MultiMmCU

Microcontroller
Co-simulation

$ clectronics

A NATIONAL INSTRUMENTS COMPANY

Multissm™ and Electronics Workbench Corporation™
copyright © 2005 Electronics Workbench Corporation. All rights reserved.

Some portions of this product are protected under United States Patent No. 6,560,572.

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.

MCU-E-1790 Rev. 1

© 2005 Electronics Workbench Corporation. All rights reserved. Published May 2005.
Printed in Canada.

Table of Contents

1. MultiMCU Overview

2. MultiMCU Sample Walkthroughs

2.1 Tutorial 1 - MCU Driven Blinking Lights i 2-2
211 OVEIVIEW. . ottt et 2-2
2.1.2 AbouttheTutorial 2-2
2.1.3 Usingthe MCU Interface. i 2-6

2.1.3.1 MCU Assembly Source Window. 2-6
2.1.32 MCURegister VIeWt 2-7
2.1.3.3 MCUMeEmMOry VIEW. . . . oo e e 2-8
2.1.3.4 Displaying Elements of the MCU Interface. 2-9
2.1.4 Advanced Features.ttt 2-9
2.1.41 AddingaBreakpoint............ i 2-10
2.1.42 BreakandContinue 2-10
2143 BreakandStepInto............ i 2-12

2.2 Tutorial 2 - MCU Controlled Holding Tank 2-13
221 OVEIVIBW. . . ettt 2-13
2.2.2 Aboutthe Tutorial 2-13
2.23 Usingthe MCU Interface. 2-18

2.2.3.1 MCU Assembly Source Window. 2-18
2232 MCURegisterView 2-19
2.2.3.3 MCUMeEmMOry VIEW. . . .o 2-19
2.2.3.4 Displaying Elements of the MCU Interface. 2-20
224 Advanced FeaturesS.ttt e 2-21
2.2.4.1 AddingaBreakpoint........... 2-21
2242 BreakandContinue 2-21
2243 BreakandStepInto............ 2-22

2.3 Tutorial 3-MCU Based Calculator. 2-22
2.3 1 OVEIVIBW. .« .ttt 2-22
2.3.2 Aboutthe Tutorial 2-23
2.3.3 Usingthe MCU Interface. 2-29

2.3.3.1 MCU Assembly Source Window. 2-29
2.3.3.2 MCURegisterView 2-30
2.3.3.3 MCUMemMOry VIEW. . . .o e e e 2-31
2.3.3.4 Displaying Elements of the MCU Interface. 2-32

MultiMCU Co-simulation i

2.3.4

Advanced Features i 2-32
2.34.1 AddingaBreakpoint 2-33
2.3.4.2 Breakand Continue. i 2-34
2343 BreakandStepInto............... 2-35

Electronics Workbench

Chapter 1
MultiMCU Overview

Microcontroller (MCU) components are useful for many circuit designs. A modern
microcontroller typically combines a CPU, data memory, program memory, and periphera
devices on asingle physical chip. Theintegration of these essential elements of a computer
into a single chip reduces component counts and board size resulting in higher reliability with
more capabilities. The MCU Co-simulation system provides software development features
for writing and debugging code for embedded devices.

Embedded software development can be a challenging process for even the best
programmers. MultiMCU helps you produce high quality code more quickly and easily. The
MCU development interfaces allow you to pause a simulation, inspect the internal RAM and
Registers of the MCU, set code breakpoints, and single step through your code.

For detailed demonstrations of the MultiMCU functionality see:

e “2.1Tutorial 1 - MCU Driven Blinking Lights’” on page 2-2
e “2.2Tutorial 2 - MCU Controlled Holding Tank” on page 2-13
e “2.3Tutoria 3- MCU Based Calculator” on page 2-22

MultiMCU Co-simulation 1-1

MultiMCU Overview

1-2 Electronics Workbench

Chapter 2
MultiMCU Sample Walkthroughs

This chapter details three tutorials that use MultiMCU’s co-simulation functionality. The
circuits for the tutorials are found in the folder where you installed Multisim 8, at
...\samples\MCU Sample Circuits.

The following are described in this chapter.

Subject Page No.
Tutorial 1 - MCU Driven Blinking Lights 2-2
Tutorial 2 - MCU Controlled Holding Tank 2-13
Tutorial 3 - MCU Based Calculator 2-22

MultiMCU Co-simulation 2-1

MultiMCU Sample Walkthroughs

2.1 Tutorial 1 - MCU Driven Blinking Lights

Thistutorial leads you through the simulation of the Blinking Lights sample circuit.

2.1.1 Overview

The Blinking Lights circuit example shows the use of a microcontroller to control a set of
LEDs as might be found in a novelty toy. There are four operating modes controlled by the
different combinations of switches A and B. The third switch, C, controls the direction for
two of the modes.

. . . . VCC
MCU Driven Blinking Lights Tsv
Click an the Run button to view MCL driven simulation

1o display "hints"

Place your mouse pointer over the celared thumbtacks u3 : RPACK 8

|

|

. Ui =

————— ==} %?59‘ BRI
| J1 P1B P E%ﬂ'\D
- B B

Key=A o | PIE/SCR P aﬂ _
| | E:I?RXD E)
2 I 3 bairio i
M KeveB | SiRATYT BaBLAtd L
| Y | ::grlao Eg%% :
| Al
EECHDE |
| HKey=C | 8051
L —
Control Switches

2.1.2 About the Tutorial

The Blinking Lights circuit is composed of an 8051 MCU component (U1) connected to three
switches (J1, J2, J3) on Port 1 of the 8051 and Bar LED (LED1) connected to Port 2 of the
8051 for display output. The resistor pack (U3) attached to the other side of the Bar LED

2-2 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights

completes the circuit. Thiscircuit is asimple demonstration of using inputsto the MCU to
control outputs.

The switches trandlate into the mode value as a simple mapping.

Mode Switch J1 (A-key) Switch J2 (B-key)
0 (Sweeping Eye) Closed Closed

1 (Meter) Open Closed

2 (Counter) Closed Open

3 (Marquis) Open Open

Note Port 1 (aswell asPort 2 and Port 3) on the 8051 hasinternal pull-ups so an open switch
will read asaHigh value. The closed switcheswill connect the pinsto Ground.

The sample uses the Switch J1 (A-key) and Switch J2 (B-key) inputs to decide which
algorithm to use.

Dispatch routine:
Read switches J1 and J2 (Converted to Modes 0 to 3)

Jump to the code for Mode m
The assembly code for thisis:

Dispatch:
; The dispatch section reads switches A and B and
; runs the corresponding display pattern.
MOV DPL, #LOW (DispatchdJumpTable) ; set start of jump table
MOV DPH, #HIGH (DispatchJumpTable)
MOV A, INPORT ; Read input port
ANL A,#003H ; Confine to 4 choices
MOV R7,A ; Make copy in R7 for comparisons
RL A ; multiply by two since each AJMP is two bytes

JMP @A+DPTR

DispatchdJumpTable:

MultiMCU Co-simulation

AJMP SweepingEyeBegin
AJMP MeterBegin

AJMP CounterBegin
AJMP MarquisBegin

MultiMCU Sample Walkthroughs

Each mode algorithm checks for changes in the states of Switches A and B. If the mode
changes, they will abort and jump back to the dispatch routine.

