MICROCHIP PIC AND CCS-C
INTERRUPTS

ROO044

ciibe il

BOO002

Taking Timing Further

Brief information about interrupts, timer/counter operation, PWM pulse width modulation and
CCS Pic-C applications on these topics.

¢ PIC16 F84A interrupts and TIMERO module
o PIC16 F877A interrupts and TIMERO, TIMER1, TIMER2 modules
¢ PIC16 F877A Capture/Compare/Pulse-width-modulation CCP module

Interrupts

Interrupts and timing are two most important topics in studying microcontrollers. Correct and
efficient use of related hardware PIC MCU sources and software capabilities will ease many
advanced engineering studies. CCS Pic-C compiler provides various high-level language features
that may be utilized in related studies. Bearing in mind that, lecture notes, datasheet, compiler
help and examples should be consulted for their proper use, the following information will serve
as a guide to these studies.

16F84A Interrupt Structure

16 F84A has four maskable interrupt sources

o External interrupt source: This is the only external interrupt input. It is edge triggered.
Associated pin: RBO/INT

o Timer overflow interrupt: Caused by the Timer O module. It occurs when the timer's 8-
bit counter overflows

o Port B interrupt on change: This interrupt occurs when any of the higher 4 bits of Port B
(RB7:RB4) changes.

o EEPROM write complete: Occurs when a write instruction to EEPROM memory is
completed.

Ing.Ibrahim GULESIN

16F84A Interrupt Logic Structure

Interrupt logic structure of 16F84A is shown below. The 5 FR that controls it is the INTCON register
and OPTION register. INTCON register contains enable bits of all interrupt sources and OPTION
register contain interrupt edge select bit of external interrupt source

Each source has an enable line (labeled by E) and a flag line (labeled by F, actually these are the
interrupt flags, rather than interrupt sources).

Timer Ovearflow Mag

Wake-up

Timer Overfiow | - TOIF
mar Overflow | — 1fin Sleop mode
interrupt Enable [TOIE —|) ‘ b dse L
Exernal IntefruptH :mg 1 e i)
— Int errupt to CPU
‘RBIF —)
PotBChange | pee —_J
[" EEPROM Write {EE'F -
Complete EEIE

Global Interrupt| _»GIE
Erabe

Note: All four 16 F84A interrupts can be enabled or disabled (maskable). Interrupt flag bits are set
when an interrupt condition occurs, regardless of the state of its corresponding enable bit or
the global enable bit.

Ing.lbrahim GULESIN

16F877A Interrupt Logic Structure

PIC16 F87XA family has up to 15 sources of interrupt, the interrupt structure (interrupt sources,
individual interrupt flags and enable bits) of this family is illustrated below.

J_u-u‘«pammm1

irerrupt to CRU

— D T L =
e — PorB | r-m P \

Note 1: PSP interrupt is implemented only on PIC1BFBTAABTTA devices

Similar to 16Ff84A interrupt structure, Previously it was EEPROM write complete in 16Ff84A. Now,
with Peripheral Enable bit acts like a secondary Global Enable bit

Ing.lbrahim GULESIN

16F877A INTCON Register and Interrupt related SFRs

Interrupt Registers
With 15 interrupt sources PIC16 F87XA family uses interrupt control register INTCON,
and four special function registers S FRs (PIE1, PIE2, PIR1, PIR2)

INTCON register
o is a readable and writable register
o has individual and global interrupt enable bits.
o records individual interrupt requests in flag bits.
o contains enable and flag bits for the TMRO register overflow, RB port change, external

RBO/INT pin interrupts ; and Global and Peripheral Interrupt Enable bits.

Interrupt related SFRs (PIE1, PIE2Z, PIR1, PIR2)

The peripheral interrupt flags are contained in the Special Function Registers, PIR1 and PIR2. The
corresponding interrupt enable bits are contained in Special Function Registers, PIE1 and PIE2,
and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh) :
RW-0 RWO RWO RWD RW-0 RWD0 RW-0 RWx INTCON register
| g | peie [TMRoOE | NTE | RBiE [TMROIF [WNTF | RBIF |

bit 7 bit0
bit7 GIE: Global Interrupt Enable bit
1 = Enables all unmasked interrupts g
o = Disables all interrupts Interrupt flag bits are set
bit6 PEIE: Penpheral Interrupt Enable bit : HH
o s A At TS S when an interrupt condition
o = Disables all peripheral interrupts occurs regardless of the
bit 5 TMROIE TMRO Overflow Interrupt Enable bit . +
2 = Enabies fhe THIRG et state of |t_s corresponding
o = Disables the TMRO interrupt enable bit or the global
bit 4 INTE: RBO/INT External Interrupt Enable bit i
enable bit

