
ABB Flexible Automation

RAPID Reference Manual

System Data Types and Routines On-line

ABB Robotics Products AB
DPT / MT
S-72168 VÄSTERÅS
SWEDEN
Telephone: (0) 21 344000
Telefax: (0) 21 132592

Sy
st

em
 D

at
aT

yp
es

 a
nd

 R
ou

ti
ne

s

Data Types and System Data

Instructions

Index

Functions

3HAC 0966-13
For BaseWare OS 3.1 Rev.1

The information in this document is subject to change without notice and should not be construed as a commit-
ment by ABB Robotics Products AB. ABB Robotics Products AB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB Robotics Products AB be liable for incidental or consequential damages arising from use
of this document or of the software and hardware described in this document.

This document and parts thereof must not be reproduced or copied without
ABB Robotics Products AB´s written permission, and contents thereof must not be imparted to a third party nor
be used for any unauthorized purpose. Contravention will be prosecuted.

Additional copies of this document may be obtained from ABB Robotics Products AB at its then current charge.

© ABB Robotics Products AB

Article number: 3HAC 0966-13
Issue: For BaseWare OS 3.1 Rev.1

ABB Robotics Products AB
S-721 68 Västerås

Sweden

Data Types

CONTENTS
bool Logical values

byte Decimal values 0 - 255

clock Time measurement

confdata Robot configuration data

dionum Digital values 0 - 1

errnum Error number

extjoint Position of external joints

intnum Interrupt identity

iodev Serial channels and files

jointtarget Joint position data

loaddata Load data

loadsession Program load session

mecunit Mechanical unit

motsetdata Motion settings data

num Numeric values (registers)

orient Orientation

o_jointtarget Original joint position data

o_robtarget Original position data

pos Positions (only X, Y and Z)

pose Coordinate transformations

progdisp Program displacement

robjoint Joint position of robot axes

robtarget Position data

shapedata World zone shape data

signalxx Digital and analog signals

speeddata Speed data

string Strings

symnum Symbolic number

System Data

taskid Task identification

tooldata Tool data

tpnum Teach Pendant Window number

triggdata Positioning events - trigg

tunetype Servo tune type

wobjdata Work object data

wzstationary Stationary world zone data
System DataTypes and Routines 1-1

Data Types

wztemporary Temporary world zone data

zonedata Zone data
1-2 System DataTypes and Routines

Data Types bool
bool Logical values

Bool is used for logical values (true/false).

Description

The value of data of the type bool can be either TRUE or FALSE.

Examples

flag1 := TRUE;

flag is assigned the value TRUE.

VAR bool highvalue;
VAR num reg1;

.
highvalue := reg1 > 100;

highvalue is assigned the value TRUE if reg1 is greater than 100; otherwise,
FALSE is assigned.

IF highvalue Set do1;

The do1 signal is set if highvalue is TRUE.

highvalue := reg1 > 100;
mediumvalue := reg1 > 20 AND NOT highvalue;

mediumvalue is assigned the value TRUE if reg1 is between 20 and 100.

Related information

Described in:

Logical expressions Basic Characteristics - Expressions

Operations using logical values Basic Characteristics - Expressions
System DataTypes and Routines 1-bool-1

bool Data Types
1-bool-2 System DataTypes and Routines

Data Types byte
byte Decimal values 0 - 255

Byte is used for decimal values (0 - 255) according to the range of a byte.

This data type is used in conjunction with instructions and functions that handle the bit
manipulations and convert features.

Description

Data of the type byte represents a decimal byte value.

Examples

CONST num parity_bit := 8;

VAR byte data1 := 130;

Definition of a variable data1 with a decimal value 130.

BitClear data1, parity_bit;

Bit number 8 (parity_bit) in the variable data1 will be set to 0, e.g. the content
of the variable data1 will be changed from 130 to 2 (decimal representation).

Error handling

If an argument of the type byte has a value that is not in the range between 0 and 255,
an error is returned on program execution.

Characteristics

Byte is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Alias data types Basic Characteristics- Data Types

Bit functions RAPID Summary - Bit Functions
System DataTypes and Routines 1-byte-1

byte Data Types
1-byte-2 System DataTypes and Routines

Data Types clock
clock Time measurement

Clock is used for time measurement. A clock functions like a stopwatch used for tim-
ing.

Description

Data of the type clock stores a time measurement in seconds and has a resolution of
0.01 seconds.

Example

VAR clock clock1;

ClkReset clock1;

The clock, clock1, is declared and reset. Before using ClkReset, ClkStart, ClkStop and
ClkRead, you must declare a variable of data type clock in your program.

Limitations

The maximum time that can be stored in a clock variable is approximately 49 days
(4,294,967 seconds). The instructions ClkStart, ClkStop and ClkRead report clock
overflows in the very unlikely event that one occurs.

A clock must be declared as a VAR variable type, not as a persistent variable type.

Characteristics

Clock is a non-value data type and cannot be used in value-oriented operations.

Related Information

Described in:

Summary of Time and Date Instructions RAPID Summary - System & Time

Non-value data type characteristics Basic Characteristics - Data Types
System DataTypes and Routines 1-clock-1

clock Data Types
1-clock-2 System DataTypes and Routines

Data Types confdata

xis,
1 and 2
 (see
confdata Robot configuration data

Confdata is used to define the axis configurations of the robot.

Description

All positions of the robot are defined and stored using rectangular coordinates. When
calculating the corresponding axis positions, there will often be two or more possible
solutions. This means that the robot is able to achieve the same position, i.e. the tool is
in the same position and with the same orientation, with several different positions or
configurations of the robots axes.

Some robot types use iterative numerical methods to determine the robot axes
positions. In these cases the configuration parameters may be used to define good
starting values for the joints to be used by the iterative procedure.

To unambiguously denote one of these possible configurations, the robot configuration
is specified using four axis values. For a rotating axis the value defines the current
quadrant of the robot axis. The quadrants are numbered 0, 1, 2, etc. (they can also be
negative). The quadrant number is connected to the current joint angle of the axis. For
each axis, quadrant 0 is the first quarter revolution, 0 to 90°, in a positive direction
from the zero position; quadrant 1 is the next revolution, 90 to 180°, etc. Quadrant -1
is the revolution 0° to (-90°), etc. (see Figure 1).

Figure 1 The configuration quadrants for axis 6.

For a linear axis, the value defines a meter interval for the robot axis. For each a
value 0 means a position between 0 and 1 meters, 1 means a position between
meters. For negative values, -1 means a position between -1 and 0 meters, etc.
Figure 2)

-2-3

-1-4

21

30
System DataTypes and Routines 1-confdata-1

confdata Data Types
Figure 2 Configuration values for a linear axis

Robot Configuration data for IRB540, 640

Only the configuration parameter cf6 is used.

Robot Configuration data for IRB1400, 2400, 3400, 4400, 6400

Only the three configuration parameters cf1, cf4 and cf6 are used.

Robot Configuration data for IRB5400

All four configuration parameters are used. cf1, cf4, cf6 for joints 1, 4, and 6
respectively and cfx for joint 5.

Robot configuration data for 6400C

The IRB 6400C requires a slightly different way of unambiguously denoting one robot
configuration. The difference lies in the interpretation of the confdata cf1.

cf1 is used to select one of two possible main axes (axes 1, 2 and 3) configurations:

- cf1 = 0 is the forward configuration

- cf1 = 1 is the backward configuration.

Figure 3 shows an example of a forward configuration and a backward configuration
giving the same position and orientation.

0 1 2 3-1-2-3

Configuration value210-1-2-3

x (m)
1-confdata-2 System DataTypes and Routines

Data Types confdata

m
rea

rms 4
Figure 3 Same position and orientation with two different main axes configurations.

The forward configuration is the front part of the robot’s working area with the ar
directed forward. The backward configuration is the service part of the working a
with the arm directed backwards.

Robot configuration data for IRB5404, 5406

The robots have two rotation axes (arms 1 and 2) and one linear axis (arm 3).

cf1 is used for the rotating axis 1

cfx is used for the rotating axis 2

cf4 and cf6 are not used

Robot Configuration data for IRB5413, 5414, 5423

The robots have two linear axes (arms 1 and 2) and one or two rotating axes (a
and 5) (Arm 3 locked)

cf1 is used for the linear axis 1

cfx is used for the linear axis 2

cf4 is used for the rotating axis 4

cf6 is not used

BACKWARD,
cf1 = 1.

FORWARD,
cf1 = 0
System DataTypes and Routines 1-confdata-3

confdata Data Types

tion

.

eger.

.

eger.

.

eger.
Robot configuration data for IRB840

The robot has three linear axes (arms 1, 2 and 3) and one rotating axis (arm 4)

cf1 is used for the linear axis 1

cfx is used for the linear axis 2

cf4 is used for the rotating axis 4

cf6 is not used

Because of the robot’s mainly linear structure, the correct setting of the configura
parameters c1, cx is of less importance.

Components

cf1 Data type: num

Rotating axis:

The current quadrant of axis 1, expressed as a positive or negative integer

Linear axis:

The current meter interval of axis 1, expressed as a positive or negative int

cf4 Data type: num

Rotating axis:

The current quadrant of axis 4, expressed as a positive or negative integer

Linear axis:

The current meter interval of axis 4, expressed as a positive or negative int

cf6 Data type: num

Rotating axis:

The current quadrant of axis 6, expressed as a positive or negative integer

Linear axis:

The current meter interval of axis 6, expressed as a positive or negative int

cfx Data type: num

Rotating axis:
1-confdata-4 System DataTypes and Routines

Data Types confdata
For the IRB5400 robot, the current quadrant of axis 5, expressed as a positive or
negative integer. For other robots, using the current quadrant of axis 2, expressed
as a positive or negative integer.

Linear axis:

The current meter interval of axis 2, expressed as a positive or negative integer.

Example

VAR confdata conf15 := [1, -1, 0, 0]

A robot configuration conf15 is defined as follows:

- The axis configuration of the robot axis 1 is quadrant 1, i.e. 90-180o.

- The axis configuration of the robot axis 4 is quadrant -1, i.e. 0-(-90o).

- The axis configuration of the robot axis 6 is quadrant 0, i.e. 0 - 90o.

- The axis configuration of the robot axis 5 is quadrant 0, i.e. 0 - 90o.

Structure

< dataobject of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num >

Related information

Described in:

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Handling configuration data Motion and I/O Principles - Robot
Configuration
System DataTypes and Routines 1-confdata-5

confdata Data Types
1-confdata-6 System DataTypes and Routines

Data Types dionum
dionum Digital values 0 - 1

Dionum (digital input output numeric) is used for digital values (0 or 1).

This data type is used in conjunction with instructions and functions that handle digital
input or output signals.

Description

Data of the type dionum represents a digital value 0 or 1.

Examples

CONST dionum close := 1;

Definition of a constant close with a value equal to 1.

SetDO grip1, close;

The signal grip1 is set to close, i.e. 1.

Error handling

If an argument of the type dionum has a value that is neither equal to 0 nor 1, an error
is returned on program execution.

Characteristics

Dionum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Summary input/output instructions RAPID Summary -
Input and Output Signals

Configuration of I/O User’s Guide - System Parameters

Alias data types Basic Characteristics- Data Types
System DataTypes and Routines 1-dionum-1

dionum Data Types
1-dionum-2 System DataTypes and Routines

Data Types errnum
errnum Error number

Errnum is used to describe all recoverable (non fatal) errors that occur during program
execution, such as division by zero.

Description

If the robot detects an error during program execution, this can be dealt with in the
error handler of the routine. Examples of such errors are values that are too high and
division by zero. The system variable ERRNO, of type errnum, is thus assigned
different values depending on the nature of an error. The error handler may be able to
correct an error by reading this variable and then program execution can continue in
the correct way.

An error can also be created from within the program using the RAISE instruction.
This particular type of error can be detected in the error handler by specifying an error
number (within the range 1-90 or booked with instruction BookErrNo) as an argument
to RAISE.

Examples

reg1 := reg2 / reg3;
.
ERROR

IF ERRNO = ERR_DIVZERO THEN
reg3 := 1;
RETRY;

ENDIF

If reg3 = 0, the robot detects an error when division is taking place. This error,
however, can be detected and corrected by assigning reg3 the value 1. Following
this, the division can be performed again and program execution can continue.

CONST errnum machine_error := 1;
.
IF di1=0 RAISE machine_error;
.
ERROR

IF ERRNO=machine_error RAISE;

An error occurs in a machine (detected by means of the input signal di1). A jump
is made to the error handler in the routine which, in turn, calls the error handler
of the calling routine where the error may possibly be corrected. The constant,
machine_error, is used to let the error handler know exactly what type of error
has occurred.
System DataTypes and Routines 1-errnum-1

errnum Data Types
Predefined data

The system variable ERRNO can be used to read the latest error that occurred. A
number of predefined constants can be used to determine the type of error that has
occurred.

Name Cause of error

ERR_ALRDYCNT The interrupt variable is already connected to a
TRAP routine

ERR_ARGDUPCND More than one present conditional argument for
the same parameter

ERR_ARGNAME Argument is expression, not present or of type switch
when executing ArgName

ERR_ARGNOTPER Argument is not a persistent reference
ERR_ARGNOTVAR Argument is not a variable reference
ERR_AXIS_ACT Axis is not active
ERR_AXIS_IND Axis is not independent
ERR_AXIS_MOVING Axis is moving
ERR_AXIS_PAR Parameter axis in instruction TestSign and

SetCurrRef is wrong.
ERR_CALLIO_INTER If an IOEnable or IODisable request is interrupted

by another request to the same unit
ERR_CALLPROC Procedure call error (not procedure)

at runtime (late binding)
ERR_CNTNOTVAR CONNECT target is not a variable reference

ERR_CNV_NOT_ACT The conveyor is not activated.

ERR_CNV_CONNECT The WaitWobj instruction is already active.

ERR_CNV_DROPPED The object that the instruction WaitWobj was
waiting for has been dropped.

ERR_DEV_MAXTIME Timeout when executing a ReadBin, ReadNum or a
ReadStr instruction

ERR_DIVZERO Division by zero
ERR_EXCRTYMAX Max. number of retries exceeded
ERR_EXECPHR An attempt was made to execute an instruction using

a place holder
ERR_FILEACC A file is accessed incorrectly
ERR_FILEOPEN A file cannot be opened
ERR_FILNOTFND File not found
ERR_FNCNORET No return value
ERR_FRAME Unable to calculate new frame
ERR_ILLDIM Incorrect array dimension
ERR_ILLQUAT Attempt to use illegal orientation (quaternion) valve
1-errnum-2 System DataTypes and Routines

Data Types errnum
ERR_ILLRAISE Error number in RAISE out of range
ERR_INOMAX No more interrupt numbers available
ERR_IOENABLE Timeout when executing IOEnable
ERR_IOERROR I/O Error from instruction Save
ERR_IODISABLE Timeout when executing IODisable
ERR_LOADED The program module is already loaded
ERR_LOADID_FATAL Only internal use in LoadId
ERR_LOADID_RETRY Only internal use in LoadId
ERR_MAXINTVAL The integer value is too large
ERR_MODULE Incorrect module name in instruction Save
ERR_NAME_INVALID If the unit name does not exist or if the unit is not

allowed to be disabled
ERR_NEGARG Negative argument is not allowed
ERR_NOTARR Data is not an array
ERR_NOTEQDIM The array dimension used when calling the routine

does not coincide with its parameters
ERR_NOTINTVAL Not an integer value
ERR_NOTPRES A parameter is used, despite the fact that the

corresponding argument was not used at the routine
call

ERR_OUTOFBND The array index is outside the permitted limits
ERR_PATH Missing destination path in instruction Save
ERR_PATHDIST Too long regain distance for StartMove instruction
ERR_PID_MOVESTOP Only internal use in LoadId
ERR_PID_RAISE_PP Error from ParIdRobValid or ParIdPosValid
ERR_RCVDATA An attempt was made to read non numeric data with

ReadNum
ERR_REFUNKDAT Reference to unknown entire data object
ERR_REFUNKFUN Reference to unknown function
ERR_REFUNKPRC Reference to unknown procedure at linking time or

at run time (late binding)
ERR_REFUNKTRP Reference to unknown trap
ERR_SC_WRITE Error when sending to external computer
ERR_SIGSUPSEARCH The signal has already a positive value at the

beginning of the search process
ERR_STEP_PAR Parameter Step in SetCurrRef is wrong
ERR_STRTOOLNG The string is too long
ERR_SYM_ACCESS Symbol read/write access error
ERR_TP_DIBREAK A TPRead instruction was interrupted by a digital

input
ERR_TP_MAXTIME Timeout when executing a TPRead instruction
ERR_UNIT_PAR Parameter Mech_unit in TestSign and SetCurrRef is

wrong
ERR_UNKINO Unknown interrupt number
System DataTypes and Routines 1-errnum-3

errnum Data Types
ERR_UNKPROC Incorrect reference to the load session in instruction
WaitLoad

ERR_UNLOAD Unload error in instruction UnLoad or WaitLoad
ERR_WAIT_MAXTIME Timeout when executing a WaitDI or WaitUntil

instruction
ERR_WHLSEARCH No search stop

Characteristics

Errnum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Error recovery RAPID Summary - Error Recovery
Basic Characteristics - Error Recovery

Data types in general, alias data types Basic Characteristics - Data Types
1-errnum-4 System DataTypes and Routines

Data Types extjoint

 the

libra-

sition
ition
axis is
ction,

will
ated,

cted,
extjoint Position of external joints

Extjoint is used to define the axis positions of external axes, positioners or workpiece
manipulators.

Description

The robot can control up to six external axes in addition to its six internal axes, i.e. a
total of twelve axes. The six external axes are logically denoted: a, b, c, d, e, f. Each
such logical axis can be connected to a physical axis and, in this case, the connection
is defined in the system parameters.

Data of the type extjoint is used to hold position values for each of the logical axes a - f.

For each logical axis connected to a physical axis, the position is defined as follows:

- For rotating axes – the position is defined as the rotation in degrees from
calibration position.

- For linear axes – the position is defined as the distance in mm from the ca
tion position.