The four modes display different patterns on the Bar LED. These are:

a) Sweeping Eye Pattern (Mode 0)
A four-wide group of lights are moved back and forth across the Bar LED.

b) Meter Pattern (Mode 1)
The light pattern grows and shrinks from the right like alevel meter.

¢) Counter (Mode 2)

The Bar LED shows an 8-hit counter value. Switch J3 (C-key) controls whether the value
increases or decreases.

d) Marquis (Mode 3)

The marquis mode moves a pattern from left to right or right to left with the pattern
wrapping to the other side asit shifts off the Bar LED. The direction of movement is
controlled by Switch J3 (C-key). Left toright ischosen by Switch J3 being Closed. Right
to left is chosen by Switch J3 being Open.

» Torunthiscircuit:
1. Select Simulate/Run to begin simulation. The MCU will immediately begin flashing the
lights in the pattern appropriate for the switch settings.

2. Change the mode switches (J1 and J2) using the A key and the B key on your keyboard
and see the corresponding change in pattern of the LEDs.

The full source code for this MCU sample can be found in the Blink.asm file. The following
excerpt of that source code shows the code for the Counter pattern.

CounterBegin:
MOV RO, #000H
CounterLoop:
CALL delay
MOV A,RO

CPL A ; Complement bits since LEDs driven by low signals.

2-4 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights

MOV OUTPORT, A
CPL A

; Handle direction

JB INPORT.2, FwdCounter

DEC A

DEC A ; extra DEC to cancel INC
FwdCounter:

INC A

MOV RO,A

MOV A, INPORT ; branch to beginning if config inputs change
ANL A, #003H

XRL A,R7

JNZ CounterEnd

JMP CounterLoop
CounterEnd:

JMP Begin

Some areas of interest to note in this code fragment are:

* A delay subroutineis called to slow down the pattern. The sample MCU isusing an
internal 12MHz oscillator. Without the delay the lights would be changing too quickly.

» A typical MCU component can sink more current than it can source so the bar LED was
arranged to match. However, people usually equate alighted LED with a Logic One or
High value. The bitswritten to the output port are complemented to produce LED results
that match expectations. Thisisyet another convenience of using microcontrollers. Itis
often easier to transform inputs or outputs of an MCU in code than it would be to add
circuit elementsto perform the same effect.

» A bit-test branch is used directly on the port bit attached to Switch J3 (C-key). The bit-is-
set branch (JB opcode) goes directly to FwdCounter. The ‘else’ clause to decrement the
counter uses the fact that one can run an extra DEC instruction to offset the INC
instruction at FwdCounter where execution will flow through.

MultiMCU Co-simulation 2-5

MultiMCU Sample Walkthroughs

2.1.3 Using the MCU Interface

The MCU debugging tools provide the user with the ability to control execution at the
instruction level (breakpoints and single-stepping) while also providing views of the data
memory and registers within the MCU.

2.1.3.1 MCU Assembly Source Window

The MCU Assembly Source Window shows the assembly source code for the MCU program.
Thisisalso where you can set breakpoints to have the simulation pause at a particular location
inthe code. The edit dialog will automatically scroll to the place in the assembly code where
the simulation has paused and indicate the current instruction with an arrow.

=

i Bl #W M o= B &
008E BB 199 MOV A,RD -
onac F4 120 CPL A i Complement bits since
0080 ESAD 191 MOV QUTPORT, A
008F F4 192 CPL A

193
194 ; Handle directicn
@ooso zo09z02 195 JB INPORT.Z,FwdCounter
C»0093 14 196 DEC &
0094 14 197 DEC & ; extra DBEC to cancel INC
0095 198 FuwdCounter:

. Dp9s o4 199 INC A

0096 F& z00 Moy RO A =
A i ;IJ

The figure here shows the MCU Assembly Source Window showing the annotated source
code of part of the same Counter Loop code shown earlier. Only the annotated sourceis
shown since editing assembly code is disabled in the sample.

The numbers on the far left are the program memory addresses and the hexadecimal codesto
their immediate right are the assembled codes for each mnemonic assembly instruction. The
column of numbersin the middle shows the line number in the original assembly source. The
remainder of the line to the right shows the assembly source and comments. The red dot
indicates a breakpoint. The yellow arrow indicates the instruction that the program has
paused at. On the top right on the MCU Assembly Source Window are buttons to control
execution. The buttons as shown (from left to right respectively) are Go, Sop Debugging,
Step Into, Break Execution, Insert/Remove Breakpoint, and Remove All Breakpoints.

2-6 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights

2.1.3.2 MCU Register View

When the program is paused on a breakpoint, the Special Function Registers (SFRs) are
displayed in the MCU Register View as shown below:

ML Register Yiew @ ==

Program Counter: 0030

Name | address | Hex [Bic7 [Bits [Bits B4 |Bics [eic2 it [eio [2]
B For o o a 4] Q a i} a 4]
ACC |ED F& 1 1 1 1 1 1 a

oy AC fa AR5 RS0 o
PEW DO oo 0 0 4] Q] i} a] 4]

Pr2 | Bs |\ Al YT FTD A0 [

P @ oo o0 o o o 0o 0 o

RO i T W T MTD | TAD RXD
P3 BO o1 1 1 1 1 1 1 1

E4 Ef2 £5 £T1 EXY EF0 &0
IE AD oo o 0 o Q 1] o a aQ

A5 A A1Z7 A2 AL Al A9 A8
Pz Al 03 o Q o} 8] Q 0 1 [s]
SBUF |29 0 Q o] Q 1] o Q Q l[

Thefirst column contains the name of the Special Function Register (SFR) and the second
column displays the address of the SFR. The third column shows the value contained in the
SFR. For example, the accumulator (ACC) which is used very often, contains a value of
OFCH. When the current instruction DEC A is executed, the value in ACC will be
decremented and become OFBH. Some SFRs such as the program status word (PSW) contain
bits that are used individually for different purposes. This can be seen in the remaining
columns that display each bit individually.

MultiMCU Co-simulation 2-7

MultiMCU Sample Walkthroughs

2.1.3.3 MCU Memory View
The MCU Memory View displays the valuesin theinternal RAM and ROM of the 8051
MCU.

21 [ram ou|01|02|03|o4|05|os|o:'|er'

ao (00 00 00 B0 01 00 00 02 00

03 (00 00 00 00 00 00 00 00 00
10 |00 Q0 00 00 00 00 00 00 00
18 |00 00 OO0 00 00 00 00 20 o0
20 (00 8B 00 04 00 00 CD Q0 00
28 |00 Q0 Q0 00|00 00 00 00 00

8 130 GDGDODOSWW%ODOUﬂ
= [rom [00]01]02[03 0405 |08 [07] 08
Qoa0 |73 81 20 73 82 10 |73 B3 Q0
0008 |00 ES 30 54 03 FF 23 73 01

e e am e ma e Ae se e e

The ROM window shows the program memory code in hexadecimal format. These are the
actual machine instructions that the simulation uses when it is activated. The left column
shows the memory address and the header row shows the offset from the address on the | eft.