1 = Enables the RBO/INT external interrupt
0 = Disables the RBOVINT external interrupt
bit3 RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
o = Disables the RB port change interrupt
bit 2 TMROIF - TMRO Overflow Interrupt Flag bit
1 = TMRO register has overflowed (must be cleared in software)
0 = TMRO register did not overflow
bit 1 INTF: RBO/INT External Interrupt Flag bit
1 = The RBU/INT external interrupt occumed (must be cleared in software)
0 = The RBOIVINT external interrupt did not occur
bit 0 RBIF: RB Port Change Interrupt Flag bit
1 = At least one of the RB7:RB4 pins changed state; a mismaich condition will continue to set
the bit. Reading PORTE will end the mismatch condition and allow the bit to be cleared

(must be cleared in software)
o = None of the RBT7:RB4 pins have changed state

Legend:
R = Readabie bit W = Writalile bit U = Unimplemented it, read as ‘0’
-n = Value at POR ‘1"=Bitis set ‘0" = Bit is cleared x = Bit is unknown

Ing.lbrahim GULESIN

Peripheral Interrupt Enable and Peripheral Interrupt Request Registers

16F87XA PIE1/PIR1 Registers

bito

[(EEEEEEEN -

{enable bits) (tlag bits)
‘ Timer 1 ovarflow TMR1IE TMRIIF*
Timer 2 overflow TMR2IE TMR2IF*

Capture compare 1 CCP1IE CCP1IF*
Synchronous serial port SSPIE SSPIF*
USART transmit TXIE TXIF
USART racaive RCIE RCIF
Analog-to-digital converter ADIE ADIF
Parallel slave port ReadWnte™ PSPIE PSPIF*

* Must be cleared in sofiware
** 16FB747 only. Reserved in 16FE73%6

16F87XA PIE2/PIR2 Registers

bit 7 bit 0
1 PE2 PE2
(enable bits) (g bits)
L CCP2 CCPZIE CCP2IF
‘ Unimplemented read as 0 read as 0
Unimpl d readas0 read as 0
Bus collision BCLIE BCLIF
EEPROM write EEIE EEIF*
Unimpl d read as 0 read as 0
Comparat CMIE CMIF*
Unimpl ted read as 0 read as 0

* Must be cleared in software

Ing.lbrahim GULESIN

CCS Pic-C: Intterupts

To enable or disable interrupts in CCS PIC-C following functions are used ;
enable_interrupts (level)
disable_interrupts (level) where level is a constant defined in .h file.

These constants are defined the header file of a microcontroller such as "16f84a.h", "16f877a.h".
These constants that are used to enable or disable interrupt functions are:

GLOBAL : refer to global level interrupt

INT_RTCC : refer to specific level TMRO overflow interrupt (using RTCC as the name)
INT_RB : refer to specific level PORTB change interrupt on any RB4, RB5, RB6, RB7 pins
INT_EXT : refer to specific level external interrupt on RBO-Int pin

INT_EEPROM : refer to specific level eeprom write complete interrupt

INT_TIMERO :refer to specific level TMRO overflow interrupt (using TIMERO as the name)

INT_AD : refer to specific level Analog to Digital Conversion Complete interrupt
INT_TBE : refer to specific level R$232 transmit buffer empty interrupt
INT_RDA : refer to specific level RS232 receive data available interrupt

INT_TIMER1 :refer to specific level TMR1 overflow interrupt

INT_TIMER2 :refer to specific level TMR1 overflow interrupt

INT_CCP1 : refer to specific level Capture or Compare interrupt of CCP1 module
INT_CCP2 : refer to specific level Capture or Compare interrupt of CCP2 module
INT_SSP : refer to specific level SPI or I12C activity interrupt

INT_PSP : refer to specific level Parallel Slave Port data in interrupt

INT_BUSCOL :refer to specific level Bus collision interrupt

INT_COMP : refer to specific level Comparator detect interrupt

Ing.Ibrahim GULESIN

CCS Pic-C: Interrupts

When interrupts are enabled at global level, this will not enable any of the specific interrupts but
will allow any of the specific interrupts previously enabled to become active.

When interrupts are disabled at global level, specific level interrupts are still active but are not
taken into consideration by the CPU.

