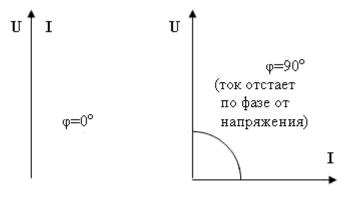
Энергосберегающие технологии. Конденсаторная установка компенсации реактивной мощности УКРМ

Принцип действия

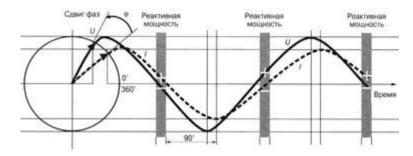
Установки конденсаторные предназначены для повышения коэффициента мощности соs(ф) электрических установок промышленных предприятий и распределительных сетей, а также автоматического поддержания его на заданном уровне (не ниже 0,9).


Такое автоматическое регулирование осуществляется специальным электронным регулятором активной мощности, отличающимся высокой чувствительностью и точностью.

Установка состоит из конденсаторных батарей, которые включаются и выключаются автоматически посредством контактов, оснащенных устройством, способным ограничивать пик тока включения на основе требуемой для установки емкостной реактивной мощности.

Конденсаторы, составляющие конденсаторные батареи, оснащены металлизированным пластмассовым регенерируемым диэлектриком, разрядными резисторами и разъединителем для защиты от избыточного давления.

Аппаратура размещена в металлическом окрашенном шкафу со степенью защиты IP31.


Теория: В электрических цепях, содержащих комбинированные сопротивления (нагрузку), в частности, активную (лампы накаливания, электронагреватель и др.) и индуктивную (электродвигатели, распределительные трансформаторы, сварочное оборудование, люминесцентные лампы и др.) составляющие, общую мощность, забираемую от сети, можно выразить следующей векторной диаграммой:

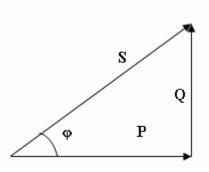
Активная нагрузка:

Индуктивная нагрузка

Отставание тока по фазе от напряжения в индуктивных элементах обуславливает интервалы времени (см. рис.), когда напряжение и ток имеют противоположные знаки: напряжение положительно, а ток отрицателен и наоборот. В эти моменты мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. При этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно). Соответствующую мощность называют реактивной.

Полная мощность складывается из активной мощности, совершающей полезную работу, и реактивной мощности, расходуемой на создание магнитных полей и создающей дополнительную нагрузку на силовые линии питания. Соотношение между полной и активной

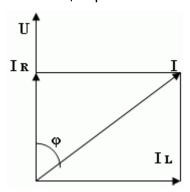
мощностью, выраженное через косинус угла между их векторами, называется коэффициентом (фактором) мощности.


COS (Φ) = P/S.

Р-активная мощность;

S-полная мощность;

Q-реактивная мощность.


$$S = \sqrt{P^2 + Q^2}$$

Активная энергия преобразуется в полезную — механическую, тепловую и др. энергии. Реактивная энергия не связана с выполнением полезной работы, однако она необходима для создания электромагнитного поля, наличие которого является необходимым условием для работы электродвигателей и трансформаторов. Потребление реактивной мощности от энергоснабжающей организации нецелесообразно, так как приводит к увеличению мощности генераторов, трансформаторов, сечения подводящих кабелей (снижение пропускной способности), а так же повышению активных потерь и падению напряжения (из-за увеличения реактивной составляющей тока питающей сети). Поэтому реактивную мощность необходимо получать (генерировать) непосредственно у потребителя. Эту функцию выполняют Установки компенсации реактивной мощности (УККРМ), основными элементами которых являются конденсаторы.

Установки УККРМ электроприемники с емкостным током, которые при работе формируют опережающую реактивную мощность (ток по фазе опережает напряжение) для компенсации отстающей реактивной мощности, генерируемой индуктивной нагрузкой.