The internal RAM, displayed above the ROM, shows the data that isinside the MCU's
memory and is modified as the program runs. RAM memory on the 8051 is used for four
banks of registers RO to R7, user variables, and stack memory. Addresses 00H to 19H contain
the four register banks. By default, the 8051 uses the first register bank (00H to 07H) for the
registers RO, R1 to R7, but this can be configured by the program. The Blinking Lights
Sample uses registers in Bank 0 but begins the assembly code by setting the Stack Pointer
(SP) to 20H which reserves all four register banks for future use. Thisis a standard and
recommended practice for 8051 programming. In the figure you see that register R7 (at
location 07H) contains the value 02H which is our current mode value.

2-8 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights

2.1.3.4 Displaying Elements of the MCU Interface

» To show or hide e ements of the MCU Interface:

1. Double-click onthe 8051 MCU to display its properties dialog and click on the Display
tab.

TIL =

Label Display |Value I Fault I Firs I

¥ Show label:
[T Show values

¥ Show RefDes

[T Show Attributes
V' Show pin numbers

[V Show pin names

[T Show Variart

™ Use Pin Name Font Global Setting
™ Use Pin Number Font Global Setting

Feset Text Position

Show MCL
v Memony Yiew
¥ Aszembly Source YWindow

V' Register View
Apply Show MCL |
Heplacel [k I Cancel | Info | Help |

2. Enablethe Memory View, Assembly Source Window and Register View checkboxes as
desired and click on the Apply Show MCU button.

2.1.4 Advanced Features

This section provides a step by step walkthrough of the MultiMCU debugging features. Itis
important to follow the steps exactly as scripted otherwise the descriptions will no longer
apply. Once you understand how the breakpoint and single stepping features you can explore
the possibilities of advanced MCU debugging.

MultiMCU provides advanced debugging tools to make it easy to pause your circuit and
explore the internal data and state of the MCU controlling your circuit. MultiMCU lets you
set breakpoints and single step through assembly code while validating that the register
contents are changing as expected.

MultiMCU Co-simulation 2-9

MultiMCU Sample Walkthroughs

2.1.4.1 Adding a Breakpoint
1. Load the MCU Driven Blinking Lights Example. The switches should al be closed.

|_____|
7 HKey = A |

[

| Key-B |
| Key=C
e —— —

Control Switches

2. Scroll the MCU Assembly Source Window to the Counter Loop and move the cursor (by
cursor keys or mouse click) to line 195. It shows:

JB INPORT.2, FwdCounter

3. Click the Insert/Remove Breakpoint button % . You should see ared dot appear in the
left margin.

You have now set a breakpoint at the branch instruction in the Counter mode |oop that
decides whether to increment or decrement the counter.

4. You can remove this breakpoint by clicking on the same I nsert/Remove Breakpoint button
again or you can remove all of the break pointsin one step by clicking on the Remove All
Breakpoints button & .

2.1.4.2 Break and Continue

1. Select Simulate/Run to begin simulation.

2. You should see the Sweeping Eye pattern on the Bar LED. Our simulation breakpoint
does not get triggered because we are in Sweeping Eye mode instead of Counter mode.

3. Moveinto Counter mode by hitting the B key on the keyboard. The switch should change
to the Open state.

Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights

4. The simulator should be paused now and the Assembly Source Window will show the
yellow arrow over our breakpoint.

iJ| Ho#H m o B &
194 ; Handle direction __-__J
;0090 209202 195 JE INEORT.Z,FwdCounter —I
0093 14 198 DEC &
o094 14 127 DEC & ; extra DEC Lo cance
= 0095 198 FwdCounter:
- 0095 04 199 INC A -
5. Look at the Accumulator (ACC) value in the MCU Register View. The ACC isO0H at
this moment.

Frogram Counter: 0090

Name | adcress |Hex |Bit7 |Bits [Bits B« B3 |Br2 [mt1 s [l

ACC EO oo 0 (1] 0 4] (1] 8] a 1]
oy AC A} RED ASD or o - A
PSW D0 o1 0 0 0 o] 0 o] 0 0

6. Click ontheGobutton =| inthe Assembly Source window. The Counter Loop will run

for oneiteration and stop again at our breakpoint. The new value of the accumulator is
now OFFH.

EE|

Program Counter: 0090

Name | Address | Hex [Bit-7 [Bir6 |Bit-s B+ B3 |eiv2 [ei1 8o [

ACC EO FF (1 1 1 1 1 1 i
oy AC A RSD RSO oy - P
PSW D0 o1 0 0 0 0 0 0 o] 0

MultiMCU Co-simulation 2-11

MultiMCU Sample Walkthroughs

2.1.4.3 Break and Step Into

1.

Click on the Sep Into button . The simulator will run briefly and then return to the
pause state. The yellow arrow has moved to the instruction.

k|

| HoHEoEm o= d S
194 : Handle directicn &
@o090 209202 105 JE INPORT.Z,FwdCounter ——I
Crpo9z 14 196 DEC 2
ooe4 14 187 DEC 2 ; extra DEC Lo cance
0095 198 FwdCounter:

E 0095 04 199 INC A Jl,
4 | »

Since switch J3 (C-key) was closed, the input value of Port-1, Bit-2 will be zero. The test
for bit-set failed as expected and execution continues after the JB instruction.

Click on the Sep Into button a few more times and watch the Accumulator value change
asthe DEC and INC instructions are executed.

Setting Breakpoints During Simulation

1.
2.

S

2-12

Stop the Simulation by clicking on the Stop Debugging button =i .

Click on the Remove All Breakpoints button @ . Thiswill clear al user breakpoints. All
of the red breakpoint dots should disappear.

Select Simulate/Run to begin simulation.

Hit the A and B keys on the keyboard until both switches are open.

You should see the Marquis pattern scrolling across the Bar LED.

Breakpoints can be set and cleared during asimulation. Scroll to the linein the Assembly
Source View dialog corresponding to address 00AC in the left-most column. The
assembly instruction for that line decides between left or right scrolling of the marquis
pattern.

Make sure your cursor is positioned on that line and click on the I nsert/Remove Breakpoint
button % . The simulation will pause almost immediately at your new breakpoint since
the MCU was looping through that code to display the marquis. At thistime you can
examine the memory and register views as demonstrated earlier.

Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank

2.2 Tutorial 2 - MCU Controlled Holding Tank

This section details an 8051 MCU that controls acircuit example that fills and then empties a
fluid holding tank. Note the 8051 MCU completely replaces the ladder diagram in the same
example (“ Educational Sample Circuits\Ladder Diagrams\HoldingTankExample.ms8”)
included in the Educational version of Multisim 8. The behavior of the ladder logic diagram
is emulated by the 8051 MCU to achieve the same results.