To be able to take care of what needs to be done when interrupts occur, programmer must
write interrupt handler functions. These are usually called interrupt service routines (ISRs)
and should have been defined for required interrupts.

In CCS PIC-C an #int_xxx directive followed by the xxx_isr() function is used to write ISR for each
individual interrupt. Here, xxx can be the constants given previously (i.e. RTCC, RB, EXT, EEPROM,
TIMERO, etc.)

The main structure of enabling interrupts and associated ISRs for individual interrupts are:

#int_RB

void RB_isr (void)
{

}

#int_EXT

void EXT_isr (void)
{

}

#int_EEPROM
void EEPROM _isr (void)
{

}

#int_TIMERO // Note: RTCC and Timer() are the same
void TIMERO _isr (void)
{

void main (void) (
enable_interrupts (INT_RB);
enable_interrupts (INT_EXT);
enable_interrupts (INT_EEPROM);
enable_interrupts (INT_TIMERO);
enable_interrupts (GLOBAL);

Ing.Ibrahim GULESIN

CCS Pic-C: Intterupts

External interrupt (INT_EXT) is edge sensitive. The ext_int_edge (edge) function is used to
respond to an external interrupt on rising edge of the interrupting signal if the constant edge is
H_TO_L or falling edge of the interrupting signal if edge is L_TO_H. The constants H_TO_L and
L_TO_H are defined in .h file. Shortly, following function calls are used to select edge for the
external interrupt.

ext_int_edge (H_TO_L)

ext_int_edge (L_TO_H)

In contrast to assembly language there is no need for context saving (i.e. as storing the state of
WREG, STATUS or user defined registers). C compiler takes care of the state of the MCU during
ISR. Also note that interrupt service routines have void return type and they do not have any input
parameters!

CCS Pic-C: TIMERO Module

PIC16F87XA TimerO module is the same timer/counter module used in PIC16F84A

TIMERO module con be setup for timing ond counting opplicotions using built-in function
setup_timer_O (mode) function, where mode may be one or two of the constants defined in
the devices .h file. These constants or RTCC_INTERNAL, RTCC_ EXT L TO Hor
RTCC_EXT _H TO_L, referring to internal or external clock source selection. Hence, the counter
can be clocked by an external pulse train or from MCU oscillator. In the case of external clock
source, TMRO register being on 8-bit register in the TimerO module can be incremented during
low-to-high (rising edge) or high-to-low (falling edge) source signal transitions on RA4/TOCKI
pin. Prescaler that is used to divide the clock signal frequency input to the TMRO counter is

obtoined by
RTCC_DIV_2,
RTCC_DIV_4,
RTCC_DIV_S,
RTCC_DIV_1s,
RTCC_DIV_32,
RTCC_DIV_64,
RTCCDIV128,
RTCCDIV256.
Muttiplexer selec Multplexer
Input edge select counting Gw":\g selectng prescaler
™ Z Z 1
\\.‘/ / Data Bus it =
= . 3 B coun
0sc/4 0 [\mn . _
w Sync wim o
. i } | 1 - ! Intemal TURD - —
amemca | 2 U Progra wrabe RO | o=
pin | escalar
TOSE (2 Cycle Dolay)
\j
Sat Intarrupt
P32, PS1,PS0 PSA Flag Dt TOF
Tocs on Ovedlow
Note 1: TOCS, TOSE PSA PSZPS0 (OPTION REG<SD0>)
2. The prescaler is shared with Walchdog Timen (refer to Figure 52 for detailed biock diagram).

Ing.lbrahim GULESIN

CCS Pic-C: TIMERO Module
Timer() Module Operation:

Counter Mode:

In this counter mode operation pulses applied RA4 / TOCKI pin are counted in TMRO. These pulses can be input
manually from a push-button, from a signal source such as a sensor. TMRO can also be loaded with an initial
value.

Timer Mode:

In this mode, timing measurements and hardware-generated delays can be obtained by calculating the time
between start of the counting from TMRO's preloaded initial value until timer overflow flag is set that
causes interrupt, which is given by

(4/Fq) *A*(256-B)

Where;

F. is oscillator frequency,

A'is prescaler value,

B is initial value loaded to TMRO.

Example: If F,, = 4MHz, A=32 and B=156 then total-time delay until TMRO overflow
interrupt occurs is 3.2 msec.

CCS Pic-C: TIMERO Module
In the counter mode operation pulses applied RA4/TOCKI pin are counted in TMRO.

