

Go to: 101-200 Circuits
Go to: 100 IC Circuits

See TALKING ELECTRONICS WEBSITE
email Colin Mitchell: mailto:talking@tpg.com.au?subject=Send your technical question to Colin:

INTRODUCTION

This e-book contains 100 transistor circuits. The second part of this ebook will contain a further 100 circuits.
Most of them can be made with components from your "junk box" and hopefully you can put them together in less than an hour. The idea of this book is to get you into the fun of putting things together and there's nothing more rewarding than seeing something work. It's amazing what you can do with a few transistors and some connecting components. And this is the place to start.
Most of the circuits are "stand-alone" and produce a result with as little as 5 components.
We have even provided a simple way to produce your own speaker transformer by winding turns on a piece of ferrite rod. Many components can be obtained from transistor radios, toys and other pieces of discarded equipment you will find all over the place.
To save space we have not provided lengthy explanations of how the circuits work. This has already been covered in TALKING ELECTRONICS Basic Electronics Course, and can be obtained on a CD for $\$ 10.00$ (posted to anywhere in the world) See Talking Electronics website for more details: http://www.talkingelectronics.com/
Transistor data is at the bottom of this page and a transistor tester circuit is also provided. There are lots of categories and I am sure many of the circuits will be new to you, because some of them have been designed recently by me.
Basically there are two types of transistor: PNP and NPN.
All you have to do is identify the leads of an unknown device and you can build almost anything.
You have a choice of building a circuit "in the air," or using an experimenter board (solderless breadboard) or a matrix board or even a homemade printed circuit board. The choice is up to you but the idea is to keep the cost to a minimum - so don't buy anything expensive.
If you take parts from old equipment it will be best to solder them together "in the air" (as they will not be suitable for placing on a solderless breadboard as the leads will be bent and very short).
This way they can be re-used again and again.
No matter what you do, I know you will be keen to hear some of the "noisy" circuits in operation.
Before you start, the home-made Speaker Transformer project and Transistor Tester are the first things you should look at.
If you are starting in electronics, see the World's Simplest Circuit. It shows how a transistor works and three transistors in the 6 Million Gain project will detect microscopic levels of static electricity! You can look through the Index but the names of the projects don't give you a full description of what they do. You need to look at everything. And I am sure you will.

KIT OF PARTS

Talking Electronics supplies a kit of parts that can be used to build the majority of the circuits in this book.
The kit costs $\$ 15.00$ plus postage.

In many cases, a resistor or capacitor not in the kit, can be created by putting two resistors or capacitors in series or parallel or the next higher or lower value can be used.
Don't think transistor technology is obsolete. Many complex circuits have
one or more transistors to act as buffers, amplifiers or to connect one block to another. It is absolutely essential to understand this area of electronics if you want to carry out design-work or build a simple circuit to carry out a task.

circuits in red are in 101-200 Circuits	
Ammeter 0-1A	Power Supplies - Adjustable 78xx series
Automatic Garden Light	Power Supplies - Adjustable from 0v
Automatic Light	PWM Controller
Battery Monitor MkI	Quiz Timer
Battery Monitor Mkll	Railway time
Bench Power Supply	Random Blinking LEDs
Bike Turning Signal	Resistor Colour Code
Beacon (Warning Beacon 12v)	Resistor Colour Code
Beeper Bug	Resistor Colour Code - 4, 5 and 6 Bands
Book Light	Reversing a Motor
Boom Gate Lights	Robo Roller
Boxes	Robot
Buck Converter for LEDs 48mA	Robot Man - Multivibrator
Buck Converter for LEDs 170mA	Schmitt Trigger
Buck Converter for LEDs 210 mA	SCR with Transistors
Cable Tracer	Second Simplest Circuit
Camera Activator	Sequencer
Circuit Symbols Complete list of Symbols	Shake Tic Tac LED Torch
Clock - Make Time Fly	Signal by-pass
Clap Switch	Signal Injector
Colour Code for Resistors - all resistors	Simple Flasher
Colpitts Oscillator	Simple Logic Probe
Constant Current	Simple Touch-ON Touch-OFF Switch
Constant Current Source	Siren
Continuity Tester	Siren
Dancing Flower	Soft Start power supply
Dark Detector with beep Alarm	Solar Engine
Decaying Flasher	Solar Engine Type-3
Door-Knob Alarm	Solar Photovore
Dynamic Microphone Amplifier	Sound to Light
Electronic Drums	Sound Triggered LED
Fading LED	Speaker Transformer
Flasher (simple)	Spy Amplifier
Flashing Beacon (12v Warning Beacon)	Strength Tester
Fog Horn	Sun Eater-1
FRED Photopopper	Sun Eater-1A
Gold Detector	Super Ear
Guitar Fuzz	Ticking Bomb
Hartley Oscillator	Touch-ON Touch-OFF Switch
Hex Bug	Touch Switch
H -Bridge	Tracking Transmitter
Heads or Tails	Track Polarity - model railway
Hearing Aid Constant Volume	Train Detectors
Hearing Aid Push-Pull Output	Train Throttle
Hearing Aid 1.5v Supply	Transformerless Power Supply
Hee Haw Siren	Transistor Pinouts
IC Radio	Transistor Tester-1

Increasing the output current
Intercom
Latching Relay
LED Detects Light
LED Detects light
LED Flasher 1-Transistor
LED Torch with Adj Brightness
LED Torch with 1.5 v Supply
Lie Detector
Light Alarm-1
Light Alarm-2
Light Alarm-3
Light Extender for Cars
Limit Switches
Listener - phone amplifier
Logic Probe - Simple
Logic Probe with Pulse
Low fuel Indicator
Mains Night Light
Make any resistor value
Make Time Fly!
Making 0-1A Ammeter
Metal Detector
Microphone Pre-amplifier
Model Railway time
Motor Speed Controller
Movement Detector
Multimeter - Voltage of Bench Supply
Music to Colour
On-Off via push Buttons
Phaser Gun
Phone Alert
Phone Tape-1
Phone Tape-2
Phone Tape-3
Phone Transmitter-1
Phone Transmitter-2
Phase-shift Oscillator
Power Supplies - Fixed
Power Supplies - Adjustable LMxx series

Transistor Tester-2
Trickle Charger 12v
Voltage Multipliers
Wailing Siren
Walkie Talkie
Walkie Talkie with LM386
Walkie Talkie - 5 Tr - circuit 1
Walkie Talkie - 5 Tr - circuit 2
Worlds Simplest Circuit
White LED Flasher
White LED with Adj Brightness
White Line Follower
Zener Diode (making)
0-1A Ammeter
1-watt LED
1.5 watt LED
1.5 v to 9 v Inverter
1.5 v LED Flasher
1.5 v White LED Driver

3-Phase Generator
5 v from old cells
5 LED Chaser
5 Transistor Radio
5 v Regulated Supply from 3v
6 Million Gain
6 to 12 watt Fluoro Inverter
12v Flashing Beacon (Warning Beacon)
12v Relay on 6v
12v Trickle Charger
20 LEDs on 12 v supply
20watt Fluoro Inverter
27MHz Door Phone
27MHz Transmitter
27 MHz Transmitter - no Xtal
27MHz Transmitter-Sq Wave
27MHz Transmitter-2 Ch
27MHz Transmitter-4 Ch
27MHz Receiver
27MHz Receiver-2
303MHz Transmitter

See resistors from 0.220 hm to 22 M in full colour at bottom of this page and another resistor table

A two-worm reduction gearbox producing a reduction of 12:1 and 12:1 = 144:1 The gears are in the correct positions to produce the reduction.

BOXES FOR PROJECTS
One of the most difficult things to find is a box for a projı Look in your local "junk" shop, \$2.00 shop, fishing shop and toy shop. And in the medical section, for handy box It's surprising where you will find an ideal box.
The photo shows a suitable box for a Logic Probe or otr design. It is a toothbrush box. The egg shaped box hold "Tic Tac" mouth sweeteners and the two worm reductio, twists a "Chuppa Chub." It cost less than $\$ 4.00$ and the equivalent reduction in a hobby shop costs up to $\$ 16.0 \mathrm{C}$

to Index
\square
mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

transformer is made by winding 50 turns of 0.25 mm wire on a small length of 10 mm dia ferrite rod.
The size and length of the rod does not matter - it is just the numk of turns that makes the transformer work. This is called the secondary winding.
The primary winding is made by winding 300 turns of 0.01 mm wir (this is very fine wire) over the secondary and ending with a loop । wire we call the centre tap.
Wind another 300 turns and this completes the transformer. It does not matter which end of the secondary is connected to the top of the speaker.
It does not matter which end of the primary is connected to the collector of the transistor in the circuits in this book.

to Index

TRANSISTOR TESTER - 1

Transistor Tester-1 project will test all typ of transistors including Darlington and powe The circuit is set to test NPN types. To test PNP types, connect the 9 v battery around t other way at points A and B.