2.2.1 Overview

The 8051 MCU emulates the behavior of the ladder logic diagram example to control the
filling and emptying of the holding tank. The logic behind the MCU is contained inside an
assembly program that is loaded when the circuit starts running. The circuit can be run using
the same series of operations as the ladder logic circuit. In addition to the schematic capture
interface, thereis an MCU interface that allows you to view the instructions in the assembly
code that are being executed by the MCU at the same time that you are running the
simulation.

You can pause the simulation at any time and see the exact corresponding assembly
instruction that the MCU is about to execute. You can aso go in the opposite direction and set
breakpoints inside the code to pause the simulation automatically when it reaches the desired
point in the program of the MCU and see what is happening in your simulation. To
understand the assembly code in even more detail, you can also step through the assembly
instructions one by one to view the flow of control.

2.2.2 About the Tutorial

Theinput signals to the 8051 MCU are the push buttons and the empty and set point pins of
the Holding Tank part. These input signals are connected to port PO (pins POBOADO to
POB4AD4). The MCU generates output signals on port P1 (pins PABOT2 to P1B2). The
output signals are connected to the Fwd, Rev and Stop pins of the Holding Tank. The
changing of theinput signals will cause the MCU to generate output signals that emulate the
behavior of the analog circuit in the ladder logic example.

MultiMCU Co-simulation 2-13

MultiMCU Sample Walkthroughs

MCU Controlled Holding Tank

Clickon the Foaw Dt D ulew RIC U dre s i aton

Flace yor T monze polk rover the colred thimitacks
el kvt

Molo
PD\WI’QJ_Q

K qJ_c
L2

1 R2

Lew1Se k00 Volege

1HUSIP
Tank = tn
ue @
1 =]
FIBOTE (3
T ¥ ==
- 57 el [

—] raea PoRzAn
— e e
b T rostnd [T |
| remso [T e
a—] PaeTECK ey
o s 3T
| rmon =0
rEme w22
H 1 remm T
| ream romaaas 51
¥ram [T el
T raseam rmaar 2
| v pmun 2%
vz wmzan 2
v G R

Euffer —lan L —

| | BOS1
L

» To activate this circuit:

1. Select Simulate/Run to begin simulation. The program memory codeis loaded at this
point and the MCU iswaiting for the power button to be pressed. The corresponding
assembly code is as follows:

; Wait for power button to be pressed
startloop:
MOV P1, #000H
JB P0.1,ready; power button was pressed
JMP startloop

2. Pressthe ‘P key on the keyboard to activate the Power switch. Thissends5V to pin
POB1AD1 of U6 (MCU) which puts the MCU into the ready state to accept other input
signals to start running the circuit.

ready:
MOV P1,#001H

; Wait for run button to be pressed to start filling tank

2-14 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank

readyloop:
JB P0.0,start ; kill button pressed
JB P0.2,run ; run button pressed
JMP readyloop
» To run the holding tank circuit:

1. Pressthe‘R’ key on the keyboard to activate the Run switch. The MCU will receive a
high signal on port PO hit 2 and set the output pin of P1 bit 2 to high for amoment to start
filling the tank in the forward direction.

; Fill in forward direction

fillfwd:
MOV P1,#004H ; set fwd signal to high
CALL outputdelay ; hold fwd signal high
CALL outputdelay
MOV P1,#000H ; set fwd signal back to low
2. When thetank reachesthe set point, the MCU is notified by the high signal that it receives
on port PO hit 3.
; Wait for set point to be reached
fillfwdloop:
JB P0.0,fillfwdkill ; kill button pressed
JB P0.3,fillfwdend ; set point reached

JMP fillfwdloop
3. TheMCU sends ahigh output signal to the stop pin of the pump control and the fluid stops

being pumped.
; Stop filling in fwd direction and start timer for 5 seconds
fillfwdend:

MOV P1,#001H ; set stop signal to high

MultiMCU Co-simulation 2-15

MultiMCU Sample Walkthroughs

MCU Controlled Holding Tank

Clickon the Foaw Dt D ulew RIC U dre s i aton

Flace yor T monze polk rover the colred thimitacks
el kvt

1HUSIP
=2 1
us @
1]
FIBOTE (3
T ==
- 57 el [
—] raea T
o rEnd 37
b T v
| remso [T e
a—] PaeTECK =
o s 3T
| rmon =0
rEme w22
H 1 remm T
ol I romaaas 51
¥ram [T el
e rmaar 2
| v pmun 2%
vz wmzan 2
v G R
Euffer il L —
| | a1
L

4. A timer will start and after adelay of about 5 seconds, the tank begins to empty.
CALL timerdelay ; go to timer routine
JMP fillrev ; timer has finished, start draining

5. When the tank is empty, the MCU receives an empty signal on port PO bit 4. The MCU
sends a stop signal to the pump in turn and the flow stops.

; Fill in reverse direction (drain)

fillrev:
MOV P1,#002H ; set reverse signal to high
CALL outputdelay ; hold reverse signal
CALL outputdelay
MOV P1,#000H ; set reverse signal to low
; Wait for tank to reach the empty point
fillrevloop:
JB P0.0,fillrevkill ; kill button pressed

2-16 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank

JB P0.4,fillrevend ; empty point reached

JMP fillrevloop
; Finished draining, go back to ready state
fillrevend:
MOV P1,#001H ; set stop signal to high
JMP ready

» To turn off the power at any point in the ssmulation;

1. Pressthe ‘K’ key on your keyboard to activate the Kill switch. Thissends5V to pin
POBOADO. Thereis code in each of the various states of the circuit to stop thefilling,
emptying of the tank or timer function depending on which is currently occuring.

; Kill button was pressed during filling in fwd direction

£fi11fwdkill:
MOV P1,#001H ; set stop signal to high
CALL outputdelay ; hold top signal high

CALL outputdelay
JMP start ; go back to beginning of program

; Kill button was pressed during filling in reverse direction
fillrevkill:

MOV P1,#001H ; send stop signal

CALL outputdelay

CALL outputdelay

JMP start

; Kill button was pressed during timer routine, wait for power button
timerdelaykill:

JB P0.1,timerdelayready ; power button pressed

JMP timerdelaykill

MultiMCU Co-simulation 2-17

MultiMCU Sample Walkthroughs

2.2.3 Using the MCU Interface

The MCU debugging tools provide the user with the ability to control execution at the
instruction level (breakpoints and single-stepping) while also providing views of the data
memory and registers within the MCU.