In timer mode, timer is incremented at time intervals of (4/F,;) * A, where Fxt is oscillator
frequency and A is prescaler value (A=RTCC_DIV_XX).

As an example, if Fxt = 4MHz, and prescaler is RTCC_DIV_8, then timer is incremented at each
(4/4000000)*8=8microseconds.

Total time it takes for the timer to overflow is calculated using (4/F«)* A *(256-B),

Where;

Fy is oscillator frequency,

A is prescaler value (A=RTCC_DIV_XX),

B is initial value loaded to TMRO.

Example: If F,t= 4MHz, A=32 and B=156 then total-time delay until TMRO overflow interrupt
occurs is 3.2 msec.

Functions to set a value to TMRO and get its value are, set_timerO() and get_timerO(),
respectively.

Ing.Ibrahim GULESIN

CCS Pic-C: TIMERO Module

void setup_timerO (mode)

This built-in function is used to configure TIMERO module operation. Required parameters is
given by the mode, which is a group of constant values that can be OR'ed using | operator. The
constants are defined in the devices .h file (i.e. 16 F877A.h)

Constants that may be used in mode:
RTCC_I NTERNAL //refer to internal clock source selection
Or
RTCC_ExT_L_TO_H
or
RTCC ExT _H TO_ L //referto external clock source selection
//with edge selection indicated //to increment the counter

and prescaler options can be:
RTCC_DIV_1,

RTCC_DIV_2,

RTCC_DIV_4,

RTCC_DIV_8,

RTCC_DIV_16,

RTCC_DIV_32,

RTCC_DIV_64,
RTCC_DIV_128,
RTCC_DIV_256

Note: RTCC (=Real Time Counter Clock) is another name for TIMERO.
void set_timer0 (value) same as set_rtcc (value)
This built-in function sets the 8-bit value of TMRO by value. The counter counts up starting from

this value. TimerO counts upwards and when it reaches its maximum value of it will rollover to 0
and continue counting from 0

(for example if value=250, then counting will be as 250, 251, 252, 253, 254, 255, 0, 1, 2...).

Hence, after roll over, if it is required to start counting from an other value different from
zero, the built-in function must be again used with required value.

int _get timer0() same as get_rtcc ()
Returns the current 8-bit count value of the counter TMRO. OBSOLOTE built-in function:

setup_counters (rtcc_state, ps_state) // for old version compiler compatibility. DON'T USE!

Ing.Ibrahim GULESIN

Example instructions:

setup_timer_0 (RTCC_EXT_L TO_HI RTCC_DIV_1);
//setup timer0 with external clock source, increment on rising
//edge of clock signal, prescaler=1 //such that there is no prescaling

setu p_timer_O(RTCC_INTERNAL| RTCC_DIV_1); //setup timer0 with internal clock source, no prescaling
setu p_timer_O(RTCC_INTERNALI RTCC_DIV_8); //setup timer0 with internal clock source, prescaler=8
set_timer0(0); //set TMRO to 0O i.e initialize it ; Note that Timer0Q never stops, hence always
continues to count !!!

set_timer0(100); //set TMRO to 100

data=get_timer0(); //get TMRO value, where data must be an 8-bit variable

AKA is an abbreviation to "Also Known As". AKA is used frequently in the CCS PIC-C manual Il

//Connect an LED to PORTB RB7 pin

//Connect RBO pin to 0 voltage level than to +5 voltage level to generate interrupt
#include <16F877A.h>

#FUS5E5 NOWDT,XT,PUT, NOPROTECT,BROWNOUT, NOLVP, NOCPD, NOWRT #use
delay(clock=4000000)

#use fast_io(B)

#int_EXT void EXT_isr()

{

delay_ms(20); //software debounce

output_high(PIN_B7); //RB7 pin at high voltage level

delay_ms(100); //delay 0.1 seconds

output_low(PIN_B7); //RB7 pin at low voltage level

}

void main()

{

set_tris_b(0b01111111); //set PORTB bit 7 as output, other bits as input
output_bit(PIN_B7,0); //RB7 pin at low voltage level
ext_int_edge(L_TO_H); //select rising edge of external signal
enable_interrupts(INT_EXT); //enable external interrupt on RBO pin
enable_interrupts(GLOBAL); //enable global interrupts

while (TRUE); //infinite loop

} //end of main

Ing.Ibrahim GULESIN

//Generate a signal ation PORTB pin RBO using timer0 module

#include <16F877A.h>

#FUSE5 NOWDT,XT,PUT, NOPROTECT,BROWNOUT, NOLVP, NOCPD, NOWRT
#use delay(clock:4000000)