Реактивная мощность Q пропорциональна реактивному току, протекающему через индуктивный элемент:

$$Q = U \times I_L$$

где I_L – реактивный (индуктивный) ток, U – напряжение сети. Таким образом, полный ток, питающий нагрузку, складывается из активной и индуктивной составляющих:

Для снижения доли реактивного тока в системе «генератор-нагрузка» параллельно нагрузке подключают компенсаторы. Реактивная мощность при этом уже не перемещается между генератором и нагрузкой, а совершает локальные колебания между реактивными элементами – индуктивными обмотками нагрузки и компенсатором. Такая компенсация реактивной мощности (снижение индуктивного тока в системе «генератор-нагрузка») позволяет, в частности, передать в нагрузку большую активную мощность при той же номинальной полной мощности генератора. Основной нагрузкой в промышленных электросетях являются асинхронные электродвигатели и распределительные трансформаторы. Эта индуктивная нагрузка в процессе работы является источником реактивной электроэнергии (реактивной мощности), которая совершает колебательные движения между нагрузкой и источником (генератором), не связана с выполнением полезной работы, а расходуется на создание электромагнитных полей и создает дополнительную нагрузку на силовые линии питания.

Реактивная мощность характеризуется задержкой (в индуктивных элементах ток по фазе отстает от напряжения) между синусоидами фаз напряжения и тока сети. Показателем потребления реактивной мощности является коэффициент мощности (КМ), численно равный косинусу угла (ф) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: cos(ф) = P/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение cos(ф) к единице, тем меньше доля взятой из сети реактивной мощности.

Пример: при $cos(\phi) = 1$ для передачи 500 KW в сети переменного тока 400 V необходим ток значением 722 A. Для передачи той же активной мощности при коэффициенте $cos(\phi) = 0.6$ значение тока повышается до 1203 A.

Соответственно все оборудование питания сети, передачи и распределения энергии должны быть рассчитаны на большие нагрузки. Кроме того, в результате больших нагрузок срок эксплуатации этого оборудования может соответственно снизиться.

Дальнейшим фактором повышения затрат является возникающая из-за повышенного значения общего тока теплоотдача в кабелях и других распределительных устройствах, в трансформаторах и генераторах.

Возьмем, к примеру, в нашем выше приведенном случае при $\cos(\phi) = 1$ мощность потерь равную 10 KW. При $\cos(\phi) = 0.6$ она повышается на 180 % и составляет уже 28 KW.

Таким образом, наличие реактивной мощности является паразитным фактором, неблагоприятным для сети в целом. В результате этого:

- возникают дополнительные потери в проводниках вследствие увеличения тока;
- снижается пропускная способность распределительной сети;
- отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Все сказанное выше является основной причиной того, что предприятия электроснабжения требуют от потребителей снижения доли реактивной мощности в сети.

Решением данной проблемы является компенсация реактивной мощности – важное и необходимое условие экономичного и надежного функционирования системы электроснабжения предприятия. Эту функцию выполняют устройства компенсации реактивной мощности УККРМ, основными элементами которых являются конденсаторы.

Правильная компенсация реактивной мощности позволяет:

- снизить общие расходы на электроэнергию;
- уменьшить нагрузку элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевая их срок

службы;

- снизить тепловые потери тока и расходы на электроэнергию;
- снизить влияние высших гармоник;
- подавить сетевые помехи, снизить несимметрию фаз;
- добиться большей надежности и экономичности распределительных сетей.

Кроме того, в существующих сетях:

- исключить генерацию реактивной энергии в сеть в часы минимальной нагрузки;
- снизить расходы на ремонт и обновление парка электрооборудования;
- увеличить пропускную способность системы электроснабжения потребителя, что позволит подключить дополнительные нагрузки без увеличения стоимости сетей;
- обеспечить получение информации о параметрах и состоянии сети,
- а во вновь создаваемых сетях уменьшить мощность подстанций и сечения кабельных линий, что снизит их стоимость.

Где необходима компенсация реактивной мощности

Применение установок УККРМ эффективно на предприятиях, где используются станки, компрессоры, насосы, сварочные трансформаторы, электропечи, электролизные установки и прочие потребители энергии с резкопеременной нагрузкой, то есть на производствах металлургической, горнодобывающей, пищевой промышленности, в машиностроении, деревообработке и производстве стройматериалов — то есть везде, где из-за специфики производственных и технологических процессов значение $\cos(\phi)$ колеблется от 0,5 до 0,8.