If a logical axis is not connected to a physical one, the value 9E9 is used as a po
value, indicating that the axis is not connected. At the time of execution, the pos
data of each axis is checked and it is checked whether or not the corresponding
connected. If the stored position value does not comply with the actual axis conne
the following applies:

- If the position is not defined in the position data (value is 9E9), the value
be ignored if the axis is connected and not activated. But if the axis is activ
it will result in an error.

- If the position is defined in the position data, although the axis is not conne
the value will be ignored.

If an external axis offset is used (instruction EOffsOn or EOffsSet), the positions are
specified in the ExtOffs coordinate system.

Components

eax_a (external axis a) Data type: num

The position of the external logical axis “a”, expressed in degrees or mm
(depending on the type of axis).

eax_b (external axis b) Data type: num

The position of the external logical axis “b”, expressed in degrees or mm
(depending on the type of axis).
System DataTypes and Routines 1-extjoint-1

extjoint Data Types

end-

es or

rees
...

eax_f (external axis f) Data type: num

The position of the external logical axis “f”, expressed in degrees or mm (dep
ing on the type of axis).

Example

VAR extjoint axpos10 := [11, 12.3, 9E9, 9E9, 9E9, 9E9] ;

The position of an external positioner, axpos10, is defined as follows:

- The position of the external logical axis “a” is set to 11, expressed in degre
mm (depending on the type of axis).

- The position of the external logical axis “b” is set to 12.3, expressed in deg
or mm (depending on the type of axis).

- Axes c to f are undefined.

Structure

< dataobject of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Position data Data Types - robtarget

ExtOffs coordinate system Instructions - EOffsOn
1-extjoint-2 System DataTypes and Routines

Data Types intnum
intnum Interrupt identity

Intnum (interrupt numeric) is used to identify an interrupt.

Description

When a variable of type intnum is connected to a trap routine, it is given a specific
value identifying the interrupt. This variable is then used in all dealings with the inter-
rupt, such as when ordering or disabling an interrupt.

More than one interrupt identity can be connected to the same trap routine. The system
variable INTNO can thus be used in a trap routine to determine the type of interrupt that
occurs.

Examples

VAR intnum feeder_error;
.
CONNECT feeder_error WITH correct_feeder;
ISignalDI di1, 1, feeder_error;

An interrupt is generated when the input di1 is set to 1. When this happens, a call
is made to the correct_feeder trap routine.
System DataTypes and Routines 1-intnum-1

intnum Data Types
VAR intnum feeder1_error;
VAR intnum feeder2_error;
.
PROC init_interrupt();
.

CONNECT feeder1_error WITH correct_feeder;
ISignalDI di1, 1, feeder1_error;
CONNECT feeder2_error WITH correct_feeder;
ISignalDI di2, 1, feeder2_error;

.
ENDPROC
.
TRAP correct_feeder

IF INTNO=feeder1_error THEN
.
ELSE
.
ENDIF

.
ENDTRAP

An interrupt is generated when either of the inputs di1 or di2 is set to 1. A call is
then made to the correct_feeder trap routine. The system variable INTNO is used
in the trap routine to find out which type of interrupt has occurred.

Limitations

The maximum number of active variables of type intnum at any one time (between
CONNECT and IDelete) is limited to 40.The maximum number of interrupts, in the
queue for execution of TRAP routine at any one time, is limited to 30.

Characteristics

Intnum is an alias data type for num and thus inherits its properties.

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Alias data types Basic Characteristics-
Data Types
1-intnum-2 System DataTypes and Routines

Data Types iodev
iodev Serial channels and files

Iodev (I/O device) is used for serial channels, such as printers and files.

Description

Data of the type iodev contains a reference to a file or serial channel. It can be linked
to the physical unit by means of the instruction Open and then used for reading and
writing.

Example

VAR iodev file;
.
Open "flp1:LOGDIR/INFILE.DOC", file\Read;
input := ReadNum(file);

The file INFILE.DOC is opened for reading. When reading from the file, file is
used as a reference instead of the file name.

Characteristics

Iodev is a non-value data type.

Related information

Described in:

Communication via serial channels RAPID Summary - Communication

Configuration of serial channels User’s Guide - System Parameters

Characteristics of non-value data types Basic Characteristics - Data Types
System DataTypes and Routines 1-iodev-1

iodev Data Types
1-iodev-2 System DataTypes and Routines

Data Types jointtarget
jointtarget Joint position data

Jointtarget is used to define the position that the robot and the external axes will move
to with the instruction MoveAbsJ.

Description

Jointtarget defines each individual axis position, for both the robot and the external
axes.

Components

robax (robot axes) Data type: robjoint

Axis positions of the robot axes in degrees.

Axis position is defined as the rotation in degrees for the respective axis (arm) in
a positive or negative direction from the axis calibration position.

extax (external axes) Data type: extjoint

The position of the external axes.

The position is defined as follows for each individual axis (eax_a, eax_b ...
eax_f):

- For rotating axes, the position is defined as the rotation in degrees from the cal-
ibration position.

- For linear axes, the position is defined as the distance in mm from the calibra-
tion position.

External axes eax_a ... are logical axes. How the logical axis number and the
physical axis number are related to each other is defined in the system parame-
ters.

The value 9E9 is defined for axes which are not connected. If the axes defined in
the position data differ from the axes that are actually connected on program exe-
cution, the following applies:

- If the position is not defined in the position data (value 9E9) the value will be
ignored, if the axis is connected and not activated. But if the axis is activated it
will result in error.

- If the position is defined in the position data yet the axis is not connected, the
value is ignored.
System DataTypes and Routines 1-jointtarget-1

jointtarget Data Types
Examples

CONST jointtarget calib_pos := [[0, 0, 0, 0, 0, 0], [0, 9E9, 9E9, 9E9, 9E9, 9E9]];

The normal calibration position for IRB2400 is defined in calib_pos by the data
type jointtarget. The normal calibration position 0 (degrees or mm) is also
defined for the external logical axis a. The external axes b to f are undefined.

Structure

< dataobject of jointtarget >
< robax of robjoint >

< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Move to joint position Instructions - MoveAbsJ

Positioning instructions RAPID Summary - Motion

Configuration of external axes User’s Guide - System Parameters
1-jointtarget-2 System DataTypes and Routines

Data Types loaddata

ified

 robot

nces:

 true

d;

 the

3, q4).
loaddata Load data

Loaddata is used to describe loads attached to the mechanical interface of the robot
(the robot’s mounting flange).

Load data usually defines the payload (grip load is defined by the instruction
GripLoad) of the robot, i.e. the load held in the robot gripper. The tool load is spec
in the tool data (tooldata) which includes load data.

Description

Specified loads are used to set up a model of the dynamics of the robot so that the
movements can be controlled in the best possible way.

It is important to always define the actual tool load and when used, the payload
of the robot too. Incorrect definitions of load data can result in overloading of the
robot mechanical structure.

When incorrect load data is specified, it can often lead to the following conseque

- If the value in the specified load data is greater than that of the value of the
load;
-> The robot will not be used to its maximum capacity
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure

- If the value in the specified load data is less than the value of the true loa
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure

The payload is connected/disconnected using the instruction GripLoad.

Components

mass Data type: num

The weight of the load in kg.

cog (centre of gravity) Data type: pos

The centre of gravity of the payload (x, y, z) in mm, expressed in the tool
coordinate system.
If a stationary tool is used, it means the centre of gravity for the tool holding
work object.

aom (axes of moment) Data type: orient

The orientation of the coordinate system defined by the inertial axes of the
payload. Expressed in the tool coordinate system as a quaternion (q1, q2, q
System DataTypes and Routines 1-loaddata-1

loaddata Data Types
If a stationary tool is used, it means the inertial axes for the tool holding the work
object.

Restriction on orientation of atom and tool when an extended load is used, i
e ix,iy,iz not all equal zero (point mass).

The orientation of the coordinate system defined by the inertial axes of the
payload may only be rotated multiples of +/- 90 degrees about each coordinate
axes of the tool coordinate system.

The same restriction applies to the orientation of the tool coordinate system
relative to the wrist coordinate system.

Figure 4 Restriction on the orientation of tool load and payload coordinate system.

ix (inertia x) Data type: num

The moment of inertia of the load about its IX-axis relative to its centre of mass
in kgm2.

Correct definition of the inertial moments of inertia will allow optimal utilisation
of the path planner and axes control. This may be of special importance when
handling large sheets of metal, etc. All inertial moments of inertia ix, iy and iz
equal to 0 kgm2 implies a point mass.

X

X’

The wrist coordinate system
Y

Y’

IZ

IY

IX

IZ

IYZ

Z’

TCP

Inertial axes of payload

Y’

Tool load coordinate system -
Inertial axes of tool load

Payload coordinate system -

IX

Tool coordinate system
1-loaddata-2 System DataTypes and Routines

Data Types loaddata
Figure 5 The centre of gravity and inertial axes of the payload.

Normally, the inertial moments of inertia must only be defined when the distance
from the mounting flange to the centre of gravity is less than the dimension of
the load (see Figure 6).

Figure 6 The moment of inertia must normally be defined when the distance is less than the load
dimension.

iy (inertia y) Data type: num

The inertial moment of inertia of the load about its IY-axis, expressed in kgm2.

For more information, see ix.

iz (inertia z) Data type: num

The inertial moment of inertia of the load about its IZ-axis, expressed in kgm2.

For more information, see ix.

Wrist coordinate system

Z’

X’’

Y’ Tool coordinate system

IZ

IX

IY

The centre of gravity of the payload

Gripper

Payload coordinate

Payload

Inertial axes of payload
system -

Y

Z

X

x

payload

dimension

distance
System DataTypes and Routines 1-loaddata-3

loaddata Data Types
Examples

PERS loaddata piece1 := [5, [50, 0, 50], [1, 0, 0, 0], 0, 0, 0];

The payload in Figure 4 is described using the following values:

- Weight 5 kg.

- The centre of gravity is x = 50, y = 0 and z = 50 mm in the tool coordinate
system.

- The payload is a point mass.

Set gripper;
WaitTime 0.3;
GripLoad piece1;

Connection of the payload, piece1, specified at the same time as the robot grips
the load piece1.

Reset gripper;
WaitTime 0.3;
GripLoad load0;

Disconnection of a payload, specified at the same time as the robot releases a
payload.

Limitations

The payload should only be defined as a persistent variable (PERS) and not within a
routine. Current values are then saved when storing the program on diskette and are
retrieved on loading.

Arguments of the type load data in the GripLoad instruction should only be an entire
persistent (not array element or record component).

Predefined data

The load load0 defines a payload, the weight of which is equal to 0 kg, i.e. no load at
all. This load is used as the argument in the instruction GripLoad to disconnect a
payload.

The load load0 can always be accessed from the program, but cannot be changed (it is
stored in the system module BASE).

PERS loaddata load0 := [0.001, [0, 0, 0.001], [1, 0, 0, 0],0, 0 ,0];
1-loaddata-4 System DataTypes and Routines

Data Types loaddata
Structure

< dataobject of loaddata >
< mass of num >
< cog of pos >

< x of num >
< y of num >
< z of num >

< aom of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< ix of num >
< iy of num >
< iz of num >

Related information

Described in:

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Definition of tool loads Data Types - tooldata

Activation of payload Instructions - GripLoad
System DataTypes and Routines 1-loaddata-5

loaddata Data Types
1-loaddata-6 System DataTypes and Routines

Data Types loadsession
loadsession Program load session

Loadsession is used to define different load sessions of RAPID program modules.

Description

Data of the type loadsession is used in the instructions StartLoad and WaitLoad, to
identify the load session. Loadsession only contains a reference to the load session.

Characteristics

Loadsession is a non-value data type and cannot be used in value-oriented operations.

Related information

Described in:

Loading program modules during execution Instructions - StartLoad, WaitLoad

Characteristics of non-value data types Basic Characteristics - Data Types
RAPID Reference Manual 7-loadsession-7

loadsession Data Types
7-loadsession-8 RAPID Reference Manual

Data Types mecunit
mecunit Mechanical unit

Mecunit is used to define the different mechanical units which can be controlled and
accessed from the robot and the program.

The names of the mechanical units are defined in the system parameters and, conse-
quently, must not be defined in the program.

Description

Data of the type mecunit only contains a reference to the mechanical unit.

Limitations

Data of the type mecunit must not be defined in the program. The data type can, on the
other hand, be used as a parameter when declaring a routine.

Predefined data

The mechanical units defined in the system parameters can always be accessed from
the program (installed data).

Characteristics

Mecunit is a non-value data type. This means that data of this type does not permit
value-oriented operations.

Related information

Described in:

Activating/Deactivating mechanical units Instructions - ActUnit, DeactUnit

Configuration of mechanical units User’s Guide - System Parameters

Characteristics of non-value data types Basic Characteristics - Data Types
System DataTypes and Routines 1-mecunit-1

mecunit Data Types
1-mecunit-2 System DataTypes and Routines

Data Types motsetdata
motsetdata Motion settings data

Motsetdata is used to define a number of motion settings that affect all positioning
instructions in the program:

- Max. velocity and velocity override

- Acceleration data

- Behavior around singular points

- Management of different robot configurations

- Payload

- Override of path resolution

- Motion supervision

This data type does not normally have to be used since these settings can only be set
using the instructions VelSet, AccSet, SingArea, ConfJ, ConfL, GripLoad,
PathResol and MotionSup.

The current values of these motion settings can be accessed using the system variable
C_MOTSET.

Description

The current motion settings (stored in the system variable C_MOTSET) affect all
movements.

Components

vel.oride Data type: veldata/num

Velocity as a percentage of programmed velocity.

vel.max Data type: veldata/num

Maximum velocity in mm/s.

acc.acc Data type: accdata/num

Acceleration and deceleration as a percentage of the normal values.

acc.ramp Data type: accdata/num

The rate by which acceleration and deceleration increases as a percentage of the
normal values.
System DataTypes and Routines 1-motsetdata-1

motsetdata Data Types
sing.wrist Data type: singdata/bool

The orientation of the tool is allowed to deviate somewhat in order to prevent
wrist singularity.

sing.arm Data type: singdata/bool

The orientation of the tool is allowed to deviate somewhat in order to prevent arm
singularity (not implemented).

sing.base Data type: singdata/bool

The orientation of the tool is not allowed to deviate.

conf.jsup Data type: confsupdata/bool

Supervision of joint configuration is active during joint movement.

conf.lsup Data type: confsupdata/bool

Supervision of joint configuration is active during linear and circular movement.

conf.ax1 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 1 (not used in this version).

conf.ax4 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 4 (not used in this version).

conf.ax6 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 6 (not used in this version).

grip.load Data type:gripdata/loaddata

The payload of the robot (not including the gripper).

pathresol Data type: num

Current override in percentage of the configured path resolution.

motionsup Data type: bool

Mirror RAPID status (TRUE = On and FALSE = Off) of motion supervision
function.

tunevalue Data type: num

Current RAPID override as a percentage of the configured tunevalue for the
motion supervision function.
1-motsetdata-2 System DataTypes and Routines

Data Types motsetdata
Limitations

One and only one of the components sing.wrist, sing.arm or sing.base may have a
value equal to TRUE.

Example

IF C_MOTSET.vel.oride > 50 THEN
...

ELSE
...

ENDIF

Different parts of the program are executed depending on the current velocity
override.

Predefined data

C_MOTSET describes the current motion settings of the robot and can always be
accessed from the program (installed data). C_MOTSET, on the other hand, can only
be changed using a number of instructions, not by assignment.

The following default values for motion parameters are set

- at a cold start-up

- when a new program is loaded

- when starting program execution from the beginning.

PERS motsetdata C_MOTSET := [
[100, 500],-> veldata
[100, 100],-> accdata
[FALSE, FALSE, TRUE],-> singdata
[TRUE, TRUE, 30, 45, 90],-> confsupdata
[[0, [0, 0, 0], [1, 0, 0, 0], 0, 0, 0]],-> gripdata
[100],-> path resolution
[TRUE],-> motionsup
[100]];-> tunevalue
System DataTypes and Routines 1-motsetdata-3

motsetdata Data Types
Structure

<dataobject of motsetdata>
<vel of veldata > -> Affected by instruction VelSet

< oride of num >
< max of num >

<acc of accdata > -> Affected by instruction AccSet
< acc of num >
< ramp of num >

<sing of singdata > -> Affected by instruction SingArea
< wrist of bool >
< arm of bool >
< base of bool >

<conf of confsupdata > -> Affected by instructions ConfJ and ConfL
< jsup of bool >
<lsup of bool >
< ax1 of num >
< ax4 of num >
< ax6 of num >

<grip of gripdata > -> Affected by instruction GripLoad
< load of loaddata >

< mass of num>
< cog of pos >

< x of num >
< y of num >
< z of num >

<aom of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< ix of num >
< iy of num>
< iz of num >

<pathresol of num> -> Affected by instruction PathResol
<motionsup of bool> -> Affected by instruction MotionSup
<tunevalue of num> -> Affected by instruction MotionSup

Related information

Described in:

Instructions for setting motion parameters RAPID Summary -
Motion Settings
1-motsetdata-4 System DataTypes and Routines

Data Types num
num Numeric values (registers)

Num is used for numeric values; e.g. counters.

Description

The value of the num data type may be

- an integer; e.g. -5,

- a decimal number; e.g. 3.45.

It may also be written exponentially; e.g.2E3 (= 2*103 = 2000), 2.5E-2 (= 0.025).

Integers between -8388607 and +8388608 are always stored as exact integers.

Decimal numbers are only approximate numbers and should not, therefore, be used in
is equal to or is not equal to comparisons. In the case of divisions, and operations using
decimal numbers, the result will also be a decimal number; i.e. not an exact integer.

E.g. a := 10;
b := 5;
IF a/b=2 THEN As the result of a/b is not an integer,

this condition is not necessarily
... satisfied.

Example

VAR num reg1;
.

reg1 := 3;

reg1 is assigned the value 3.

a := 10 DIV 3;
b := 10 MOD 3;

Integer division where a is assigned an integer (=3) and b is assigned the
remainder (=1).

Predefined data

The constant pi (π) is already defined in the system module BASE.