The transformer in the photo is a 10 mH cho with 150 turns of 0.01 mm wire wound over 1 10 mH winding. The two original pins (with tl red and black leads) go to the primary wind and the fine wires are called the Sec. Connect the transformer either way in the circuit and if it does not work, reverse either the primary or secondary (but not both). Almost any transformer will work and any speaker will be suitable.
If you use the speaker transformer describe the Home Made Speaker Transformer arti use one-side of the primary.

This is basically a high gain amplit with feedback that causes the LEI flash at a rate determined by the 1 and 330 k resistor.
Remove one of the transistors anc insert the unknown transistor. Whi is NPN with the pins as shown in 1 photo, the LED will flash. To turn t unit off, remove one of the transis
to Index

[^0]mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

Connect the LED, 220 ohm resistor and transistor as shown in the photo.
Touch the top point with two fingers of one hand and the lower poir with
fingers of the other hand and squeeze.
The LED will turn on brighter when you squeeze harder.
Your body has resistance and when a voltage is present, current w flow though your body (fingers). The transistor is amplifying the cur through your fingers about 200 times and this is enough to illuminai the LED.

to Index

SECOND SIMPLEST CIRCUIT

This the second simplest circuit in the world. A second transistor has been added in place of your fingers. This transistor has a gain of about 200 and when you touch the points shown on the diagram, the LED will illuminate with the slightest touch. The transistor has amplified the current (through your fingers) about 200 times.
to Index

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

to Index

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

to Index

to Index

WHITE LINE FOLLOWER

This circuit can be usec for a toy car to follow a white line. The motor is either a 3v type with gearing to steer the car a rotary actuator or a servo motor.
When equal light is detected by the photo resistors the voltage on the base of the first transistor will be mid ra and the circuit is adjust via the 2 k 2 pot so the motor does not receive any voltage. When one the LDR's receives mos (or less) light, the moto activated. And the sam thing happens when thi other LDR receives les:

LED DETECTS LIGHT

All LEDs give off light of a particular colour but some LEDs are alsc able to detect light. Obviously they are not as good as a device tha has been specially made to detect light; such as solar cell, photoce photo resistor, light dependent resistor, photo transistor, photo dioc and other photo sensitive devices.
A green LED will detect light and a high-bright red LED will responc about 100 times better than a green LED, but the LED in this positi in the circuit is classified as very high impedance and it requires a considerable amount of amplification to turn the detection into a worthwhile current-source.
All other LEDs respond very poorly and are not worth trying. The accompanying circuit amplifies the output of the LED and enables it to be used for a number of applications.
The LED only responds when the light enters the end of the LED a this makes it ideal for solar trackers and any time there is a large difference between the dark and light conditions. It will not detect th light in a room unless the lamp is very close.

to Index

12v RELAY ON 6V SUPPLY
This circuit allows a 12 v relay to operate on a 6 v or 9 v supp relays need about 12 v to "pull-in" but will "hold" on about 6 v charges via the 2 k 2 and bottom diode. When an input abov applied to the input of the circuit, both transistors are turnec 5 v across the electrolytic causes the negative end of the elf below the 0 v rail by about 4.5 v and this puts about 10 v acrc

Alternatively you can rewind a 12 v relay by removing about turns.
Join up what is left to the terminals. Replace the turns you t connecting them in parallel with the original half, making su go the same way around

to Index

MAKE TIME FLY!

Connect this circuit to an old electronic clock mechanism and speed up the motor 100 times! The "motor" is a simple "stepper-motor" that performs a half-rotation each time the electromagnet is energised. It normally takes 2 seconds for one revolution. But our circuit is connected directly to the winding and the frequency can be adjusted via the pot.
Take the mechanism apart, remove the 32 kHz crystal and cut one track to the electromagnet. Connect the circuit below via wires and re-assemble the clock.
As you adjust the pot, the "seconds hand" will move clockwise or anticlockwise and you can watch the hours "fly by" or make "time go backwards." The multivibrator section needs strong buffering to drive the 2,800 ohm inductive winding of the motor and that's why push-pull outputs have been used. The flip-flop circuit cannot drive the highly inductive load directly (it upsets the waveform enormously).

From a 6 v supply, the motor only gets about 4 v due to the voltage drops across the transistors. Consumption is about 5 mA .

HOW THE MOTOR WORKS

The rotor is a magnet with the north pole shown with the red mark and the south pole opposite.
The electromagnet actually produces poles. A strong North near the end of the electromagnet, and a weak North at the bottom. A strong South at the top left and weak South at bottom left. The rotor rests with its poles being attracted to the 4 pole-pieces equally.

Voltage must be applied to the electromagnet around the correct way so that repulsion occurs. Since the rotor is sitting equally between the North poles, for example, it will see a strong pushing force from the pole near the electromagnet and this is how the motor direction is determined. A reversal of voltage will revolve the rotor in the same direction as before. The design of the motor is much more complex than you think!!

The crystal removed and a "cut track" to the coil. The 6 gears must be re-fitted for the hands to wo

A close-up of the clock motor

Another clock motor is shown below. Note the pole faces spiral closer to the rotor to make it revolve in or direction. What a clever design!!

ON - OFF VIA MOMENTARY PUSH-BUTTONS

This circuit will supply current to the load R_{L}. The maximum current will depend on the second transistor. The circuit is turned on via the "ON" pus button and this action puts a current through the load and thus a voltage develops across the load. This voltage is passed to the PNP transistor an turns ON. The collector of the PNP keeps the power transistor ON.
To turn the circuit OFF, the "OFF" button is pressed momentarily. The 1 k between base and emitter of the power transistor prevents the base floatir receiving any slight current from the PNP transistor that would keep the ci latched ON.
The circuit was originally designed by a Professor of Engineering at Penn State University. It had 4 mistakes. So much for testing a circuit!!!! It has corrected in the circuit on the left.

to Index

	SIREN This circuit produces a wailing or siren sound that gradually increases and decreases in frequency as the 100u charges and discharges when the push-button is pressed and released. In other words, the circuit is not automatic. You need to press the button and release it to produce the up/down sound.

to Index

TICKING BOMB

This circuit produces a sound similar to a loud clicking clock. The frequency of the tick is adjusted by the 220k pot.
The circuit starts by charging the 2 u 2 and when 0.65 v is on the ba the NPN transistor, it starts to turn on. This turns on the BC 557 ar the voltage on the collector rises. This pushes the small charge or $2 u 2$ into the base of the BC547 to turn it on more.
This continues when the negative end of the 2 u 2 is above 0.65 va now the electro starts to charge in the opposite direction until both transistors are fully turned on. The BC 547 receives less current ir the base and it starts to turn off. Both transistors turn off very quicl and the cycle starts again.
to Index

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

TOUCH SWITCH

This circuit detects the skin resistance of a finger to deliver a very small current to the super-alpha pair of transistors to turn the circuit ON. The output of the "super transistor" turns on the BC 557 transistor. The voltage on the top of the globe is passed to the front of the circuit via the 4 M 7 to take the place of your finger and the circuit remains ON.
To turn the circuit OFF, a finger on the OFF pads will activate the first transistor and this will rob the "super transistor" of voltage and the circuit will turn OFF.

to Index

to Index

LIGHT ALARM - 1

This circuit operates when the Light Dependent Resistor receives lig| When no light falls on the LDR, its resistance is high and the transist driving the speaker is not turned on.
When light falls on the LDR its resistance decreases and the collectc the second transistor falls. This turns off the first transistor slightly vic second 100 n and the first 100 n puts an additional spike into the bas the second transistor. This continues until the second transistor is tur on as hard as it can go. The first 100n is now nearly charged and it cannot keep the second transistor turned on. The second transistor \leq to turn off and both transistors swap conditions to produce the secon half of the cycle.
to Index