Применение установок компенсации реактивной мощности УККРМ необходимо на предприятиях, использующих:

- Асинхронные двигатели (cos(ф) ~ 0.7)
- Асинхронные двигатели, при неполной загрузке (cos(ф) ~ 0.5)
- Выпрямительные электролизные установки (cos(ф) ~ 0.6)
- Электродуговые печи (cos(ф) ~ 0.6)
- Индукционные печи (cos(ф) ~ 0.2-0.6)
- Водяные насосы (cos(ф) ~ 0.8)
- Компрессоры (cos(ф) ~ 0.7)
- Машины, станки (cos(ф) ~ 0.5)
- Сварочные трансформаторы (cos(ф) ~ 0.4)
- Лампы дневного света (cos(ф) ~ 0.5-0.6)

Применение установок компенсации реактивной мощности УККРМ эффективно в производствах:

- Мясоперерабатывающее (cos(ф) ~ 0.6-0.7)
- Хлебопекарное (cos(ф) ~ 0.6-0.7)
- Лесопильное (cos(ф) ~ 0.55-0.65)
- Молочное (cos(ф) ~ 0.6-0.8)
- Механообрабатывающее (cos(ф) ~ 0.5-0.6)
- Авторемонтное (cos(ф) ~ 0.7-0.8)
- Пивоваренный завод (cos(ф) ~ 0.6)

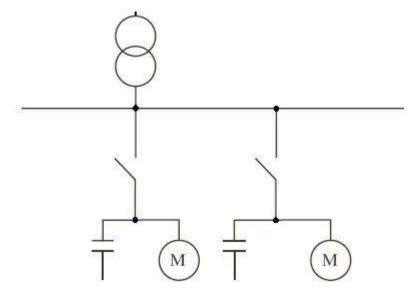
- Цементный завод (cos(ф) ~ 0.7)
- Деревообрабатывающее предприятие (cos(ф) ~ 0.6)
- Горный разрез (cos(ф) ~ 0.6)
- Сталелитейный завод (cos(ф) ~ 0.6)
- Табачная фабрика (cos(ф) ~ 0.8)
- Порты (cos(ф) ~ 0.5).

Виды компенсации.

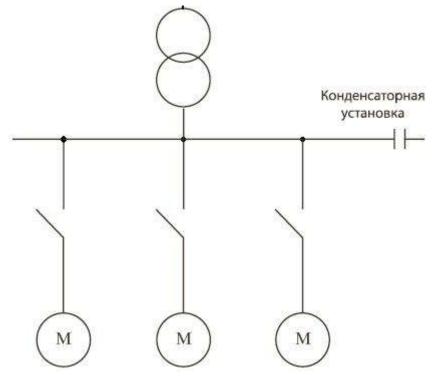
Уровень реактивной мощности двигателей, генераторов и сети предприятия в целом характеризуется коэффициентом мощности потребителя, который определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, то есть соs(ф) = P/S. Чем ближе значение соs(ф) к единице, тем меньше доля взятой из сети реактивной мощности. Например, соs(ф) асинхронных двигателей составляет примерно 0,7; соs(ф) электродуговых печей и сварочных трансформаторов - примерно 0,4; соs(ф) станков и машин не более 0,5 и т.д., поэтому полное использование мощностей сети возможно только при компенсации реактивной составляющей мощности.

Примечание: Следует отметить, что обычно не рекомендуется компенсировать реактивную мощность полностью (до $\cos(\phi)=1$), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов). Обычно стараются достигнуть значения $\cos(\phi) = 0.90...0.95$.

Компенсировать реактивную мощность возможно:

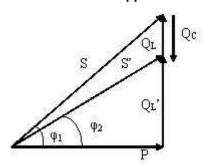

- синхронными компенсаторами;
- синхронными двигателями;
- косинусными конденсаторами (конденсаторными установками).

В настоящее время для компенсации реактивной мощности широкое применение получили конденсаторные установки УККРМ обладающие рядом преимуществ перед другими устройствами компенсации реактивной мощности:


- малые потери активной мощности;
- отсутствие вращающихся частей, подверженных механическому износу;
- невысокие капиталовложения и затраты при эксплуатации;
- отсутствие шума во время работы;
- простота в монтаже и эксплуатации.

Выбор оборудования для компенсации реактивной мощности зависит от типа подключенного к сети оборудования.

Компенсация реактивной мощности может быть индивидуальной (местной) и централизованной (общей). В первом случае параллельно нагрузке подключают один или несколько (батарею) косинусных конденсаторов, во втором — некоторое количество конденсаторов (батарей) подключается к главному распределительному щиту.