2.2.3.1 MCU Assembly Source Window

The MCU Assembly Source Window shows the assembly source code for the MCU program.
Thisisalso where you can set breakpoints to have the simulation pause at a particular location
inthe code. The edit dialog will automatically scroll to the place in the assembly code where

the simulation has paused and indicate the current instruction with an arrow.
=

3 I U IR U I
37 5 Waiv for run button to be pressed to sctact filling tank ~
0013 38 readyloop:
[:)Pnij 2080EF as JE FO.0,start ; kill button pressed
0016 205202 40 JE POLE,Eun : zun bucton pressed
001% s0Fs a1 JHF readyloop
42
13 ; atart running
oo01BE 44 run: i’
4 >

The figure here shows the MCU Assembly Source Window showing the annotated source
code of part of the ‘readyloop’ code shown earlier. Only the annotated source is shown since
editing assembly code is disabled in the sample. The numbers on the far left are the program
memory addresses and the hexadecimal codes to their immediate right are the assembled
codes for each mnemonic assembly instruction. The column of humbersin the middle shows
the line number in the original assembly source. The remainder of the line to the right shows
the assembly source and comments. The yellow arrow indicates the instruction that the
program has paused at. On the top right on the MCU Assembly Source Window are buttons
to control execution. The buttons as shown (from left to right respectively) are Go,

Stop Debugging, Sep Into, Break Execution, | nsert/Remove Breakpoint, and Remove All
Breakpoints.

2-18 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank

2.2.3.2 MCU Register View

When the program is paused on a break point, the Special Function Registers (SFRs) are
displayed in the MCU Register View as shown below:

Progrewm Counter: 0016

Name|.¢\ddress|Hex|Bit—? |Bit—6 |Bit-5|Bit-4|Bit-3 |Bit—2 |Bit—1|BitU
O 8A oo o 0 0o o o 0 0 0
GATE! G 1 Mi1 M1 GATED G0 MLO MI O
TMOD 89 oo o u] 1] a a u] u] u]
TFY TR TFG | TRO IES i IEC T
TCON 88 0o o 0 0 0 o0 0 0 0
S0 aFi &R0 PO | I0t
PCON |87 oo o 0 0o o o 0 0 0
DPH 83 0o o 0 0 0 o0 0 0 0
DPL 82 oo o u] 1] a a u] u] u]
SP Bl oo o 0 0o o o 0 0 0
AD? ADE AD5 AD4 AD7 | ADZ | AD} ADD
PO a0 oo o u] 1] a a u] u] u]

Thefirst column contains the name of the Special Function Register (SFR) and the second
column displays the address of the corresponding SFR. The third column shows the value
contained in the SFR. When you are paused at line 39 of the Holding Tank example, the input
signals at port PO should contain zerosin al its bits since no buttons have been pressed.

2.2.3.3 MCU Memory View

The MCU Memory View displays the valuesin the internal RAM and ROM of the 8051
MCU.

ﬂ RaM |00 |01 |02] 03[04| 05 | 06 | 07| 0
00 |00 00 00 00 00 00 (00 00 |00
os |00 00 00 00 00 0o 00 00 |00
10|00 00 00 00 00 00 00 00|00
13 |00 00 00 00 00 o0 00 00|00

20 [R R R B B R R R e

- || ROM DD|DI|[I2|[I3|IJ4|UE|DG|D?|DB
0000 (0D 0D 75 81 20 |75 |90 |00 |75
0o0s |75 90 00 20 81 |02 |80 F3 |75
0010 |75 S0 01 20 &80 EF |20 &2 02

MultiMCU Co-simulation 2-19

MultiMCU Sample Walkthroughs

The ROM window shows the program memory code that is loaded in hexadecimal format.
These are the actual machineinstructionsthat the simulation is using when it isactivated. The
left column indicates the memory address and the header row indicates the offset from the
address on the | eft.

Theinternal RAM, above the ROM, shows the data that isinside the MCU’s memory and is
modified as the program runs. RAM memory on the 8051 is used for four banks of registers
RO to R7, user variables, and stack memory. Addresses O0H to 19H contain the four register
banks. By default, the 8051 uses the first register bank (00H to 07H) for the registers RO, R1
to R7, but this can be configured by the program. The Holding Tank example usesregistersin
Bank 0 but begins the assembly code by setting the Stack Pointer (SP) to 20H which reserves
al four register banks for future use. Thisis astandard and recommended practice for 8051
programming. Inthe above figure, the program is paused and all the registers contain avalue
of zero.

2.2.3.4 Displaying Elements of the MCU Interface

» To show or hide elements of the MCU Interface:

1. Double-click on the 8051 MCU to display its properties dialog and click on the Display
tab.

TIL =

Label Display |Value I Fault I Firs I

i
¥ Show label:
[T Show values

¥ Show RefDes

[T Show Attributes

V' Show pin numbers

[V Show pin names

[T Show Variart

™ Use Pin Name Font Global Setting
™ Use Pin Number Font Global Setting

Feset Text Position

Show MCL
v Memony Yiew
¥ Aszembly Source YWindow

V' Register View
Apply Show MCL |

Heplacel [k I Eancell Info | Help |

2. Enablethe Memory View, Assembly Source Window and Register View checkboxes as
desired and click on the Apply Show M CU button.

2-20 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank

2.2.4 Advanced Features

This section provides a step by step walkthrough of the MultiMCU debugging features. Itis
important to follow the steps exactly as scripted otherwise the descriptions will no longer
apply. Once you understand how the breakpoint and single stepping features you can explore
the possibilities of advanced MCU debugging.

MultiMCU provides advanced debugging tools to make it easy to pause your circuit and
explore the internal data and state of the MCU controlling your circuit. MultiMCU lets you
set breakpoints and single step through assembly code while validating that the register
contents are changing as expected.

2.2.4.1 Adding a Breakpoint

1.
2.

Load the MCU Controlled Holding Tank Example.

Scroll the MCU Assembly Source Window and move the cursor (by cursor keys or mouse
click) to line 49.

Click on the Insert/Remove Breakpoint button & . You should see ared dot on the left
margin.

You have now set a breakpoint at the branch instruction
Place a second break point on line 51.

You can remove this breakpoint by clicking on the Insert/Remove Breakpoint button again
or you can remove al of the break pointsin one step by clicking on the Remove All
Breakpoints button g, .

2.2.4.2 Break and Continue

o~ wDn

Select Simulate/Run to begin simulation.

Press ‘P’ on your keyboard to activate the circuit.
Press ‘R’ on your keyboard to start filling the tank.
The simulation will pause at line 49.

Look at the MCU Register View and scroll until you can see P1 and notice that bit 2is
zero.

Click on the Go button =, inthe MCU Assembly Source Window. The program will
execute until it reaches the next break point on line 51.

Notice that the MCU Register View has been updated with the current values and will
display avalue of 1 inside P1 bit 2 now after executing the instruction “MQOV P1, #004H" .

Click on the Go button again and the simulation will continue filling the tank.

MultiMCU Co-simulation 2-21

MultiMCU Sample Walkthroughs

2.3

2.2.4.3 Break and Step Into

1. Place abreak point on line 62. Line 62 is executed to start the 5 second timer when the
tank isfilled to the set point.

Select Simulate/Run to restart the simulation
Press ‘P on your keyboard to activate your circuit.
Press‘R’ on your keyboard to start filling.

Eventually, the simulation will pause and the debugger will show the paused program
execution at line 62.

ok~ N

o

Click on the Step Into button ', to step into the subroutine 'timerdelay.

