design ideas end of each period, a positive-going edge appears at F. Each positive edge at F makes counter IC₂ count down by one. When the circuit has produced N periods at S, the voltage at C goes high, which indicates end of count. The voltage at D goes high and disables the counter. IC_{3C} and IC_{3D} invert the voltage at D, and the resulting 0V drive turns on Q_1 . A 5V level is present at E, and IC_4 switches are on. The internal oscillator of IC_1 stops, and the output signal at F returns to zero. Before returning to the original state, the signal at B should return to zero, which happens after the end of the delay that one-shot IC_{5A} produces. All is now ready for another train of pulses. Using S₁, you can program the cir- cuit for one to 15 pulses. The circuit can produce other signal shapes, depending on how you connect A_0 and A_1 of IC_1 (**Table 1**). You can also replace S_1 with a μC to produce any pattern of pulses. Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp. ## High-voltage current-feedback amplifier is speedy Joseph Ting, Institute of Atomic and Molecular Sciences of the Academia Sinica, Taipei, Taiwan THE CIRCUIT IN FIGURE 1 powers a microparticle and nanoparticle ion trap through a 1-to-5-turns-ratio, high-voltage transformer. It also works successfully as a driver for a piezo-tube scanner and in a near-field scanning optical microscope. The circuit is robust and works with supplies ranging from ± 50 to ± 230 V. The measured parameters at ± 230 V supply voltage are gain of 26-dB from dc to -3-dB point at 7 MHz; output swing of ± 200 V, rise and fall times of 70 nsec for an output step of 350V, slew rate of 4100V/ μ sec, and supply current of 56 mA. The red LEDs, D₁ and D₂, in Figure 1 provide a 1.8V drop; the LEDs are more rugged than precision IC voltage references. The current supply for IC, comes from R_1 and the source comprising D_1 , R_2 , R_3 , and Q_1 . R_3 's trimmed value is such that Q,'s quiescent current is approximately 15 mA. You can determine this current by measuring the voltage drop across R₄. The same adjustment also controls the output-voltage offset. IC₂ is a unity-gain, high-current driver for Q₂. D₃ prevents IC,'s input from going more negative than its negative supply. Q₃, D₄, C₁, and R₅ provide the negative bias for IC₂. Q₄ is an output-current limiting switch. Q₄ starts to turn on at I_{OUT}=290 mA. You can replace the bipolar transistors C3955 (npn, Q_2 and Q_6) and A138 (pnp, Q3 and Q7) by equivalents as long as they have the following minimum specs: $V_{CEO} \ge 250V$; $I_{C} \ge 100$ mA, and $f_{\text{T}} \ge 100 \text{ MHz}.$ You should mount all the power tran- This high-voltage, current-feedback amplifier slews at 4100V/µsec. 136 EDN | APRIL 26, 2001 www.ednmag.com ## design ideas sistors in individual finned heat sinks with an overhead 3-in. fan for cooling. The pc-board layout is not critical and needs no ground plane. However, you must use single-point grounding to minimize ringing. For the component values shown, the circuit is very stable and needs no compensation capacitors. Figure 2 shows a large-signal response for a ±9V, 1-MHz square-wave input. This circuit has a fixed gain of 20. For higher gains, you can increase the values of R₆ and R₇. For lower values, it is better to insert an attenuator at the input, because smaller values of R_s and this project. The circuit has a clean square-wave response with minimal overshoot and no ringing. Is this the best Design Idea in this issue? Vote at www.edn mag.com/ednmag/vote.asp. R₇ may result in excessive dissi- pation. Do not change the val- ue of R_e, because it is optimized for speed. Be cautious when measuring and using this cir- cuit, because it harbors lethal voltages. The National Science Council of Taiwan sponsored ## **AC-power monitor uses remote sensing** Sanjay R Chendvankar, Tata Institute of Fundamental Research, Colaba, Mumbai, India HE DETECTION CIRCUIT IN the Design Idea "Circuit monitors ac-power loss" (EDN, Nov 24, 1999, pg 172) requires a physical connection with the mains to sense the power loss. The circuit in Figure 1 senses the power loss through the radiated power-line signal. The battery-operated circuit has a quiescent-current drain of approximately 2 µA. The antenna, which is either a telescopic antenna or simply an approximately 2-ftlong wire, intercepts the radiated power-line signal. The CMOS inverters, IC_{1A} and IC_{1B}, amplify this weak signal and convert it into a digital signal. D₁ and C₁ generate a steady dc voltage at the input of IC_{1C}. D₁ prevents discharge of C₁ through the output of IC_{1B} when the square wave at this output periodically goes to a low level. Inverters IC_{1D}, IC_{1E}, and IC_{1E} connected in parallel enhance the current-sink capacity for sinking the piezo-buzzer current. When the ac mains is present, the output of IC_{1C} is A low level at the outputs of IC_{1D} , IC_{1E} , and IC_{1F} activates the piezo-buzzer and warns of ac-line failure. low; hence, the levels of $\rm IC_{1D}$, $\rm IC_{1E}$, and $\rm IC_{1F}$ are high, and the buzzer is off. When the ac power fails, the output of $\rm IC_{1B}$ goes low; $\rm C_1$ discharges through $\rm R_1$; and $\rm IC_{1D}$, $\rm IC_{1E}$, and $\rm IC_{1F}$ go low. This level activates the piezo-buzzer and warns of ac-line failure. Switching off the battery power deactivates the buzzer. You can turn S_1 on after ac power resumes. Is this the best Design Idea in this issue? Vote at www.ednmag.com/edn mag/vote.asp. 138 EDN | APRIL 26, 2001 www.ednmag.com