LIGHT ALARM - 2

This circuit is similar to Light Alarm -1 but produces a louder output due to the speaker being connected directly to the circuit.
The circuit is basically a high-gain amplifier that is turned on initially by the LDR and then the 10n keeps the circuit turning on until it can turn on no more.
The circuit then starts to turn off and eventually turns

to Index

LIGHT ALARM - 3 (MOVEMENT DETECTOR)
This circuit is very sensitive and can be placed in a room to detect the movement of a person up to 2 metres from the unit.
The circuit is basically a high-gain amplifier (made up of the first three transistors) that is turned on by the LDR or photo Darlington transistor. The third transistor charges the $100 u$ via a diode and this delivers turn-on voltage for the oscillator. The LDR has equal sensitivity to the photo transistor in this circuit.
to Index

SOUND TRIGGERED LED

This circuit turns on a LED when the microphone detects a loud sound. The "charge-pump" section consists of the $100 \mathrm{n}, 10 \mathrm{k}$, signal diode and 10 u electrolytic. A signal on the collector of the first transistor is passed to the 10u via the diode and this turns on the second transistor, to illuminate the LED.
to Index

SIMPLE LOGIC PROBE

This circuit consumes no current when the probe is not touching any circuitry. The reason is the voltage across the green LED, the base-emitter junction of the BC557, plus the voltage across the red LED and base-emitter junction of the

to Index

LOGIC PROBE with PULSE

This circuit has the advantage of providing a PULSE LED to show when a logic level is HIGH and pulsing at the same time. It can be built for less than $\$ 5.00$ on a piece of matrix board or on a small strip of copper clad board if you are using surface mount components. The probe will detect a HIGH at 3 v and thus the project can be used for $3 v, 5 v$ and CMOS circuits.

to Index

to Index

TRAIN THROTTLE

This circuit is for model train enthusiasts. By adding this circuit to your speed controller box, you will be able to simulate a train starting slowly from rest.
Remove the wire-wound rheostat and replace it with a 1 k pot. This controls the base of the BC547 and the 2N3055 output is controlled by the BC547. The diodes protect the transistors from reverse polarity from the input and spikes from the rails.
to Index

GUITAR FUZZ

The output of a guitar is connected to the input of the Fuzz circuit. The output of this circuit is connected to the input of your amplifier.
With the guitar at full volume, this circuit is overdriven and distorts. The distorted signal is then clipped by the diodes and your power amp amplifies the Fuzz effect.

to Index

STRENGTH TESTER

This is a simple "staircase" circuit in which the LEDs come on as the resistance between the probes decreases.
When the voltage on the base of the first transistor sees $0.6 \mathrm{v}+0.6 \mathrm{v}$ $+0.6 \mathrm{v}=1.8 \mathrm{v}$, LED1 comes on. LEDs $1 \& 2$ will come on when the voltage rises a further 0.6 v . The amount of pressure needed on the probes to produce a result, depends on the setting of the 200k pot.

to Index

	FOG HORN When the push-button is pressed, the when 00ill will take time to charge and this will provide the rising pitch and volume. When the push-button is released, the level and pitch will die

to Index

to Index

ROBOT MAN

This multivibrator circuit will flash the Robot Man's eyes as shown in the photo. The kit of components is available from Talking Electronics for $\$ 8.50$ plus postage. Send an email to find out the cost of postage: mailto:talking@tpg.com.au? subject=Postage cost for Robot Man
to Index

DYNAMIC MICROPHONE AMPLIFIER

This circuit takes the place of an electret microphone. It turns an ordinary mini speaker into a very sensitive microphone.
Any NPN transistors such as BC 547 can be used. The circuit will work from 3 v to 9 v . It is a common-base amplifier and accepts the low impedance of the speaker to produce a gain of more than 100.
to Index

SCR WITH TRANSISTORS

The SCR in circuit A produces a 'LATCH.' When the button is pressed, the LED remains illuminated.
The SCR can be replaced with two transistors as shown in circuit B.
To turn off circuit A, the current through the SCR is reduced to zero by the action of the OFF button. In circuit B the OFF button removes the voltage on the base of the BC547. The OFF button could be placed across the two transistors and the circuit will turn off.
to Index

HEE HAW SIREN

The circuit consists of two multivibrators. The first multi-vibrator operates at a low frequency and this provides the speed of the change from Hee to Haw. It modifies the voltage to the tone multivibrator, by firstly allowing full voltage to appear at the bottom of the 220R and then a slightly lower voltage when the LED is illuminated.

| MICROPHONE
 PRE-AMPLIFIER
 This circuit consists
 of two directly
 coupled transistors
 operating as
 common-emitter
 amplifiers.
 The ratio of the 10k
 resistor to the 100R
 sets the gain of the
 circuit at 100. |
| :---: | :--- |

to Index

to Index

COLPITTS OSCILLATOR
The Colpitts Oscillator is
characterised by tapping the
mid-point of the capacitive side
of the oscillator section. The
inductor can be the primary side
of a speaker transformer. The
feedback comes via the inductor.
to Index

to Index

DOOR-KNOB ALARM
This circuit can be used to detect when someone touches the handle of a door. A loop of bare wire is connected to the point "touch plate" and the project is hung on the doorknob. Anyone touching the metal doorknob will kill the pulses going to the second transistor and it will turn off. This will activate the "high-gain" amplifier/oscillator.
The circuit will also work as a "Touch Plate" as it does not rely on main hum, as many other circuits do.
to Index

MOTOR SPEED CONTROLLER

Most simple motor speed controllers simply reduc the voltage to a motor by introducing a series resistance. This reduces the motor's torque and if the motor is stopped, it will not start again. This circuit detects the pulses of noise produced k the motor to turn the circuit off slightly. If the moto। becomes loaded, the amplitude of the pulses decreases and the circuit turns on more to deliver higher current.

to Index

ELECTRONIC DRUMS

The circuit consists of two "twin-T" oscillators set to a point below oscillation. Touching a Touch Pad will set the circuit into oscillation. Different effects are produced by touching the pads in different ways and a whole range of effects are available. The two 25k pots are adjusted to a point just before oscillation.
A "drum roll" can be produced by shifting a finger rapidly across adjacent ground and drum pads.
to Index

[^1]
extends the "ON" time when a door is closed in a car, so the passenger can see where he/she is sitting.
When the door switch is opened, the light normally goes off immediately, but the circuit takes over and allows current to flow because the 22 u is not charged and the first BC 547 transistor is not turned ON. This turns on the second BC547 via the 100k and the BD679 is also turned on to illuminate the interior light.
The 22 u gradually charges via the 1 M and the first BC547 turns on, robbing the second BC547 of "turn-on" voltage and it starts to turn off the BD679.
The 1N4148 discharges the 22 u when the door is opened.

to Index

20 WATT FLUORO INVERTER

This circuit will drive a 40 watt fluoro or two 2 watt tubes in series.
The transformer is wound on a ferrite rod 10 mm dia and 8 cm long.
The wire diameters are not critical but our prototype used 0.61 mm wire for the primary and 0.28 mm wire for the secondary and feedback winding.
Do not remove the tube when the circuit is operating as the spikes produced by the transformer will damage the transistor.
The circuit will take approx 1.5 amp on 12 v , making it more efficient than running the tube from the mains. A normal fluoro takes 20 wat for the tube and about 15 watts for the ballas
to Index

6 to 12 WATT FLUORO INVERTER

This circuit will drive a 40 watt fluoro or two 2 tubes in series but with less brightness than 1 circuit above and it will take less current.
2×20 watt tubes $=900 \mathrm{~mA}$ to 1.2 A and $1 \times \overline{2}$ tube 450 mA to 900 mA depending on pot sett The transformer is wound on a ferrite rod 10r and 8 cm long. The wire diameter is fairly criti our prototype used 0.28 mm wire for all the windings.
Do not remove the tube when the circuit is or as the spikes produced by the transformer w damage the transistor. The pot will adjust the brightness and vary the current consumption the pot and select the base-bias resistor to g same current as our prototype. Heat-sink mu greater than 40 sq cm . Use heat-sink compol

The Layout of Metal Detector -1

GOLD DETECTOR
This very simple circuit will detect gold or metal or coins at a distance of approx 20 cm depending on the size of the object.
The circuit oscillates at approx 140 kHz and a harmonic of this frequency is detected by an AM radio.
Simply tune the radio until a squeal is detected.
When the search coil is placed near a metal object, the frequency of the circuit will change and this will be heard from the speaker.
The layout of the circuit is shown and the placement of the radio.