#use fast_io(B)

#int_TIMERO void TIMERO_isr()

{

output_bit(PIN_BO0,0); //RBO at low voltage level
delay_ms(100); //delay 0.1 seconds

}

void main()

{

set_tris_b(0x00); //portb pins set as output
output_b(0x00); //clear portb data

set_timer0(0);//set TMRO initial value to zero
setup_timer_O(RTCC_INTERNALIRTCC_DIV_256); //set timer0 mode

enable_interrupts(INT_TIMERO); //enable timer overflow interrupt
enable_interrupts(GLOBAL); //enable global interrupt

while(TRUE)

{

output_bit(PIN_BO,1);//RBO at high voltage level

}

} //end of main

Ing.Ibrahim GULESIN

PIC16F87XA TIMER1 Module

Timer 1 module is an 16-bit timer/counter module. It is made up of two 8-bit registers, TMR1H
and TMR1L, which are SFRs located at 0 F, and OE4 in data memory. With these two registers
together, indicated as TMR1 in the block diagram, they can count from 0000 to FFFF
(=65535p=(2"°-1)

The 16-bit counter i

Set Flag bit
TMR1IF on /
Overflow | - * : " Synchronized
1 ! TMR1 Clock mput
J e | e F
External | ; : f—
TISYNC
RCO/T1080/T1CKI . = = 3 ynchruizo_
T1OSOEN Fogc{q. [1,2,4.8 J_d"
ator™ | !
/ RCIT10SICCPZ®) Olcl mor“ ,1'2 QClock
Connaclions i T1CKPS1 T1CKPSD
external oscillator l Internal clock source TMRICS

Note 1: Whan the TIOSCEN bit is eloared, the inverter is turned off. This eliminates power drain.

Timer 1 Block Diagram

When the count rolls over from FFFF, back to O the associated interrupt flag TMR1 IF is set.
Timer 1 operation is controlled by the TICON register.
Timer can be switched ON or OFF with TMR1ON bit of TLCON register.

3 The 16-bit counter T
Set Flag bit
TMR1IF on /
Overfow ;. I - Synchronized
: TMR1 Clock Input
{ TMRTH | TMRIL —L
External input ? - i
. iosc e, TG
roorriosomick D4 — 2> i —_— e
TIOSCEN Foscld [1,2,4,8 | fdet |
0
/ RC1TI0SICCPZ®) + Oscilawr™ Cloek ,1'2 QC!IM
: ey bl T1CKPS1:T1CKPSO

intemal clock source TMRICS
Note 1: When the TIOSCEN bHit is cleared, the inverter is turned off. This eliminates power drain.

extemal oscillator

Timer 1 Block Diagram

Ing.lbrahim GULESIN

e Timer 1 has three distinct clock sources.

e For counting mode of operation, the external input T1CKI, which is shared with bit0 of PortC,
must be used. And in this counting mode, counter always increments on rising edges of source.

e For timing mode of operation, internal clock oscillator (FO5C/4) source can be used.

— The 16-bit counter —
Set Flag bit %
TMRIIF 0 / , rr——
i i * : = 2 | roniz
- 1— L. y & Clock Input
s R =
Extemnal input : - A ’ U
x R . OnlOft TISYNC
ACO/TI0SOTICKI E e . @ I
. . o Sym:hr:m’z:o-I
: - T10SCEN Fosc/4 1,2,4,8 _fdet
uCCr® ‘ ‘ g,qm“{'l Internal 4’ I
/" RGUTIOSIGGH: - lla Clock .2
il TICKPS1:TICKPS) e
extemnal oscillator | Intemal clock source | TVA1CS
Note 1: When tho T10SCEN bit is cleared, the inverter is turned off. This eliminates power drain.

