
A NATIONAL INSTRUMENTS COMPANY

multiMCU
Microcontroller

Co-simulation

Multisim and Electronics Workbench Corporation
copyright  2005 Electronics Workbench Corporation. All rights reserved.

Some portions of this product are protected under United States Patent No. 6,560,572.

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.

MCU-E-1790 Rev. 1

 2005 Electronics Workbench Corporation. All rights reserved. Published May 2005.
Printed in Canada.

Table of Contents
1. MultiMCU Overview

2. MultiMCU Sample Walkthroughs

2.1 Tutorial 1 - MCU Driven Blinking Lights . 2-2
2.1.1 Overview. 2-2
2.1.2 About the Tutorial . 2-2
2.1.3 Using the MCU Interface. 2-6

2.1.3.1 MCU Assembly Source Window. 2-6
2.1.3.2 MCU Register View . 2-7
2.1.3.3 MCU Memory View. 2-8
2.1.3.4 Displaying Elements of the MCU Interface. 2-9

2.1.4 Advanced Features. 2-9
2.1.4.1 Adding a Breakpoint . 2-10
2.1.4.2 Break and Continue . 2-10
2.1.4.3 Break and Step Into . 2-12

2.2 Tutorial 2 - MCU Controlled Holding Tank . 2-13
2.2.1 Overview. 2-13
2.2.2 About the Tutorial . 2-13
2.2.3 Using the MCU Interface. 2-18

2.2.3.1 MCU Assembly Source Window. 2-18
2.2.3.2 MCU Register View . 2-19
2.2.3.3 MCU Memory View. 2-19
2.2.3.4 Displaying Elements of the MCU Interface. 2-20

2.2.4 Advanced Features. 2-21
2.2.4.1 Adding a Breakpoint . 2-21
2.2.4.2 Break and Continue . 2-21
2.2.4.3 Break and Step Into . 2-22

2.3 Tutorial 3 - MCU Based Calculator . 2-22
2.3.1 Overview. 2-22
2.3.2 About the Tutorial . 2-23
2.3.3 Using the MCU Interface. 2-29

2.3.3.1 MCU Assembly Source Window. 2-29
2.3.3.2 MCU Register View . 2-30
2.3.3.3 MCU Memory View. 2-31
2.3.3.4 Displaying Elements of the MCU Interface. 2-32
MultiMCU Co-simulation i

2.3.4 Advanced Features .2-32
2.3.4.1 Adding a Breakpoint .2-33
2.3.4.2 Break and Continue. .2-34
2.3.4.3 Break and Step Into. .2-35
ii Electronics Workbench

Chapter 1
MultiMCU Overview

Microcontroller (MCU) components are useful for many circuit designs. A modern
microcontroller typically combines a CPU, data memory, program memory, and peripheral
devices on a single physical chip. The integration of these essential elements of a computer
into a single chip reduces component counts and board size resulting in higher reliability with
more capabilities. The MCU Co-simulation system provides software development features
for writing and debugging code for embedded devices.

Embedded software development can be a challenging process for even the best
programmers. MultiMCU helps you produce high quality code more quickly and easily. The
MCU development interfaces allow you to pause a simulation, inspect the internal RAM and
Registers of the MCU, set code breakpoints, and single step through your code.

For detailed demonstrations of the MultiMCU functionality see:

• “2.1 Tutorial 1 - MCU Driven Blinking Lights” on page 2-2
• “2.2 Tutorial 2 - MCU Controlled Holding Tank” on page 2-13
• “2.3 Tutorial 3 - MCU Based Calculator” on page 2-22
MultiMCU Co-simulation 1-1

MultiMCU Overview
1-2 Electronics Workbench

Chapter 2
MultiMCU Sample Walkthroughs

This chapter details three tutorials that use MultiMCU’s co-simulation functionality. The
circuits for the tutorials are found in the folder where you installed Multisim 8, at
...\samples\MCU Sample Circuits.

The following are described in this chapter.

Subject Page No.

Tutorial 1 - MCU Driven Blinking Lights 2-2

Tutorial 2 - MCU Controlled Holding Tank 2-13

Tutorial 3 - MCU Based Calculator 2-22
MultiMCU Co-simulation 2-1

MultiMCU Sample Walkthroughs
2.1 Tutorial 1 - MCU Driven Blinking Lights
This tutorial leads you through the simulation of the Blinking Lights sample circuit.

2.1.1 Overview

The Blinking Lights circuit example shows the use of a microcontroller to control a set of
LEDs as might be found in a novelty toy. There are four operating modes controlled by the
different combinations of switches A and B. The third switch, C, controls the direction for
two of the modes.

2.1.2 About the Tutorial

The Blinking Lights circuit is composed of an 8051 MCU component (U1) connected to three
switches (J1, J2, J3) on Port 1 of the 8051 and Bar LED (LED1) connected to Port 2 of the
8051 for display output. The resistor pack (U3) attached to the other side of the Bar LED
2-2 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights
completes the circuit. This circuit is a simple demonstration of using inputs to the MCU to
control outputs.

The switches translate into the mode value as a simple mapping.

Note Port 1 (as well as Port 2 and Port 3) on the 8051 has internal pull-ups so an open switch
will read as a High value. The closed switches will connect the pins to Ground.