PHASER GUN

This is a very effective circuit. The sound is amazing. You have to build it to appreciate the range of effects it produces. The 50 k pot provides the frequency of the sound while the switch provides fast or slow speed.
to Index

IC RADIO

This circuit contains an IC but it looks like a 3-leaded transistor and that's why we have included it here.
The IC is called a "Radio in a Chip" and it contains 10 transistors to produce a TRF (tuned Radio Frequency) front end for our project.
The 3-transistor amplifier is taken from our SUPER EAR project with the electret microphone removed.
The two 1 N 4148 diodes produce a constant voltage of 1.3 v for the chip as it is designed for a maximum of 1.5 v .
The "antenna coil" is 60 t of 0.25 mm wire wound on a 10 mm ferrite rod. The tuning capacitor can be any value up to 450p.
to Index

5-TRANSISTOR RADIO
mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

If you are not able to get the ZN414 IC, this circuit uses two transistors to take the place of the chip.

to Index

AUTOMATIC LIGHT

This circuit automatically turns on a light when illumination is removed from the LDR. It remains ON for the delay period set by the 2M2 pot.
The important feature of this circuit is the building blocks it contains - a delay circuit and Schmitt Trigger. These can be used when designing other circuits.
to Index

5-LED CHASER

The LEDs in this circuit produce a chasing pattern similar the running LEDs display in video shops.
All transistors will try to come on at the same time when the power is applied,
but some will be faster due to their internal characteristics and some will get a different turn-on current due to the exact value of the 22 u electrolytics. The last $22 u$ will delay the voltage-rise to the base of the first transistor and make the circuit start reliably.
The circuit can be extended to any number of odd stages.

BENCH POWER SUPPLY

This power supply can be built in less than an hour on a piece of copper-laminate. The board acts as a heat-sink and the other components can be mounted as shown in the photo, by cutting strips to suit their placement.
The components are connected with enamelled wire and the transistor is bolted to the board to keep it cool.
The Bench Power Supply was designed to use old "C," "D" and lantern batteries, that's why there are no diodes or electrolytics. Collect all your old batteries and cells and connect them together to get at least $12 \mathrm{v}-14 \mathrm{v}$.
The output of this power supply is regulated by a 10 v zener made up of the characteristic zener voltage of 8.2 v between the base-emitter leads of a BC547 transistor (in reverse bias) and approx 1.7 v across a red LED. The circuit will deliver $0 \mathrm{v}-9 \mathrm{v}$ at 500 mA (depending on the life left in the cells your are using). The 10k pot adjusts the output voltage and the LED indicates the circuit is ON. It's a very good circuit to get the last of the energy from old cells.
to Index

A voltmeter can be added to the Bench Power Supply by using a very low cost multimeter. For less than $\$ 10.00$ you can get a mini multimeter with 14 ranges, including a 10 v range. The multimeter can also be used to monitor current by removing the negative lead and making a new RED lead, fitting it to the "-" of the multimeter and selecting the 500 mA range as shown in the photo below:

to Index

MAKING 0-1Amp meter for the BENCH POWER SUPPLY

The item in the photo is called a
"Movement." A movement is a moving
coil with a pointer and no resistors connected to the leads.
Any Movement can be converted to an ammeter without any mathematics.
Simply solder two 1R resistors (in parallel) across the terminals of any movement and connect it in series with an ammeter on the output of the Bench Power Supply. The second ammeter provides a reference so you can calibrate the movement. Connect a globe and increase the voltage.
At 500 mA , if the pointer is "up scale" (reading too high) add a trim-resistor. In our case it was 4R7. The three shunt resistors can be clearly seen in the photo. Two 1R and the trim resistor is 4R7.
You can get a movement from an old multimeter or they are available in electronics shops as a separate item. The sensitivity does not matter. It can be 20 uA or $50 u A$ FSD or any sensitivity.

to Index

MAKING A ZENER DIODE

Sometimes a zener diode of the required voltage is not available. Here are a number of components that produce a characteristic voltage across them. Since they all have different voltages, they can be placed in series to produce the voltage you need. A reference voltage as low as 0.65 v is available and you need at least 1 to 3 mA through the device(s) to put them in a state of conduction (breakdown).

to Index

The 12 v Trickle Charger circuit uses a TIP3055 power transistor to limit the current to the battery by turning off when the battery voltage reaches approx 14 v or if the current rises above 2 amp . The signal to turn off this transistor comes from two other transistors - the BC557 and BC 547.
Firstly, the circuit turns on fully via the BD139 and TIP3055. The BC557 and BC 547 do not come into operation at the moment. The current through the 0.47 R creates a voltage across it to charge the 22 u and this puts a voltage between the base and emitter of the BC547. The transistors turn on slightly and remove some of the turn-on voltage to the BD139 and this turns off the TIP3055 slightly.
This is how the 2 amp max is created.
As the battery voltage rises, the voltage divider made up of the 1 k 8 and 39 k creates a 0.65 v between base and emitter of the BC557 and it starts to turn on at approx 14v. This turns on the BC 547 and it robs the BD136 of "turn-on" voltage and the TIP3055 is nearly fully turned off.
All battery chargers in Australia must be earthed. The negative of the output is taken to the earth pin.
to Index

1.5v to 9v INVERTER

This very clever circuit will convert 1.5 v to 9 v to take the place of those expensive 9 v batteries.
But the clever part is the voltage regulating section. It reduces the current to less than 10 mA when no current is being drawn from the output. You can use two or three old cells for the supply and the circuit will totally use up all the energy from the cells. It's a
great circuit for using up those old cells. With a 470R load, the output current is 20 mA and the voltage drop is less than 10 mV . It is best to use 3 old cells as this will deliver about 2.5 v to 3 v and the circuit will produce an efficiency of about 70%. Adjust the 15 k resistor for 9 v .

5v REGULATED SUPPLY FROM 3V

to Index

27MHz TRANSMITTER

The transmitter is a very simple crystal oscillator. The heart of the circuit is the tuned circuit consisting of the primary of the transformer and a 10p capacitor. The frequency is adjusted by a ferrite slug in the centre of the coil until it is exactly the same as the crystal. The transistor is configured as a common emitter amplifier. It has a 390R on the emitter for biasing purposes and prevents a high current passing through the transistor as the resistance of the transformer is very low.
The "pi" network matches the antenna to the output of the circuit. See full description in 27 MHz Links article.
to Index
mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

27MHz RECEIVER

The 27 MHz receiver is really a transmitter. It's a very weak transmitter and delivers a low level signal to the surroundings via the antenna. When another signal (from the transmitter) comes in contact with the transmission from the receiver it creates an interference pattern that reflects down the antenna and into the first stage of the receiver.
The receiver is a super-regenerative design. It is self-oscillating (or already oscillating) and makes it very sensitive to nearby signals. See full description in 27 MHz Links article.

to Index

27MHz TRANSMITTER WITHOUT A CRYSTAL

A 27MHz transmitter without a crystal. When a circuit does not have a crystal, the oscillator is said to be "voltage dependent" or "voltage controlled" and when the supply voltage drops, the frequency changes.
If the frequency drifts too much, the receiver will not pick up the signal. For this reason, a simple circuit as shown is not recommended. We have only included it as a concept to show how the 27 MHz frequency is generated. It produces a tone and this is detected by a receiver.