Timer 1 Block Diagram

e TMR1C5 bit of TLCON control register is the external or internal clock source select bit of TLCON
control register.

eConnecting a low frequency (i.e up to 200kHz) external oscillator between RCO/T1050 and
RC1/T105I pins provides the third option for clock source of TIMER 1 module. This external
oscillator can be enabled by the T1O5CEN bit of T1CON

- wa The' 16-btt counter |
Set Flag bit bV s
TMR1IF on sl 4
Overflow " * sigeiaimind L Synchronized
 — mm:_ i § Clock Input
_ { “INR1H ‘mnu —(
External input flin - 1 1|
2t Toaa s TISYNC
ACO/T10SOMICKI : -
\ Prescalor | Symehrenizs |
TMOSCEN Foscla 1,2,4,8 | _fdet
Internal
/ RC1TICSICCP2®) Oscilator? Siock ,1, 2 I
. _ N Q Glock
B)‘ TICKPS1:TICKPSO
axternal oscillator | Intemal clock sourcs I TMAICS
Note 1: When the T*OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.

Ing.lbrahim GULESIN

Timer 1 Block Diagram

e Prescaler can be used for all of three clock sources.

e Prescaler values (1, 2, 4, 8) are set by the TICKPS1 and TICKPSO bits of TLCON control register.

¢ Synchronisation of external clock with internal clock is obtained by bit TAISYNC (required in
Capture, Compare operation)

. The 16-bit counter '| 7
Set Flag bit ‘ .
ITMR1IF on Syrid'l ired
Overfow i roniz
L TMR1 Clock Input
- TMRIH | TMRIL
Y e
neortosomiokt [H A T
T10SCEN 1
I ‘ Foscd | y _f: det
RG/TI0SUICCFZ® Oscilator® Coeg ,1' 2y
Q Clcck
E— oo P T1émsn TICKPSO
extemal oscillator Internal clock source TMRICS
Note 1: When tha T1OSCEN bit is cleared, the inverter is turned ofi. This eliminates power drain.

Timer 1 Block Diagram

T1CON control register

u-o R/W-0 RW-0 R/W.-0 H.!W'-O__ R/W-0O R'W-0
| — | = [|rickesi|Tickeso| T110SCEN |TISYNC|TMRICS[TMRION]
bito

oit 7-6 Unimplemented: Read as ‘0’
bit 54 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits
11 = 1:8 prescale vaue

10 = 1:4 prescale vale .
01 = 12 prescale vale Prescale bits
00 = 1:1 prescale value

bit 3 T10SCEN: Timer1 Cscillator Enabie Control bit

1 = Oscillator |S eanabled
0 = Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain) ’
bit 2 T1SYNC: Tmer! Extarnal Clock Input Synchronization Control bit
When TMRICS = 1.
1 = Do not synchronize external clock input
5100508 Guclosetin a¥ bl s Clock source

Yhen TMRICS = o: %
This bit is ignored. Timer1 uses the intemal clock when TMR1CS = o. /Oscillator
it TMRI1CS: Timen Glock Source Select bit

1 = External clock from pin RCO'T10SO/T1CKI (on the rising 8dge) selection/enable bits
0 = Jniermal clack FQSc/d)
50 , “TMRION: Timer On bif™

~
(. 1T|mer1 module can be turned ON or OFF

Note: In thé’ﬁ&%glstawﬂhb namea, bit 7 is called RD16. If setto 1 it enables the
‘1&-bt Read/Write' mode

Figure 9.2 The Timer | control regster. TICON (address 10y)

Ing.lbrahim GULESIN

Void setup_timer_1 (mode)

This built-in function is used to configure T/MER 1 module operation. Required parameters is given by
the mode, which is a group of constant values that can be OR'ed using | operator. The constants are
defined in the devices .h file (i.e. 16F877A.h). T/MER 1 is a 16 bit timer. The 16-bit timer value may be
read and written to using set_timerl() and get_timerl().

Constants that m ay be used in mode:

TI_DISABLED

//to turn off Timer 1 (related to TICON control register bit 0 TMR10N)

TI_INTERNAL

///nternal clock source

TI_EXTERNAL, TI_EXTERNAL_SYNC

//External clock source at RCO/T1CK/ pin, and synchronization to internal clock

TI_CLK_OUT

//External low frequency oscillator as a clock source with the external oscillator

//between RCO/T10S0O and RC1/T10S/ pins And prescaler options can be:

TI_DIV_BY_|, TL_DIV_BY_2, TI_DIV_BY_t, TI_DIV_BY_8

instructions: Example

setup_timer_1 (T1_D/SABLED); //Turn OFF Timerl module

setup_timer_1 (T1_/NTERNAL I T1_D/V_BY_4);

setup_timer_1 (T1_/NTERNAL I T1_D/V_BY_ 8);

//With an internal clock at 20mhz and with the T1_D/V_BY_8 mode, the timer will increment every
//1.6us. /t will overflow every 104.8576m:s.