The sample uses the Switch J1 (A-key) and Switch J2 (B-key) inputs to decide which
algorithm to use.

Dispatch routine:

Read switches J1 and J2 (Converted to Modes 0 to 3)

Jump to the code for Mode m

The assembly code for this is:

Dispatch:

 ; The dispatch section reads switches A and B and

 ; runs the corresponding display pattern.

 MOV DPL,#LOW(DispatchJumpTable) ; set start of jump table

 MOV DPH,#HIGH(DispatchJumpTable)

 MOV A,INPORT ; Read input port

 ANL A,#003H ; Confine to 4 choices

 MOV R7,A ; Make copy in R7 for comparisons

 RL A ; multiply by two since each AJMP is two bytes

 JMP @A+DPTR

DispatchJumpTable:

 AJMP SweepingEyeBegin

 AJMP MeterBegin

 AJMP CounterBegin

 AJMP MarquisBegin

Mode Switch J1 (A-key) Switch J2 (B-key)

0 (Sweeping Eye) Closed Closed

1 (Meter) Open Closed

2 (Counter) Closed Open

3 (Marquis) Open Open
MultiMCU Co-simulation 2-3

MultiMCU Sample Walkthroughs
Each mode algorithm checks for changes in the states of Switches A and B. If the mode
changes, they will abort and jump back to the dispatch routine.

The four modes display different patterns on the Bar LED. These are:

a) Sweeping Eye Pattern (Mode 0)

A four-wide group of lights are moved back and forth across the Bar LED.

b) Meter Pattern (Mode 1)

The light pattern grows and shrinks from the right like a level meter.

c) Counter (Mode 2)

The Bar LED shows an 8-bit counter value. Switch J3 (C-key) controls whether the value
increases or decreases.

d) Marquis (Mode 3)

The marquis mode moves a pattern from left to right or right to left with the pattern
wrapping to the other side as it shifts off the Bar LED. The direction of movement is
controlled by Switch J3 (C-key). Left to right is chosen by Switch J3 being Closed. Right
to left is chosen by Switch J3 being Open.

� To run this circuit:

1. Select Simulate/Run to begin simulation. The MCU will immediately begin flashing the
lights in the pattern appropriate for the switch settings.

2. Change the mode switches (J1 and J2) using the A key and the B key on your keyboard
and see the corresponding change in pattern of the LEDs.

The full source code for this MCU sample can be found in the Blink.asm file. The following
excerpt of that source code shows the code for the Counter pattern.

CounterBegin:

 MOV R0,#000H

CounterLoop:

 CALL delay

 MOV A,R0

 CPL A ; Complement bits since LEDs driven by low signals.
2-4 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights
 MOV OUTPORT,A

 CPL A

 ; Handle direction

 JB INPORT.2,FwdCounter

 DEC A

 DEC A ; extra DEC to cancel INC

FwdCounter:

 INC A

 MOV R0,A

 MOV A,INPORT ; branch to beginning if config inputs change

 ANL A,#003H

 XRL A,R7

 JNZ CounterEnd

 JMP CounterLoop

CounterEnd:

 JMP Begin

Some areas of interest to note in this code fragment are:

• A delay subroutine is called to slow down the pattern. The sample MCU is using an
internal 12MHz oscillator. Without the delay the lights would be changing too quickly.

• A typical MCU component can sink more current than it can source so the bar LED was
arranged to match. However, people usually equate a lighted LED with a Logic One or
High value. The bits written to the output port are complemented to produce LED results
that match expectations. This is yet another convenience of using microcontrollers. It is
often easier to transform inputs or outputs of an MCU in code than it would be to add
circuit elements to perform the same effect.

• A bit-test branch is used directly on the port bit attached to Switch J3 (C-key). The bit-is-
set branch (JB opcode) goes directly to FwdCounter. The ‘else’ clause to decrement the
counter uses the fact that one can run an extra DEC instruction to offset the INC
instruction at FwdCounter where execution will flow through.
MultiMCU Co-simulation 2-5

MultiMCU Sample Walkthroughs
2.1.3 Using the MCU Interface

The MCU debugging tools provide the user with the ability to control execution at the
instruction level (breakpoints and single-stepping) while also providing views of the data
memory and registers within the MCU.

2.1.3.1 MCU Assembly Source Window
The MCU Assembly Source Window shows the assembly source code for the MCU program.
This is also where you can set breakpoints to have the simulation pause at a particular location
in the code. The edit dialog will automatically scroll to the place in the assembly code where
the simulation has paused and indicate the current instruction with an arrow.

The figure here shows the MCU Assembly Source Window showing the annotated source
code of part of the same Counter Loop code shown earlier. Only the annotated source is
shown since editing assembly code is disabled in the sample.

