length 2 Bytes N
Sub-Req. x, Record data N x 2 Bytes
Sub-Req. x+1, ...

Response

Function code 1 Byte 0x15

Response Data length 1 Byte

Sub-Req. x, Reference Type 1 Byte 06

Sub-Req. x, File Number 2 Bytes 0x0000 to 0xFFFFF

Sub-Req. x, Record number 2 Bytes 0x0000 to 0xFFFFF

Sub-Req. x, Record length 2 Bytes 0x0000 to 0xFFFFF N

Sub-Req. x, Record Data N x 2 Bytes

Sub-Req. x+1, ...

Error

Error code 1 Byte 0x95

Exception code 1 Byte 01 or 02 or 03 or 04 or 08

Here is an example of a request to write one group of references into remote device:
� The group consists of three registers in file 4, starting at register 7 (address 0007).

Request Response

Field Name (Hex) Field Name (Hex)

Function 15 Function 15
Request Data length 0D Request Data length 0D
Sub-Req. 1, Ref. Type 06 Sub-Req. 1, Ref. Type 06
Sub-Req. 1, File Number Hi 00 Sub-Req. 1, File Number Hi 00
Sub-Req. 1, File Number Lo 04 Sub-Req. 1, File Number Lo 04
Sub-Req. 1, Record number Hi 00 Sub-Req. 1, Record number Hi 00
Sub-Req. 1, Record number Lo 07 Sub-Req. 1, Record number Lo 07
Sub-Req. 1, Record length Hi 00 Sub-Req. 1, Record length Hi 00
Sub-Req. 1, Record length Lo 03 Sub-Req. 1, Record length Lo 03
Sub-Req. 1, Record Data Hi 06 Sub-Req. 1, Record Data Hi 06
Sub-Req. 1, Record Data Lo AF Sub-Req. 1, Record Data Lo AF
Sub-Req. 1, Record Data Hi 04 Sub-Req. 1, Record Data Hi 04
Sub-Req. 1, Record Data Lo BE Sub-Req. 1, Record Data Lo BE
Sub-Req. 1, Record Data Hi 10 Sub-Req. 1, Record Data Hi 10
Sub-Req. 1, Reg. Data Lo 0D Sub-Req. 1, Reg. Data Lo 0D

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 39/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03

YES

ENTRY

WriteGeneralReference == OK

MB Server Sends mb_rsp

NO

YES

0x07 ≤ Byte Count ≤ 0xF5

Function code
supported

Reference Type == OK
AND

File Number == OK
AND

Record number == OK
AND

Starting Address + Register length == OK

ExceptionCode = 04

Request Processing

For each Sub-Req

Figure 25: Write File Record state diagram

6.16 22 (0x16) Mask Write Register
This function code is used to modify the contents of a specified holding register using a combination of an AND mask, an OR mask, and
the register's current contents. The function can be used to set or clear individual bits in the register.
The request specifies the holding register to be written, the data to be used as the AND mask, and the data to be used as the OR mask.
Registers are addressed starting at zero. Therefore registers 1-16 are addressed as 0-15.
The function’s algorithm is:
Result = (Current Contents AND And_Mask) OR (Or_Mask AND And_Mask)
For example:

Hex Binary
Current Contents = 12 0001 0010
And_Mask = F2 1111 0010
Or_Mask = 25 0010 0101

And_Mask = 0D 0000 1101

Result = 17 0001 0111

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 40/52
12/06/02

� Note:

� That if the Or_Mask value is zero, the result is simply the logical ANDing of the current contents and And_Mask. If the And_Mask value is zero,
the result is equal to the Or_Mask value.

� The contents of the register can be read with the Read Holding Registers function (function code 03). They could, however, be changed
subsequently as the controller scans its user logic program.

The normal response is an echo of the request. The response is returned after the register has been written.
Request

Function code 1 Byte 0x16
Reference Address 2 Bytes 0x0000 to 0xFFFF

And_Mask 2 Bytes 0x0000 to 0xFFFF

Or_Mask 2 Bytes 0x0000 to 0xFFFF

Response

Function code 1 Byte 0x16
Reference Address 2 Bytes 0x0000 to 0xFFFF

And_Mask 2 Bytes 0x0000 to 0xFFFF

Or_Mask 2 Bytes 0x0000 to 0xFFFF

Error

Error code 1 Byte 0x96
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a Mask Write to register 5 in remote device, using the above mask values.