7. Theyellow arrow shows the next instruction that will be executed at line 110 inside the
“timerdelay”.

8. If you click on the Sep Into button again, IMP timerstart will execute and jump to line 96
where the “timerstart” code begins.

9. Click on the Sep Into button one more time. See that the value in P1 bit O was set to 1 to
stop thefilling of the tank.

10.You can step through more instructions to see how the rest of the routine functions.

Tutorial 3 - MCU Based Calculator

This section contains an example of a calculator application created using an 8051 MCU. All
the logic for the arithmetic, input and output operations of the calculator, are handled by the
MCU.

2.3.1 Overview

2-22

Thiscircuit behaves like a normal calculator that performs operations of the form operand1
operator operand2 = result, where:

e Operandl and operand?2 are positive integers between 0 and 9999, and
* Theoperator canbe+, -, * or /.

For example, atypical operation would be 3* 4 =12.

Numbers and operators can be entered via the keypad and displayed on the HEX Displays
attached to the MCU. Asthe equation is entered into the calculator, the results are calcul ated
as soon as enough information is entered to perform acalculation. The result is displayed on
the HEX Displays and will be used as the first operand in the next calculation. All of these
operations are performed by the 8051 MCU. Thelogic for the MCU is programmed in
assembly and loaded at the start of simulation.

Electronics Workbench

Tutorial 3 - MCU Based Calculator

2.3.2 About the Tutorial

The calculator circuit consists of an 8051 MCU that is hooked up to akeypad via port P1 and
4 LEDsviaports PO and P2. The keypad is an interactive part used for entering input values
into the calculator. The keypad can be used by pressing keys on the keyboard that correspond
to the characters on the keypad. These characters are fed into the MCU, manipulated and the
resulting values are displayed on the HEX Displays from arange of 0 to 9999.

Instead of building acalculator circuit using electrical components, the logic for the calcul ator
is controlled by the 8051 MCU. The MCU can be programmed to perform virtualy any
operation based on the inputs that it receivesfrom its ports. In thisexample, the MCU is used
to keep track of input values in its memory and the current state of its operation. It also
performs arithmetic operations on 16-bit numbers that include addition, subtraction,
multiplication and division. Since the 8051 assembly instructions operate on hexadecimal
values, the MCU is aso programmed to perform hexadecimal to BCD conversions and back
again in order to display the input data and resultsin BCD format for the user.

» To activate the circuit and perform a simple calculation (12+3) on the calculator:

1. Select Simulate/Run to begin simulation. The assembled code for the 8051 MCU is
loaded at this point and the HEX displays are set to 0000. The MCU isinthe“ready” state
and is scanning itsinput port P1, waiting for akey press.

MCU Based Calculator

Flace your mousze pointer over the colored
thumbtacks for hints.

I ® conteornt &

EUZ

Electronics Workbench

The lower 4 bits of input port Plare normally driven high and the higher 4 bits of the port
are normally driven low. The MCU’s assembly code waits in aloop polling those input
values and waitsfor changesin them as shown below. It exitstheloop as soon as a change
is detected.

MultiMCU Co-simulation 2-23

MultiMCU Sample Walkthroughs

anykeyloop:
MOV A, P1
ANL A, #00FH
XRL A, #O0OFH
JZ anykeyloop
MOV RO, A

2. Press‘1’ onthekeyboard. The MCU detects this value on P1 and starts processing the
high and low input values. The number that was pressed is determined and is displayed on
the HEX displays.

MCU Based Calculiator

Flace your mousze pointer over the colored
thumbtacks for hints.

I ® conteornt &

EUZ

Electronics Workbench

3. Press‘2 onthekeyboard and see the number ‘2" on the keypad depress. The MCU knows
that the number 2 is still part of the first number that is being entered and shiftsthe ‘1’
displayed on the HEX display one to the left and displaysthe ‘2’ in the right most HEX

display.

2-24 Electronics Workbench

Tutorial 3 - MCU Based Calculator

MCU Based Calculiator

Flace your mousze pointer over the colored
thumbtacks for hints.

HHE
VI ®E o commonume

Electronics Workbench

Bnan

4. Press‘+ onthekeyboard. The display remains the same since an operator was entered.

The MCU stores the first complete number and the operator that was entered into its
memory for later use.

Enter ‘3" into the keyboard. Notice that the display clears and displays the new number 3.
MCU Based Calculator

Flace your mousze pointer over the colored
thumbtacks for hints.

I ® conteornt &

EUZ

Electronics Workbench

MultiMCU Co-simulation 2-25

MultiMCU Sample Walkthroughs

6. Press‘=" onthe keyboard. The MCU retrieves the values of the operands and operator
that it had stored previously. It calculates the result of 12+3 using a 16-bit addition
function and converts the result from hexadecimal to the BCD value ‘15, whichis
displayed on the HEX display.

MCU Based Calculator

Flace your mousze pointer over the colored
thumbtacks for hints.

I ® conteornt &

EUZ

Electronics Workbench

BEeE

Understanding the calculator’s assembly code routines

The flow chart below provides a general overview of how the calculator works. States are
shown in ovals, decisions are contained in diamonds, and operations are in rectangles. The
names of the states correspond to actual labels in the assembly code.

The operation of the calculator beings at the “ Start” state and after some initializing, goesto
the “readystate”. In theready state, it scans for key presses. Assoon as a character is
received, it determines which one was pressed as shown in the decision diamonds and jumps
to the next appropriate state. For example, if anumber between 0 and 9 was entered, it will go
to the “Getnuml” state. Find the corresponding “ Gethuml” state bubble in the top left flow
chart and follow the arrows to see what happens next. In thisway you can examine each of
the flow charts and see how the program flows. If you wish to understand a section in more
detail, please refer to the Calc.asm file and find the label for the state that you are currently in
and step through the assembly instructions.

2-26 Electronics Workbench

Tutorial 3 - MCU Based Calculator

&

Stare first
operand

Scan far key press

+,-* Ipressed

et operator
Yes

Mo {number
pressed)

o

Mo (numker
pressed)

Store operator
entered

Mo
Mo

Mo (number

pressed) Store operatar

entered

s

MultiMCU Co-simulation 2-27

MultiMCU Sample Walkthroughs

@ Gettingnumz2
(continue getting
2nd operand)

Store 2nd

operand

Scan for key press

Stare 2nd
operand

Scan for key press

Mo
I

Mo (number

pressed)
Mo {number

pressed)

Gettingnum?2
[continue getting
2nd operand)

Gettingnum2
{continue getting
2nd operancd)

Readystate

Mo
i P Iz
Store resuft Store resuft
in first operand in first operand

J7 o 7l
(32t operatar @

2-28 Electronics Workbench

Tutorial 3 - MCU Based Calculator

2.3.3 Using the MCU Interface

The MCU debugging tools provide the user with the ability to control execution at the
instruction level (breakpoints and single-stepping) while also providing views of the data
memory and registers within the MCU.