The numbers on the far left are the program memory addresses and the hexadecimal codes to
their immediate right are the assembled codes for each mnemonic assembly instruction. The
column of numbers in the middle shows the line number in the original assembly source. The
remainder of the line to the right shows the assembly source and comments. The red dot
indicates a breakpoint. The yellow arrow indicates the instruction that the program has
paused at. On the top right on the MCU Assembly Source Window are buttons to control
execution. The buttons as shown (from left to right respectively) are Go, Stop Debugging,
Step Into, Break Execution, Insert/Remove Breakpoint, and Remove All Breakpoints.
2-6 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights
2.1.3.2 MCU Register View
When the program is paused on a breakpoint, the Special Function Registers (SFRs) are
displayed in the MCU Register View as shown below:

The first column contains the name of the Special Function Register (SFR) and the second
column displays the address of the SFR. The third column shows the value contained in the
SFR. For example, the accumulator (ACC) which is used very often, contains a value of
0FCH. When the current instruction DEC A is executed, the value in ACC will be
decremented and become 0FBH. Some SFRs such as the program status word (PSW) contain
bits that are used individually for different purposes. This can be seen in the remaining
columns that display each bit individually.
MultiMCU Co-simulation 2-7

MultiMCU Sample Walkthroughs
2.1.3.3 MCU Memory View
The MCU Memory View displays the values in the internal RAM and ROM of the 8051
MCU.

The ROM window shows the program memory code in hexadecimal format. These are the
actual machine instructions that the simulation uses when it is activated. The left column
shows the memory address and the header row shows the offset from the address on the left.

The internal RAM, displayed above the ROM, shows the data that is inside the MCU's
memory and is modified as the program runs. RAM memory on the 8051 is used for four
banks of registers R0 to R7, user variables, and stack memory. Addresses 00H to 19H contain
the four register banks. By default, the 8051 uses the first register bank (00H to 07H) for the
registers R0, R1 to R7, but this can be configured by the program. The Blinking Lights
Sample uses registers in Bank 0 but begins the assembly code by setting the Stack Pointer
(SP) to 20H which reserves all four register banks for future use. This is a standard and
recommended practice for 8051 programming. In the figure you see that register R7 (at
location 07H) contains the value 02H which is our current mode value.
2-8 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights
2.1.3.4 Displaying Elements of the MCU Interface
� To show or hide elements of the MCU Interface:

1. Double-click on the 8051 MCU to display its properties dialog and click on the Display
tab.

2. Enable the Memory View, Assembly Source Window and Register View checkboxes as
desired and click on the Apply Show MCU button.

2.1.4 Advanced Features

This section provides a step by step walkthrough of the MultiMCU debugging features. It is
important to follow the steps exactly as scripted otherwise the descriptions will no longer
apply. Once you understand how the breakpoint and single stepping features you can explore
the possibilities of advanced MCU debugging.

MultiMCU provides advanced debugging tools to make it easy to pause your circuit and
explore the internal data and state of the MCU controlling your circuit. MultiMCU lets you
set breakpoints and single step through assembly code while validating that the register
contents are changing as expected.
MultiMCU Co-simulation 2-9

MultiMCU Sample Walkthroughs
2.1.4.1 Adding a Breakpoint
1. Load the MCU Driven Blinking Lights Example. The switches should all be closed.

2. Scroll the MCU Assembly Source Window to the Counter Loop and move the cursor (by
cursor keys or mouse click) to line 195. It shows:

JB INPORT.2, FwdCounter

3. Click the Insert/Remove Breakpoint button . You should see a red dot appear in the
left margin.

You have now set a breakpoint at the branch instruction in the Counter mode loop that
decides whether to increment or decrement the counter.

4. You can remove this breakpoint by clicking on the same Insert/Remove Breakpoint button
again or you can remove all of the break points in one step by clicking on the Remove All
Breakpoints button .

2.1.4.2 Break and Continue
1. Select Simulate/Run to begin simulation.

2. You should see the Sweeping Eye pattern on the Bar LED. Our simulation breakpoint
does not get triggered because we are in Sweeping Eye mode instead of Counter mode.

3. Move into Counter mode by hitting the B key on the keyboard. The switch should change
to the Open state.
2-10 Electronics Workbench

Tutorial 1 - MCU Driven Blinking Lights
4. The simulator should be paused now and the Assembly Source Window will show the
yellow arrow over our breakpoint.

5. Look at the Accumulator (ACC) value in the MCU Register View. The ACC is 00H at
this moment.

6. Click on the Go button in the Assembly Source window. The Counter Loop will run
for one iteration and stop again at our breakpoint. The new value of the accumulator is
now 0FFH.
MultiMCU Co-simulation 2-11

MultiMCU Sample Walkthroughs
2.1.4.3 Break and Step Into
1. Click on the Step Into button . The simulator will run briefly and then return to the

pause state. The yellow arrow has moved to the instruction.

2. Since switch J3 (C-key) was closed, the input value of Port-1, Bit-2 will be zero. The test
for bit-set failed as expected and execution continues after the JB instruction.

3. Click on the Step Into button a few more times and watch the Accumulator value change
as the DEC and INC instructions are executed.

Setting Breakpoints During Simulation
1. Stop the Simulation by clicking on the Stop Debugging button .

2. Click on the Remove All Breakpoints button . This will clear all user breakpoints. All
of the red breakpoint dots should disappear.

3. Select Simulate/Run to begin simulation.

4. Hit the A and B keys on the keyboard until both switches are open.

5. You should see the Marquis pattern scrolling across the Bar LED.

6. Breakpoints can be set and cleared during a simulation. Scroll to the line in the Assembly
Source View dialog corresponding to address 00AC in the left-most column. The
assembly instruction for that line decides between left or right scrolling of the marquis
pattern.