See full description in $\underline{27 M H z}$ Links article.
to Index

27MHz TRANSMITTER WITH SQUARE-WAVE OSCILLATOR

The circuit consists of two blocks. Block 1is a multivibrator and this has an equal mark/space ratio to turn the RF stage on and off. Block 2 is an RF oscillator. The feedback to keep the stage operating is provided by the 27p capacitor. The frequency-producing items are the coil (made up of the full 7 turns) and the 47p air trimmer. These two items are called a parallel tuned circuit. They are also called a TANK CIRCUIT as they store energy just like a TANK of water and pass it to the antenna. The frequency of the circuit is adjusted by the 47 p air trimmer. See full description in 27 MHz Links article.
to Index

27MHz RECEIVER-2

This circuit matches with the 27 MHz Transmitter with Square-wave Oscillator. See full description on Talking Electronics website: 27 MHz Links article.
The receiver frequency is fixed. The transmitter is adjusted to suit the receiver. The 3-27p trimmer is adjusted for maximum gain (10p trimmer and 5 p6 in our case) and this is a critical adjustment. The base-emitter junction of the first BC547 sets 0.7 v (as it is heavily turned on by the 10k) on the base of the oscillator Q1, and this is fixed. Q1 is very lightly turned on (due to the emitter resistor), and this makes it very sensitive when it is oscillating. Any 27 MHz signal from the surroundings will upset the
oscillator and any tone in the signal will be passed to the stages for amplification. The coil is 13 turns. It can be replaced with 11 turns of 0.25 mm wire on 3 mm dia slug 7 mm long. Although the original Russian product worked very well, our prototype did not have very good sensitivity. The circuit was very difficult to set-up.
Note: When making the 27 uH inductor and checking its value on an inductance meter; if the meter does not read low values accurately, put two inductors in series. Measure the first inductor, say 100uH. The two inductors in series will be 127 uH as inductors combine just like resistors in series! The result is the addition of the individual values.
to Index

WALKIE TALKIE

Nearly all the components in the 4-transistor circuit are used for both transmitting and receiving. This makes it a very economical design. The frequency-generating stage only needs the crystal to be removed and it becomes a receiver. Next is a three transistor directly coupled audio amplifier with very high gain. The first transistor is a pre-amplifier and the next two are wired as a super-alpha pair, commonly called a Darlington pair to drive the speaker transformer. See full description in $\underline{27 \mathrm{MHz} \text { Links }}$ article.

to Index

27MHz TRANSMITTER - 2 CHANNEL

This circuit does not use a crystal but has a clever feature of using the two push buttons to turn the circuit on when it is required to transmit.
The frequency of the multivibrator is determined by the value of resistance on the base of each transistor. The multivibrator is driven directly from the supply with the forward button and via a 150 k for the reverse frequency.
The receiver requires a 1 kHz tone for forward and 250 Hz for reverse.

See full description in $\underline{27 M H z}$ Links article.
to Index

to Index

to Index

Type:		Gain:	Vbe	Vce	Current	Case
2SC1815	NPN	100	1v	50v	150 mA	
2SC3279	NPN	$\begin{array}{\|c\|} \hline 140 \text { to } \\ 600 \\ @ 0.5 \mathrm{~A} \\ \hline \end{array}$	0.75v	10v	2amp	
$\begin{aligned} & \text { BC337 } \\ & \text { BC338 } \end{aligned}$	NPN	$\left\|\begin{array}{c} 60 \\ @ 300 \mathrm{~mA} \end{array}\right\|$	0.7v	$\begin{aligned} & 45 v \\ & 25 v \end{aligned}$	800mA	
$\begin{aligned} & \hline \text { BC547 } \\ & \text { BC548 } \\ & \text { BC549 } \end{aligned}$	NPN	$\left\|\begin{array}{c} 70 \\ @ 100 \mathrm{~mA} \end{array}\right\|$	0.7v	$\begin{aligned} & \hline 45 \mathrm{v} \\ & 30 \mathrm{v} \\ & 30 \mathrm{v} \end{aligned}$	100mA	
BC557	PNP			45v	100 mA	
BD139	NPN	$\left\|\begin{array}{r} 70-100 \\ @ 150 \mathrm{~mA} \end{array}\right\|$	0.5v	80v	1.5A	

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

BD140	PNP	$\left\|\begin{array}{c} 70-100 \\ @ 150 \mathrm{~mA} \end{array}\right\|$	0.5v	80v	1.5A	
2SCxxx						
8050	NPN			10v	1.5A	
8550	PNP			10v	1.5A	
9012	PNP				500 mA	
9013	NPN		1 v	20v	500 mA	
9014	NPN				100 mA	
9015	PNP				100 mA	
9018	NPN	700		15 v	50 mA	

BOOM GATE
 LIGHTS

This simple circuit will produce flashing lights for your model railway crossing. It uses one flashing LED and one normal red LED, with a green LED hidden in the background. It can be used somewhere else on your layout but it is needed to produce a voltage drop so the two red LEDs will flash.

You cannot get a simpler circuit.

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

5 TRANSISTOR WALKIE TALKIE - 1

This walkie talkie circuit does not have a crystal or speaker transformer, with the board measuring just $3 \mathrm{~cm} \times 4 \mathrm{~cm}$ and using $1 / 10$ th watt resistors, it is one of the smallest units on the market, for just $\$ 9.50$ to $\$ 12.00$. The wires in the photo go to the battery, speaker, call-switch and antenna. The most difficult component in the circuit to duplicate is the oscillator coil. See the photo for the size and shape. The coil dia is 5 mm and uses 0.25 mm wire. The actual full-turn or half turn on the coil is also important. Almost all 5 transistor walkie talkies use this circuit or slight variations. See the article: $\underline{27 \mathrm{MHz} \text { Transmitters for theory on how these transmitters work - it is fascinating. }}$
to Index

5 TRANSISTOR WALKIE TALKIE - 2

Here is another walkie talkie circuit, using slightly different values for some of the components. See the article: $\underline{27 M H z}$ Transmitters for theory on how these transmitters work.
to Index
mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

WALKIE TALKIE with LM386

Here is a more up-to-date version of the walkie talkie, using an LM 386 amplifier IC to take the place of 4 transistors.
to Index

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

SPY AMPLIFIER

This simple circuit will detect very faint sounds and deliver them to a 32 ohm earpiece. The circuit is designed for 1.5 v operation and is available from $\$ 2.00$ shops for less than $\$ 5.00$ The photo shows the surface-mount components used in its construction.
to Index

to Index

	HEARING AID with PUSH PULL OUTPUT This circuit will detect very faint sounds and deliver them to an 8 ohm earpiece. It is designed for 3v operation.

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

to Index

HEARING AID with CONSTANT VOLUME
This is a very handy circuit as it provides constant volume. It is designed for 3 v operation.
to Index

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

This circuit is called Type-1 SE. Low current from a solar cell is stored in a large capacitor and when a preset voltage-level is reached, the energy from the capacitor is released to a motor.
For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page1.html
to Index

SUN EATER-I

An improved design over Solar Engine circuit above. It has a clever 2transistor self-latching arrangement to keep the circuit ON until the voltage drops to 1.5 v . The circuit turns on at 2.8 v . This gives the motor more energy from the electrolytic at each "pulse." For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page1.html

SOLAR ENGINE Type-3

Type-3 circuits are current controlled or current-triggered. This is another very clever way of detecting when the electrolytic has reached its maximum charge.
At the beginning of the charge-cycle for an electrolytic, the charging current is a maximum. As the electrolytic becomes charged, the current drops. In the type-3 circuit, the charging current passes through a 100R resistor and creates a voltage drop. This voltage is detected by a transistor (Q2) and the transistor is turned ON.
This action robs transistor (Q1) from turn-on voltage and the rest of the circuit is not activated. As the charging current drops, Q2 is gradually turned off and Q1 becomes turned on via the 220k resistor on the base.
This turns on Q3 and the motor is activated. The voltage across the storage electrolytic drops and the current through the 100R rises and turns the circuit off. The electrolytic begins to charge again and the cycle repeats. For full details on how the circuit works and how to modify it, see: http://www.talkingelectronics.com/projects/Robots/Page1.html
to Index

SOLAR PHOTOVORE

The green LEDs cause the Solar Engine on the opposite side to fire and the Solar Photovore turns toward the light source. The motors are two pager "vibe" motors with the weights removed. The 100k pot on the "head" balances the two Solar Engines. If you cannot get the circuit to work with green LEDs, use photo-transistors. For full details on how the circuit works and how to modify it, see: http://www.talkingelectronics.com/projects/Robots/Page1.html

FRED Photopopper (Flashing LED)
It is a Photopopper using low-cost components. It uses two red or green flashing LEDs to turn the circuit on wher the voltage across the electrolytic has reached about 2.7 v . The flashing LEDs change characteristics according tt the level of the surrounding light and this turns the circuit into phototropic.
For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page1.html

to Index

SIGNAL BY-PASS

This circuit allows a class-A amplifier to drive a low impedance speaker and has a low quiescent current. The 220R in series with the speaker limits the "wasted" current to about 20mA max as the transistor is generally biased at mid-voltage. However the transistor will be almost directly driving the speaker when a signal is being processed and the only limitation is the ability of
the 220R to discharge the 100 during each cycle.
The circuit is called a signal by-pass as the signal by-passes the 220R and drives the speaker directly (via the 100u).
to Index

SOUND-TO-LIGHT
The LED illuminates when the piezo diaphragm detects sound.
Some piezo diaphragms are very sensitive and produce 100 mV when whistling at 50 cm . Others produce 1 mV . You must test them with a CRO. The sensitivity of the diaphragm will determine the sensitivity of the circuit.