CONST num pi := 3.1415926;
System DataTypes and Routines 1-num-1

num Data Types
The constants EOF_BIN and EOF_NUM are already defined in the system.

CONST num EOF_BIN := -1;

CONST num EOF_NUM := 9.998E36;

Related information

Described in:

Numeric expressions Basic Characteristics - Expressions

Operations using numeric values Basic Characteristics - Expressions
1-num-2 System DataTypes and Routines

Data Types o_jointtarget
o_jointtarget Original joint position data

o_jointtarget (original joint target) is used in combination with the function Absolute
Limit Modpos. When this function is used to modify a position, the original position is
stored as a data of the type o_jointtarget.

Description

If the function Absolute Limit Modpos is activated and a named position in a movement
instruction is modified with the function Modpos, then the original programmed posi-
tion is saved.

Example of a program before Modpos:

CONST jointtarget jpos40 := [[0, 0, 0, 0, 0, 0],
[0, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveAbsJ jpos40, v1000, z50, tool1;

The same program after ModPos in which the point jpos40 is corrected to 2 degrees
for robot axis 1:

CONST jointtarget jpos40 := [[2, 0, 0, 0, 0, 0],
 [0, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST o_jointtarget o_jpos40 := [[0, 0, 0, 0, 0, 0],
[0, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveAbsJ jpos40, v1000, z50, tool1;

The original programmed point has now been saved in o_jpos40 (by the data type
o_jointtarget) and the modified point saved in jpos40 (by the data type jointtarget).

By saving the original programmed point, the robot can monitor that further Modpos
of the point in question are within the acceptable limits from the original programmed
point.

The fixed name convention means that an original programmed point with the name
xxxxx is saved with the name o_xxxxx by using Absolute Limit Modpos.

Components

robax (robot axes) Data type: robjoint

Axis positions of the robot axes in degrees.
System DataTypes and Routines 1-o_jointtarget-1

o_jointtarget Data Types
extax (external axes) Data type: extjoint

The position of the external axes.

Structure

< dataobject of o_jointtarget >
< robax of robjoint>

< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Position data Data Types - Jointtarget

Configuration of Limit Modpos User’s Guide - System Parameters
1-o_jointtarget-2 System DataTypes and Routines

Data Types orient
orient Orientation

Orient is used for orientations (such as the orientation of a tool) and rotations (such as
the rotation of a coordinate system).

Description

The orientation is described in the form of a quaternion which consists of four ele-
ments: q1, q2, q3 and q4. For more information on how to calculate these, see below.

Components

q1 Data type: num

Quaternion 1.

q2 Data type: num

Quaternion 2.

q3 Data type: num

Quaternion 3.

q4 Data type: num

Quaternion 4.

Example

VAR orient orient1;
.
orient1 := [1, 0, 0, 0];

The orient1 orientation is assigned the value q1=1, q2-q4=0; this corresponds to
no rotation.

Limitations

The orientation must be normalised; i.e. the sum of the squares must equal 1:

q1
2 q2

2 q3
2 q4

2+ + + 1=
System DataTypes and Routines 1-orient-1

orient Data Types
What is a Quaternion?

The orientation of a coordinate system (such as that of a tool) can be described by a
rotational matrix that describes the direction of the axes of the coordinate system in
relation to a reference system (see Figure 7).

Figure 7 The rotation of a coordinate system is described by a quaternion.

The rotated coordinate systems axes (x, y, z) are vectors which can be expressed in the
reference coordinate system as follows:

x = (x1, x2, x3)

y = (y1, y2, y3)

z = (z1, z2, z3)

This means that the x-component of the x-vector in the reference coordinate system
will be x1, the y-component will be x2, etc.

These three vectors can be put together in a matrix, a rotational matrix, where each of
the vectors form one of the columns:

A quaternion is just a more concise way to describe this rotational matrix; the quater-
nions are calculated based on the elements of the rotational matrix:

sign q2 = sign (y3-z2)

sign q3 = sign (z1-x3)

sign q4 = sign (x2-y1)

z

y

x
y

z

x

Reference
coordinate
system

Rotated
coordinate
system

x1 y1 z1

x2 y2 z2

x3 y3 z3

q1
x1 y2 z3 1+ + +

2
---=

q2
x1 y2– z3– 1+

2
--=

q3
y2 x1– z3– 1+

2
--=

q4
z3 x1– y2– 1+

2
--=
1-orient-2 System DataTypes and Routines

Data Types orient

s the
 Y-

tool

ordi-
d the
tation

t
 tool
Example 1

A tool is orientated so that its Z’-axis points straight ahead (in the same direction a
X-axis of the base coordinate system). The Y’-axis of the tool corresponds to the
axis of the base coordinate system (see Figure 8). How is the orientation of the
defined in the position data (robtarget)?

The orientation of the tool in a programmed position is normally related to the co
nate system of the work object used. In this example, no work object is used an
base coordinate system is equal to the world coordinate system. Thus, the orien
is related to the base coordinate system.

Figure 8 The direction of a tool in accordance with example 1.

The axes will then be related as follows:

x’ = -z = (0, 0, -1)

y’ = y = (0, 1, 0)

z’ = x = (1, 0, 0)

Which corresponds to the following rotational matrix:

The rotational matrix provides a corresponding quaternion:

sign q3 = sign (1+1) = +

Example 2

The direction of the tool is rotated 30o about the X’- and Z’-axes in relation to the wris
coordinate system (see Figure 8). How is the orientation of the tool defined in the
data?

Z´

X´

X

Z

0 0 1

0 1 0

1– 0 0

q1
0 1 0 1+ + +

2

2
2

------- 0,707= = =

q2
0 1– 0– 1+

2
---------------------------------- 0= =

q3
1 0– 0– 1+

2

2
2

------- 0,707= = =

q4
0 0– 1– 1+

2
---------------------------------- 0= =
System DataTypes and Routines 1-orient-3

orient Data Types
Figure 9 The direction of the tool in accordance with example 2.

The axes will then be related as follows:

x’ = (cos30o, 0, -sin30o)

x’ = (0, 1, 0)

x’ = (sin30o, 0, cos30o)

Which corresponds to the following rotational matrix:

The rotational matrix provides a corresponding quaternion:

sign q3 = sign (sin30o+sin30o) = +

Structure

<dataobject of orient>
<q1 of num>
<q2 of num>
<q3 of num>
<q4 of num>

Related information

Described in:

Operations on orientations Basic Characteristics - Expressions

Z´
X´

X

Z

30cos ° 0 30sin °
0 1 0

30sin– ° 0 30cos °

q1
30cos ° 1 30°cos 1+ + +

2
-- 0,965926= =

q2
30°cos 1– 30°cos– 1+

2
-- 0= =

q3
1 30°cos– 30°cos– 1+

2
-- 0,258819= =

q4
30°cos 30°cos– 1– 1+

2
-- 0= =
1-orient-4 System DataTypes and Routines

Data Types o_robtarget
o_robtarget Original position data

o_robtarget (original robot target) is used in combination with the function Absolute
Limit Modpos. When this function is used to modify a position, the original position is
stored as a data of the type o_robtarget.

Description

If the function Absolute Limit Modpos is activated and a named position in a movement
instruction is modified with the function Modpos, then the original programmed posi-
tion is saved.

Example of a program before Modpos:

CONST robtarget p50 := [[500, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[500, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveL p50, v1000, z50, tool1;

The same program after ModPos in which the point p50 is corrected to 502 in the x-
direction:

CONST robtarget p50 := [[502, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[500, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST o_robtarget o_p50 := [[500, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[500, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveL p50, v1000, z50, tool1;

The original programmed point has now been saved in o_p50 (by the data type
o_robtarget) and the modified point saved in p50 (by the data type robtarget).

By saving the original programmed point, the robot can monitor that further Modpos
of the point in question are within the acceptable limits from the original programmed
point.

The fixed name convention means that an original programmed point with the name
xxxxx is saved with the name o_xxxxx by using Absolute Limit Modpos.

Components

trans (translation) Data type: pos

The position (x, y and z) of the tool centre point expressed in mm.
System DataTypes and Routines 1-o_robtarget-1

o_robtarget Data Types
rot (rotation) Data type: orient

The orientation of the tool, expressed in the form of a quaternion (q1, q2, q3 and q4).

robconf (robot configuration) Data type: confdata

The axis configuration of the robot (cf1, cf4, cf6 and cfx).

extax (external axes) Data type: extjoint

The position of the external axes.

Structure

< dataobject of o_robtarget >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< robconf of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Position data Data Types - Robtarget

Configuration of Limit Modpos User’s Guide - System Parameters
1-o_robtarget-2 System DataTypes and Routines

Data Types pos

the
pos Positions (only X, Y and Z)

Pos is used for positions (only X, Y and Z).

The robtarget data type is used for the robot’s position including the orientation of
tool and the configuration of the axes.

Description

Data of the type pos describes the coordinates of a position: X, Y and Z.

Components

x Data type: num

The X-value of the position.

y Data type: num

The Y-value of the position.

z Data type: num

The Z-value of the position.

Examples

VAR pos pos1;
.
pos1 := [500, 0, 940];

The pos1 position is assigned the value: X=500 mm, Y=0 mm, Z=940 mm.

pos1.x := pos1.x + 50;

The pos1 position is shifted 50 mm in the X-direction.

Structure

<dataobject of pos>
<x of num>
<y of num>
<z of num>
System DataTypes and Routines 1-pos-1

pos Data Types
Related information

Described in:

Operations on positions Basic Characteristics - Expressions

Robot position including orientation Data Types- robtarget
1-pos-2 System DataTypes and Routines

Data Types pose
pose Coordinate transformations

Pose is used to change from one coordinate system to another.

Description

Data of the type pose describes how a coordinate system is displaced and rotated
around another coordinate system. The data can, for example, describe how the tool
coordinate system is located and oriented in relation to the wrist coordinate system.

Components

trans (translation) Data type: pos

The displacement in position (x, y and z) of the coordinate system.

rot (rotation) Data type: orient

The rotation of the coordinate system.

Example

VAR pose frame1;
.
frame1.trans := [50, 0, 40];
frame1.rot := [1, 0, 0, 0];

The frame1 coordinate transformation is assigned a value that corresponds to a
displacement in position, where X=50 mm, Y=0 mm, Z=40 mm; there is, how-
ever, no rotation.

Structure

<dataobject of pose>
<trans of pos>
<rot of orient>

Related information

Described in:

What is a Quaternion? Data Types - orient
System DataTypes and Routines 1-pose-1

pose Data Types
1-pose-2 System DataTypes and Routines

Data Types progdisp
progdisp Program displacement

Progdisp is used to store the current program displacement of the robot and the exter-
nal axes.

This data type does not normally have to be used since the data is set using the instruc-
tions PDispSet, PDispOn, PDispOff, EOffsSet, EOffsOn and EOffsOff. It is only used
to temporarily store the current value for later use.

Description

The current values for program displacement can be accessed using the system variable
C_PROGDISP.

For more information, see the instructions PDispSet, PDispOn, EOffsSet and EOffsOn.

Components

pdisp (program displacement) Data type: pose

The program displacement for the robot, expressed using a translation and an ori-
entation. The translation is expressed in mm.

eoffs (external offset) Data type: extjoint

The offset for each of the external axes. If the axis is linear, the value is expressed
in mm; if it is rotating, the value is expressed in degrees.

Example

VAR progdisp progdisp1;
.
SearchL sen1, psearch, p10, v100, tool1;
PDispOn \ExeP:=psearch, *, tool1;
EOffsOn \ExeP:=psearch, *;
.
progdisp1:=C_PROGDISP;
PDispOff;
EOffsOff;
.
PDispSet progdisp1.pdisp;
EOffsSet progdisp1.eoffs;

First, a program displacement is activated from a searched position. Then, it is
temporarily deactivated by storing the value in the variable progdisp1 and, later
on, re-activated using the instructions PDispSet and EOffsSet.
System DataTypes and Routines 1-progdisp-1

progdisp Data Types
Predefined data

The system variable C_PROGDISP describes the current program displacement of the
robot and external axes, and can always be accessed from the program (installed data).
C_PROGDISP, on the other hand, can only be changed using a number of instructions,
not by assignment.

Structure

< dataobject of progdisp >
<pdisp of pose>

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< eoffs of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Instructions for defining program displacement RAPID Summary - Motion Settings

Coordinate systems Motion and I/O Principles -
Coordinate Systems
1-progdisp-2 System DataTypes and Routines

Data Types robjoint
robjoint Joint position of robot axes

Robjoint is used to define the axis position in degrees of the robot axes.

Description

Data of the type robjoint is used to store axis positions in degrees of the robot axes 1
to 6. Axis position is defined as the rotation in degrees for the respective axis (arm) in
a positive or negative direction from the axis calibration position.

Components

rax_1 (robot axis 1) Data type: num

The position of robot axis 1 in degrees from the calibration position.

...

rax_6 (robot axis 6) Data type: num

The position of robot axis 6 in degrees from the calibration position.

Structure

< dataobject of robjoint >
< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num >

Related information

Described in:

Joint position data Data Types - jointtarget

Move to joint position Instructions - MoveAbsJ
System DataTypes and Routines 1-robjoint-1

robjoint Data Types
1-robjoint-2 System DataTypes and Routines

Data Types robtarget
robtarget Position data

Robtarget (robot target) is used to define the position of the robot and external axes.

Description

Position data is used to define the position in the positioning instructions to which the
robot and external axes are to move.

As the robot is able to achieve the same position in several different ways, the axis
configuration is also specified. This defines the axis values if these are in any way
ambiguous, for example:

- if the robot is in a forward or backward position,

- if axis 4 points downwards or upwards,

- if axis 6 has a negative or positive revolution.

The position is defined based on the coordinate system of the work object,
including any program displacement. If the position is programmed with some
other work object than the one used in the instruction, the robot will not move in
the expected way. Make sure that you use the same work object as the one used
when programming positioning instructions. Incorrect use can injure someone or
damage the robot or other equipment.

Components

trans (translation) Data type: pos

The position (x, y and z) of the tool centre point expressed in mm.

The position is specified in relation to the current object coordinate system,
including program displacement. If no work object is specified, this is the world
coordinate system.

rot (rotation) Data type: orient

The orientation of the tool, expressed in the form of a quaternion (q1, q2, q3 and q4).

The orientation is specified in relation to the current object coordinate system,
including program displacement. If no work object is specified, this is the world
coordinate system.

robconf (robot configuration) Data type: confdata

The axis configuration of the robot (cf1, cf4, cf6 and cfx). This is defined in the
form of the current quarter revolution of axis 1, axis 4 and axis 6. The first
System DataTypes and Routines 1-robtarget-1

robtarget Data Types
positive quarter revolution 0 to 90 o is defined as 0. The component cfx is only
used for the robot model IRB5400.

For more information, see data type confdata.

extax (external axes) Data type: extjoint

The position of the external axes.

The position is defined as follows for each individual axis (eax_a, eax_b ...
eax_f):

- For rotating axes, the position is defined as the rotation in degrees from the
calibration position.

- For linear axes, the position is defined as the distance in mm from the
calibration position.

External axes eax_a ... are logical axes. How the logical axis number and the
physical axis number are related to each other is defined in the system
parameters.

The value 9E9 is defined for axes which are not connected. If the axes defined in
the position data differ from the axes that are actually connected on program
execution, the following applies:

- If the position is not defined in the position data (value 9E9), the value will be
ignored, if the axis is connected and not activated. But if the axis is activated, it
will result in an error.

- If the position is defined in the position data although the axis is not connected,
the value is ignored.

Examples

CONST robtarget p15 := [[600, 500, 225.3], [1, 0, 0, 0], [1, 1, 0, 0],
[11, 12.3, 9E9, 9E9, 9E9, 9E9]];

A position p15 is defined as follows:

- The position of the robot: x = 600, y = 500 and z = 225.3 mm in the object
coordinate system.

- The orientation of the tool in the same direction as the object coordinate system.

- The axis configuration of the robot: axes 1 and 4 in position 90-180o, axis 6 in
position 0-90o.

- The position of the external logical axes, a and b, expressed in degrees or mm
(depending on the type of axis). Axes c to f are undefined.
1-robtarget-2 System DataTypes and Routines

Data Types robtarget
VAR robtarget p20;
. . .
p20 := CRobT();
p20 := Offs(p20,10,0,0);

The position p20 is set to the same position as the current position of the robot by
calling the function CRobT. The position is then moved 10 mm in the x-direction.

Limitations

When using the configurable edit function Absolute Limit Modpos, the number of
characters in the name of the data of the type robtarget, is limited to 14 (in other cases
16).

Structure

< dataobject of robtarget >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< robconf of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >
System DataTypes and Routines 1-robtarget-3

robtarget Data Types
Related information

Described in:

Positioning instructions RAPID Summary - Motion

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Handling configuration data Motion and I/O Principles - Robot
Configuration

Configuration of external axes User’s Guide - System Parameters

What is a quaternion? Data Types - Orient
1-robtarget-4 System DataTypes and Routines

Data Types shapedata
shapedata World zone shape data

shapedata is used to describe the geometry of a world zone.

Description

World zones can be defined in 3 different geometrical shapes:

- a straight box, with all sides parallel to the world coordinate system and defined
by a WZBoxDef instruction

- a sphere, defined by a WZSphDef instruction

- a cylinder, parallel to the z axis of the world coordinate system and defined by
a WZCylDef instruction

The geometry of a world zone is defined by one of the previous instructions and the
action of a world zone is defined by the instruction WZLimSup or WZDOSet.

Example

VAR wzstationary pole;
VAR wzstationary conveyor;
...
PROC ...

VAR shapedata volume;
...
WZBoxDef \Inside, volume, p_corner1, p_corner2;
WZLimSup \Stat, conveyor, volume;
WZCylDef \Inside, volume, p_center, 200, 2500;
WZLimSup \Stat, pole, volume;

ENDPROC

A conveyor is defined as a box and the supervision for this area is activated. A
pole is defined as a cylinder and the supervision of this zone is also activated. If
the robot reaches one of these areas, the motion is stopped.