7. Make sure your cursor is positioned on that line and click on the Insert/Remove Breakpoint
button . The simulation will pause almost immediately at your new breakpoint since
the MCU was looping through that code to display the marquis. At this time you can
examine the memory and register views as demonstrated earlier.
2-12 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank
2.2 Tutorial 2 - MCU Controlled Holding Tank
This section details an 8051 MCU that controls a circuit example that fills and then empties a
fluid holding tank. Note the 8051 MCU completely replaces the ladder diagram in the same
example (“Educational Sample Circuits\Ladder Diagrams\HoldingTankExample.ms8”)
included in the Educational version of Multisim 8. The behavior of the ladder logic diagram
is emulated by the 8051 MCU to achieve the same results.

2.2.1 Overview

The 8051 MCU emulates the behavior of the ladder logic diagram example to control the
filling and emptying of the holding tank. The logic behind the MCU is contained inside an
assembly program that is loaded when the circuit starts running. The circuit can be run using
the same series of operations as the ladder logic circuit. In addition to the schematic capture
interface, there is an MCU interface that allows you to view the instructions in the assembly
code that are being executed by the MCU at the same time that you are running the
simulation.

You can pause the simulation at any time and see the exact corresponding assembly
instruction that the MCU is about to execute. You can also go in the opposite direction and set
breakpoints inside the code to pause the simulation automatically when it reaches the desired
point in the program of the MCU and see what is happening in your simulation. To
understand the assembly code in even more detail, you can also step through the assembly
instructions one by one to view the flow of control.

2.2.2 About the Tutorial

The input signals to the 8051 MCU are the push buttons and the empty and set point pins of
the Holding Tank part. These input signals are connected to port P0 (pins P0B0AD0 to
P0B4AD4). The MCU generates output signals on port P1 (pins P1B0T2 to P1B2). The
output signals are connected to the Fwd, Rev and Stop pins of the Holding Tank. The
changing of the input signals will cause the MCU to generate output signals that emulate the
behavior of the analog circuit in the ladder logic example.
MultiMCU Co-simulation 2-13

MultiMCU Sample Walkthroughs
� To activate this circuit:

1. Select Simulate/Run to begin simulation. The program memory code is loaded at this
point and the MCU is waiting for the power button to be pressed. The corresponding
assembly code is as follows:

; Wait for power button to be pressed

startloop:

MOV P1,#000H

JB P0.1,ready; power button was pressed

JMP startloop

2. Press the ‘P’ key on the keyboard to activate the Power switch. This sends 5V to pin
P0B1AD1 of U6 (MCU) which puts the MCU into the ready state to accept other input
signals to start running the circuit.

ready:

MOV P1,#001H

; Wait for run button to be pressed to start filling tank
2-14 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank
readyloop:

JB P0.0,start ; kill button pressed

JB P0.2,run ; run button pressed

JMP readyloop

� To run the holding tank circuit:

1. Press the ‘R’ key on the keyboard to activate the Run switch. The MCU will receive a
high signal on port P0 bit 2 and set the output pin of P1 bit 2 to high for a moment to start
filling the tank in the forward direction.

; Fill in forward direction

fillfwd:

MOV P1,#004H ; set fwd signal to high

CALL outputdelay ; hold fwd signal high

CALL outputdelay

MOV P1,#000H ; set fwd signal back to low

2. When the tank reaches the set point, the MCU is notified by the high signal that it receives
on port P0 bit 3.

; Wait for set point to be reached

fillfwdloop:

JB P0.0,fillfwdkill ; kill button pressed

JB P0.3,fillfwdend ; set point reached

JMP fillfwdloop

3. The MCU sends a high output signal to the stop pin of the pump control and the fluid stops
being pumped.

; Stop filling in fwd direction and start timer for 5 seconds

fillfwdend:

MOV P1,#001H ; set stop signal to high
MultiMCU Co-simulation 2-15

MultiMCU Sample Walkthroughs
4. A timer will start and after a delay of about 5 seconds, the tank begins to empty.

CALL timerdelay ; go to timer routine

JMP fillrev ; timer has finished, start draining

5. When the tank is empty, the MCU receives an empty signal on port P0 bit 4. The MCU
sends a stop signal to the pump in turn and the flow stops.

; Fill in reverse direction (drain)

fillrev:

MOV P1,#002H ; set reverse signal to high

CALL outputdelay ; hold reverse signal

CALL outputdelay

MOV P1,#000H ; set reverse signal to low

; Wait for tank to reach the empty point

fillrevloop:

JB P0.0,fillrevkill ; kill button pressed
2-16 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank
JB P0.4,fillrevend ; empty point reached

JMP fillrevloop

; Finished draining, go back to ready state

fillrevend:

MOV P1,#001H ; set stop signal to high

JMP ready

� To turn off the power at any point in the simulation:

1. Press the ‘K’ key on your keyboard to activate the Kill switch. This sends 5V to pin
P0B0AD0. There is code in each of the various states of the circuit to stop the filling,
emptying of the tank or timer function depending on which is currently occuring.