Индивидуальная компенсация — самый простой и наиболее дешевый способ компенсации реактивной мощности. Число конденсаторов (конденсаторных батарей) соответствует числу нагрузок и каждый конденсатор расположен непосредственно у соответствующей нагрузки (рядом с двигателем и т. п.). Такая компенсация хороша только для постоянных нагрузок (например, один или несколько асинхронных двигателей с постоянной скоростью вращения вала), то есть там, где реактивная мощность каждой из нагрузок (во включенном состоянии нагрузок) с течением времени меняется незначительно и для ее компенсации не требуется изменения номиналов подключенных кодненсаторных батарей. Поэтому индивидуальная компенсация ввиду неизменного уровня реактивной мощности нагрузки и соответствующей реактивной мощности компенсаторов называется также **нерегулируемой**.

Централизованная компенсация — компенсация реактивной мощности с помощью одной **регулируемой установки УККРМ**, подключенной к главному распределительному щиту. Применяется в системах с большим количеством потребителей (нагрузок), имеющих большой разброс коэффициента мощности в течение суток, то есть для переменной нагрузки (например, несколько двигателей, размещенных на одном предприятии и подключаемых попеременно). В таких системах индивидуальная компенсация неприемлема, так как, вопервых, становится слишком дорогостоящей (при большом количестве оборудования устанавливается большое количество **конденсаторов**), и, во-вторых, возникает вероятность перекомпенсации (появление в сети перенапряжения). В случае централизованной компенсации конденсаторная установка оснащается специализированным контроллером

(автоматическим регулятором реактивной мощности) и коммутационно-защитной аппаратурой (контакторами и предохранителями). При отклонении значения соѕ(ф) от заданного значения контроллер подключает или отключает определенные конденсаторные батареи (компенсация осуществляется ступенчато). Таким образом, контроль осуществляется автоматически, а мощность подключенных конденсаторов соответствует потребляемой в данный конкретных момент времени реактивной мощности, что исключает генерацию реактивной мощности в сеть и появление в сети перенапряжения.

Расчет необходимой мощности УККРМ

При выборе конденсаторной установки УККРМ требуемая суммарная мощность конденсаторных батарей определяется, исходя из формулы

$Qc = P x (tg(\phi 1)-tg(\phi 2)).$

Здесь потребляемая активная мощность; S полная мощность до после компенсации; И QC требуемая емкостная мощность; QL и QL' – индуктивная составляющая реактивной мощности до и после компенсации.

Значение (tg(ф1)-tg(ф2)) определяется, исходя из значений соs(ф1) и соs(ф2). соs(ф1) – коэффициент мощности потребителя до установки компенсирующих устройств (действующий коэффициент мощности); соs(ф2) – коэффициент мощности после установки компенсирующих устройств (желаемый или задаваемый предприятием энергоснабжения коэффициент мощности).

Таким образом, формулу можно записать в следующем виде:

Qc = P x k

где k – коэффициент, получаемый из таблицы в соответствии со значениями коэффициентов мощности cos(ф1) и cos(ф2).

Таблица определения реактивной мощности конденсаторной установки УККРМ (кВАР), необходимой для достижения заданного (желаемого) cos(ф).

Текущий (действующий) cos (ф)	Требуемый (желаемый) cos (ф)										
	0.80	0.82	0.85	0.88	0.90	0.92	0.94	0.96	0.98	1.00	
	Коэффициент К										
0.30	2.43	2.48	2.56	2.64	2.70	2.75	2.82	2.89	2.98	3.18	
0.32	2.21	2.26	2.34	2.42	2.48	2.53	2.60	2.67	2.76	2.96	
0.34	2.02	2.07	2.15	2.23	2.28	2.34	2.41	2.48	2.56	2.77	
0.36	1.84	1.89	1.97	2.05	2.10	2.17	2.23	2.30	2.39	2.59	