Request Response

Field Name (Hex) Field Name (Hex)

Function 16 Function 16
Reference address Hi 00 Reference address Hi 00
Reference address Lo 04 Reference address Lo 04
And_Mask Hi 00 And_Mask Hi 00
And_Mask Lo F2 And_Mask Lo F2
Or_Mask Hi 00 Or_Mask Hi 00
Or_Mask Lo 25 Or_Mask Lo 25

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 41/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO
ExceptionCode = 02

YES

NO

ExceptionCode = 03

YES

ENTRY

MaskWriteRegister == OK

MB Server Sends mb_rsp

NO

YES

Function code
supported

ExceptionCode = 04

Request Processing

Reference Address == OK

AND_Mask == OK
AND

OR_Mask == OK

Figure 26: Mask Write Holding Register state diagram

6.17 23 (0x17) Read/Write Multiple registers
This function code performs a combination of one read operation and one write operation in a single MODBUS transaction. The write
operation is performed before the read.
Holding registers are addressed starting at zero. Therefore holding registers 1-16 are addressed in the PDU as 0-15.
The request specifies the starting address and number of holding registers to be read as well as the starting address, number of holding
registers, and the data to be written. The byte count specifies the number of bytes to follow in the write data field.
The normal response contains the data from the group of registers that were read. The byte count field specifies the quantity of bytes to
follow in the read data field.

Request

Function code 1 Byte 0x17
Read Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity to Read 2 Bytes 0x0001 to approx.0x0076

Write Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity to Write 2 Bytes 0x0001 to approx. 0X0076
Write Byte Count 1 Byte 2 x N*

Write Registers Value N* x 2 Bytes

*N = Quantity to Write

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 42/52
12/06/02

Response

Function code 1 Byte 0x17
Byte Count 1 Byte 2 x N'*
Read Registers value N'* x 2 Bytes

*N' = Quantity to Read

Error

Error code 1 Byte 0x97
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of a request to read six registers starting at register 4, and to write three registers starting at register 15:

Request Response

Field Name (Hex) Field Name (Hex)

Function 17 Function 17
Read Starting Address Hi 00 Byte Count 0C
Read Starting Address Lo 03 Read Registers value Hi 00
Quantity to Read Hi 00 Read Registers value Lo FE
Quantity to Read Lo 06 Read Registers value Hi 0A
Write Starting Address Hi 00 Read Registers value Lo CD
Write Starting address Lo 0E Read Registers value Hi 00
Quantity to Write Hi 00 Read Registers value Lo 01
Quantity to Write Lo 03 Read Registers value Hi 00
Write Byte Count 06 Read Registers value Lo 03
Write Registers Value Hi 00 Read Registers value Hi 00
Write Registers Value Lo FF Read Registers value Lo 0D
Write Registers Value Hi 00 Read Registers value Hi 00
Write Registers Value Lo FF Read Registers value Lo FF
Write Registers Value Hi 00
Write Registers Value Lo FF

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 43/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 02
YES

NO

ExceptionCode = 03
YES

ENTRY

Read/WriteMultipleRegisters == OK

MB Server Sends mb_rsp

NO

YES

0x0001 ≤ Quantity of Read ≤ 0x007D
AND

0x0001 ≤ Quantity of Write ≤ 0x0079
AND

Byte Count == Quantity of Write x 2

Function code
supported

 Read Starting Address == OK
AND

Read Starting Address + Quantity of Read == OK
AND

Write Starting Address == OK
AND

Write Starting Address + Quantity of Write == OK

ExceptionCode = 04

Request Processing
Write operation before read operation

Figure 27: Read/Write Multiple Registers state diagram

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 44/52
12/06/02

6.18 24 (0x18) Read FIFO Queue
This function code allows to read the contents of a First-In-First-Out (FIFO) queue of register in a remote device. The function returns a
count of the registers in the queue, followed by the queued data. Up to 32 registers can be read: the count, plus up to 31 queued data
registers. The queue count register is returned first, followed by the queued data registers.
The function reads the queue contents, but does not clear them.
In a normal response, the byte count shows the quantity of bytes to follow, including the queue count bytes and value register bytes (but
not including the error check field).
The queue count is the quantity of data registers in the queue (not including the count register).
If the queue count exceeds 31, an exception response is returned with an error code of 03 (Illegal Data Value).
Request