; Kill button was pressed during filling in fwd direction

fillfwdkill:

MOV P1,#001H ; set stop signal to high

CALL outputdelay ; hold top signal high

CALL outputdelay

JMP start ; go back to beginning of program

; Kill button was pressed during filling in reverse direction

fillrevkill:

MOV P1,#001H ; send stop signal

CALL outputdelay

CALL outputdelay

JMP start

; Kill button was pressed during timer routine, wait for power button

timerdelaykill:

JB P0.1,timerdelayready ; power button pressed

JMP timerdelaykill
MultiMCU Co-simulation 2-17

MultiMCU Sample Walkthroughs
2.2.3 Using the MCU Interface

The MCU debugging tools provide the user with the ability to control execution at the
instruction level (breakpoints and single-stepping) while also providing views of the data
memory and registers within the MCU.

2.2.3.1 MCU Assembly Source Window
The MCU Assembly Source Window shows the assembly source code for the MCU program.
This is also where you can set breakpoints to have the simulation pause at a particular location
in the code. The edit dialog will automatically scroll to the place in the assembly code where
the simulation has paused and indicate the current instruction with an arrow.

The figure here shows the MCU Assembly Source Window showing the annotated source
code of part of the ‘readyloop’ code shown earlier. Only the annotated source is shown since
editing assembly code is disabled in the sample. The numbers on the far left are the program
memory addresses and the hexadecimal codes to their immediate right are the assembled
codes for each mnemonic assembly instruction. The column of numbers in the middle shows
the line number in the original assembly source. The remainder of the line to the right shows
the assembly source and comments. The yellow arrow indicates the instruction that the
program has paused at. On the top right on the MCU Assembly Source Window are buttons
to control execution. The buttons as shown (from left to right respectively) are Go,
Stop Debugging, Step Into, Break Execution, Insert/Remove Breakpoint, and Remove All
Breakpoints.
2-18 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank
2.2.3.2 MCU Register View
When the program is paused on a break point, the Special Function Registers (SFRs) are
displayed in the MCU Register View as shown below:

The first column contains the name of the Special Function Register (SFR) and the second
column displays the address of the corresponding SFR. The third column shows the value
contained in the SFR. When you are paused at line 39 of the Holding Tank example, the input
signals at port P0 should contain zeros in all its bits since no buttons have been pressed.

2.2.3.3 MCU Memory View
The MCU Memory View displays the values in the internal RAM and ROM of the 8051
MCU.
MultiMCU Co-simulation 2-19

MultiMCU Sample Walkthroughs
The ROM window shows the program memory code that is loaded in hexadecimal format.
These are the actual machine instructions that the simulation is using when it is activated. The
left column indicates the memory address and the header row indicates the offset from the
address on the left.

The internal RAM, above the ROM, shows the data that is inside the MCU’s memory and is
modified as the program runs. RAM memory on the 8051 is used for four banks of registers
R0 to R7, user variables, and stack memory. Addresses 00H to 19H contain the four register
banks. By default, the 8051 uses the first register bank (00H to 07H) for the registers R0, R1
to R7, but this can be configured by the program. The Holding Tank example uses registers in
Bank 0 but begins the assembly code by setting the Stack Pointer (SP) to 20H which reserves
all four register banks for future use. This is a standard and recommended practice for 8051
programming. In the above figure, the program is paused and all the registers contain a value
of zero.

2.2.3.4 Displaying Elements of the MCU Interface
� To show or hide elements of the MCU Interface:

1. Double-click on the 8051 MCU to display its properties dialog and click on the Display
tab.

2. Enable the Memory View, Assembly Source Window and Register View checkboxes as
desired and click on the Apply Show MCU button.
2-20 Electronics Workbench

Tutorial 2 - MCU Controlled Holding Tank
2.2.4 Advanced Features

This section provides a step by step walkthrough of the MultiMCU debugging features. It is
important to follow the steps exactly as scripted otherwise the descriptions will no longer
apply. Once you understand how the breakpoint and single stepping features you can explore
the possibilities of advanced MCU debugging.

MultiMCU provides advanced debugging tools to make it easy to pause your circuit and
explore the internal data and state of the MCU controlling your circuit. MultiMCU lets you
set breakpoints and single step through assembly code while validating that the register
contents are changing as expected.

2.2.4.1 Adding a Breakpoint
1. Load the MCU Controlled Holding Tank Example.

2. Scroll the MCU Assembly Source Window and move the cursor (by cursor keys or mouse
click) to line 49.

3. Click on the Insert/Remove Breakpoint button . You should see a red dot on the left
margin.

You have now set a breakpoint at the branch instruction

4. Place a second break point on line 51.

5. You can remove this breakpoint by clicking on the Insert/Remove Breakpoint button again
or you can remove all of the break points in one step by clicking on the Remove All
Breakpoints button .

2.2.4.2 Break and Continue
1. Select Simulate/Run to begin simulation.

2. Press ‘P’ on your keyboard to activate the circuit.

3. Press ‘R’ on your keyboard to start filling the tank.

4. The simulation will pause at line 49.

5. Look at the MCU Register View and scroll until you can see P1 and notice that bit 2 is
zero.

6. Click on the Go button in the MCU Assembly Source Window. The program will
execute until it reaches the next break point on line 51.

7. Notice that the MCU Register View has been updated with the current values and will
display a value of 1 inside P1 bit 2 now after executing the instruction “MOV P1, #004H”.