Characteristics

shapedata is a non-value data type.
System DataTypes and Routines 1-shapedata-1

shapedata Data Types
Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Define box-shaped world zone Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
1-shapedata-2 System DataTypes and Routines

Data Types signalxx
System DataTypes and Routines 1-signalxx-1

signalxx Digital and analog signals

Data types within signalxx are used for digital and analog input and output signals.

The names of the signals are defined in the system parameters and are consequently
not to be defined in the program.

Description

Data type Used for

signalai analog input signals

signalao analog output signals

signaldi digital input signals

signaldo digital output signals

signalgi groups of digital input signals

signalgo groups of digital output signals

Variables of the type signalxo only contain a reference to the signal. The value is set
using an instruction, e.g. DOutput.

Variables of the type signalxi contain a reference to a signal as well as a method to
retrieve the value. The value of the input signal is returned when a function is called,
e.g. DInput, or when the variable is used in a value context, e.g. IF signal_y=1 THEN.

Limitations

Data of the data type signalxx may not be defined in the program. However, if this is
in fact done, an error message will be displayed as soon as an instruction or function
that refers to this signal is executed. The data type can, on the other hand, be used as a
parameter when declaring a routine.

Predefined data

The signals defined in the system parameters can always be accessed from the program
by using the predefined signal variables (installed data). It should however be noted
that if other data with the same name is defined, these signals cannot be used.

Characteristics

Signalxo is a non-value data type. Thus, data of this type does not permit value-
oriented operations.

Signalxi is a semi-value data type.

signalxx Data Types
Related information

Described in:

Summary input/output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters

Characteristics of non-value data types Basic Characteristics - Data Types
1-signalxx-2 System DataTypes and Routines

Data Types speeddata
speeddata Speed data

Speeddata is used to specify the velocity at which both the robot and the external axes
move.

Description

Speed data defines the velocity:

- at which the tool centre point moves,

- of the reorientation of the tool,

- at which linear or rotating external axes move.

When several different types of movement are combined, one of the velocities often
limits all movements. The velocity of the other movements will be reduced in such a
way that all movements will finish executing at the same time.

The velocity is also restricted by the performance of the robot. This differs, depending
on the type of robot and the path of movement.

Components

v_tcp (velocity tcp) Data type: num

The velocity of the tool centre point (TCP) in mm/s.

If a stationary tool or coordinated external axes are used, the velocity is specified
relative to the work object.

v_ori (velocity orientation) Data type: num

The velocity of reorientation about the TCP expressed in degrees/s.

If a stationary tool or coordinated external axes are used, the velocity is specified
relative to the work object.

v_leax (velocity linear external axes) Data type: num

The velocity of linear external axes in mm/s.

v_reax (velocity rotational external axes) Data type: num

The velocity of rotating external axes in degrees/s.
System DataTypes and Routines 1-speeddata-1

speeddata Data Types
Example

VAR speeddata vmedium := [1000, 30, 200, 15];

The speed data vmedium is defined with the following velocities:

- 1000 mm/s for the TCP.

- 30 degrees/s for reorientation of the tool.

- 200 mm/s for linear external axes.

- 15 degrees/s for rotating external axes.

vmedium.v_tcp := 900;

The velocity of the TCP is changed to 900 mm/s.

Predefined data

A number of speed data are already defined in the system module BASE.

Name TCP speed Orientation Linear ext. axis Rotating ext. axis

v5 5 mm/s 500o/s 5000 mm/s 1000o/s
v10 10 mm/s 500o/s 5000 mm/s 1000o/s
v20 20 mm/s 500o/s 5000 mm/s 1000o/s
v30 30 mm/s 500o/s 5000 mm/s 1000o/s
v40 40 mm/s 500o/s 5000 mm/s 1000o/s
v50 50 mm/s 500o/s 5000 mm/s 1000o/s
v60 60 mm/s 500o/s 5000 mm/s 1000o/s
v80 80 mm/s 500o/s 5000 mm/s 1000o/s
v100 100 mm/s 500o/s 5000 mm/s 1000o/s
v150 150 mm/s 500o/s 5000 mm/s 1000o/s
v200 200 mm/s 500o/s 5000 mm/s 1000o/s
v300 300 mm/s 500o/s 5000 mm/s 1000o/s
v400 400 mm/s 500o/s 5000 mm/s 1000o/s
v500 500 mm/s 500o/s 5000 mm/s 1000o/s
v600 600 mm/s 500o/s 5000 mm/s 1000o/s
v800 800 mm/s 500o/s 5000 mm/s 1000o/s
v1000 1000 mm/s 500o/s 5000 mm/s 1000o/s
v1500 1500 mm/s 500o/s 5000 mm/s 1000o/s
v2000 2000 mm/s 500o/s 5000 mm/s 1000o/s
v2500 2500 mm/s 500o/s 5000 mm/s 1000o/s
v3000 3000 mm/s 500o/s 5000 mm/s 1000o/s
v4000 4000 mm/s 500o/s 5000 mm/s 1000o/s
v5000 5000 mm/s 500o/s 5000 mm/s 1000o/s
vmax 5000 mm/s 500o/s 5000 mm/s 1000o/s
v6000 6000 mm/s 500o/s 5000 mm/s 1000o/s
v7000 7000 mm/s 500o/s 5000 mm/s 1000o/s
1-speeddata-2 System DataTypes and Routines

Data Types speeddata
Structure

< dataobject of speeddata >
< v_tcp of num >
< v_ori of num >
< v_leax of num >
< v_reax of num >

Related information

Described in:

Positioning instructions RAPID Summary - Motion

Motion/Speed in general Motion and I/O Principles - Position-
ing during Program Execution

Defining maximum velocity Instructions - VelSet

Configuration of external axes User’s Guide - System Parameters

Motion performance Product Specification
System DataTypes and Routines 1-speeddata-3

speeddata Data Types
1-speeddata-4 System DataTypes and Routines

Data Types string

,

ntrol
string Strings

String is used for character strings.

Description

A character string consists of a number of characters (a maximum of 80) enclosed by
quotation marks (“”),

e.g. “This is a character string”.

If the quotation marks are to be included in the string, they must be written twice

e.g. “This string contains a ““character”.

Example

VAR string text;
.
text := “start welding pipe 1”;
TPWrite text;

The text start welding pipe 1 is written on the teach pendant.

Limitations

A string may have from 0 to 80 characters; inclusive of extra quotation marks.

A string may contain any of the characters specified by ISO 8859-1 as well as co
characters (non-ISO 8859-1 characters with a numeric code between 0-255).
System DataTypes and Routines 1-string-1

string Data Types

dule
Predefined data

A number of predefined string constants are available in the system and can be used
together with string functions.

Name Character set

STR_DIGIT <digit> ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

STR_UPPER <upper case letter> ::=
A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1) | Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3)

STR_LOWER <lower case letter> ::=
a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | à | á | â | ã
| ä | å | æ | ç | è | é | ê | ë | ì | í
| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø
| ù | ú | û | ü | 2) | 3) | ß | ÿ

STR_WHITE <blank character> ::=

1) Icelandic letter eth.
2) Letter Y with acute accent.
3) Icelandic letter thorn.

The constants flp1, ram1disk and stEmpty are already defined in the system mo
BASE.

CONST string flp1 := “flp1:”;

CONST string ram1disk := “ram1disk:”;

CONST string stEmpty := “”;

Related information

Described in:

Operations using strings Basic Characteristics - Expressions

String values Basic Characteristics - Basic Elements
1-string-2 System DataTypes and Routines

Data Types symnum
symnum Symbolic number

Symnum is used to represent an integer with a symbolic constant.

Description

A symnum constant is intended to be used when checking the return value from the
functions OpMode and RunMode. See example below.

Example

IF RunMode() = RUN_CONT_CYCLE THEN
.
.
ELSE
.
.
ENDIF

Predefined data

The following symbolic constants of the data type symnum are predefined and can be
used when checking return values from the functions OpMode and RunMode.

 Value Symbolic constant Comment

0 RUN_UNDEF Undefined running mode

1 RUN_CONT_CYCLE Continuous or cycle running mode

2 RUN_INSTR_FWD Instruction forward running mode

3 RUN_INSTR_BWD Instruction backward running mode

4 RUN_SIM Simulated running mode

Value Symbolic constant Comment

0 OP_UNDEF Undefined operating mode

1 OP_AUTO Automatic operating mode

2 OP_MAN_PROG Manual operating mode
max. 250 mm/s

3 OP_MAN_TEST Manual operating mode
full speed, 100%
System DataTypes and Routines 1-symnum-1

symnum Data Types
Characteristics

Symnum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Data types in general, alias data types Basic Characteristics - Data Types
1-symnum-2 System DataTypes and Routines

Data Types System Data
System Data

System data is the internal data of the robot that can be accessed and read by the pro-
gram. It can be used to read the current status, e.g. the current maximum velocity.

The following table contains a list of all system data.

Name Description Data Type Changed by See also

C_MOTSET Current motion settings, i.e.:
- max. velocity and velocity override
- max. acceleration
- movement about singular points
- monitoring the axis configuration
- payload in gripper
- path resolution
- motion supervision with tunevalue

motsetdata Instructions
- VelSet
- AccSet
- SingArea
- ConfL,ConfJ
- GripLoad
- PathResol
- MotionSup

Data Types - motsetdata
Instructions - VelSet
Instructions - AccSet
Instructions - SingArea
Instructions - ConfL, ConfJ
Instructions - GripLoad
Instructions - PathResol
Instructions - MotionSup

C_PROGDISP Current program displacement for robot and exter-
nal axes.

progdisp Instructions
- PDispSet
- PDispOn
- PDispOff
- EOffsSet
- EOffsOn
- EOffsOff

Data Types - progdisp
Instructions - PDispSet
Instructions - PDispOn
Instructions - PDispOff
Instructions - EOffsSet
Instructions - EOffsOn
Instructions - EOffsOff

ERRNO The latest error that occurred errnum The robot Data Types - errnum
RAPID Summary -
Error Recovery

INTNO The latest interrupt that occurred intnum The robot Data Types - intnum
RAPID Summary -Interrupts
System DataTypes and Routines 1-System Data-1

System Data Data Types
1-System Data-2 System DataTypes and Routines

Data Types taskid
taskid Task identification

Taskid is used to identify available program tasks in the system.

The names of the program tasks are defined in the system parameters and, conse-
quently, must not be defined in the program.

Description

Data of the type taskid only contains a reference to the program task.

Limitations

Data of the type taskid must not be defined in the program. The data type can, on the
other hand, be used as a parameter when declaring a routine.

Predefined data

The program tasks defined in the system parameters can always be accessed from the
program (installed data).

For all program tasks in the system, predefined variables of the data type taskid will be
available. The variable identity will be "taskname"+"Id", e.g. for MAIN task the vari-
able identity will be MAINId, TSK1 - TSK1Id etc.

Characteristics

Taskid is a non-value data type. This means that data of this type does not permit value-
oriented operations.

Related information

Described in:

Saving program modules Instruction - Save

Configuration of program tasks User’s Guide - System Parameters

Characteristics of non-value data types Basic Characteristics - Data Types
RAPID Reference Manual 7-taskid-3

taskid Data Types
7-taskid-4 RAPID Reference Manual

Data Types tooldata
tooldata Tool data

Tooldata is used to describe the characteristics of a tool, e.g. a welding gun or a gripper.

If the tool is fixed in space (a stationary tool), common tool data is defined for this tool
and the gripper holding the work object.

Description

Tool data affects robot movements in the following ways:

- The tool centre point (TCP) refers to a point that will satisfy the specified path
and velocity performance. If the tool is reorientated or if coordinated external
axes are used, only this point will follow the desired path at the programmed
velocity.

- If a stationary tool is used, the programmed speed and path will relate to the
work object.

- Programmed positions refer to the position of the current TCP and the
orientation in relation to the tool coordinate system. This means that if, for
example, a tool is replaced because it is damaged, the old program can still be
used if the tool coordinate system is redefined.

Tool data is also used when jogging the robot to:

- Define the TCP that is not to move when the tool is reorientated.

- Define the tool coordinate system in order to facilitate moving in or rotating
about the tool directions.

It is important to always define the actual tool load and when used, the payload
of the robot too. Incorrect definitions of load data can result in overloading of the
robot mechanical structure.

When incorrect tool load data is specified, it can often lead to the following
consequences:

- If the value in the specified load is greater than that of the value of the true load;
-> The robot will not be used to its maximum capacity
-> Impaired path accuracy including a risk of overshooting

- If the value in the specified load is less than the value of the true load;
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure
System DataTypes and Routines 1-tooldata-1

tooldata Data Types
Components

robhold (robot hold) Data type: bool

Defines whether or not the robot is holding the tool:

- TRUE -> The robot is holding the tool.

- FALSE -> The robot is not holding the tool, i.e. a stationary tool.

tframe (tool frame) Data type: pose

The tool coordinate system, i.e.:

- The position of the TCP (x, y and z) in mm, expressed in the wrist coordinate
system (See figure 1).

- The orientation of the tool coordinate system, expressed in the wrist coordinate
system as a quaternion (q1, q2, q3 and q4) (See figure 1).

If a stationary tool is used, the definition is defined in relation to the world
coordinate system.

If the direction of the tool is not specified, the tool coordinate system and the
wrist coordinate system will coincide.

Figure 10 Definition of the tool coordinate system.

tload (tool load) Data type: loaddata

The load of the tool, i.e.

- mass

- The weight of the tool in kg.

Z’

Z

X
X’

The control hole

The tool coordinate system

The wrist coordinate system
Y

Y’
TCP
1-tooldata-2 System DataTypes and Routines

Data Types tooldata
- cog

- The centre of gravity of the tool (x, y and z) in mm, expressed in the wrist
coordinate system

- aom

- The orientation of the coordinate system defined by the inertial axes of the tool,
expressed in the wrist coordinate system. Note: Restriction on orientation when
extended load is used (See loaddata)

- ix

- The moments of inertia of the tool relative to its centre of mass about its IX axis
in kgm2.

- iy

- The moments of inertia of the tool relative to its centre of mass about its IY axis
in kgm2.

- iz

- The moments of inertia of the tool relative to its centre of mass about its IZ axis
in kgm2.

Figure 11 Tool load parameter definitions

If all inertial components are defined as being 0 kgm2, the tool is handled as a
point mass.

For more information (such as coordinate system for stationary tool or
restrictions), see the data type loaddata.

Z’

X
X’

The wrist coordinate system
Y

Y’
TCP

Tool coordinate systeem

Tool load coordinate system -

IX

IZ

IY

Z Inertial axes of tool load
System DataTypes and Routines 1-tooldata-3

tooldata Data Types
If a stationary tool is used, the load of the gripper holding the work object must
be defined.

Note that only the load of the tool is to be specified. The payload handled by a
gripper is connected and disconnected by means of the instruction GripLoad.

Examples

PERS tooldata gripper := [TRUE, [[97.4, 0, 223.1], [0.924, 0, 0.383 ,0]],
[5, [23, 0, 75], [1, 0, 0, 0], 0, 0, 0]];

The tool in Figure 10 is described using the following values:

- The robot is holding the tool.

- The TCP is located at a point 223.1 mm straight out from axis 6 and 97.4 mm
along the X-axis of the wrist coordinate system.

- The X and Z directions of the tool are rotated 45o in relation to the wrist
coordinate system.

- The tool weighs 5 kg.

- The centre of gravity is located at a point 75 mm straight out from axis 6 and
23 mm along the X-axis of the wrist coordinate system.

- The load can be considered a point mass, i.e. without any moment of inertia.

gripper.tframe.trans.z := 225.2;

The TCP of the tool, gripper, is adjusted to 225.2 in the z-direction.

Limitations

The tool data should be defined as a persistent variable (PERS) and should not be
defined within a routine. The current values are then saved when the program is stored
on diskette and are retrieved on loading.

Arguments of the type tool data in any motion instruction should only be an entire
persistent (not array element or record component).

Predefined data

The tool tool0 defines the wrist coordinate system, with the origin being the centre of
the mounting flange. Tool0 can always be accessed from the program, but can never be
changed (it is stored in system module BASE).

PERS tooldata tool0 := [TRUE, [[0, 0, 0], [1, 0, 0 ,0]],
[0.001, [0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];
1-tooldata-4 System DataTypes and Routines

Data Types tooldata
Structure

< dataobject of tooldata >
< robhold of bool >
< tframe of pose >

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< tload of loaddata >
< mass of num >
< cog of pos >

< x of num >
< y of num >
< z of num >

< aom of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< ix of num >
< iy of num >
< iz of num >

Related information

Described in:

Positioning instructions RAPID Summary - Motion

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Definition of payload Instructions - Gripload

Definition of load Data types - Load data
System DataTypes and Routines 1-tooldata-5

tooldata Data Types
1-tooldata-6 System DataTypes and Routines

Data Types tpnum
tpnum Teach Pendant Window number

tpnum is used to represent the Teach Pendant Window number with a symbolic
constant.

Description

A tpnum constant is intended to be used in instruction TPShow. See example below.

Example

TPShow TP_PROGRAM;

The Production Window will be active if the system is in AUTO mode and the
Program Window will be active if the system is in MAN mode, after execution of
this instruction.

Predefined data

The following symbolic constants of the data type tpnum are predefined and can be
used in instruction TPShow:

Characteristics

tpnum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Data types in general, alias data types Basic Characteristics - Data Types

Communicating using the teach pendant RAPID Summary - Communication

Switch window on the teach pendant Instructions - TPShow

 Value Symbolic constant Comment

1 TP_PROGRAM AUTO: Production Window
MAN: Program Window

2 TP_LATEST Latest used Teach Pendant Window
System DataTypes and Routines 1-tpnum-1

tpnum Data Types
1-tpnum-2 System DataTypes and Routines

Data Types triggdata
triggdata Positioning events - trigg

Triggdata is used to store data about a positioning event during a robot movement.

A positioning event can take the form of setting an output signal or running an interrupt
routine at a specific position along the movement path of the robot.

Description

To define the conditions for the respective measures at a positioning event, variables
of the type triggdata are used. The data contents of the variable are formed in the pro-
gram using one of the instructions TriggIO or TriggInt, and are used by one of the
instructions TriggL, TriggC or TriggJ.