Function code 1 Byte 0x18
FIFO Pointer Address 2 Bytes 0x0000 to 0xFFFF

Response

Function code 1 Byte 0x18
Byte Count 2 Bytes

FIFO Count 2 Bytes ≤ 31

FIFO Value Register N* x 2 Bytes

*N = FIFO Count
Error

Error code 1 Byte 0x98
Exception code 1 Byte 01 or 02 or 03 or 04

Here is an example of Read FIFO Queue request to remote device. The request is to read the queue starting at the pointer register 1246
(0x04DE):

Request Response

Field Name (Hex) Field Name (Hex)

Function 18 Function 18
FIFO Pointer Address Hi 04 Byte Count Hi 00
FIFO Pointer Address Lo DE Byte Count Lo 06

 FIFO Count Hi 00
 FIFO Count Lo 02
 FIFO Value Register Hi 01
 FIFO Value Register Lo B8
 FIFO Value Register Hi 12
 FIFO Value Register Lo 84

In this example, the FIFO pointer register (1246 in the request) is returned with a queue count of 2. The two data registers follow the queue
count. These are:
1247 (contents 440 decimal -- 0x01B8); and 1248 (contents 4740 -- 0x1284).

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 45/52
12/06/02

MB Server Sends mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptionCode = 01
YES

NO

NO

ExceptionCode = 03
YES

NO

ExceptionCode = 02
YES

ENTRY

ReadFIFOQueue == OK

MB Server Sends mb_rsp

NO

YES

0x0000 ≤ FIFO Pointer Address ≤ 0xFFFF

Function code
supported

ExceptionCode = 04

FIFO Count ≤ 31

Request Processing

Figure 28: Read FIFO Queue state diagram

6.19 43 (0x2B) Encapsulated Interface Transport
The MODBUS Encapsulated Interface (MEI)Transport is a mechanism for tunneling service requests and method invocations, as well as
their returns, inside MODBUS PDUs.
The primary feature of the MEI Transport is the encapsulation of method invocations or service requests that are part of a defined interface
as well as method invocation returns or service responses.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 46/52
12/06/02

Network Interface

MEI Transport (FC 43)

Interface X
Client Interface

Interface Y
Client Interface

Client Application

MEI Type X MEI Type Y

Network Interface

MEI Transport (FC 43)

Interface X
Server Interface

Interface Y
Server Interface

Application X
Interface Backend

MEI Type X MEI Type Y

Application Y
Interface Backend

Network

Figure 29: Modbus encapsulated Interface Transport

The Network Interface can be any communication stack used to send MODBUS PDUs, such as TCP/IP, or serial line.
A MEI Type is a MODBUS Assigned Number and therefore will be unique, the value between 1 to 127 are Public and the range of value
between 128 to 255 are user defined.
The MEI Type is used by MEI Transport implementations to dispatch a method invocation to the indicated interface.
Since the MEI Transport service is interface agnostic, any specific behavior or policy required by the interface must be provided by the
interface, eg MEI transaction processing, MEI interface error handling, etc.

Request

Function code 1 Byte 0x2B
MEI Type* 1 Byte 0x0E

MEI type specific data n Bytes

* MEI = Modbus Encapsulated Interface
Response

Function code 1 Byte 0x2B
MEI Type 1 byte 0x0E

MEI type specific data n Bytes

Error

Function code 1 Byte 0xAB :
Fc 0x2B + 0x80

MEI Type 1 Byte 14

Exception code 1 Byte 01, 02, 03, 04

As an example see Read device identification request.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 47/52
12/06/02

6.20 43 / 14 (0x2B / 0x0D) Read Device Identification
This function code allows reading the identification and additional information relative to the physical and functional description of a remote
device.
The Read Device Identification interface is modeled as an address space composed of a set of addressable data elements. The data
elements are called objects and an object Id identifies them.
The interface consists of 3 categories of objects :

� Basic Device Identification. All objects of this category are mandatory : VendorName, Product code, and revision number.
� Regular Device Identification. In addition to Basic data objects, the device provides additional and optional identification and

description data objects. All of the objects of this category are defined in the standard but their implementation is optional .
� Extended Device Identification. In addition to regular data objects, the device provides additional and optional identification and

description private data. All of these data are device dependent.