Ing.Ibrahim GULESIN

PIC16F87XA Timer 2, Comparator and PR2 Register

16F87XATimer 2 module is an 8-bit device. Timer 2 is driven only from the internal oscillator.
The 8-bit readable/ writable timer register TMR2 is located at 11, in data memory. Modest
prescaling (1,4,16) is possible.

>y
— Fosc/a
Intanal (and only)
clock source
AN PR2 = TMR2
Note 1: TMR2 register output can be software selected by the
SSP module as a baud clock

Timer 2 Block Diagram

T2CON control register
U-0 RWO RWO RWO RWO RWO RWO0 RWO
| — |TOUTPS3|TOUTPS2| TOUTPS1 | TOUTPSO| TMR2ON | T2CKPS1 | T2CKPSO |
bit 7 bit 0

bit 7 Unimplemented: Read as ‘0’
bit 6-3 TOUTPS3:TOUTPSO: Timer2 Output Postscale Select bits
0000 = 1:1 postscale

0001 = 1:2 postscale Postscale bits
0010 = 1:3 posiscale

1111_-.1..1.8 posiscale

b2 ,‘“"“"’“ Timer2 On B, , Timer2 module can be turned ON or OFF
\ 1 = TimerZ is on

0 = Timer2 is off ,/

bit 1-0 n‘b@m#zexrsﬁ:mcm Prescale Select bits
00 = Prescaler is 1

01 = Prescaler is 4 Prescale bits
1x = Prescaleris 16

Figure 9.5 The Timer 2 control register. T2CON

Ing.lbrahim GULESIN

Timer 2 module has period register PR2, at memory location 92y. The programmer can
preset PR2 to a value, which is when the timer is on, continuously compared with the TMR2
register value. If TMR2 reaches PR2 value then TMR2 is cleared to zero on the next
increment cycle. Hence, there are PR2+1 cycles between each reset of TMR2 register. This
reset is the TMR2 output illustrated in the block diagram, and can be used as a baud rate
generator by the synchronous serial port (55P). The resets forms an input to the postscaler,
which can be used as an interrupt. The postscaler is controlled by the Timer 2 postscaler bits
(TOUTP53, TOUTP52, TOUTP51) of the T2CON control register.

Timer 2 valua, if no comparator action

PRZ value F
/,(- Wl >y P a A ; g |
Timer 2 value—" / // // // /// / // //
-~ L |V . | L
Comparator output A I A Fy ~
(= TMR2 output”)
Interrupt TMR2IF ~ ~

(postscale set to /4)

Figure 9.6 PR2 and comparator action

Void setup_timer_2 (mode, period, postscale)

This built-in function is used to configure T/MER 2 module operation. The mode specifies whether the
timer is disabled or the prescaler values 1, 4, 16. The timer value may be read and written to using
get_timer2() and set_timer2(). Timer 2 is an 8-bit counter/timer.

mode may be one of: T2_D/SABLED, T2_D/V_BY_1,T2_D/V_BY_4,T2_D/V_BY_16 //To dis able
Timer 2, and prescaler values period is a int 0-255 that determines when the clock value

//period is PR2

postscale is a number 1-16 that determines how many timer resets before an interrupt: (1 means
one reset, 2 means 2, and so on).

Example instructions:
setup_timer_2 (T2_D/V_BY_4, 0xc0, 2);
// At 20mhz, the timer will increment every 800ns: Fosc= 20MHz 3 Fosc/*
=5MHz 3
// 5MHz/4=1.25MHz31/(1.25MHz=800ns)
// will overflow every 153.6us: 0xCOy = 192, 3 192x800ns 3 153.6 microseconds
// and will interrupt every 307.2us: 2x153.6microseconds=307.2microseconds.

Ing.lbrahim GULESIN

Capture / Compare / PWM (CCP) Modules

A register that can record the time of an event is called a 'Capture® register.

A register that can generate an event by comparing for equality of a preset valuein a
register i.e. PR2 to a running timer is called a 'Compare3 register.

PIC16 Series MCUs combine these Capture and Compare functions and some more
functions in their CCP modules.

CCP modules interact with both Timer 1 and Timer 2.

16 F87XA has two CCP modules.

Each module has two 8-bit registers, CCPR1L, CCPR1H and CCPR2L, CCPR2H.

Two 8-bit registers in each module forming a 16-bit register, can be used for capture,
compare or to form the duty cycle of a PWM signal.