2.3.3.1 MCU Assembly Source Window

The MCU Assembly Source Window shows the assembly source code for the MCU program.
Thisisalso where you can set breakpoints to have the simul ation pause at a particular location
inthe code. The edit dialog will automatically scroll to the place in the assembly code where
the simulation has paused and indicate the current instruction with an arrow.

For this example, you will probably break in the key scanning routine as shown below:

| N E B ®

0144 7EF00F a6t Mo P1, FOOFH -
3ES

D1AT 366 anykeyloop: g
E:} 0147 E5Z0 ae7 HOW R, P1

014% 540F 68 ENL &, E00FH

D145 &40F 369 FRL &, HOOFH

O1AD €DFE 370 JZI anykeyloop

014F Fo& i MR RO, A

01ED &40F a7z ZRL i, KOOFH

015z FE 373 HCW R3, A o
Al -

The arrow indicates the instruction that the program has paused at. The numbers on the left
are the opcodes for each assembly instruction. The second column shows the line number,
line 367 in figure above. On the right side, the assembly instructions are displayed. The
program is about to read the data on port P1 and move it into the accumulator (A) to be
analyzed. It will determine whether any of the inputs have changed from the idle state.

MultiMCU Co-simulation 2-29

MultiMCU Sample Walkthroughs

2-30

2.3.3.2 MCU Register View
When the program is paused on a breakpoint, the Special Function Registers (SFRS) are

displayed in the MCU Register View window as shown below:

Program Counter: O1A7
Name | Address | Hex |t7 |Be6 |oes|see|mea sz Bt [Bio
B (0 @@ o0 o ©o ©o 0o o 0
ACC D @ @ 0 o0 o ©o 0o o 0
¥ AT F& ELSD | RSP al £
P DO o @ 0 o ©o © 0 o 0
PTZ2 P& PTH B | PTH | PAT
P B @@ o 0 0o ©o ©o 0 0o 0
£O HE T & INTH INTE | TaD | B
P3 B0 FF 1 1 1 1 1 1 1 1
EA E¥fZ2 £S5 (ETd EX¥i ETH ExO
E 8 oo 0 0o ©o ©o 0 0o 0
Ais Aid A7 AlF Al Air AR AR
P2 (a0 1@ 0o o © ©o 0o o 0
SBUF (%9 0 @ 0 0 © 0 0 0 0
S | SMY SMF KEEN | TER KEBF | TT Kr
scoujs e @ 0 o ©o ©o 0 o 0
Pi7 | PiE PIF Pid PiLF Bi.2 | PiLi | PLE
PP @ o @ 0 o © 1t 1 1 0
S P P e M M P M e

Thefirst column contains the name of the Special Function Register (SFR) and the second
column displays the address of the corresponding SFR. The third column shows the value
contained in the SFR. For example, the accumulator (ACC), contains avalue of 00H. The
instruction MOV A, P1, places the current value in P1 to register ACC. Some SFRs such as
the program status word (PSW) contain bits that are used individually for different purposes.
This can be seen in the remaining columns that display each bit individually as well.

Electronics Workbench

Tutorial 3 - MCU Based Calculator

2.3.3.3 MCU Memory View
The MCU Memory View displays the valuesin the internal RAM and ROM of the 8051

MCU.

=
e

RAM

DD|DI|EI2|[B|D'I|DS|06|D?|DB

00
0o
0o
0o
01

01
0o
0o
0o
0o

04 00 03
00 DD DO
00 | DD OO
00 DO OO
OF (DD DO

01
oo
oo
oo
oo

oo
oo
oo
oo
oo

i}
oo
]
oo
oo

oo
oo
]
01
oo

ROM

(ulu]u]n]

[nlnlyt=s

75 |81

28 02 00 5F 73 20 |00

o 78 (M o FE 2 nF I FE 122

00 [o1 |02|03|o4|05|06|n?|nal

The ROM window shows the program memory code that is loaded in hexadecimal format.
Thisisthe actual format of the code that the simulation is using when it is activated.

Theinternal RAM display, above the ROM, shows the data that isinside the 8051's memory
and ismodified as the program runs. Addresses OOH to 19H contain the four register banks.
By default, the 8051 uses the first register bank (00H to 07H) for registers RO, and R1 to R7,
but this can be configured by the program. The calculator example uses register bank ‘0’
only. Inthisexample, the program is paused and the following is displayed: RO = Oh, R1 =
01H, R2 = 04H, R3 = 00H, R4 = 03H, R5 = 01H, R6 = 00H and R7 = O0H.

The memory space in theinternal RAM, starting from 20H onwards, is general user space that
isalso used by the stack.

MultiMCU Co-simulation

2-31

MultiMCU Sample Walkthroughs

2.3.3.4 Displaying Elements of the MCU Interface

» To show or hide elements of the MCU Interface:

1. Double-click onthe 8051 MCU to display its properties dialog and click on the Display
tab.
TIL x|

Label Display |Value I Fault I Firs I

¥ Show label:

[T Show values

¥ Show RefDes

[T Show Attributes

V' Show pin numbers

[V Show pin names

[T Show Variart

™ Use Pin Name Font Global Setting
™ Use Pin Number Font Global Setting

Feset Text Position

Show MCL
v Memony Yiew
¥ Aszembly Source YWindow

V' Register View
Apply Show MCL |

Heplacel [k I Eancell Info | Help |

2. Enablethe Memory View, Assembly Source Window and Register View checkboxes as
desired and click on the Apply Show M CU button.

2.3.4 Advanced Features

This section provides a step by step walkthrough of the MultiMCU debugging features. Itis
important to follow the steps exactly as scripted otherwise the descriptions will no longer
apply. Once you understand how the breakpoint and single stepping features you can explore
the possibilities of advanced MCU debugging.

MultiMCU provides advanced debugging tools to make it easy to pause your circuit and
explore the internal data and state of the MCU controlling your circuit. MultiMCU lets you
set breakpoints and single step through assembly code while validating that the register
contents are changing as expected.

2-32 Electronics Workbench

Tutorial 3 - MCU Based Calculator

2.3.4.1 Adding a Breakpoint

1. Select Simulate/Run to begin simulation.

2. Place your cursor on line 71 and then place a break point on the same line by clicking on
the Insert/Remove Breakpoint button | g .

o020 G402 &7 XRL A, #O2H ; = preaaed
0O02F GOOF [1:] JE getoperator
o03i E9 (3] HOW A, R1
0032 6002 70 JI getnumlop } operacor pressed
.cu:laq SOE4 71 JUF getnaml ; contlnue getting L1rst mam
& 3 ; Got first operand and opescator
u 0036 74 getnumlop: -

Thiswill cause the program execution to stop when it reaches the IMP getnum1
instruction.

3. Enter anumber on your keyboard to cause a value to be entered on the keypad part.
4. Enter asecond number on your keyboard.
5. The simulation will now pause at line 71.