Object
Id

Object Name / Description Type M/O category

0x00 VendorName ASCII String Mandatory
 0x01 ProductCode ASCII String Mandatory

0x02 MajorMinorRevision ASCII String Mandatory

Basic

0x03 VendorUrl ASCII String Optional
0x04 ProductName ASCII String Optional
0x05 ModelName ASCII String Optional
0x06 UserApplicationName ASCII String Optional
0x07

…
0x7F

Reserved

 Optional

Regular

0x80
…

0xFF

Private objects may be optionally defined
The range [0x80 – 0xFF] is Product dependant.

device
dependant

Optional Extended

Request

Function code 1 Byte 0x2B
MEI Type* 1 Byte 0x0E

Read Device ID code 1 Byte 01 / 02 / 03 / 04
Object Id 1 Byte 0x00 to 0xFF

* MEI = Modbus Encapsulated Interface
Response

Function code 1 Byte 0x2B
MEI Type 1 byte 0x0E

Read Device ID code 1 Byte 01 / 02 / 03 / 04
Conformity level 1 Byte

More Folows 1 Byte 00 / FF

Next Object Id 1 Byte Object ID number

Number of objects 1 Byte

List Of

Object ID 1 Byte

Object length 1 Byte

Object Value Object length Depending on the object ID

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 48/52
12/06/02

Error
Function code 1 Byte 0xAB :

Fc 0x2B + 0x80
MEI Type 1 Byte 14

Exception code 1 Byte 01, 02, 03, 04

Request parameters description :
A Modbus Encapsulated Interface assigned number 14 identifies the Read identification request.
The paremeter " Read Device ID code " allows to define four access types :

01 : request to get the basic device identification (stream access)
02 : request to get the regular device identification (stream access)
03 : request to get the extended device identification (stream access)
04 : request to get one specific identification object (individual access)

An exception code 03 is sent back in the response if the Read device ID code is illegal.
In of case a response that does not fit into a single response, several transactions (request/response) must be done. The Object Id
byte gives the identification of the first object to obtain. For the first transaction, the client must set the Object Id to 0 to obtain the
beginning of the device identification data. For the following transactions, the client must set the Object Id to the value returned by
the server in its previous response.
Remark : An object is indivisible, therefore any object must have a size consistent with the size of transaction response.

If the Object Id does not match any known object, the server responds as if object 0 were pointed out (restart at the beginning).
In case of an individual access: ReadDevId code 04, the Object Id in the request gives the identification of the object to obtain.
If the Object Id doesn't match to any known object, the server returns an exception response with exception code = 02 (Illegal data
address).
If the server device is asked for a description level (readDevice Code)higher that its conformity level , It must respond in accordance
with its actual conformity level.

Response parameter description :
Function code : Function code 43 (decimal) 0x2B (hex)
MEI Type 14 (0x0E) MEI Type assigned number for Device Identification Interface
ReadDevId code : Same as request ReadDevId code : 01, 02, 03 or 04
Conformity Level Identification conformity level of the device and type of supported access

01 : basic identification (stream access only)
02 : regular identification (stream access only)
03 : extended identification (stream access only)
81 : basic identification (stream access and individual access)
82 : regular identification (stream access and individual access)
83 : extended identification (stream access and individual access)

More Follows In case of ReadDevId codes 01, 02 or 03 (stream access),
If the identification data doesn't fit into a single response, several request/response transactions may be
required.
00 : no more Object are available
FF : other identification Object are available and further Modbus transactions are required
In case of ReadDevId code 04 (individual access),
this field must be set to 00.