8. Click on the Go button again and the simulation will continue filling the tank.
MultiMCU Co-simulation 2-21

MultiMCU Sample Walkthroughs
2.2.4.3 Break and Step Into
1. Place a break point on line 62. Line 62 is executed to start the 5 second timer when the

tank is filled to the set point.

2. Select Simulate/Run to restart the simulation

3. Press ‘P’ on your keyboard to activate your circuit.

4. Press ‘R’ on your keyboard to start filling.

5. Eventually, the simulation will pause and the debugger will show the paused program
execution at line 62.

6. Click on the Step Into button to step into the subroutine 'timerdelay'.

7. The yellow arrow shows the next instruction that will be executed at line 110 inside the
“timerdelay”.

8. If you click on the Step Into button again, JMP timerstart will execute and jump to line 96
where the “timerstart” code begins.

9. Click on the Step Into button one more time. See that the value in P1 bit 0 was set to 1 to
stop the filling of the tank.

10.You can step through more instructions to see how the rest of the routine functions.

2.3 Tutorial 3 - MCU Based Calculator
This section contains an example of a calculator application created using an 8051 MCU. All
the logic for the arithmetic, input and output operations of the calculator, are handled by the
MCU.

2.3.1 Overview

This circuit behaves like a normal calculator that performs operations of the form operand1
operator operand2 = result, where:

• Operand1 and operand2 are positive integers between 0 and 9999, and
• The operator can be +, -, * or /.

For example, a typical operation would be 3 * 4 = 12.

Numbers and operators can be entered via the keypad and displayed on the HEX Displays
attached to the MCU. As the equation is entered into the calculator, the results are calculated
as soon as enough information is entered to perform a calculation. The result is displayed on
the HEX Displays and will be used as the first operand in the next calculation. All of these
operations are performed by the 8051 MCU. The logic for the MCU is programmed in
assembly and loaded at the start of simulation.
2-22 Electronics Workbench

Tutorial 3 - MCU Based Calculator
2.3.2 About the Tutorial

The calculator circuit consists of an 8051 MCU that is hooked up to a keypad via port P1 and
4 LEDs via ports P0 and P2. The keypad is an interactive part used for entering input values
into the calculator. The keypad can be used by pressing keys on the keyboard that correspond
to the characters on the keypad. These characters are fed into the MCU, manipulated and the
resulting values are displayed on the HEX Displays from a range of 0 to 9999.

Instead of building a calculator circuit using electrical components, the logic for the calculator
is controlled by the 8051 MCU. The MCU can be programmed to perform virtually any
operation based on the inputs that it receives from its ports. In this example, the MCU is used
to keep track of input values in its memory and the current state of its operation. It also
performs arithmetic operations on 16-bit numbers that include addition, subtraction,
multiplication and division. Since the 8051 assembly instructions operate on hexadecimal
values, the MCU is also programmed to perform hexadecimal to BCD conversions and back
again in order to display the input data and results in BCD format for the user.

� To activate the circuit and perform a simple calculation (12+3) on the calculator:

1. Select Simulate/Run to begin simulation. The assembled code for the 8051 MCU is
loaded at this point and the HEX displays are set to 0000. The MCU is in the “ready” state
and is scanning its input port P1, waiting for a key press.

The lower 4 bits of input port P1are normally driven high and the higher 4 bits of the port
are normally driven low. The MCU’s assembly code waits in a loop polling those input
values and waits for changes in them as shown below. It exits the loop as soon as a change
is detected.
MultiMCU Co-simulation 2-23

MultiMCU Sample Walkthroughs
anykeyloop:

 MOV A, P1

 ANL A, #00FH

 XRL A, #00FH

 JZ anykeyloop

 MOV R0, A

2. Press ‘1’ on the keyboard. The MCU detects this value on P1 and starts processing the
high and low input values. The number that was pressed is determined and is displayed on
the HEX displays.

3. Press ‘2’ on the keyboard and see the number ‘2’ on the keypad depress. The MCU knows
that the number 2 is still part of the first number that is being entered and shifts the ‘1’
displayed on the HEX display one to the left and displays the ‘2’ in the right most HEX
display.
2-24 Electronics Workbench

Tutorial 3 - MCU Based Calculator
4. Press ‘+’ on the keyboard. The display remains the same since an operator was entered.
The MCU stores the first complete number and the operator that was entered into its
memory for later use.

5. Enter ‘3’ into the keyboard. Notice that the display clears and displays the new number 3.
MultiMCU Co-simulation 2-25

MultiMCU Sample Walkthroughs
6. Press ‘=’ on the keyboard. The MCU retrieves the values of the operands and operator
that it had stored previously. It calculates the result of 12+3 using a 16-bit addition
function and converts the result from hexadecimal to the BCD value ‘15’, which is
displayed on the HEX display.

Understanding the calculator’s assembly code routines
The flow chart below provides a general overview of how the calculator works. States are
shown in ovals, decisions are contained in diamonds, and operations are in rectangles. The
names of the states correspond to actual labels in the assembly code.