Example

VAR triggdata gunoff;

TriggIO gunoff, 5 \DOp:=gun, off;

TriggL p1, v500, gunoff, fine, gun1;

The digital output signal gun is set to the value off when the TCP is at a position
5 mm before the point p1.

Characteristics

Triggdata is a non-value data type.

Related information

Described in:

Definition of triggs Instructions - TriggIO, TriggInt

Use of triggs Instructions - TriggL, TriggC,
 TriggJ

Characteristics of non-value data types Basic Characteristics- Data Types
System DataTypes and Routines 1-triggdata-1

triggdata Data Types
1-triggdata-2 System DataTypes and Routines

Data Types tunetype
tunetype Servo tune type

Tunetype is used to represent an integer with a symbolic constant.

Description

A tunetype constant is intented to be used as an argument to the instruction TuneServo.
See example below.

Example

TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP;

Predefined data

The following symbolic constants of the data type tunetype are predefined and can be
used as argument for the instruction TuneServo.

The following symbolic constants of the data type tunetype are predefined and can be
used as arguments for the instruction SpeedPrioAct (only available on request).

Value Symbolic constant Comment

0 TUNE_DF Reduces overshoots

1 TUNE_KP Affects position control gain

2 TUNE_KV Affects speed control gain

3 TUNE_TI Affects speed control integration time

4 TUNE_FRIC_LEV Affects friction compensation level

5 TUNE_FRIC_RAMP Affects friction compensation ramp

Value Symbolic constant Comment

1 SP_MODE1 Speed priority interpolation mode 1

2 SP_MODE2 Speed priority interpolation mode 2
System DataTypes and Routines 1-tunetype-1

tunetype Data Types
Characteristics

Tunetype is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Data types in general, alias data types Basic Characteristics - Data Types
1-tunetype-2 System DataTypes and Routines

Data Types wobjdata
wobjdata Work object data

Wobjdata is used to describe the work object that the robot welds, processes, moves
within, etc.

Description

If work objects are defined in a positioning instruction, the position will be based on
the coordinates of the work object. The advantages of this are as follows:

- If position data is entered manually, such as in off-line programming, the values
can often be taken from a drawing.

- Programs can be reused quickly following changes in the robot installation. If,
for example, the fixture is moved, only the user coordinate system has to be
redefined.

- Variations in how the work object is attached can be compensated for. For this,
however, some sort of sensor will be required to position the work object.

If a stationary tool or coordinated external axes are used the work object must be
defined, since the path and velocity would then be related to the work object instead of
the TCP.

Work object data can also be used for jogging:

- The robot can be jogged in the directions of the work object.

- The current position displayed is based on the coordinate system of the work
object.

Components

robhold (robot hold) Data type: bool

Defines whether or not the robot is holding the work object:

- TRUE -> The robot is holding the work object, i.e. using a stationary tool.

- FALSE -> The robot is not holding the work object, i.e. the robot is holding
the tool.

ufprog (user frame programmed) Data type: bool

Defines whether or not a fixed user coordinate system is used:

- TRUE -> Fixed user coordinate system.

- FALSE -> Movable user coordinate system, i.e. coordinated external axes
are used.
System DataTypes and Routines 1-wobjdata-1

wobjdata Data Types
ufmec (user frame mechanical unit) Data type: string

The mechanical unit with which the robot movements are coordinated. Only
specified in the case of movable user coordinate systems (ufprog is FALSE).

Specified with the name that is defined in the system parameters, e.g. "orbit_a".

uframe (user frame) Data type: pose

The user coordinate system, i.e. the position of the current work surface or fixture
(see Figure 12):

- The position of the origin of the coordinate system (x, y and z) in mm.

- The rotation of the coordinate system, expressed as a quaternion (q1, q2, q3,
q4).

If the robot is holding the tool, the user coordinate system is defined in the world
coordinate system (in the wrist coordinate system if a stationary tool is used).

When coordinated external axes are used (ufprog is FALSE), the user coordinate
system is defined in the system parameters.

oframe (object frame) Data type: pose

The object coordinate system, i.e. the position of the current work object (see Fig-
ure 12):

- The position of the origin of the coordinate system (x, y and z) in mm.

- The rotation of the coordinate system, expressed as a quaternion (q1, q2, q3,
q4).

The object coordinate system is defined in the user coordinate system.

Figure 12 The various coordinate systems of the robot (when the robot is holding the tool).

Tool coordinates

Object coordinates

Base coordinates
Z

Y

X
World coordinates

User coordinates
Z

Z

Y

Y

X

X

X

Y

Z
Z

X

Y

TCP
1-wobjdata-2 System DataTypes and Routines

Data Types wobjdata
Example

PERS wobjdata wobj2 :=[FALSE, TRUE, "", [[300, 600, 200], [1, 0, 0 ,0]],
[[0, 200, 30], [1, 0, 0 ,0]]];

The work object in Figure 12 is described using the following values:

- The robot is not holding the work object.

- The fixed user coordinate system is used.

- The user coordinate system is not rotated and the coordinates of its origin are
x= 300, y = 600 and z = 200 mm in the world coordinate system.

- The object coordinate system is not rotated and the coordinates of its origin are
x= 0, y= 200 and z= 30 mm in the user coordinate system.

wobj2.oframe.trans.z := 38.3;

- The position of the work object wobj2 is adjusted to 38.3 mm in the z-direction.

Limitations

The work object data should be defined as a persistent variable (PERS) and should not
be defined within a routine. The current values are then saved when the program is
stored on diskette and are retrieved on loading.

Arguments of the type work object data in any motion instruction should only be an
entire persistent (not array element or record component).

Predefined data

The work object data wobj0 is defined in such a way that the object coordinate system
coincides with the world coordinate system. The robot does not hold the work object.

Wobj0 can always be accessed from the program, but can never be changed (it is stored
in system module BASE).

PERS wobjdata wobj0 := [FALSE, TRUE, "", [[0, 0, 0], [1, 0, 0 ,0]],
[[0, 0, 0], [1, 0, 0 ,0]]];
System DataTypes and Routines 1-wobjdata-3

wobjdata Data Types
Structure

< dataobject of wobjdata >
< robhold of bool >
< ufprog of bool>
< ufmec of string >
< uframe of pose >

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< oframe of pose >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

Related information

Described in:

Positioning instructions RAPID Summary - Motion

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems

Coordinated external axes Motion and I/O Principles - Coordi-
nate Systems

Calibration of coordinated external axes User’s Guide - System Parameters
1-wobjdata-4 System DataTypes and Routines

Data Types wzstationary

d or a

tch
,

 a

bot

r
wzstationary Stationary world zone data

wzstationary (world zone stationary) is used to identify a stationary world zone and
can only be used in an event routine connected to the event POWER ON.

A world zone is supervised during robot movements both during program execution
and jogging. If the robot’s TCP reaches this world zone, the movement is stoppe
digital output signal is set or reset.

Description

A wzstationary world zone is defined and activated by a WZLimSup or a WZDOSet
instruction.

WZLimSup or WZDOSet gives the variable or persistent variable for wzstationary a
numeric value that identifies the world zone.

A stationary world zone is always active and is only erased by a warm start (swi
power off then on, or change system parameters). It is not possible to deactivate
activate or erase a stationary world zone via RAPID instructions.

Stationary world zones should be active from power on and should be defined in
POWER ON event routine or a semistatic task.

Example

VAR wzstationary conveyor;
...
PROC ...

VAR shapedata volume;
...
WZBoxDef \Inside, volume, p_corner1, p_corner2;
WZLimSup \Stat, conveyor, volume;

ENDPROC

A conveyor is defined as a straight box (the volume below the belt). If the ro
reaches this volume, the movement is stopped.

Limitations

A wzstationary data can only be defined as a global (not local within module or
routine) variable (VAR) or as a persistent data (PERS).

Arguments of the type wzstationary should only be entire data (not array element o
record component).
System DataTypes and Routines 1-wzstationary-1

wzstationary Data Types
Init value for data of type wzstationary is not used by the system. When using a
persistent variable in a multi-tasking system, set the init value to 0,
e.g. PERS wzstationary share_workarea := [0];

Example

For a complete example see instruction WZLimSup.

Characteristics

wzstationary is an alias data type of wztemporary and inherits its characteristics.

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Temporary world zone Data Types - wztemporary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
1-wzstationary-2 System DataTypes and Routines

Data Types wztemporary

d or a

ystem

s a

ne)
wztemporary Temporary world zone data

wztemporary (world zone temporary) is used to identify a temporary world zone and
can be used anywhere in the RAPID program for the MAIN task.

A world zone is supervised during robot movements both during program execution
and jogging. If the robot’s TCP reaches this world zone, the movement is stoppe
digital output signal is set or reset.

Description

A wztemporary world zone is defined and activated by a WZLimSup or a WZDOSet
instruction.

WZLimSup or WZDOSet gives the variable or persistent variable for wztemporary a
numeric value, that identifies the world zone.

Once defined and activated, a temporary world zone can be deactivated by
WZDisable, activated again by WZEnable and erased by WZFree.

All temporary world zones in the system are automatically erased (erased in the s
and all data objects of type wztemporary in MAIN task are set to 0):

- when a new program is loaded in the MAIN task

- when starting program execution from the beginning in the MAIN task

Example

VAR wztemporary roll;
...
PROC ...

VAR shapedata volume;
...
WZCylDef \Inside, volume, p_center, 400, 1000;
WZLimSup \Temp, roll, volume;

ENDPROC

A roll (just being brought into the work area by the application) is defined a
cylinder. If the robot reaches this volume, the movement is stopped.

Limitations

A wztemporary data can only be defined as global (not local within module or routi
variable (VAR) or as a persistent data (PERS).
System DataTypes and Routines 1-wztemporary-1

wztemporary Data Types
Arguments of the type wztemporary should only be entire data (not array element or
record component).

A temporary world zone (instructions WZLimSup or WZDOSet) should not be defined
in tasks other than MAIN because such a definition is affected by the program
execution in the MAIN task.

Init value for data of type wztemporary is not used by the system.When using a
persistent variable in a multi-tasking system, set the init value to 0,
e.g. PERS wztemporary share_workarea := [0];

Example

For a complete example see instruction WZDOSet.

Structure

<dataobject of wztemporary>
<wz of num>

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Stationary world zone Data Types - wzstationary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet

Deactivate world zone Instructions - WZDisable

Activate world zone Instructions - WZEnable

Erase world zone Instructions - WZFree
1-wztemporary-2 System DataTypes and Routines

Data Types zonedata
zonedata Zone data

Zonedata is used to specify how a position is to be terminated, i.e. how close to the
programmed position the axes must be before moving towards the next position.

Description

A position can be terminated either in the form of a stop point or a fly-by point.

A stop point means that the robot and external axes must reach the specified position
(stand still) before program execution continues with the next instruction.

A fly-by point means that the programmed position is never attained.
Instead, the direction of motion is changed before the position is reached.
Two different zones (ranges) can be defined for each position:

- The zone for the TCP path.

- The extended zone for reorientation of the tool and for external axes.

Figure 13 The zones for a fly-by point.

Zones function in the same way during joint movement, but the zone size may differ
somewhat from the one programmed.

The zone size cannot be larger than half the distance to the closest position (forwards
or backwards). If a larger zone is specified, the robot automatically reduces it.

The zone for the TCP path

A corner path (parabola) is generated as soon as the edge of the zone is reached
(see Figure 13).

The zone for Programmed
position

The extended zone

the TCP path

Start of TCP corner path

Start of reorientation
towards next position
System DataTypes and Routines 1-zonedata-1

zonedata Data Types
The zone for reorientation of the tool

Reorientation starts as soon as the TCP reaches the extended zone. The tool is
reoriented in such a way that the orientation is the same leaving the zone as it
would have been in the same position if stop points had been programmed.
Reorientation will be smoother if the zone size is increased, and there is less of a
risk of having to reduce the velocity to carry out the reorientation.

Figure 14a Three positions are programmed, the last with different tool orientation.

Figure 14b If all positions were stop points, program execution would look like this.

Figure 14c If the middle position was a fly-by point, program execution would look like this

The zone for external axes

External axes start to move towards the next position as soon as the TCP reaches
the extended zone. In this way, a slow axis can start accelerating at an earlier
stage and thus execute more evenly.

Reduced zone

With large reorientations of the tool or with large movements of the external axes,
the extended zone and even the TCP zone can be reduced by the robot. The zone
will be defined as the smallest relative size of the zone based upon the zone com-
ponents (see next page) and the programmed motion.

Figure 15 Example of reduced zone to 36% of the motion

Zone size

pzone_ori pzone_tcp

The relative sizes of the zone are

angle of reorientation P1 - P2

zone_ori

P2

= 9o/25o = 36%

90 mm 60 mm

9o

MoveL with 200 mm movements

zone_ori

length of movement P1 - P2

pzone_tcp
= 60/200 = 30%

P1
of the tool, 25o reorientation of
the tool and with zone z60

length of movement P1 - P2

pzone_ori
= 90/200 = 45%
1-zonedata-2 System DataTypes and Routines

Data Types zonedata
Figure 16 Example of reduced zone to 15% of the motion

Components

finep (fine point) Data type: bool

Defines whether the movement is to terminate as a stop point (fine point) or as a
fly-by point.

- TRUE -> The movement terminates as a stop point.
The remaining components in the zone data are not used.

- FALSE -> The movement terminates as a fly-by point.

pzone_tcp (path zone TCP) Data type: num

The size (the radius) of the TCP zone in mm.

The extended zone will be defined as the smallest relative size of the zone based
upon the following components and the programmed motion.

pzone_ori (path zone orientation) Data type: num

The zone size (the radius) for the tool reorientation. The size is defined as the dis-
tance of the TCP from the programmed point in mm.

The size must be larger than the corresponding value for pzone_tcp.
If a lower value is specified, the size is automatically increased to make it the
same as pzone_tcp.

pzone_eax (path zone external axes) Data type: num

The zone size (the radius) for external axes. The size is defined as the distance
of the TCP from the programmed point in mm.

The size must be larger than the corresponding value for pzone_tcp.
If a lower value is specified, the size is automatically increased to make it the
same as pzone_tcp.

pzone_ori pzone_tcp

The relative sizes of the zone are

angle of reorientation P1 - P2

zone_ori

P2

= 9o/60o = 15%

90 mm 60 mm
9o

MoveL with 200 mm movements

zone_ori

length of movement P1 - P2

pzone_tcp
= 60/200 = 30%

P1

of the tool, 60o reorientation of
the tool and with zone z60
System DataTypes and Routines 1-zonedata-3

zonedata Data Types
zone_ori (zone orientation) Data type: num

The zone size for the tool reorientation in degrees. If the robot is holding the work
object, this means an angle of rotation for the work object.

zone_leax (zone linear external axes) Data type: num

The zone size for linear external axes in mm.

zone_reax (zone rotational external axes) Data type: num

The zone size for rotating external axes in degrees.

Examples

VAR zonedata path := [FALSE, 25, 40, 40, 10, 35, 5];

The zone data path is defined by means of the following characteristics:

- The zone size for the TCP path is 25 mm.

- The zone size for the tool reorientation is 40 mm (TCP movement).

- The zone size for external axes is 40 mm (TCP movement).

If the TCP is standing still, or there is a large reorientation, or there is a large
external axis movement, with respect to the zone, the following apply instead:

- The zone size for the tool reorientation is 10 degrees.

- The zone size for linear external axes is 35 mm.

- The zone size for rotating external axes is 5 degrees.

path.pzone_tcp := 40;

The zone size for the TCP path is adjusted to 40 mm.
1-zonedata-4 System DataTypes and Routines

Data Types zonedata
Predefined data

A number of zone data are already defined in the system module BASE.

Stop points

Name

fine 0 mm

Fly-by points

TCP movement Tool reorientation

Name TCP path Orientation Ext. axis Orientation Linear axis Rotating axis

z1 1 mm 1 mm 1 mm 0.1 o 1 mm 0.1 o

z5 5 mm 8 mm 8 mm 0.8 o 8 mm 0.8 o

z10 10 mm 15 mm 15 mm 1.5 o 15 mm 1.5 o

z15 15 mm 23 mm 23 mm 2.3 o 23 mm 2.3 o

z20 20 mm 30 mm 30 mm 3.0 o 30 mm 3.0o

z30 30 mm 45 mm 45 mm 4.5 o 45 mm 4.5 o

z40 40 mm 60 mm 60 mm 6.0 o 60 mm 6.0 o

z50 50 mm 75 mm 75 mm 7.5 o 75 mm 7.5 o

z60 60 mm 90 mm 90 mm 9.0 o 90 mm 9.0 o

z80 80 mm 120 mm 120 mm 12 o 120 mm 12 o

z100 100 mm 150 mm 150 mm 15 o 150 mm 15 o

z150 150 mm 225 mm 225 mm 23 o 225 mm 23 o

z200 200 mm 300 mm 300 mm 30 o 300 mm 30 o

Structure

< data object of zonedata >
< finep of bool >
< pzone_tcp of num >
< pzone_ori of num >
< pzone_eax of num >
< zone_ori of num >
< zone_leax of num >
< zone_reax of num >
System DataTypes and Routines 1-zonedata-5

zonedata Data Types
Related information

Described in:

Positioning instructions RAPID Summary - Motion

Movements/Paths in general Motion and I/O Principles - Position-
ing during Program Execution

Configuration of external axes User’s Guide - System Parameters
1-zonedata-6 System DataTypes and Routines

Instructions

CONTENTS
“:=” Assigns a value

AccSet Reduces the acceleration

ActUnit Activates a mechanical unit

Add Adds a numeric value

Break Break program execution

ProcCall Calls a new procedure

CallByVar Call a procedure by a variable

Clear Clears the value

ClkReset Resets a clock used for timing

ClkStart Starts a clock used for timing

ClkStop Stops a clock used for timing

Close Closes a file or serial channel

comment Comment

ConfJ Controls the configuration during joint movement

ConfL Monitors the configuration during linear movement

CONNECT Connects an interrupt to a trap routine

DeactUnit Deactivates a mechanical unit

Decr Decrements by 1

EOffsOff Deactivates an offset for external axes

EOffsOn Activates an offset for external axes

EOffsSet Activates an offset for external axes using a value

ErrWrite Write an Error Message

EXIT Terminates program execution

ExitCycle Break current cycle and start next

FOR Repeats a given number of times

GetSysData Get system data

GOTO Goes to a new instruction

GripLoad Defines the payload of the robot

IDelete Cancels an interrupt

IDisable Disables interrupts

IEnable Enables interrupts

Compact IF If a condition is met, then... (one instruction)

IF If a condition is met, then ...; otherwise ...