ULgL kY (13 noW A, H1 —
ODZD 6402 B7 ERL A, ROZH s = preased
OOZF e0OF =] JI getoperator
op3ai E9 [3=] MOV K, R
0032 6002 70 JI getnwnlop ; operacor pressed
I:}DDEII BO0EQ Tl JHP getnuml 4 ocontinue getting Lirsc num
e

3 73 ; Gar firse operand and aperacar

o 0036 71 FECHUELOp
o036 7hoo 75 WA RS, #OO0H -|

6. Assoon asthe debugger has paused, the valuesin the MCU Register View and the MCU
Memory View are updated to reflect the current values in the SFRs and the memory.
Notice that R1 in the RAM containsavalue of 1. It was moved into the accumulator on
line 69. Also, notice that the value in the accumulator (ACC) in the CPU Data dialog now
containsavalue of 1.

|
Program Counter: 0034 | |[Ram o001 |02] 03 |04 o508 |07
Name | Address | Hex | Bit-7 | git-6 |Bit- R 00 |01 |04 00102 |20 00| 00
08 |00 o0 oo oo oo oo oo oo
B__|FD e L L 10 |00 oo oo o0 00 00 00 OO
ACC ED 0o 0 0 18 |00 oo oo 00 00 00 00 0o
€y |Ac |FT 20 |03 00 OF 00 00 00 00 00
PSW |DO oo o o |0 28 |00 27 00 Co 02 00 00 Ot
F=r]
: a0 |04 00 02 2E 04 00 20 0o
P B8 W o 0 0
38 |Fe 00 0O 00 00 00 00 00
0 W i
a0 oo oo oo oo oo oo oo oo

Line 70, JZ getnumlop, tests the value of the ACC to determineif it is zero. If itis zero,
then it jJumps to the “getnumlop” label. Sincethe ACCis 1, it proceeds to the next line

MultiMCU Co-simulation 2-33

MultiMCU Sample Walkthroughs

2-34

instead. Thisiswhat happened, otherwise line 71 would never have been reached and the
simulation would not have paused.

In thisway you can find the relationship between events that occur in the simulation and
the routines that handle them in the assembly program. Thisisuseful in figuring out how
the program worksfor learning purposes or in debugging a problem. It can aso be used to
test and verify the correctness of your code.

You can remove a particular break point by placing the cursor on the line at that break
point and clicking on the Insert/Remove Breakpoint button again or you can remove al
break points that you have placed by clicking on the Remove All Break points button ‘g, .

2.3.4.2 Break and Continue

1.

The debugger can be paused during simulation by clicking on the Pause Simulation button
in the schematic capture tool bar. Do this and you will see the yellow arrow point to the
instruction where the code execution has stopped in the MCUAssembly Source Window.

Another way of pausing the smulation isto click on the Break Execution button =«. The
MCU Assembly Source Window will show the instruction that it has stopped at in the
same way. For this particular example, you will break inside the key scanning code since
during idle time, that’s what the calculator is doing.

To continue code execution after the simulation is paused, click on the Go button =, , or
click on the Pause Simulation button again in the schematic capture tool bar.

Another useful way of using the break and continue feature is for looping routines.
Restart the simulation and enter “32/ 8" into the calculator on your keyboard.

Place abreak point online 775 just insidethe DIV_LOOP label in the UDIV 16 subroutine
that will be called when you perform a divide operation and a break point on line 807
where it stops |ooping back to the DIV _L oop label.

Pressthe “=" key on your keyboard and see how it breaks at line 775.

. Click onthe Go button to continue and see that it breaks at line 775 again. You can look at

the Register and Memory Views to see the updated values used in the UDIV 16 subroutine
to understand how it works.

. You can aso see how many times thisloop is executed, by pressing the Go repeatedly

until the DIV_LOOP loop exits and breaks at the second break point on line 807. (In
general, if your program never exits aloop, then you may have an infinite loop on your
hands.)

Remove all break points and click on the Go button one more time to see the answer “4”
be displayed on the HEX displays.

Electronics Workbench

Tutorial 3 - MCU Based Calculator

2.3.4.3 Break and Step Into

1.
2.
3.

N o o &

8.
9.

Select Simulate/Run to begin simulation again and enter “1 + 4” in to the keypad.
Clear al the break points by clicking on the Remove All Break points button & .

Go to the MCU Assembly Source Window and scroll to line 229 where it is about to call
the ADD16 subroutine begins.

Place a break point there by clicking on the I nsert/Remove Breakpoint button.
Pressthe “=" key on the keyboard.
The program should now break at line 229 asit is about to do the add calculation.

You can step into the ADD 16 subroutine by clicking on the Sep Into button # . This
feature allows you to go into a call to a subroutine such as ADD16 and see what's going
on instead of executing the ADD16 subroutine as one step.

The arrow now jumps from line 229 to line 662 where the ADD16 subroutine starts.
You can step through the instructions by clicking on the Sep Into button each time.

10.The ADD16 subroutine adds the value in RO, R1 to the valuein R2, R3. Watch asthe

contents of these input registers are moved to the accumulator one by one and the sums
obtained as you step through more instructions. The values shown in the internal RAM at
00H to 03H show the valuesinside RO, R1, R2 and R3 respectively. You can also watch
the accumulator value change as the contents of the registers are moved and added to it in
the datawindow. Thefinal resultisreturned in RO and R1. RO should contain O5H and
R1 should contain O0H.

11. Step all theway to line 673 RET.
12.Step one more time and the routine will return from the call, back to line 231 just after the

call to ADD16.

MultiMCU Co-simulation 2-35

MultiMCU Sample Walkthroughs

2-36 Electronics Workbench

	MultiMCU Overview
	MultiMCU Sample Walkthroughs
	2.1 Tutorial 1 - MCU Driven Blinking Lights
	2.1.1 Overview
	2.1.2 About the Tutorial
	2.1.3 Using the MCU Interface
	2.1.3.1 MCU Assembly Source Window
	2.1.3.2 MCU Register View
	2.1.3.3 MCU Memory View
	2.1.3.4 Displaying Elements of the MCU Interface

	2.1.4 Advanced Features
	2.1.4.1 Adding a Breakpoint
	2.1.4.2 Break and Continue
	2.1.4.3 Break and Step Into

	2.2 Tutorial 2 - MCU Controlled Holding Tank
	2.2.1 Overview
	2.2.2 About the Tutorial
	2.2.3 Using the MCU Interface
	2.2.3.1 MCU Assembly Source Window
	2.2.3.2 MCU Register View
	2.2.3.3 MCU Memory View
	2.2.3.4 Displaying Elements of the MCU Interface

	2.2.4 Advanced Features
	2.2.4.1 Adding a Breakpoint
	2.2.4.2 Break and Continue
	2.2.4.3 Break and Step Into

	2.3 Tutorial 3 - MCU Based Calculator
	2.3.1 Overview
	2.3.2 About the Tutorial
	2.3.3 Using the MCU Interface
	2.3.3.1 MCU Assembly Source Window
	2.3.3.2 MCU Register View
	2.3.3.3 MCU Memory View
	2.3.3.4 Displaying Elements of the MCU Interface

	2.3.4 Advanced Features
	2.3.4.1 Adding a Breakpoint
	2.3.4.2 Break and Continue
	2.3.4.3 Break and Step Into