Above: A 3.5 mm switched stereo plug and socket wiring.

to Index

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

The receiver circuit is a highgain amplifier and produces constant background noise so the slightest magnetic field can be detected.
The 10 mH choke can be any value but the largest number of turns on the core is best. The mini speaker can be a 16R earpiece but these are not as loud as a mini speaker.

Quiescent current is 50 mA so the on-off switch can be a push-button.

CABLE TRACER

Why pay $\$ 100$ for a cable tracer when you can build one for less than $\$ 10.00$! This type of tracer is used by telephone technicians, electricians and anyone laying, replacing or wiring anything, using long cables, such as intercoms, television or security.
Our cable tracer consists of two units. One unit has a multivibrator with an output of $4 \mathrm{v} \mathrm{p}-\mathrm{p}$ at approx 5 kHz .
This is called the transmitter. The other unit is a very sensitive amplifier with capacitive input for detecting the
tone from the transmitter and a magnetic pickup for detecting magnetic lines of force from power cables carrying 240v. This is called the receiver. The circuit also has an inductive loop, made up of a length of wire, to pick up stray signals from power cables, so if one detector does not detect the signal, the other will. Our circuit is nothing like that in the professional unit shown above.

to Index

to Index

to Index

1v5 WHITE LED DRIVER

This circuit will drive a super-bright white LED from a 1.5 v cell. The 60 turn inductor is wound on a small ferrite slug 2.6 mm dia and 6 mm long with 0.25 mm wire.
The main difference between this circuit and the two circuits above is the use of a single winding and the feedback to produce oscillation comes from a 1n capacitor driving a high gain amplifier made up of two transistors.
The feedback is actually positive feedback via the 1 n and this turns on the two transistors more and more until finally they are fully turned on and no more feedback signal is passed though the 1 n . At this point they start to turn off and the signal through the 1 n turns them off more and more until they are fully turned off.
The 33k turns on the BC557 to start the cycle again.

If you do not have a ferrite slug, the inductor ca machine screw 10 mm long and about $3-4 \mathrm{~mm}$ d 0.25 mm wire. Or you can use a brass ferrule 2 C 150 turns.
RESULTS for the same brightness:
Slug: 21 mA
Brass Spacer: 18mA
Machine screw: 14mA
Isn't this a SURPRISE!

to Index

LED TORCH with ADJUSTABLE BRIGF

This circuit will drive up to 3 high-bright white LED supply. The circuit has a pot to adjust the brightne provide optimum brightness for the current you wi: from the battery.
The transformer is wound on a ferrite slug 2.6 mm 6 mm long as shown in the LED Torch with 1.5 v Sı project.
This circuit is a "Boost Converter" meaning the su than the voltage of the LEDs. If the supply is great voltage across the LEDs, they will be damaged.

to Index

\square

BUCK CONVERTER for HIGH-POWEF 48mA to 90 mA

This circuit is a "Buck Converter" meaning the s greater than the voltage of the LED. It will drive power white LED from a 12 v supply and is capa delivering 48 mA when $\mathrm{R}=5 \mathrm{R} 6$ or 90 mA when F The LED is much brighter when using this circui compared with a series resistor delivering the sa current.
But changing R from 5R6 to 2R2 does not doub brightness. It only increases it a small amount.
The inductor consists of 60 turns of 0.25 mm wir

15 mm length of ferrite rod, 10 mm diameter. Frı operation: approx 1 MHz .
The circuit is not designed to drive one 20 mA LE This circuit draws the maximum for a BC 338.

to Index

BUCK CONVERTER for HIGH-POWER LED 210mA

This circuit will drive 1 high-power white LED from a 12 v supply and is capable of delivering 210 mA . The driver transistor is BD 139 and the details of the inductor are shown above.
The voltage across the LED is approx $3.3 \mathrm{v}-3.5 \mathrm{v}$ The driver transistor will need a small heatsink. The 2R2 can be increased if a lower drive-current is required.
to Index

BUCK CONVERTER for HIGH-POWER LED 170 mA

This circuit is slightly simpler than above but it does not have the feature of being able to adjust the drive-current.
The inductor is the same as the photo above but has a feedback winding of 15 turns.
Connect the circuit via a 220R resistor and if the LED does not illuminate, reverse the feedback winding.
The driver transistor will need a small heatsink.
to Index

AUTOMATIC GARDEN LIGHT

This circuit automatically turns on and illuminates the LEDs when the solar panel does not detect any light. It switches off when the solar panel produces more than 1 v and charges the battery when the panel produces more than $1.5 v+0.6 v=2.1 v$
to Index

27MHz DOOR PHONE

This circuit turns a walkie talkie into a handy wireless door phone. It saves wiring and the receiver can be taken with you upstairs or outside, without loosing a call from a visitor.
A 5-Transistor walkie talkie can be used (see circuit above) and the modifications made to the transmitter and receiver are shown below:

THE TRANSMITTER

Only three sections of the transmit/ receive switch are used in the walkie talkie circuit and our modification uses the fourth section. Cut the tracks to the lands of the unused section so it can be used for our circuit.
There are a number of different printed circuit boards on the market, all using the same circuit and some will be physically different to that shown in the photo. But one of the sections of the switch will be unused. Build the 2-transistor delay circuit and connect it to the walkie talkie board as shown. When the "push-to-talk" switch is pressed, the PC board will be activated as the delay circuit effectively connects the negative lead of the battery to the negative rail of the board for about 30 seconds. The 100u gradually discharges via the 1 M after the "press-to-talk" switch is released and the two transistors turn off and the current drops to less than 1 micro-amp that's why the power switch can be left on. . The transmitter walkie talkie is placed at the front door and the power switch is turned on. To call, push the "push-to-talk" switch and the "CALL" button at the same time for about 5 seconds. The circuit will activate and when the "push-to-talk" switch is released, the circuit will produce background noise for about 30 seconds and you will hear when call is answered. The "push-to-talk" switch is then used to talk to the other end and this will activate the circuit for a further 30 seconds. If the walkie talkie does not have a "CALL" switch, 3 components can be added to provide feedback, as shown in the circuit below, to produce a tone.

THE RECEIVER

The receiver circuit needs modification and a 2-transistor circuit is added. This circuit detects the tone and activates the 3-transistor direct-coupled amplifier so that the speaker produces a tone. The receiver circuit is switched on and the 2-transistor circuit we connect to the PC board effectively turns on the 3 -transistor amplifier so that the quiescent current drops from 10mA to about 2-3mA. It also mutes the speaker as the amplifier is not activated. The circuit remains on all the time so it will be able to detect a "CALL." When a tone is picked up by the first two transistors in the walkie talkie, it is passed to the first transistor in our "add-on" section and this transistor produces a signal with sufficient amplitude to remove the charge on the 14 electrolytic. This switches off the second transistor and this allows the 3-transistor amplifier to pass the tone to the speaker. The operator then slides a switch called "OPERATE" to ON (down) and this turns on the 3-transistor amplifier. Pressing the "push-to-talk" switch (labelled T/R) allows a conversation with the person at the door. Slide the "OPERATE" switch up when finished.

The receiver walkie talkie with the 2-transistor "add-on"
to Index

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

SCHMITT TRIGGER

A Schmitt Trigger is any circuit that has a fast change-over from one state to the other. In our case we have used 2 transistors to produce this effect and the third is an emitter-follower buffer.
The circuit will drive a LED or relay and the purpose is to turn the LED ON quickly at a particular level of illumination and OFF at a higher level. The gap between ON and OFF is called the HYSTERESIS GAP.
to Index

to Index

PHONE TAPE - 2

The circuit is turned off when the phone line is 45 v as the voltage divider made up of the $470 \mathrm{k}, 1 \mathrm{M}$ and 100 k puts 3.5 v on the base of the first BC557 transistor. If you are not able to get to cut the lead to the phone, the circuit above will record a conversation from an extension lead. The remote plug must be wired around the correct way for the motor to operate.
to Index

THE LISTENER

This circuit consists of a 4-transistor amplifier and a 3-transistor "switch" that detects when the phone line is in use, and turns on the amplifier. The voltage divider at the front end produces about 11v on the base of the first BC557 and this keeps the transistor off. Switch the unit off when removed from the phone line.