Incr Increments by 1

InvertDO Inverts the value of a digital output signal

IODisable Disable I/O unit
System DataTypes and Routines 2-1

Instructions
IOEnable Enable I/O unit

ISignalDI Orders interrupts from a digital input signal

ISignalDO Interrupts from a digital output signal

ISleep Deactivates an interrupt

ITimer Orders a timed interrupt

IVarValue Orders a variable value interrupt

IWatch Activates an interrupt

label Line name

Load Load a program module during execution

MoveAbsJ Moves the robot to an absolute joint position

MoveC Moves the robot circularly

MoveJ Moves the robot by joint movement

MoveL Moves the robot linearly

MoveCDO Moves the robot circularly and sets digital output in the corner

MoveJDO Moves the robot by joint movement and sets digital output in the corner

MoveLDO Moves the robot linearly and sets digital output in the corner

MoveCSync Moves the robot circularly and executes a RAPID procedure

MoveJSync Moves the robot by joint movement and executes a RAPID procedure

MoveL Sync Moves the robot linearly and executes a RAPID procedure

Open Opens a file or serial channel

PathResol Override path resolution

PDispOff Deactivates program displacement

PDispOn Activates program displacement

PDispSet Activates program displacement using a value

PulseDO Generates a pulse on a digital output signal

RAISE Calls an error handler

Reset Resets a digital output signal

RestoPath Restores the path after an interrupt

RETRY Restarts following an error

RETURN Finishes execution of a routine

Rewind Rewind file position

Save Save a program module

SearchC Searches circularly using the robot

SearchL Searches linearly using the robot

Set Sets a digital output signal

SetAO Changes the value of an analog output signal
2-2 System DataTypes and Routines

Instructions
SetDO Changes the value of a digital output signal

SetGO Changes the value of a group of digital output signals

SingArea Defines interpolation around singular points

SoftAct Activating the soft servo

SoftDeact Deactivating the soft servo

StartLoad Load a program module during execution

StartMove Restarts robot motion

Stop Stops program execution

StopMove Stops robot motion

StorePath Stores the path when an interrupt occurs

TEST Depending on the value of an expression ...

TPErase Erases text printed on the teach pendant

TPReadFK Reads function keys

TPReadNum Reads a number from the teach pendant

TPShow Switch window on the teach pendant

TPWrite Writes on the teach pendant

TriggC Circular robot movement with events

TriggEquip Defines a fixed position-time I/O event

TriggInt Defines a position related interrupt

TriggIO Defines a fixed position I/O event

TriggJ Axis-wise robot movements with events

TriggL Linear robot movements with events

TRYNEXT Jumps over an instruction which has caused an error

TuneReset Resetting servo tuning

UnLoad UnLoad a program module during execution

WaitDI Waits until a digital input signal is set

WaitDO Waits until a digital output signal is set

WaitLoad Connect the loaded module to the task

VelSet Changes the programmed velocity

WHILE Repeats as long as ...

Write Writes to a character-based file or serial channel

WriteBin Writes to a binary serial channel

WriteStrBin Writes a string to a binary serial channel

WaitTime Waits a given amount of time

WaitUntil Waits until a condition is met

WZBoxDef Define a box-shaped world zone
System DataTypes and Routines 2-3

Instructions
WZCylDef Define a cylinder-shaped world zone

WZDisable Deactivate temporary world zone supervision

WZDOSet Activate world zone to set digital output

WZEnable Activate temporary world zone supervision

WZFree Erase temporary world zone supervision

WZLimSup Activate world zone limit supervision

WZSphDef Define a sphere-shaped world zone
2-4 System DataTypes and Routines

Instructions “:=”

thing

 of
“:=” Assigns a value

The “:=” instruction is used to assign a new value to data. This value can be any
from a constant value to an arithmetic expression, e.g. reg1+5*reg3.

Examples

reg1 := 5;

reg1 is assigned the value 5.

reg1 := reg2 - reg3;

reg1 is assigned the value that the reg2-reg3 calculation returns.

counter := counter + 1;

counter is incremented by one.

Arguments

Data := Value

Data Data type: All

The data that is to be assigned a new value.

Value Data type: Same as Data

The desired value.

Examples

tool1.tframe.trans.x := tool1.tframe.trans.x + 20;

The TCP for tool1 is shifted 20 mm in the X-direction.

pallet{5,8} := Abs(value);

An element in the pallet matrix is assigned a value equal to the absolute value
the value variable.
System DataTypes and Routines 2-“:=”-1

“:=” Instructions
Limitations

The data (whose value is to be changed) must not be

- a constant

- a non-value data type.

The data and value must have similar (the same or alias) data types.

Syntax

(EBNF)
<assignment target> ’:=’ <expression> ’;’
<assignment target> ::=

<variable>
| <persistent>
| <parameter>
| <VAR>

Related information

Described in:

Expressions Basic Characteristics - Expressions

Non-value data types Basic Characteristics - Data Types

Assigning an initial value to data Basic Characteristics - Data
Programming and Testing

Manually assigning a value to data Programming and Testing
2-“:=”-2 System DataTypes and Routines

Instructions AccSet
AccSet Reduces the acceleration

AccSet is used when handling fragile loads. It allows slower acceleration and deceler-
ation, which results in smoother robot movements.

Examples

AccSet 50, 100;

The acceleration is limited to 50% of the normal value.

AccSet 100, 50;

The acceleration ramp is limited to 50% of the normal value.

Arguments

AccSet Acc Ramp

Acc Data type: num

Acceleration and deceleration as a percentage of the normal values.
100% corresponds to maximum acceleration. Maximum value: 100%.
Input value < 20% gives 20% of maximum acceleration.

Ramp Data type: num

The rate at which acceleration and deceleration increases as a percentage of the
normal values (see Figure 17). Jerking can be restricted by reducing this value.
100% corresponds to maximum rate. Maximum value: 100%.
Input value < 10% gives 10% of maximum rate.

Figure 17 Reducing the acceleration results in smoother movements.

Acceleration

Time
AccSet 30, 100

Acceleration

Time
AccSet 100, 30

Acceleration

Time
AccSet 100, 100, i.e. normal acceleration
System DataTypes and Routines 2-AccSet-1

AccSet Instructions
Program execution

The acceleration applies to both the robot and external axes until a new AccSet instruc-
tion is executed.

The default values (100%) are automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

AccSet
[Acc ’:=’] < expression (IN) of num > ’,’
[Ramp ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Positioning instructions RAPID Summary - Motion
2-AccSet-2 System DataTypes and Routines

Instructions ActUnit
ActUnit Activates a mechanical unit

ActUnit is used to activate a mechanical unit.

It can be used to determine which unit is to be active when, for example, common drive
units are used.

Example

ActUnit orbit_a;

Activation of the orbit_a mechanical unit.

Arguments

ActUnit MecUnit

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit that is to be activated.

Program execution

When the robot and external axes have come to a standstill, the specified mechanical
unit is activated. This means that it is controlled and monitored by the robot.

If several mechanical units share a common drive unit, activation of one of these
mechanical units will also connect that unit to the common drive unit.

Limitations

Instruction ActUnit cannot be used in

- program sequence StorePath ... RestoPath

- event routine RESTART

The movement instruction previous to this instruction, should be terminated with a
stop point in order to make a restart in this instruction possible following a power fail-
ure.
System DataTypes and Routines 2-ActUnit-1

ActUnit Instructions
Syntax

ActUnit
[MecUnit ’:=’] < variable (VAR) of mecunit> ’;’

Related information

Described in:

Deactivating mechanical units Instructions - DeactUnit

Mechanical units Data Types - mecunit

More examples Instructions - DeactUnit
2-ActUnit-2 System DataTypes and Routines

Instructions Add
Add Adds a numeric value

Add is used to add or subtract a value to or from a numeric variable or persistent.

Examples

Add reg1, 3;

3 is added to reg1, i.e. reg1:=reg1+3.

Add reg1, -reg2;

The value of reg2 is subtracted from reg1, i.e. reg1:=reg1-reg2.

Arguments

Add Name AddValue

Name Data type: num

The name of the variable or persistent to be changed.

AddValue Data type: num

The value to be added.

Syntax

Add
[Name ’:=’] < var or pers (INOUT) of num > ’,’
[AddValue ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Incrementing a variable by 1 Instructions - Incr

Decrementing a variable by 1 Instructions - Decr

Changing data using an arbitrary Instructions - :=
expression, e.g. multiplication
System DataTypes and Routines 2-Add-1

Add Instructions
2-Add-2 System DataTypes and Routines

Instructions Break
Break Break program execution

Break is used to make an immediate break in program execution for RAPID program
code debugging purposes.

Example

..
Break;
...

Program execution stops and it is possible to analyse variables, values etc. for
debugging purposes.

Program execution

The instruction stops program execution at once, without waiting for the robot and
external axes to reach their programmed destination points for the movement being
performed at the time. Program execution can then be restarted from the next
instruction.

If there is a Break instruction in some event routine, the routine will be executed from
the beginning of the next event.

Syntax

Break’;’

Related information

Described in:

Stopping for program actions Instructions - Stop

Stopping after a fatal error Instructions - EXIT

Terminating program execution Instructions - EXIT

Only stopping robot movements Instructions - StopMove
System DataTypes and Routines 2-Break-1

Break Instructions
2-Break-2 System DataTypes and Routines

Instructions ProcCall
ProcCall Calls a new procedure

A procedure call is used to transfer program execution to another procedure. When the
procedure has been fully executed, program execution continues with the instruction
following the procedure call.

It is usually possible to send a number of arguments to the new procedure. These
control the behaviour of the procedure and make it possible for the same procedure to
be used for different things.

Examples

weldpipe1;

Calls the weldpipe1 procedure.

errormessage;
Set do1;

.

PROC errormessage()
TPWrite "ERROR";

ENDPROC

The errormessage procedure is called. When this procedure is ready, program
execution returns to the instruction following the procedure call, Set do1.

Arguments

Procedure { Argument }

Procedure Identifier

The name of the procedure to be called.

Argument Data type: In accordance with
the procedure declaration

The procedure arguments (in accordance with the parameters of the procedure).

Example

weldpipe2 10, lowspeed;

Calls the weldpipe2 procedure, including two arguments.
System DataTypes and Routines 2-ProcCall-1

ProcCall Instructions

riable

 also
n the
weldpipe3 10 \speed:=20;

Calls the weldpipe3 procedure, including one mandatory and one optional
argument.

Limitations

The procedure’s arguments must agree with its parameters:

- All mandatory arguments must be included.

- They must be placed in the same order.

- They must be of the same data type.

- They must be of the correct type with respect to the access-mode (input, va
or persistent).

A routine can call a routine which, in turn, calls another routine, etc. A routine can
call itself, i.e. a recursive call. The number of routine levels permitted depends o
number of parameters, but more than 10 levels are usually permitted.

Syntax

(EBNF)
<procedure> [<argument list>] ’;’

<procedure> ::= <identifier>

Related information

Described in:

Arguments, parameters Basic Characteristics - Routines

More examples Program Examples
2-ProcCall-2 System DataTypes and Routines

Instructions CallByVar

rted

cted
CallByVar Call a procedure by a variable

CallByVar (Call By Variable) can be used to call procedures with specific names, e.g.
proc_name1, proc_name2, proc_name3 ... proc_namex via a variable.

Example

reg1 := 2;
CallByVar “proc”, reg1;

The procedure proc2 is called.

Arguments

CallByVar Name Number

Name Data type: string

The first part of the procedure name, e.g. proc_name.

Number Data type: num

The numeric value for the number of the procedure. This value will be conve
to a string and gives the 2:nd part of the procedure name e.g. 1. The value must
be a positive integer.

Example

Static selection of procedure call

TEST reg1
CASE 1:

lf_door door_loc;
CASE 2:

rf_door door_loc;
CASE 3:

lr_door door_loc;
CASE 4:

rr_door door_loc;
DEFAULT:

EXIT;
ENDTEST

Depending on whether the value of register reg1 is 1, 2, 3 or 4, different
procedures are called that perform the appropriate type of work for the sele
door.
System DataTypes and Routines 2-CallByVar-1

CallByVar Instructions

dure

 is set

NO is
The door location in argument door_loc.

Dynamic selection of procedure call with RAPID syntax

reg1 := 2;
%”proc”+NumToStr(reg1,0)% door_loc;

The procedure proc2 is called with argument door_loc.

Limitation: All procedures must have a specific name e.g. proc1, proc2, proc3.

Dynamic selection of procedure call with CallByVar

reg1 := 2;
CallByVar “proc”,reg1;

The procedure proc2 is called.

Limitation: All procedures must have specific name, e.g. proc1, proc2, proc3,
and no arguments can be used.

Limitations

Can only be used to call procedures without parameters.

Execution of CallByVar takes a little more time than execution of a normal proce
call.

Error handling

In the event of a reference to an unknown procedure, the system variable ERRNO
to ERR_REFUNKPRC.

In the event of the procedure call error (not procedure), the system variable ERR
set to ERR_CALLPROC.

These errors can be handled in the error handler.

Syntax

CallByVar
[Name ‘:=’] <expression (IN) of string>’,’
[Number ‘:=‘] <expression (IN) of num>’;’
2-CallByVar-2 System DataTypes and Routines

Instructions CallByVar
Related information

Described in:

Calling procedures Basic Characteristic - Routines
User’s Guide - The programming
language RAPID
System DataTypes and Routines 2-CallByVar-3

CallByVar Instructions
2-CallByVar-4 System DataTypes and Routines

Instructions Clear
Clear Clears the value

Clear is used to clear a numeric variable or persistent , i.e. it sets it to 0.

Example

Clear reg1;

Reg1 is cleared, i.e. reg1:=0.

Arguments

Clear Name

Name Data type: num

The name of the variable or persistent to be cleared.

Syntax

Clear
[Name ’:=’] < var or pers (INOUT) of num > ’;’

Related information

Described in:

Incrementing a variable by 1 Instructions - Incr

Decrementing a variable by 1 Instructions - Decr
System DataTypes and Routines 2-Clear-1

Clear Instructions
2-Clear-2 System DataTypes and Routines

Instructions ClkReset
ClkReset Resets a clock used for timing

ClkReset is used to reset a clock that functions as a stop-watch used for timing.

This instruction can be used before using a clock to make sure that it is set to 0.

Example

ClkReset clock1;

The clock clock1 is reset.

Arguments

ClkReset Clock

Clock Data type: clock

The name of the clock to reset.

Program execution

When a clock is reset, it is set to 0.

 If a clock is running, it will be stopped and then reset.

Syntax

ClkReset
[Clock ’:=’] < variable (VAR) of clock > ’;’

Related Information

Described in:

Other clock instructions RAPID Summary - System & Time
System DataTypes and Routines 2-ClkReset-1

ClkReset Instructions
2-ClkReset-2 System DataTypes and Routines

Instructions ClkStart

event

 back-
ClkStart Starts a clock used for timing

ClkStart is used to start a clock that functions as a stop-watch used for timing.

Example

ClkStart clock1;

The clock clock1 is started.

Arguments

ClkStart Clock

Clock Data type: clock

The name of the clock to start.

Program execution

When a clock is started, it will run and continue counting seconds until it is stopped.

A clock continues to run when the program that started it is stopped. However, the
event that you intended to time may no longer be valid. For example, if the program
was measuring the waiting time for an input, the input may have been received while
the program was stopped. In this case, the program will not be able to “see” the
that occurred while the program was stopped.

A clock continues to run when the robot is powered down as long as the battery
up retains the program that contains the clock variable.

If a clock is running it can be read, stopped or reset.

Example

VAR clock clock2;

ClkReset clock2;
ClkStart clock2;
WaitUntil DInput(di1) = 1;
ClkStop clock2;
time:=ClkRead(clock2);

The waiting time for di1 to become 1 is measured.
System DataTypes and Routines 2-ClkStart-1

ClkStart Instructions
Syntax

ClkStart
[Clock ’:=’] < variable (VAR) of clock > ’;’

Related Information

Described in:

Other clock instructions RAPID Summary - System & Time
2-ClkStart-2 System DataTypes and Routines

Instructions ClkStop
ClkStop Stops a clock used for timing

ClkStop is used to stop a clock that functions as a stop-watch used for timing.

Example

ClkStop clock1;

The clock clock1 is stopped.

Arguments

ClkStop Clock

Clock Data type: clock

The name of the clock to stop.

Program execution

When a clock is stopped, it will stop running.

If a clock is stopped, it can be read, started again or reset.

Syntax

ClkStop
[Clock ’:=’] < variable (VAR) of clock > ’;’

Related Information

Described in:

Other clock instructions RAPID Summary - System & Time

More examples Instructions - ClkStart
System DataTypes and Routines 2-ClkStop-1

ClkStop Instructions
2-ClkStop-2 System DataTypes and Routines

Instructions Close
Close Closes a file or serial channel

Close is used to close a file or serial channel.

Example

Close channel2;

The serial channel referred to by channel2 is closed.

Arguments

Close IODevice

IODevice Data type: iodev

The name (reference) of the file or serial channel to be closed.

Program execution

The specified file or serial channel is closed and must be re-opened before reading or
writing. If it is already closed, the instruction is ignored.

Syntax

Close
[IODevice ’:=’] <variable (VAR) of iodev>’;’

Related information

Described in:

Opening a file or serial channel RAPID Summary - Communication
System DataTypes and Routines 2-Close-1

Close Instructions
2-Close-2 System DataTypes and Routines

Instructions comment
comment Comment

Comment is only used to make the program easier to understand. It has no effect on the
execution of the program.

Example

! Goto the position above pallet
MoveL p100, v500, z20, tool1;

A comment is inserted into the program to make it easier to understand.

Arguments

! Comment

Comment Text string

Any text.

Program execution

Nothing happens when you execute this instruction.