The operation of the calculator beings at the “Start” state and after some initializing, goes to
the “readystate”. In the ready state, it scans for key presses. As soon as a character is
received, it determines which one was pressed as shown in the decision diamonds and jumps
to the next appropriate state. For example, if a number between 0 and 9 was entered, it will go
to the “Getnum1” state. Find the corresponding “Getnum1” state bubble in the top left flow
chart and follow the arrows to see what happens next. In this way you can examine each of
the flow charts and see how the program flows. If you wish to understand a section in more
detail, please refer to the Calc.asm file and find the label for the state that you are currently in
and step through the assembly instructions.
2-26 Electronics Workbench

Tutorial 3 - MCU Based Calculator
MultiMCU Co-simulation 2-27

MultiMCU Sample Walkthroughs

2-28 Electronics Workbench

Tutorial 3 - MCU Based Calculator
2.3.3 Using the MCU Interface

The MCU debugging tools provide the user with the ability to control execution at the
instruction level (breakpoints and single-stepping) while also providing views of the data
memory and registers within the MCU.

2.3.3.1 MCU Assembly Source Window
The MCU Assembly Source Window shows the assembly source code for the MCU program.
This is also where you can set breakpoints to have the simulation pause at a particular location
in the code. The edit dialog will automatically scroll to the place in the assembly code where
the simulation has paused and indicate the current instruction with an arrow.

For this example, you will probably break in the key scanning routine as shown below:

The arrow indicates the instruction that the program has paused at. The numbers on the left
are the opcodes for each assembly instruction. The second column shows the line number,
line 367 in figure above. On the right side, the assembly instructions are displayed. The
program is about to read the data on port P1 and move it into the accumulator (A) to be
analyzed. It will determine whether any of the inputs have changed from the idle state.
MultiMCU Co-simulation 2-29

MultiMCU Sample Walkthroughs
2.3.3.2 MCU Register View
When the program is paused on a breakpoint, the Special Function Registers (SFRs) are
displayed in the MCU Register View window as shown below:

The first column contains the name of the Special Function Register (SFR) and the second
column displays the address of the corresponding SFR. The third column shows the value
contained in the SFR. For example, the accumulator (ACC), contains a value of 00H. The
instruction MOV A, P1, places the current value in P1 to register ACC. Some SFRs such as
the program status word (PSW) contain bits that are used individually for different purposes.
This can be seen in the remaining columns that display each bit individually as well.
2-30 Electronics Workbench

Tutorial 3 - MCU Based Calculator
2.3.3.3 MCU Memory View
The MCU Memory View displays the values in the internal RAM and ROM of the 8051
MCU.

The ROM window shows the program memory code that is loaded in hexadecimal format.
This is the actual format of the code that the simulation is using when it is activated.

The internal RAM display, above the ROM, shows the data that is inside the 8051’s memory
and is modified as the program runs. Addresses 00H to 19H contain the four register banks.
By default, the 8051 uses the first register bank (00H to 07H) for registers R0, and R1 to R7,
but this can be configured by the program. The calculator example uses register bank ‘0’
only. In this example, the program is paused and the following is displayed: R0 = 0h, R1 =
01H, R2 = 04H, R3 = 00H, R4 = 03H, R5 = 01H, R6 = 00H and R7 = 00H.

The memory space in the internal RAM, starting from 20H onwards, is general user space that
is also used by the stack.
MultiMCU Co-simulation 2-31

MultiMCU Sample Walkthroughs
2.3.3.4 Displaying Elements of the MCU Interface
� To show or hide elements of the MCU Interface:

1. Double-click on the 8051 MCU to display its properties dialog and click on the Display
tab.

2. Enable the Memory View, Assembly Source Window and Register View checkboxes as
desired and click on the Apply Show MCU button.

2.3.4 Advanced Features

This section provides a step by step walkthrough of the MultiMCU debugging features. It is
important to follow the steps exactly as scripted otherwise the descriptions will no longer
apply. Once you understand how the breakpoint and single stepping features you can explore
the possibilities of advanced MCU debugging.

MultiMCU provides advanced debugging tools to make it easy to pause your circuit and
explore the internal data and state of the MCU controlling your circuit. MultiMCU lets you
set breakpoints and single step through assembly code while validating that the register
contents are changing as expected.
2-32 Electronics Workbench

Tutorial 3 - MCU Based Calculator
2.3.4.1 Adding a Breakpoint
1. Select Simulate/Run to begin simulation.

2. Place your cursor on line 71 and then place a break point on the same line by clicking on
the Insert/Remove Breakpoint button .

This will cause the program execution to stop when it reaches the JMP getnum1
instruction.

3. Enter a number on your keyboard to cause a value to be entered on the keypad part.

4. Enter a second number on your keyboard.

5. The simulation will now pause at line 71.

6. As soon as the debugger has paused, the values in the MCU Register View and the MCU
Memory View are updated to reflect the current values in the SFRs and the memory.
Notice that R1 in the RAM contains a value of 1. It was moved into the accumulator on
line 69. Also, notice that the value in the accumulator (ACC) in the CPU Data dialog now
contains a value of 1.

Line 70, JZ getnum1op, tests the value of the ACC to determine if it is zero. If it is zero,
then it jumps to the “getnum1op” label. Since the ACC is 1, it proceeds to the next line
MultiMCU Co-simulation 2-33

MultiMCU Sample Walkthroughs
instead. This is what happened, otherwise line 71 would never have been reached and the
simulation would not have paused.