PHONE TRANSMITTER - 1

The circuit will transmit a phone conversation to an FM radio on the $88-108 \mathrm{MHz}$ band. It uses energy from the phone line to transmit about 100 metres. It uses the phone wire as the antenna and is activated when the phone i: picked up. The components are mounted on a small PC board and the lower photo clearly shows the track-work.
to Index

PHONE TRANSMITTER - 2

The circuit will transmit a phone conversation to an FM radio on the 88108 MHz band. It uses energy from the phone line to transmit about 200metres. It uses the phone wire as the antenna and is activated when the phone is picked up.
to Index
mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

ROBOT-1

A simple robot can be made with 2 motors and two light-detecting circuits, (identical to the circuit above). The robot is attracted to light and when the light dependent resistor sees light its resistance decreases. This turns on the BC547 and also the BC557. The shaft of the motor has a rubber foot that contacts the ground and moves the robot. The two pots adjust the sensitivity of the LDRs. This kit is available from Velleman as kit number MK127.

BIPOLAR TRANSISTORS

Some small signal transistors may have a TO-92 case and a "PN" prefix. The electrical specifications are the same, only the case is chan

Type	CASE	$V_{\text {CE }}$	$\mathrm{V}_{\text {ce }} \mathrm{l}$ c	$V_{\text {cec }}$	@	$\mathrm{hfe}^{\text {fe }}$	(10	FT	¢ ${ }^{\text {c }}$	Ртот	USE	COMPAR TYPI
	Polarity	mA			mA		mA	MHz	mA	miN		
BC107	TO-18 NS	45	50100	0.2	10	110450	2	300	10	300	G.P S.S. amp.	BC 207, BC147
BC108	TO-18 NS	20	30100	0.2	10	110-800	2	300	10	300	G.P S.S. amp.	BC 208, BC148
BC109	TO-18 NS	20	30100	0.25	10	200-800	2	300	10	300	Low noise S.S. amp	BC 209, BC149
BC109C	TO-18 NS	20	30100	0.25	10	$420-800$	2	300	10	300	Low noise high gain	BC209C BC14
BC177	TO-18 PS	45	50100	0.3	10	75-260	2	150	10	300	G.P S.S. amp.	BC157, 日C307
BC178	TO-18 PS	25	30100	0.3	10	75-500	2	150	10	300	G.P.S.S. amp.	BC158, BC 306
BC178	TO-18 PS	20	25100	0.3	10	125-500	2	150	10	300	G.P S.S. amp.	BC 159, BC309
BC327	TO-92VAR1 PS	45	$50 \quad 500$	0.7	500	100-600	100	100	10	625	Output	2N3638
BC328	TO-92VAR1 PS	25	$30 \quad 500$	0.7	500	100-600	100	100	10	625	Output	BC 327
BC337	TO-92VAR1NS	45	$50 \quad 500$	0.7	500	$100-600$	100	100	10	625	Output	2 N 3642
BC338	TO-92VAR1 NS	25	$30 \quad 500$	0.7	500	100-600	100	100	10	625	Output	BC337
BC546	TO-92VAR1NS	65	80100	0.6	100	110-450	2	300	10	500	G.P S.S. amp.	
BC547	TO-92VAR1 NS	45	$50 \quad 100$	0.6	100	110-800	2	300	10	500	G.P S.S. amp.	BC107, BC207
BC548	TO-92VAR1 NS	30	30	0.6	100	110-800	2	300	10	500	G.P.S.S. amp.	BC108, BC208
BC549	TO-92VAR1NS	30	$30 \quad 100$	0.6	100	200-800	2	300	10	500	Low noise S.S. amp.	BC109, BC209
BC549C	TO-92VAR1 NS	30	$30 \quad 100$	0.6	100	420-800	2	300	10	500	Low noise high gain	BC109C, BC14
BC556	TO-92VAR1PS	65	$80 \quad 100$	0.65	100	75-475	2	200	10	500	G.P. S.S. amp.	
BC557	TO-92VAR1 PS	45	$50 \quad 100$	0.65	100	75-800	2	200	10	500	G.P.S.S. amp.	BC157
BC558	TO-92VAR1 PS	30	$30 \quad 100$	0.65	100	75-800	2	200	10	500	G.P. S.S. amp.	BC158
BC559	TO-92VAR1 PS	30	$30 \quad 100$	0.65	100	125-800	2	200	10	500	G.P.S.S. amp.	BC159
BC639	TO-92(74) NS	80	100 1A	0.5	500	40-250	150	130		1W	Audio 0/P	MU9610, TT80
BC640	TO-92(74) PS	80	100 1A	0.5	500	40-250	150	50		1W	Audio 0.P	MU9660, TT8C
BD139	TO-126 NS	80	$101.5 A$	0.5	500	40-250	150	250	50	8N	G.P. OPP	40409
BD140	TO-126 PS	80	10 1.5A	0.5	500	40-250	150	75	50	8 N	G.P. 0.P	40410
BD262	TO-126 PS	60	$60 \quad 4 \mathrm{~A}$	2.5	1.5A	750	1.5A	7	1.5A	36N	High gain Darl. 0/P	ED 266
BD263	TO-126 NS	60	80 4A	2.5	1.5A	750	15A.	7	1.5A	36 N	High gain Darl. 0/P	BD267
BD266A	TO-220 PS	80	80 8A	2	3A	750	3A	7		600 N	High gain Darl. 0/P	
BD267A	TO-220 NS	80	10 8A	2	3A,	750	3A.	7		60 N	High gain Darl. 0/P	
BD681	TO-126 NS	100	10 4A	2.5	1,5A	750	15A	1		40 N	Larlington 0/P	BD 263
BD682	TO-126 PS	100	100 4A	2.5	1.5A	750	158.	1		40 N	Darlington 0/P	BD 262
BF173	TO-72(28) NS	25	$40 \quad 25$			40-100	7	550	5	230	T.V. I.F. amp.	
BF199	TO-92VAR2 NS	25	$40 \quad 25$			37	7	550		500	H.F. amp.	BF180
BF463	TO-202 PS	250	$25 \quad 500$			40-180	30	20		2N	H.V. med. power.	
BF469	TO-126 NS	250	$25 \quad 50$			50	25	60	10	1.8 W	G.P high-V. amp.	
BF470	TO-126 PS	250	$25 \quad 50$			50	25	60	10	1.8W	G.P. tigh-V. amp.	
BFR90	SOT-37(2) NS	15	$20 \quad 25$			25-250	14	5 GHz	14	180	Mideband amp..	
BFR91	SOT-37(2) NS	12	$15 \quad 35$	0.3	30	25-250	30	5 GHz	30	180	Mídeband amp.	
BFY90	TO-72(25) NS	15	$30 \quad 25$			25-125	2	1 GHz	2	200	Mídeband amp.	
BUX80	TO-3 NS	400	80 10A	1.5	5A		12A	8		100\%	Defl'n, high current	
M J802	TO-3 NS	90	10 30A	0.8	7.5A	25-100	75A	2	1A	200/N	High power output	
M J 2955	TO-3 PS	60	70 15A	1.1	4A	20-70	4A	2.5	500	115W	G.P. power	
M J4502	TO-3 PS	90	10 30A	0.8	7.5A	25-100	75A	2	1A	200\%	High power output	
MJ10012	TO-3 NS	400	60 10A	2	6A	100-2K	6A			175W	Power Dartington	
MJ15003	TO-3 NS	140	14 20A	1	5A	25-150	5A	2	500	2500N	High power output	
MJ15004	TO-3 PS	140	140 20A	1	5A	25-150	5A.	2	500	250 N	High power output	
MJE 340	TO-126 NS	300	500	0.75	100	30-240	50			200 N	G.P.H.V. power	