Syntax

(EBNF)
’!’ {<character>} <newline>

Related information

Described in:

Characters permitted in a comment Basic Characteristics-
Basic Elements

Comments within data and routine Basic Characteristics-
declarations Basic Elements
System DataTypes and Routines 2-comment-1

comment Instructions
2-comment-2 System DataTypes and Routines

Instructions ConfJ

n
e-

r a
 clos-

 can
clos-

tion.

 pos-
ops.

xis
op if

o-
 and
ConfJ Controls the configuration during joint movement

ConfJ (Configuration Joint) is used to specify whether or not the robot’s configuratio
is to be controlled during joint movement. If it is not controlled, the robot can som
times use a different configuration than that which was programmed.

With ConfJ\Off, the robot cannot switch main axes configuration - it will search fo
solution with the same main axes configuration as the current one. It moves to the
est wrist configuration for axes 4 and 6.

Examples

ConfJ \Off;
MoveJ *, v1000, fine, tool1;

The robot moves to the programmed position and orientation. If this position
be reached in several different ways, with different axis configurations, the
est possible position is chosen.

ConfJ \On;
MoveJ *, v1000, fine, tool1;

The robot moves to the programmed position, orientation and axis configura
If this is not possible, program execution stops.

Arguments

ConfJ [\On] | [\Off]

\On Data type: switch

The robot always moves to the programmed axis configuration. If this is not
sible using the programmed position and orientation, program execution st

The IRB5400 robot will move to the pogrammed axis configuration or to an a
configuration close the the programmed one. Program execution will not st
it is impossible to reach the programmed axis configuration.

\Off Data type: switch

The robot always moves to the closest axis configuration.

Program execution

If the argument \On (or no argument) is chosen, the robot always moves to the pr
grammed axis configuration. If this is not possible using the programmed position
System DataTypes and Routines 2-ConfJ-1

ConfJ Instructions
orientation, program execution stops before the movement starts.

If the argument \Off is chosen, the robot always moves to the closest axis configuration.
This may be different to the programmed one if the configuration has been incorrectly
specified manually, or if a program displacement has been carried out.

The control is active by default. This is automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

ConfJ
[’\’ On] | [’\’ Off] ’;’

Related information

Described in:

Handling different configurations Motion Principles -
Robot Configuration

Robot configuration during linear movement Instructions - ConfL
2-ConfJ-2 System DataTypes and Routines

Instructions ConfL

a-
the
also
joint

le to

nfig-

the
ConfL Monitors the configuration during linear movement

ConfL (Configuration Linear) is used to specify whether or not the robot’s configur
tion is to be monitored during linear or circular movement. If it is not monitored,
configuration at execution time may differ from that at programmed time. It may
result in unexpected sweeping robot movements when the mode is changed to
movement.

NOTE: For the IRB5400 robot the monotoring is always off independant of the
switch.

Examples

ConfL \On;
MoveL *, v1000, fine, tool1;

Program execution stops when the programmed configuration is not possib
reach from the current position.

SingArea \Wrist;
Confl \On;
MoveL *, v1000, fine, tool1;

The robot moves to the programmed position, orientation and wrist axis co
uration. If this is not possible, program execution stops.

ConfL \Off;
MoveL *, v1000, fine, tool1;

No error message is displayed when the programmed configuration is not
same as the configuration achieved by program execution.

Arguments

ConfL [\On] | [\Off]

\On Data type: switch

The robot configuration is monitored.

\Off Data type: switch

The robot configuration is not monitored.
System DataTypes and Routines 2-ConfL-1

ConfL Instructions
Program execution

During linear or circular movement, the robot always moves to the programmed posi-
tion and orientation that has the closest possible axis configuration. If the argument \On
(or no argument) is chosen, then the program execution stops as soon as:

- the configuration of the programmed position will not be attained from the
current position.

- the needed reorientation of any one of the wrist axes to get to the programmed
position from the current position exceeds a limit (140-180 degrees).

However, it is possible to restart the program again, although the wrist axes may con-
tinue to the wrong configuration. At a stop point, the robot will check that the config-
urations of all axes are achieved, not only the wrist axes.

If SingArea\Wrist is also used, the robot always moves to the programmed wrist axes
configuration and at a stop point the remaining axes configurations will be checked.

If the argument \Off is chosen, there is no monitoring.

Monitoring is active by default. This is automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

ConfL
[’\’ On] | [’\’ Off] ’;’

Related information

Described in:

Handling different configurations Motion and I/O Principles-
Robot Configuration

Robot configuration during joint movement Instructions - ConfJ
2-ConfL-2 System DataTypes and Routines

Instructions CONNECT
CONNECT Connects an interrupt to a trap routine

CONNECT is used to find the identity of an interrupt and connect it to a trap routine.

The interrupt is defined by ordering an interrupt event and specifying its identity. Thus,
when that event occurs, the trap routine is automatically executed.

Example

VAR intnum feeder_low;
CONNECT feeder_low WITH feeder_empty;
ISignalDI di1, 1 , feeder_low;

An interrupt identity feeder_low is created which is connected to the trap routine
feeder_empty. The interrupt is defined as input di1 is getting high. In other
words, when this signal becomes high, the feeder_empty trap routine is executed.

Arguments

CONNECT Interrupt WITH Trap routine

Interrupt Data type: intnum

The variable that is to be assigned the identity of the interrupt.
This must not be declared within a routine (routine data).

Trap routine Identifier

The name of the trap routine.

Program execution

The variable is assigned an interrupt identity which can then be used when ordering or
disabling interrupts. This identity is also connected to the specified trap routine.

Note that before an event can be handled, an interrupt must also be ordered, i.e. the
event specified.

Limitations

An interrupt (interrupt identity) cannot be connected to more than one trap routine.
Different interrupts, however, can be connected to the same trap routine.

When an interrupt has been connected to a trap routine, it cannot be reconnected or
transferred to another routine; it must first be deleted using the instruction IDelete.
System DataTypes and Routines 2-CONNECT-1

CONNECT Instructions
Error handling

If the interrupt variable is already connected to a TRAP routine, the system variable
ERRNO is set to ERR_ALRDYCNT.

If the interrupt variable is not a variable reference, the system variable ERRNO is set
to ERR_CNTNOTVAR.

If no more interrupt numbers are available, the system variable ERRNO is set to
ERR_INOMAX.

These errors can be handled in the ERROR handler.

Syntax

(EBNF)
CONNECT <connect target> WITH <trap>‘;’

<connect target> ::= <variable>
| <parameter>
| <VAR>

<trap> ::= <identifier>

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

More information on interrupt management Basic Characteristics- Interrupts
2-CONNECT-2 System DataTypes and Routines

Instructions DeactUnit
DeactUnit Deactivates a mechanical unit

DeactUnit is used to deactivate a mechanical unit.

It can be used to determine which unit is to be active when, for example, common drive
units are used.

Examples

DeactUnit orbit_a;

Deactivation of the orbit_a mechanical unit.

MoveL p10, v100, fine, tool1;
DeactUnit track_motion;
MoveL p20, v100, z10, tool1;
MoveL p30, v100, fine, tool1;
ActUnit track_motion;
MoveL p40, v100, z10, tool1;

The unit track_motion will be stationary when the robot moves to p20 and p30.
After this, both the robot and track_motion will move to p40.

MoveL p10, v100, fine, tool1;
DeactUnit orbit1;
ActUnit orbit2;
MoveL p20, v100, z10, tool1;

The unit orbit1 is deactivated and orbit2 activated.

Arguments

DeactUnit MecUnit

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit that is to be deactivated.

Program execution

When the robot and external axes have come to a standstill, the specified mechanical
unit is deactivated. This means that it will neither be controlled nor monitored until it
is re-activated.

If several mechanical units share a common drive unit, deactivation of one of the
mechanical units will also disconnect that unit from the common drive unit.
System DataTypes and Routines 2-DeactUnit-1

DeactUnit Instructions
Limitations

Instruction DeactUnit cannot be used

- in program sequence StorePath ... RestoPath

- in event routine RESTART

- when one of the axes in the mechanical unit is in independent mode.

The movement instruction previous to this instruction, should be terminated with a stop
point in order to make a restart in this instruction possible following a power failure.

Syntax

DeactUnit
[MecUnit ’:=’] < variable (VAR) of mecunit> ’;’

Related information

Described in:

Activating mechanical units Instructions - ActUnit

Mechanical units Data Types - mecunit
2-DeactUnit-2 System DataTypes and Routines

Instructions Decr
Decr Decrements by 1

Decr is used to subtract 1 from a numeric variable or persistent.

Example

Decr reg1;

1 is subtracted from reg1, i.e. reg1:=reg1-1.

Arguments

Decr Name

Name Data type: num

The name of the variable or persistent to be decremented.

Example

TPReadNum no_of_parts, "How many parts should be produced? ";
WHILE no_of_parts>0 DO

produce_part;
Decr no_of_parts;

ENDWHILE

The operator is asked to input the number of parts to be produced. The variable
no_of_parts is used to count the number that still have to be produced.

Syntax

Decr
[Name ’:=’] < var or pers (INOUT) of num > ’;’
System DataTypes and Routines 2-Decr-1

Decr Instructions
Related information

Described in:

Incrementing a variable by 1 Instructions - Incr

Subtracting any value from a variable Instructions - Add

Changing data using an arbitrary Instructions - :=
expression, e.g. multiplication
2-Decr-2 System DataTypes and Routines

Instructions EOffsOff
EOffsOff Deactivates an offset for external axes

EOffsOff (External Offset Off) is used to deactivate an offset for external axes.

The offset for external axes is activated by the instruction EOffsSet or EOffsOn and
applies to all movements until some other offset for external axes is activated or until
the offset for external axes is deactivated.

Examples

EOffsOff;

Deactivation of the offset for external axes.

MoveL p10, v500, z10, tool1;
EOffsOn \ExeP:=p10, p11;
MoveL p20, v500, z10, tool1;
MoveL p30, v500, z10, tool1;
EOffsOff;
MoveL p40, v500, z10, tool1;

An offset is defined as the difference between the position of each axis at p10 and
p11. This displacement affects the movement to p20 and p30, but not to p40.

Program execution

Active offsets for external axes are reset.

Syntax

EOffsOff ‘;’

Related information

Described in:

Definition of offset using two positions Instructions - EOffsOn

Definition of offset using values Instructions - EOffsSet

Deactivation of the robot’s motion displacement Instructions - PDispOff
System DataTypes and Routines 2-EOffsOff-1

EOffsOff Instructions
2-EOffsOff-2 System DataTypes and Routines

Instructions EOffsOn
EOffsOn Activates an offset for external axes

EOffsOn (External Offset On) is used to define and activate an offset for external axes
using two positions.

Examples

MoveL p10, v500, z10, tool1;
EOffsOn \ExeP:=p10, p20;

Activation of an offset for external axes. This is calculated for each axis based
on the difference between positions p10 and p20.

MoveL p10, v500, fine, tool1;
EOffsOn *;

Activation of an offset for external axes. Since a stop point has been used in the
previous instruction, the argument \ExeP does not have to be used. The displace-
ment is calculated on the basis of the difference between the actual position of
each axis and the programmed point (*) stored in the instruction.

Arguments

EOffsOn [\ExeP] ProgPoint

[\ExeP] (Executed Point) Data type: robtarget

The new position of the axes at the time of the program execution. If this argument
is omitted, the current position of the axes at the time of the program execution is
used.

ProgPoint (Programmed Point) Data type: robtarget

The original position of the axes at the time of programming.

Program execution

The offset is calculated as the difference between ExeP and ProgPoint for each sepa-
rate external axis. If ExeP has not been specified, the current position of the axes at the
time of the program execution is used instead. Since it is the actual position of the axes
that is used, the axes should not move when EOffsOn is executed.

This offset is then used to displace the position of external axes in subsequent position-
ing instructions and remains active until some other offset is activated (the instruction
System DataTypes and Routines 2-EOffsOn-1

EOffsOn Instructions

 the

t and
arched
EOffsSet or EOffsOn) or until the offset for external axes is deactivated (the instruction
EOffsOff).

Only one offset for each individual external axis can be activated at any one time. Sev-
eral EOffsOn, on the other hand, can be programmed one after the other and, if they are,
the different offsets will be added.

The external axes’ offset is automatically reset

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Example

SearchL sen1, psearch, p10, v100, tool1;
PDispOn \ExeP:=psearch, *, tool1;
EOffsOn \ExeP:=psearch, *;

A search is carried out in which the searched position of both the robot and
external axes is stored in the position psearch. Any movement carried out after
this starts from this position using a program displacement of both the robo
the external axes. This is calculated based on the difference between the se
position and the programmed point (*) stored in the instruction.

Syntax

EOffsOn
[‘\’ ExeP ’:=’ < expression (IN) of robtarget > ’,’]
[ProgPoint ’:=’] < expression (IN) of robtarget > ’;’

Related information

Described in:

Deactivation of offset for external axes Instructions - EOffsOff

Definition of offset using values Instructions - EOffsSet

Displacement of the robot’s movements Instructions - PDispOn

Coordinate Systems Motion Principles- Coordinate Systems
2-EOffsOn-2 System DataTypes and Routines

Instructions EOffsSet

(see

e
EOffsSet Activates an offset for external axes using a value

EOffsSet (External Offset Set) is used to define and activate an offset for external axes
using values.

Example

VAR extjoint eax_a_p100 := [100, 0, 0, 0, 0, 0];
.
EOffsSet eax_a_p100;

Activation of an offset eax_a_p100 for external axes, meaning (provided that the
external axis “a” is linear) that:

- The ExtOffs coordinate system is displaced 100 mm for the logical axis “a”
Figure 18).

- As long as this offset is active, all positions will be displaced 100 mm in th
direction of the x-axis.

.

Figure 18 Displacement of an external axis.

Arguments

EOffsSet EAxOffs

EAxOffs (External Axes Offset) Data type: extjoint

The offset for external axes is defined as data of the type extjoint, expressed in:

- mm for linear axes

- degrees for rotating axes

+ X

+X

0

0

100

Normal
Coordinate System

ExtOffs
Coordinate System
System DataTypes and Routines 2-EOffsSet-1

EOffsSet Instructions
Program execution

The offset for external axes is activated when the EOffsSet instruction is activated and
remains active until some other offset is activated (the instruction EOffsSet or EOffsOn)
or until the offset for external axes is deactivated (the EOffsOff).

Only one offset for external axes can be activated at any one time. Offsets cannot be
added to one another using EOffsSet.

The external axes’ offset is automatically reset

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

EOffsSet
[EAxOffs ’:=’] < expression (IN) of extjoint> ’;’

Related information

Described in:

Deactivation of offset for external axes Instructions - EOffsOff

Definition of offset using two positions Instructions - EOffsSet

Displacement of the robot’s movements Instructions - PDispOn

Definition of data of the type extjoint Data Types - extjoint

Coordinate Systems Motion Principles- Coordinate Systems
2-EOffsSet-2 System DataTypes and Routines

Instructions ErrWrite

ach

es.

wn
ErrWrite Write an Error Message

ErrWrite (Error Write) is used to display an error message on the teach pendant and
write it in the robot message log.

Example

ErrWrite “PLC error”, “Fatal error in PLC” \RL2:=”Call service”;
Stop;

A message is stored in the robot log. The message is also shown on the te
pendant display.

ErrWrite \ W, “ Search error”, “No hit for the first search”;
RAISE try_search_again;

A message is stored in the robot log only. Program execution then continu

Arguments

ErrWrite [\W] Header Reason [\RL2] [\RL3] [\RL4]

[\W] (Warning) Data type: switch

Gives a warning that is stored in the robot error message log only (not sho
directly on the teach pendant display).

Header Data type: string

Error message heading (max. 24 characters).

Reason Data type: string

Reason for error (line 1 of max. 40 characters).

[\RL2] (Reason Line 2) Data type: string

Reason for error (line 2 of max. 40 characters).

[\RL3] (Reason Line 3) Data type: string

Reason for error (line 3 of max. 40 characters).

[\RL4] (Reason Line 4) Data type: string

Reason for error (line 4 of max. 40 characters).
System DataTypes and Routines 2-ErrWrite-1

ErrWrite Instructions
Program execution

An error message (max. 5 lines) is displayed on the teach pendant and written in the
robot message log.

ErrWrite always generates the program error no. 80001 or in the event of a warning
(argument \W) generates no. 80002.

Limitations

Total string length (Header+Reason+\RL2+\RL3+\RL4) is limited to 145 characters.

Syntax

ErrWrite
[’\’ W ’,’]
[Header ’:=’] < expression (IN) of string> ‘,’
[Reason ’:=’] < expression (IN) of string>
[’\’ RL2 ’:=’ < expression (IN) of string>]
[’\’ RL3 ’:=’ < expression (IN) of string>]
[’\’ RL4 ’:=’ < expression (IN) of string>] ‘;’

Related information

Described in:

Display a message on Instructions - TPWrite
the teach pendant only

Message logs Service
2-ErrWrite-2 System DataTypes and Routines

Instructions EXIT
EXIT Terminates program execution

EXIT is used to terminate program execution. Program restart will then be blocked, i.e.
the program can only be restarted from the first instruction of the main routine (if the
start point is not moved manually).

The EXIT instruction should be used when fatal errors occur or when program
execution is to be stopped permanently. The Stop instruction is used to temporarily stop
program execution.

Example

ErrWrite "Fatal error","Illegal state";
EXIT;

Program execution stops and cannot be restarted from that position in the
program.

Syntax

EXIT ’;’

Related information

Described in:

Stopping program execution temporarily Instructions - Stop
System DataTypes and Routines 2-EXIT-1

EXIT Instructions
2-EXIT-2 System DataTypes and Routines

Instructions ExitCycle
System DataTypes and Routines 2-ExitCycle-1

ExitCycle Break current cycle and start next

ExitCycle is used to break the current cycle and move the PP back to the first
instruction in the main routine. If the execution mode CONT is set, the execution will
start to execute the next cycle.

Example

VAR num cyclecount:=0;
VAR intnum error_intno;

PROC main()
IF cyclecount = 0 THEN

CONNECT error_intno WITH error_trap;
ISignalDI di_error,1,error_intno;

ENDIF
cyclecount:=cyclecount+1;
! start to do something intelligent
....