Next Object Id If "MoreFollows = FF", identification of the next Object to be asked for.
if "MoreFollows = 00", must be set to 00 (useless)

Number Of Objects Number of identification Object returned in the response
(for an individual access, Number Of Objects = 1)

Object0.Id Identification of the first Object returned in the PDU (stream access)
or the requested Object (individual access)

Object0.Length Length of the first Object in byte

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 49/52
12/06/02

Object0.Value Value of the first Object (Object0.Length bytes)
…
ObjectN.Id Identification of the last Object (within the response)
ObjectN.Length Length of the last Object in byte
ObjectN.Value Value of the last Object (ObjectN.Length bytes)

Example of a Read Device Identification request for "Basic device identification" : In this example all information are sent in one
response PDU.

Request Response

Field Name Value Field Name Value

Function 2B Function 2B
 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 00 Conformity Level 01
 More Follows 00
 NextObjectId 00
 Number Of Objects 03
 Object Id 00
 Object Length 16
 Object Value " Company identification"
 Object Id 01
 Object Length 0D
 Object Value " Product code XX"
 Object Id 02
 Object Length 05
 Object Value "V2.11"

In case of a device that required several transactions to send the response the following transactions is intiated.
First transaction :

Request Response

Field Name Value Field Name Value

Function 2B Function 2B
 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 00 Conformity Level 01
 More Follows FF
 NextObjectId 02
 Number Of Objects 03
 Object Id 00
 Object Length 16
 Object Value " Company identification"
 Object Id 01
 Object Length 1C
 Object Value " Product code

XXXXXXXXXXXXXXXX"

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 50/52
12/06/02

Second transaction :

Request Response

Field Name Value Field Name Value

Function 2B Function 2B
 MEI Type 0E MEI Type 0E
Read Dev Id code 01 Read Dev Id Code 01
Object Id 02 Conformity Level 01
 More Follows 00
 NextObjectId 00
 Number Of Objects 03
 Object Id 02
 Object Length 05
 Object Value "V2.11"

NO
YES

MB Server Sends
mb_exception_rsp EXIT

MB Server receives mb_req_pdu

ExceptiCode = 01

YES

NO

More follows = FF
Next Object ID = XX

NO

Except.Code = 02 YES

ENTRY

MB Server Sends mb_rsp

NO

Object Id OK

Function code
supported

Segmentation required

Request Processing

More follows = 00
Next Object ID = 00

Read deviceId Code OK

Except. Code =03

Figure 30: Read Device Identification state diagram

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 51/52
12/06/02

7 MODBUS Exception Responses

When a client device sends a request to a server device it expects a normal response. One of four possible events can occur from the
master’s query:

• If the server device receives the request without a communication error, and can handle the query normally, it returns a normal
response.

• If the server does not receive the request due to a communication error, no response is returned. The client program will
eventually process a timeout condition for the request.

• If the server receives the request, but detects a communication error (parity, LRC, CRC, ...), no response is returned. The client
program will eventually process a timeout condition for the request.

• If the server receives the request without a communication error, but cannot handle it (for example, if the request is to read a
non–existent output or register), the server will return an exception response informing the client of the nature of the error.

The exception response message has two fields that differentiate it from a normal response:
Function Code Field: In a normal response, the server echoes the function code of the original request in the function code field of the
response. All function codes have a most–significant bit (MSB) of 0 (their values are all below 80 hexadecimal). In an exception response,
the server sets the MSB of the function code to 1. This makes the function code value in an exception response exactly 80 hexadecimal
higher than the value would be for a normal response.
With the function code’s MSB set, the client's application program can recognize the exception response and can examine the data field
for the exception code.
Data Field: In a normal response, the server may return data or statistics in the data field (any information that was requested in the
request). In an exception response, the server returns an exception code in the data field. This defines the server condition that caused
the exception.

Example of a client request and server exception response

Request Response

Field Name (Hex) Field Name (Hex)

Function 01 Function 81
Starting Address Hi 04 Exception Code 02
Starting Address Lo A1
Quantity of Outputs Hi 00
Quantity of Outputs Lo 01

In this example, the client addresses a request to server device. The function code (01) is for a Read Output Status operation. It requests
the status of the output at address 1245 (04A1 hex). Note that only that one output is to be read, as specified by the number of outputs
field (0001).
If the output address is non–existent in the server device, the server will return the exception response with the exception code shown
(02). This specifies an illegal data address for the slave.