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

Type	CASE		V Ce	Vce		Veec	@ $\mathrm{l}_{\mathrm{c}} \mathrm{hfe}^{\text {f }}$	(10	FT	¢10	Ptot	USE	COMPAR TYP
	Pol	arity	mA				mA	mA	MHz	mA	min		
MJE 350T	TO-126	PS	300		500	0.77	100 30-240	50			201/	G.P.H.V. nover	
MJE2955	TO-220	PS	60	70	10A	1.1	4A 20-100	4A	2	500	75N	G.P. poner	TIP 2955
MJE3055T	TO-220	NS	60	70	10A	1.1	4A 20-100	4A	2	500	75N	G.P. power	TIP 3055
MPSA14	TO-92(72)	NS	30	30	500	1.5	10020000	100	125	10	625	G.R Darlington	
MPSA65	TO-92(72)		30	30	500	1.5	10020000	100	100	10	625	G.P. Darlington	
MRF629	TO-39A	NS	16	36	400		20-200	100			5N	UHF power	
MRF660	TO-220A		16	36	2.4A		20-160	250			25N	UHF power	
PN100	TO-92(72)		35	60	500	0.5	100 60-240	150	350	50	600	G.P. ampknitch	PN2222, 2N3t
PN2907	TO-92(72)		40	60	600	0.4	$150100-300$	150	200	50	625	High S. Svitch	
PN200	TO-92(72)		35	60	500	0.5	$15050-400$	150	200	50	600	G.P. amplswitch	2N3638, BC2
TIP 318	TOP-66	NS	80	80	3A	1.2	3A 25	1A	3	500	40N	Power output	
TIP 32日	TOP-66	PS	80	80	3A	1.2	3A 25	1A	3	500	40N	Pover output	
TIP142	TOP-3	NS	100	100	10A	2	5 A $\quad 1000$	5A			125 N	Audio output	TIP 140, TIP 14
TIP147	TOP 3	PS	100	100	10A	2	$5 A>1000$	5A			125 M	Audio output	TIP145, TIP14
TIP 2955	TOP-3	PS	70	100	15A	1.1	4A 20	4A	3	500	90/	Pover output	MJE 2955
TIP 3055	TOP-3	NS	70	100	15A	1.1	4A 20	4A	3	500	90/	Pover output	MJE 3055
2N2222A	TO-18	NS	40	75	800	1.6	500 00-300	150	300	20	500	High S. switch	
2N3019	TO.39	NS	80	140	1A	0.5	500 50-100	500	100	50	800	H.F. amp	
2N3053	TO-39	NS	40	60	700	1.4	150 50-250	150	100	50	2.86 W	G.R switch	BD137
2N3054	TO-66	NS	60	90	4A	0.1	200 25-100	500	0.8	200	25N	Audio outbut	TIP31日
2N3055	TO-3	NS	60	70	15A	1.1	4A 20-70	4A	2.5	500	115 W	G.P. power	BDY20
2N3563	TO-106	NS	15	30	50		0-200	8	600	8	200	RF-IF amp	BF173
2N3564	TO-106	NS	15	30	100	0.3	$20 \quad 20-500$	15	400	15	200	RF-IF amp	BF167
2N3565	TO-106	NS	25	30	50	0.35	1 150-600	1	400	1	200	Lowlevel amp	BC108, BC20
2N3566	TO-105	NS	30	40	200	1	100 50-600	10	40	30	300	G.R amp \& switch	BC183
2N3567	TO-105	NS	40	80	500	0.25	150 40-120	150	60	50	300	G.P. amp \& switch	BC337
2N3568	TO-105	NS	60	80	500	0.25	150 40-120	150	60	50	300	G.P. amp \& switch	
2N3569	TO-105	NS	40	80	500	0.25	150 00-300	150	60	50	300	G.P. amp \& switch	
2N3638A	TO-105	PS	25	25	500	0.25	50100	50	150	50	300	G.P. amp \& switch	BC328
2N3641	TO-105	NS	30	60	500	0.22	150 40-120		250	50	350	G.P. amp \& switch	BC337
2N3642	TO-105	NS	45	60	500	0.22	150 40-120		250	50	350	G.R amp \& switch	BC337
2N3643	TO-105	NS	30	60	500	0.22	$150100-300$	150	250	50	350	G.P. amp \& switch	BC337
2N3644	TO-105	PS	45	45	500	1	$300100-300$	150	200	20	300	G.P. amp \& switch	BC327
2N3645	TO-105	PS	60	60	500	1	$300100-300$	150	200	20	300	G.P. amp \& switch	
2N3771	TO-3	NS	40	50	30A	2	15A 15-60	15A	0.2	1A	1501/	Power output	
2N3866	TO-39	NS	30	55	400		0-200	50	500	50	1/V	VHF amp	
2N3904	TO-92(72)		40	60	200	0.2	10 00-300	10	300	10	310	Lowleved amp	BC167A, BF18
2N3905	TO-92(72)		40	40	200	0.4	50 50-200	10	200	20	310	G.P. amp 8.switch	
2N3948	TO-39	NS	20	36	400		15	50	700	50	17/	VHF amp	
2N4030	TO-39	PS	60	60	1A	0.5	$500 \quad 25$	500	260	100	800	G.P. amp 8 switch	
2N4250	TO-106	PS	40	40	100	0.25	$10 \quad 50-700$	0.1	50		200	Lowlevel amp	BC559
2N4258	TO-106	PS	12	12	50	0.5	50 30-120	10	700	10	200	Saturated switoh	
2N4427	TO-39	NS	20	40	400	0.4	$10010-200$	100	500	50	11/4	VHF JHF driver	2N3866
2N5401	TO-92(72)	PS	150	160	6000	0.5	$50 \quad 60-250$	10	100	10	625	H.V. switch	MP SL51
2N6557	TO-202	NS	250	250	500		>40	50	45		20/	H.V. med power	
$2 \mathrm{SC710}$	TO-92/76	NS	25	30	30		90		100		200	G.P. RF amp	BFS18
2SC1306	TOP-66	NS	65	65	3A		0-200	500	300		12 N	H.F. output	2SC2166
2SC1307	TOP-66	NS	70	70	8A		0-150	2A	150		25/	H.F. output	2SC1969
2SC1674	TO-92(74)	NS	20	30	20	0.3	10 40-180	1	600	1	250	VHP amp	
2SC1969	TOP-66	NS	30	60	6A		0-180	10	150		20N	H.F output	2SC1307
2SC2166	TOP-66	NS	75	75	4A		5-180	100					
2SC2694	T-40	NS	17	35	20A		0-180	1A	800		140 N	VHF outhut	MRF247
2SC3355	TO-92(74)	NS	12	20	100		0-300	20	6.5 GHz	20	600	UHFSS	MRF573
2SC3358	MX	NS	12	20	100		0-300	20	7 GHz	20	250	UHFSS	MRF573

mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010
(

All the resistor colours:

\square
mhtml:file://C:\Documents and Settings\Amer Iqbal\Desktop\1-100 transistor circuits.mht!... 3/14/2010

-R0 IIU -	-10R III -	-100R III ${ }^{\text {a }}$	-1k0 IIIT -	
-R2 ILU)	12R IIID -	420R IIID -	1k2 IID]	
-125 ILU -	15R \|l]-	-150R IIIT -	-1k5 IID]
-188 ILU]	-18R III] -	-180R IIIT-	168 IIID]	
2 R 2 IIU]	22R1\|I] -	220R IIIT-	2k2IID]	
2R7] ${ }^{\text {2 }}$	27RID]	270R IIIT -	2k7 III] -	
-3R3 IIDI -	33R D] -	330R IIT]	3k3 IIID	
-3R9 [10]-	-39R IT]	-390R IIL]	-3k9 IIIT	
-4R7]IDM -	47R]\|\]	470RIIIT-	4k7]IID]	
5R6 IIUT-	56R III	560R IIIT]	5 k 6 IIID	
6R8 ILIM -	688 \|	I	680R IIID -	6k8 IIID -
8R2 ILIU-	82R IIID]	820R IIID -	8k2 IIIT]	
10k II ${ }^{\text {- }}$	100k IIII]	1 MO		
12k IIID -	120k IIIT]	1m2 IIIT] -	22M	
15k IIIL -	-150k IIIIT	195 \|l	ll	
18k IIID -	180k IIIT]	1m8 IIIL -	-	
22 k IIIX ${ }^{-}$	220 k IIIT]	2M2IIID -	R22 IITM]	
27 k IIIT]	270k IIIT]-	2M7 IHIT]-	17	
33k	330k IIIIT]	-м3 ${ }^{\text {a }}$	zero ohm (link)	
-39k IIIIT -	-390k IIIT-	-9991\|l		
47kIIII] -	470kIIIT]	4M7]\|IIT] -		
56k III] -	560k IIII]	$5 \mathrm{m6} \mathrm{IIIT}$		
68k IIIT]	680k IIIT]-	$6 \mathrm{m8} \mathrm{IIIT]}$	0.25 watt	
82k IIIT]	820k IIIT]-	8 M 2 IIID] -		

[^0]: WORLDS SIMPLEST CIRCUIT
 This is the simplest circuit you can get. Any NPN transistor can be used.

[^1]: LIGHT EXTENDER
 This circuit is a Courtesy Light Extender for cars. It