0.38	1.68	1.73	1.81	1.89	1.95	2.01	2.07	2.14	2.23	2.43
0.40	1.54	1.59	1.67	1.75	1.81	1.87	1.93	2.00	2.09	2.29
0.42	1.41	1.46	1.54	1.62	1.68	1.73	1.80	1.87	1.96	2.16
0.44	1.29	1.34	1.42	1.50	1.56	1.61	1.68	1.75	1.84	2.04
0.46	1.18	1.23	1.31	1.39	1.45	1.50	1.57	1.64	1.73	1.93
0.48	1.08	1.13	1.21	1.29	1.34	1.40	1.47	1.54	1.62	1.83
0.50	0.98	1.03	1.11	1.19	1.25	1.31	1.37	1.45	1.63	1.73
0.52	0.89	0.94	1.02	1.10	1.16	1.22	1.28	1.35	1.44	1.64
0.54	0.81	0.86	0.94	1.02	1.07	1.13	1.20	1.27	1.36	1.56
0.56	0.73	0.78	0.86	0.94	1.00	1.05	1.12	1.19	1.28	1.48
0.58	0.65	0.70	0.78	0.86	0.92	0.98	1.04	1.11	1.20	1.40
0.60	0.58	0.63	0.71	0.79	0.85	0.91	0.97	1.04	1.13	1.33
0.61	0.55	0.60	0.68	0.76	0.81	0.87	0.94	1.01	1.10	1.30
0.62	0.52	0.57	0.65	0.73	0.78	0.84	0.91	0.99	1.06	1.27
0.63	0.48	0.53	0.61	0.69	0.75	0.81	0.87	0.94	1.03	1.23
0.64	0.45	0.50	0.58	0.66	0.72	0.77	0.84	0.91	1.00	1.20
0.65	0.42	0.47	0.55	0.63	0.68	0.74	0.81	0.88	0.97	1.17
0.66	0.39	0.44	0.52	0.60	0.65	0.71	0.78	0.85	0.94	1.14
0.67	0.36	0.41	0.49	0.57	0.63	0.68	0.75	0.82	0.90	1.11
0.68	0.33	0.38	0.46	0.54	0.59	0.65	0.72	0.79	0.88	1.08
0.69	0.30	0.35	0.43	0.51	0.56	0.62	0.69	0.76	0.85	1.05
0.70	0.27	0.32	0.40	0.48	0.54	0.59	0.66	0.73	0.82	1.02
0.71	0.24	0.29	0.37	0.45	0.51	0.57	0.63	0.70	0.79	0.99
0.72	0.21	0.26	0.34	0.42	0.48	0.54	0.60	0.67	0.76	0.96
0.73	0.19	0.24	0.32	0.40	0.45	0.51	0.58	0.65	0.73	0.94
0.74	0.16	0.21	0.29	0.37	0.42	0.48	0.55	0.62	0.71	0.91
0.75	0.13	0.18	0.26	0.34	0.40	0.46	0.52	0.59	0.68	0.88
0.76	0.11	0.16	0.24	0.32	0.37	0.43	0.50	0.57	0.65	0.86
0.77	0.08	0.13	0.21	0.29	0.34	0.40	0.47	0.54	0.63	0.83
0.78	0.05	0.10	0.18	0.26	0.32	0.38	0.44	0.51	0.60	0.80
0.79	0.03	0.08	0.16	0.24	0.29	0.35	0.42	0.49	0.57	0.78
0.80		0.05	0.13	0.21	0.27	0.32	0.39	0.46	0.55	0.75
0.81			0.10	0.18	0.24	0.30	0.36	0.43	0.52	0.72

0.82	0.08	0.16	0.21	0.27	0.34	0.41	0.49	0.70
0.83	0.05	0.13	0.19	0.25	0.31	0.38	0.47	0.67
0.84	0.03	0.11	0.16	0.22	0.29	0.36	0.44	0.65
0.85		0.08	0.14	0.19	0.26	0.33	0.42	0.62
0.86		0.05	0.11	0.17	0.23	0.30	0.39	0.59
0.87			0.08	0.14	0.21	0.28	0.36	0.57
0.88			0.06	0.11	0.18	0.25	0.34	0.54
0.89			0.03	0.09	0.15	0.22	0.31	0.51
0.90				0.06	0.12	0.19	0.28	0.48
0.91				0.03	0.10	0.17	0.25	0.46
0.92					0.07	0.14	0.22	0.43
0.93					0.04	0.11	0.19	0.40
0.94						0.07	0.16	0.36
0.95							0.13	0.33

Пример:

Активная мощность 300 кВт.

Действующий $cos(\phi) = 0.7$.

Требуемый (желаемый) cos(ф) = 0,96.

Определяем из таблицы значение коэффициента k = 0,73.

Следовательно, требуемая мощность конденсаторной установки УККРМ Qc=0,73x300=219кВАр.

Следует отметить, что обычно не рекомендуется компенсировать реактивную мощность полностью (до $\cos(\phi)=1$), так как при этом возможна перекомпенсация (за счет переменной величины активной мощности нагрузки и других случайных факторов). Обычно стараются достигнуть значения $\cos(\phi)=0.90...0.95$.