A listing of exception codes begins on the next page.

MODBUS Application Protocol Specification V1.1 MODBUS.ORG

modbus.org http://www.modbus.org/ 52/52
12/06/02

MODBUS Exception Codes
Code Name Meaning
01 ILLEGAL FUNCTION The function code received in the query is not an allowable

action for the server (or slave). This may be because the
function code is only applicable to newer devices, and was not
implemented in the unit selected. It could also indicate that the
server (or slave) is in the wrong state to process a request of
this type, for example because it is unconfigured and is being
asked to return register values.

02 ILLEGAL DATA ADDRESS The data address received in the query is not an allowable
address for the server (or slave). More specifically, the
combination of reference number and transfer length is invalid.
For a controller with 100 registers, a request with offset 96 and
length 4 would succeed, a request with offset 96 and length 5
will generate exception 02.

03 ILLEGAL DATA VALUE A value contained in the query data field is not an allowable
value for server (or slave). This indicates a fault in the
structure of the remainder of a complex request, such as that
the implied length is incorrect. It specifically does NOT mean
that a data item submitted for storage in a register has a value
outside the expectation of the application program, since the
MODBUS protocol is unaware of the significance of any
particular value of any particular register.

04 SLAVE DEVICE FAILURE An unrecoverable error occurred while the server (or slave)
was attempting to perform the requested action.

05 ACKNOWLEDGE Specialized use in conjunction with programming commands.
The server (or slave) has accepted the request and is
processing it, but a long duration of time will be required to do
so. This response is returned to prevent a timeout error from
occurring in the client (or master). The client (or master) can
next issue a Poll Program Complete message to determine if
processing is completed.

06 SLAVE DEVICE BUSY Specialized use in conjunction with programming commands.
The server (or slave) is engaged in processing a long–duration
program command. The client (or master) should retransmit
the message later when the server (or slave) is free.

08 MEMORY PARITY ERROR Specialized use in conjunction with function codes 20 and 21
and reference type 6, to indicate that the extended file area
failed to pass a consistency check.
The server (or slave) attempted to read record file, but
detected a parity error in the memory. The client (or master)
can retry the request, but service may be required on the
server (or slave) device.

0A GATEWAY PATH UNAVAILABLE Specialized use in conjunction with gateways, indicates that
the gateway was unable to allocate an internal communication
path from the input port to the output port for processing the
request. Usually means that the gateway is misconfigured or
overloaded.

0B GATEWAY TARGET DEVICE
FAILED TO RESPOND

Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means
that the device is not present on the network.

	Introduction
	Scope of this document
	References

	Abbreviations
	Context
	General description
	Protocol description
	Data Encoding
	MODBUS data model
	MODBUS Addressing model
	Define MODBUS Transaction

	Function Code Categories
	Public Function Code Definition

	Function codes descripitons
	01 (0x01) Read Coils
	02 (0x02) Read Discrete Inputs
	03 (0x03) Read Holding Registers
	04 (0x04) Read Input Registers
	05 (0x05) Write Single Coil
	06 (0x06) Write Single Register
	07 (0x07) Read Exception Status (Serial Line only)
	08 (0x08) Diagnostics (Serial Line only)
	Sub-function codes supported by the serial line devices
	Example and state diagram

	11 (0x0B) Get Comm Event Counter (Serial Line only)
	12 (0x0C) Get Comm Event Log (Serial Line only)
	15 (0x0F) Write Multiple Coils
	16 (0x10) Write Multiple registers
	17 (0x11) Report Slave ID (Serial Line only)
	20 / 6 (0x14 / 0X06) Read File Record
	21 / 6 (0x15 / 0x06) Write File Record
	22 (0x16) Mask Write Register
	23 (0x17) Read/Write Multiple registers
	24 (0x18) Read FIFO Queue
	43 (0x2B) Encapsulated Interface Transport
	43 / 14 (0x2B / 0x0D) Read Device Identification

	MODBUS Exception Responses