7. In this way you can find the relationship between events that occur in the simulation and
the routines that handle them in the assembly program. This is useful in figuring out how
the program works for learning purposes or in debugging a problem. It can also be used to
test and verify the correctness of your code.

8. You can remove a particular break point by placing the cursor on the line at that break
point and clicking on the Insert/Remove Breakpoint button again or you can remove all
break points that you have placed by clicking on the Remove All Break points button .

2.3.4.2 Break and Continue
1. The debugger can be paused during simulation by clicking on the Pause Simulation button

in the schematic capture tool bar. Do this and you will see the yellow arrow point to the
instruction where the code execution has stopped in the MCUAssembly Source Window.

2. Another way of pausing the simulation is to click on the Break Execution button . The
MCU Assembly Source Window will show the instruction that it has stopped at in the
same way. For this particular example, you will break inside the key scanning code since
during idle time, that’s what the calculator is doing.

3. To continue code execution after the simulation is paused, click on the Go button , or
click on the Pause Simulation button again in the schematic capture tool bar.

4. Another useful way of using the break and continue feature is for looping routines.
Restart the simulation and enter “32 / 8” into the calculator on your keyboard.

5. Place a break point on line 775 just inside the DIV_LOOP label in the UDIV16 subroutine
that will be called when you perform a divide operation and a break point on line 807
where it stops looping back to the DIV_Loop label.

6. Press the “=” key on your keyboard and see how it breaks at line 775.

7. Click on the Go button to continue and see that it breaks at line 775 again. You can look at
the Register and Memory Views to see the updated values used in the UDIV16 subroutine
to understand how it works.

8. You can also see how many times this loop is executed, by pressing the Go repeatedly
until the DIV_LOOP loop exits and breaks at the second break point on line 807. (In
general, if your program never exits a loop, then you may have an infinite loop on your
hands.)

9. Remove all break points and click on the Go button one more time to see the answer “4”
be displayed on the HEX displays.
2-34 Electronics Workbench

Tutorial 3 - MCU Based Calculator
2.3.4.3 Break and Step Into
1. Select Simulate/Run to begin simulation again and enter “1 + 4” in to the keypad.

2. Clear all the break points by clicking on the Remove All Break points button .

3. Go to the MCU Assembly Source Window and scroll to line 229 where it is about to call
the ADD16 subroutine begins.

4. Place a break point there by clicking on the Insert/Remove Breakpoint button.

5. Press the “=” key on the keyboard.

6. The program should now break at line 229 as it is about to do the add calculation.

7. You can step into the ADD16 subroutine by clicking on the Step Into button . This
feature allows you to go into a call to a subroutine such as ADD16 and see what’s going
on instead of executing the ADD16 subroutine as one step.

8. The arrow now jumps from line 229 to line 662 where the ADD16 subroutine starts.

9. You can step through the instructions by clicking on the Step Into button each time.

10.The ADD16 subroutine adds the value in R0, R1 to the value in R2, R3. Watch as the
contents of these input registers are moved to the accumulator one by one and the sums
obtained as you step through more instructions. The values shown in the internal RAM at
00H to 03H show the values inside R0, R1, R2 and R3 respectively. You can also watch
the accumulator value change as the contents of the registers are moved and added to it in
the data window. The final result is returned in R0 and R1. R0 should contain 05H and
R1 should contain 00H.

11.Step all the way to line 673 RET.

12.Step one more time and the routine will return from the call, back to line 231 just after the
call to ADD16.
MultiMCU Co-simulation 2-35

MultiMCU Sample Walkthroughs
2-36 Electronics Workbench

	MultiMCU Overview
	MultiMCU Sample Walkthroughs
	2.1 Tutorial 1 - MCU Driven Blinking Lights
	2.1.1 Overview
	2.1.2 About the Tutorial
	2.1.3 Using the MCU Interface
	2.1.3.1 MCU Assembly Source Window
	2.1.3.2 MCU Register View
	2.1.3.3 MCU Memory View
	2.1.3.4 Displaying Elements of the MCU Interface

	2.1.4 Advanced Features
	2.1.4.1 Adding a Breakpoint
	2.1.4.2 Break and Continue
	2.1.4.3 Break and Step Into

	2.2 Tutorial 2 - MCU Controlled Holding Tank
	2.2.1 Overview
	2.2.2 About the Tutorial
	2.2.3 Using the MCU Interface
	2.2.3.1 MCU Assembly Source Window
	2.2.3.2 MCU Register View
	2.2.3.3 MCU Memory View
	2.2.3.4 Displaying Elements of the MCU Interface

	2.2.4 Advanced Features
	2.2.4.1 Adding a Breakpoint
	2.2.4.2 Break and Continue
	2.2.4.3 Break and Step Into

	2.3 Tutorial 3 - MCU Based Calculator
	2.3.1 Overview
	2.3.2 About the Tutorial
	2.3.3 Using the MCU Interface
	2.3.3.1 MCU Assembly Source Window
	2.3.3.2 MCU Register View
	2.3.3.3 MCU Memory View
	2.3.3.4 Displaying Elements of the MCU Interface

	2.3.4 Advanced Features
	2.3.4.1 Adding a Breakpoint
	2.3.4.2 Break and Continue
	2.3.4.3 Break and Step Into