CCP modules are controlled by CCP1CON and CCP2CON registers.

Capture / Compare / PWM (CCP) Modules

U0 U0 RWO RW0O RWO RWO RW0 RW-0
[— | — [cepxx] copxy | copxma |copamz | cePxmit | ccPxvo |
bit7 bit 0

bit 7-6 Unimplemented: Read as ‘0’
bit 5-4 CCPxX:CCPxY: PWM Least Significant bits

Capture mode:

Unused.

Compare mode;

Unused.

PWM mode;

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

bit 3-0 CCPxM3:CCPxMO0: CCPx Mode Select bits

0000 = Capture/Compare/PWM disabled (resets CCPx module)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 =Capture mode, every 4th rising edge

0111 = Capture mode, every 16th nising edge

1000 = Compare mode, set output on match (CCPxIF bit is set)

1001 = Compare mode, clear output on match (CCPxIF bit is set)

1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is
unaffected)

1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected), CCP1
resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is
enabled)

11xx = PWM mode

Figure 9.7 The CCP1CON/CCP2ZCON registers (addresses 17y and 1Dy respectively)

Ing.lbrahim GULESIN

Capture / Compare / PWM (CCP) Modules PWM Signal

CCPRIL value
Timer 2 and PR2 values changed in program
equal, timer is reset and
o CCPRIL value transferred to
\ CCPRIH as timer clears
PR2\ralue'--___‘_ ¥ ¥ i
CCPRILHvalue . ~ . ¥ /
Timer2 value / I “GEPAIL 1
) i i | j |
l .
PWM output
R [o

—T —»
T = (PR2 + 1) x (Timer 2 input clock period)
= (PR2 + 1) x {Tosc x 4 x (Timer 2 prescale value)} (9.2)

1, = (pulse width register) x {Tosc x (Timer 2 prescale value)) (9.3)

PR2 register is loaded with 249p. clock oscillator frequency is 4 MHz

PWM period is: 7 = (PR2 + 1) x {Tosc x 4 x (Timer 2 prescale value)}
=250 % 250ns x4 % 1)

=250ps
PWM frequency = 4.00kHz

Ing.lbrahim GULESIN

Capture / Compare / PWM (CCP) Modules PWM Signal

FIGURE 8-4: PWM OUTPUT

Period

-

S—

TMR2 = PR2

v Duty Cycle .,

"
L
"

TMR2 = PR2
TNIR2 = Duty Cycle

If the PWM duty cycle value is longer than

the PWM period. the CCP1 pin will not be
cleared.

PWM Period = [(PR2) + 1] * 4 * Tosc * (TMR2 Prescale Value)

L e ——

-

T ___.-’
- o o

The maximum PWM resolution (bits) for a given PWM

frequency ic given by the following formula.

EQUATION 8-1:

PWM Duty Cycle =r\((,: CPRIL:CCPICON<3 :43‘) * Tosc * (TMR2 Prescale Value)

ma g = - -
=" POBE Y " .
B i o2\ Fpwm/ ..,)
v Resoluiion = e .
s log(2) __-- -t
TABLE 8-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz
PWM Frequency 1.22kHz | 4.88kHz | 19.53kHz | 78.12kHz | 156.3 kHz | 208.3 kHz
Timer Prescaler (1, 4, 16) 16 4 1 1 1 1
PR2 Value OxFFh 0xFFh 0xFFh 0x3Fh Ox1Fh 0x17h
Maximum Resolution (bits) 10 10 10 8 7 55

Ing.lbrahim GULESIN

CCS PIC-C built-in functions for PWM generation are:

void setup_ccpl(CCP_PWM) // CCP_PWM indicates that CCP module will be
// used for PWM generation,signal output to CCP1 pin

void setup_ccp2(CCP_PWM) // CCP_PWM indicates that CCP module will be
// used for PWM generation, signal output to CCP2 pin

void set_pwml_duty (value) // value is the 8- or 10-bit value indicating duty time (t),
// i.e. value of pulse-width register on

void set_pwm?2_duty (value) // value is the 8- or 10-bit value indicating duty time (t),

// i.e. value of pulse-width on

PWM Period T = (PR2+1) * (Tosc *4)* (Timer2 PrescaleValue) ...(Textbook Eqn. 9.2)

ton=(value of pulse width register)* (Tosc* (Timer2 PrescaleValue)) ...(Textbook Eqn. 9.3)

Ing.lbrahim GULESIN