ENDPROC

TRAP error_trap
TPWrite “ERROR, I will start on the next item”;
ExitCycle;

ENDTRAP

This will start the next cycle if the signal di_error is set.

Program Running

All variables, persistents, defined interrupts and motion settings are untouched.

Syntax

ExitCycle’;’

Related information

Described in:

Stopping after a fatal error Instructions - EXIT

Terminating program execution Instructions - EXIT

Stopping for program actions Instructions - Stop

Finishing execution of a routine Instructions - RETURN

ExitCycle Instructions
2-ExitCycle-2 System DataTypes and Routines

Instructions ExitCycle
System DataTypes and Routines 2-ExitCycle-3

ExitCycle Instructions
2-ExitCycle-4 System DataTypes and Routines

Instructions FOR
FOR Repeats a given number of times

FOR is used when one or several instructions are to be repeated a number of times.

If the instructions are to be repeated as long as a given condition is met, the WHILE
instruction is used.

Example

FOR i FROM 1 TO 10 DO
routine1;

ENDFOR

Repeats the routine1 procedure 10 times.

Arguments

FOR Loop counter FROM Start value TO End value
[STEP Step value] DO ... ENDFOR

Loop counter Identifier

The name of the data that will contain the value of the current loop counter.
The data is declared automatically and its name should therefore not be the same
as the name of any data that exists already.

Start value Data type: Num

The desired start value of the loop counter.
(usually integer values)

End value Data type: Num

The desired end value of the loop counter.
(usually integer values)

Step value Data type: Num

The value by which the loop counter is to be incremented (or decremented) each loop.
(usually integer values)

If this value is not specified, the step value will automatically be set to 1 (or -1 if
the start value is greater than the end value).
System DataTypes and Routines 2-FOR-1

FOR Instructions
Example

FOR i FROM 10 TO 2 STEP -1 DO
a{i} := a{i-1};

ENDFOR

The values in an array are adjusted upwards so that a{10}:=a{9}, a{9}:=a{8} etc.

Program execution

1. The expressions for the start, end and step values are calculated.

2. The loop counter is assigned the start value.

3. The value of the loop counter is checked to see whether its value lies between the
start and end value, or whether it is equal to the start or end value. If the value of the
loop counter is outside of this range, the FOR loop stops and program execution con-
tinues with the instruction following ENDFOR.

4. The instructions in the FOR loop are executed.

5. The loop counter is incremented (or decremented) in accordance with the step value.

6. The FOR loop is repeated, starting from point 3.

Limitations

The loop counter (of data type num) can only be accessed from within the FOR loop
and consequently hides other data and routines that have the same name. It can only be
read (not updated) by the instructions in the FOR loop.

Decimal values for start, end or stop values, in combination with exact termination con-
ditions for the FOR loop, cannot be used (undefined whether or not the last loop is run-
ning).

Syntax

(EBNF)
FOR <loop variable> FROM <expression> TO <expression>

[STEP <expression>] DO
<instruction list>

ENDFOR

<loop variable> ::= <identifier>
2-FOR-2 System DataTypes and Routines

Instructions FOR
Related information

Described in:

Expressions Basic Characteristics - Expressions

Identifiers Basic Characteristics -
Basic Elements
System DataTypes and Routines 2-FOR-3

FOR Instructions
2-FOR-4 System DataTypes and Routines

Instructions GetSysData
GetSysData Get system data

GetSysData fetches the value and optional symbol name for the current system data of
specified data type.

With this instruction it is possible to fetch data for and the name of the current active
Tool or Work Object.

Example

PERS tooldata curtoolvalue := [TRUE, [[0, 0, 0], [1, 0, 0, 0]],
[0, [0, 0, 0], [1, 0, 0, 0], 0, 0, 0]];

VAR string curtoolname;

GetSysData curtoolvalue;

Copy current active tool data value to the persistent variable curtoolvalue.

GetSysData curtoolvalue \ObjectName := curtoolname;

Copy also current active tool name to the variable curtoolname.

Arguments

GetSysData DestObject [\ ObjectName]

DestObject Data type: anytype

Persistent for storage of current active system data value.

The data type of this argument also specifies the type of system data (Tool or
Work Object) to fetch.

[\ObjectName] Data type: string

Option argument (variable or persistent) to also fetch the current active system
data name.

Program execution

When running the instruction GetSysData the current data value is stored in the spec-
ified persistent in argument DestObject.

If argument \ObjectName is used, the name of the current data is stored in the specified
variable or persistent in argument ObjectName.
System DataTypes and Routines 2-GetSysData-1

GetSysData Instructions
Current system data for Tool or Work Object is activated by execution of any move
instruction or can be manually set in the jogging window.

Syntax

GetSysData
[DestObject’:=’] < persistent(PERS) of anytype>
[’\’ObjectName’:=’ < expression (INOUT) of string>] ’;’

Related information

Described in:

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata
2-GetSysData-2 System DataTypes and Routines

Instructions GOTO
GOTO Goes to a new instruction

GOTO is used to transfer program execution to another line (a label) within the same
routine.

Examples

GOTO next;
.

next:

Program execution continues with the instruction following next.

reg1 := 1;
next:

.
reg1 := reg1 + 1;
IF reg1<=5 GOTO next;

The next program loop is executed five times.

IF reg1>100 GOTO highvalue;
lowvalue:

.
GOTO ready;
highvalue:

.
ready:

If reg1 is greater than 100, the highvalue program loop is executed; otherwise
the lowvalue loop is executed.

Arguments

GOTO Label

Label Identifier

The label from where program execution is to continue.

Limitations

It is only possible to transfer program execution to a label within the same routine.

It is only possible to transfer program execution to a label within an IF or TEST
instruction if the GOTO instruction is also located within the same branch of that
System DataTypes and Routines 2-GOTO-1

GOTO Instructions
instruction.

It is only possible to transfer program execution to a label within a FOR or WHILE
instruction if the GOTO instruction is also located within that instruction.

Syntax

(EBNF)
GOTO <identifier>’;’

Related information

Described in:

Label Instructions - label

Other instructions that change the program RAPID Summary -
flow Controlling the Program Flow
2-GOTO-2 System DataTypes and Routines

Instructions GripLoad
GripLoad Defines the payload of the robot

GripLoad is used to define the payload which the robot holds in its gripper.

Description

It is important to always define the actual tool load and when used, the payload
of the robot too. Incorrect definitions of load data can result in overloading of the
robot mechanical structure.

When incorrect load data is specified, it can often lead to the following consequences:

- If the value in the specified load data is greater than that of the value of the true
load;
-> The robot will not be used to its maximum capacity
-> Impaired path accuracy including a risk of overshooting

If the value in the specified load data is less than the value of the true load;
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure

Examples

GripLoad piece1;

The robot gripper holds a load called piece1.

GripLoad load0;

The robot gripper releases all loads.

Arguments

GripLoad Load

Load Data type: loaddata

The load data that describes the current payload.

Program execution

The specified load affects the performance of the robot.
System DataTypes and Routines 2-GripLoad-1

GripLoad Instructions
The default load, 0 kg, is automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

GripLoad
[Load ’:=’] < persistent (PERS) of loaddata > ’;’

Related information

Described in:

Definition of load data Data Types - loaddata

Definition of tool load Data Types - tooldata

-
2-GripLoad-2 System DataTypes and Routines

Instructions IDelete
IDelete Cancels an interrupt

IDelete (Interrupt Delete) is used to cancel (delete) an interrupt.

If the interrupt is to be only temporarily disabled, the instruction ISleep or IDisable
should be used.

Example

IDelete feeder_low;

The interrupt feeder_low is cancelled.

Arguments

IDelete Interrupt

Interrupt Data type: intnum

The interrupt identity.

Program execution

The definition of the interrupt is completely erased. To define it again, it must first be
re-connected to the trap routine.

The instruction should be preceded by a stop point. Otherwise the interrupt will be
deactivated before the end point is reached.

Interrupts do not have to be erased; this is done automatically when

- a new program is loaded

- the program is restarted from the beginning

- the program pointer is moved to the start of a routine

Syntax

IDelete
[Interrupt ‘:=’] < variable (VAR) of intnum > ‘;’
System DataTypes and Routines 2-IDelete-1

IDelete Instructions
Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Temporarily disabling an interrupt Instructions - ISleep

Temporarily disabling all interrupts Instructions - IDisable
2-IDelete-2 System DataTypes and Routines

Instructions IDisable

he
IDisable Disables interrupts

IDisable (Interrupt Disable) is used to disable all interrupts temporarily. It may, for
example, be used in a particularly sensitive part of the program where no interrupts
may be permitted to take place in case they disturb normal program execution.

Example

IDisable;
FOR i FROM 1 TO 100 DO

character[i]:=ReadBin(sensor);
ENDFOR
IEnable;

No interrupts are permitted as long as the serial channel is reading.

Program execution

Interrupts which occur during the time in which an IDisable instruction is in effect are
placed in a queue. When interrupts are permitted once more, the interrupt(s) of the pro-
gram then immediately start generating, executed in “first in - first out” order in t
queue.

Syntax

IDisable‘;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupt

Permitting interrupts Instructions - IEnable
System DataTypes and Routines 2-IDisable-1

IDisable Instructions
2-IDisable-2 System DataTypes and Routines

Instructions IEnable

rder
rrupts

nter-
IEnable Enables interrupts

IEnable (Interrupt Enable) is used to enable interrupts during program execution.

Example

IDisable;
FOR i FROM 1 TO 100 DO

character[i]:=ReadBin(sensor);
ENDFOR
IEnable;

No interrupts are permitted as long as the serial channel is reading. When it has
finished reading, interrupts are once more permitted.

Program execution

Interrupts which occur during the time in which an IDisable instruction is in effect, are
placed in a queue. When interrupts are permitted once more (IEnable), the interrupt(s)
of the program then immediately start generating, executed in “first in - first out” o
in the queue.Program execution then continues in the ordinary program and inte
which occur after this are dealt with as soon as they occur.

Interrupts are always permitted when a program is started from the beginning,. I
rupts disabled by the ISleep instruction are not affected by the IEnable instruction.

Syntax

IEnable‘;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Permitting no interrupts Instructions - IDisable
System DataTypes and Routines 2-IEnable-1

IEnable Instructions
2-IEnable-2 System DataTypes and Routines

Instructions Compact IF
Compact IF If a condition is met, then... (one instruction)

Compact IF is used when a single instruction is only to be executed if a given condition
is met.

If different instructions are to be executed, depending on whether the specified
condition is met or not, the IF instruction is used.

Examples

IF reg1 > 5 GOTO next;

If reg1 is greater than 5, program execution continues at the next label.

IF counter > 10 Set do1;

The do1 signal is set if counter > 10.

Arguments

IF Condition ...

Condition Data type: bool

The condition that must be satisfied for the instruction to be executed.

Syntax

(EBNF)
IF <conditional expression> (<instruction> | <SMT>) ’;’

Related information

Described in:

Conditions (logical expressions) Basic Characteristics - Expressions

IF with several instructions Instructions - IF
System DataTypes and Routines 2-Compact IF-1

Compact IF Instructions
2-Compact IF-2 System DataTypes and Routines

Instructions IF
IF If a condition is met, then ...; otherwise ...

IF is used when different instructions are to be executed depending on whether a con-
dition is met or not.

Examples

IF reg1 > 5 THEN
Set do1;
Set do2;

ENDIF

The do1 and do2 signals are set only if reg1 is greater than 5.

IF reg1 > 5 THEN
Set do1;
Set do2;

ELSE
Reset do1;
Reset do2;

ENDIF

The do1 and do2 signals are set or reset depending on whether reg1 is greater
than 5 or not.

Arguments

IF Condition THEN ...
{ELSEIF Condition THEN ...}

[ELSE ...]
ENDIF

Condition Data type: bool

The condition that must be satisfied for the instructions between THEN and
ELSE/ELSEIF to be executed.

Example

IF counter > 100 THEN
counter := 100;

ELSEIF counter < 0 THEN
 counter := 0;
ELSE

counter := counter + 1;
System DataTypes and Routines 2-IF-1

IF Instructions
ENDIF

Counter is incremented by 1. However, if the value of counter is outside the limit
0-100, counter is assigned the corresponding limit value.

Program execution

The conditions are tested in sequential order, until one of them is satisfied. Program
execution continues with the instructions associated with that condition. If none of the
conditions are satisfied, program execution continues with the instructions following
ELSE. If more than one condition is met, only the instructions associated with the first
of those conditions are executed.

Syntax

(EBNF)
IF <conditional expression> THEN

<instruction list>
{ELSEIF <conditional expression> THEN <instruction list> | <EIF>}
[ELSE

<instruction list>]
ENDIF

Related information

Described in:

Conditions (logical expressions) Basic Characteristics - Expressions
2-IF-2 System DataTypes and Routines

Instructions Incr
Incr Increments by 1

Incr is used to add 1 to a numeric variable or persistent.

Example

Incr reg1;

1 is added to reg1, i.e. reg1:=reg1+1.

Arguments

Incr Name

Name Data type: num

The name of the variable or persistent to be changed.

Example

WHILE stop_production=0 DO
produce_part;
Incr no_of_parts;
TPWrite "No of produced parts= "\Num:=no_of_parts;

ENDWHILE

The number of parts produced is updated on the teach pendant each cycle.
Production continues to run as long as the signal stop_production is not set.

Syntax

Incr
[Name ’:=’] < var or pers (INOUT) of num > ’;’

Related information

Described in:

Decrementing a variable by 1 Instructions - Decr

Adding any value to a variable Instructions - Add

Changing data using an arbitrary Instructions - :=
expression, e.g. multiplication
System DataTypes and Routines 2-Incr-1

Incr Instructions
2-Incr-2 System DataTypes and Routines

Instructions InvertDO
InvertDO Inverts the value of a digital output signal

InvertDO (Invert Digital Output) inverts the value of a digital output signal (0 -> 1 and
1 -> 0).

Example

InvertDO do15;

The current value of the signal do15 is inverted.

Arguments

InvertDO Signal

Signal Data type: signaldo

The name of the signal to be inverted.

Program execution

The current value of the signal is inverted (see Figure 19).

:

Figure 19 Inversion of a digital output signal.

Syntax

InvertDO
[Signal ’:=’] < variable (VAR) of signaldo > ’;’

1

0

0

1

Execution of the instruction InvertDO

Execution of the instruction InvertDO

Signal level

Signal level
System DataTypes and Routines 2-InvertDO-1

InvertDO Instructions
Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O System Parameters
2-InvertDO-2 System DataTypes and Routines

Instructions IODisable

is
ndler
 is

isable
le

.

IODisable Disable I/O unit

IODisable is used to disable an I/O unit during program execution (only in the S4C
system).

I/O units are automatically enabled after start-up if they are defined in the system
parameters. When required for some reason, I/O units can be disabled or enabled
during program execution.

Examples

IODisable “cell1”, 5;

Disable I/O unit with name cell1.Wait max. 5 s.

Arguments

IODisable UnitName MaxTime

UnitName Data type: string

The name of the I/O unit to be disabled (with same name as configured).

MaxTime Data type: num

The maximum period of waiting time permitted, expressed in seconds. If th
time runs out before the I/O unit has finished the disable steps, the error ha
will be called, if there is one, with the error code ERR_IODISABLE. If there
no error handler, the execution will be stopped.

To disable an I/O unit takes about 2-5 s.

Program execution

The specified I/O unit starts the disable steps. The instruction is ready when the d
steps are finished. If the MaxTime runs out before the I/O unit has finished the disab
steps, a recoverable error will be generated.

After disabling an I/O unit, any setting of outputs in this unit will result in an error
System DataTypes and Routines 2-IODisable-1

IODisable Instructions

s
ge.
Example

PROC go_home()
VAR num recover_flag :=0;
...
! Start to disable I/O unit cell1
recover_flag := 1;
IODisable “cell1”, 0;
! Move to home position
MoveJ home, v1000,fine,tool1;
! Wait until disable of I/O unit cell1 is ready
recover_flag := 2;
IODisable “cell1”, 5;
...
ERROR

IF ERRNO = ERR_IODISABLE THEN
IF recover_flag = 1 THEN

TRYNEXT;
ELSEIF recover_flag = 2 THEN

RETRY;
ENDIF

ELSEIF ERRNO = ERR_EXCRTYMAX THEN
ErrWrite “IODisable error”, “Not possible to disable I/O unit cell1”;
Stop;

ENDIF
ENDPROC

To save cycle time, the I/O unit cell1 is disabled during robot movement to the
home position. With the robot at the home position, a test is done to establish
whether or not the I/O unit cell1 is fully disabled. After the max. number of retrie
(5 with a waiting time of 5 s), the robot execution will stop with an error messa

The same principle can be used with IOEnable (this will save more cycle time
compared with IODisable).

Syntax

IODisable
[UnitName ’:=’] < expression (IN) of string> ’,’
[MaxTime ’:=’] < expression (IN) of num > ’;’
2-IODisable-2 System DataTypes and Routines

Instructions IODisable
Related information

Described in:

Enabling an I/O unit Instructions - IOEnable

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
System DataTypes and Routines 2-IODisable-3

IODisable Instructions
2-IODisable-4 System DataTypes and Routines

Instructions IOEnable

is
ndler
 is

nable
le

IOEnable Enable I/O unit

IOEnable is used to enable an I/O unit during program execution (only in the S4C
system).

I/O units are automatically enabled after start-up if they are defined in the system
parameters. When required for some reason, I/O units can be disabled or enabled
during program execution.

Examples

IOEnable “cell1”, 5;

Enable I/O unit with name cell1. Wait max. 5 s.

Arguments

IOEnable UnitName MaxTime

UnitName Data type: string

The name of the I/O unit to be enabled (with same name as configured).

MaxTime Data type: num

The maximum period of waiting time permitted, expressed in seconds. If th
time runs out before the I/O unit has finished the enable steps, the error ha
will be called, if there is one, with the error code ERR_IOENABLE. If there
no error handler, the execution will be stopped.

To enable an I/O unit takes about 2-5 s.

Program execution

The specified I/O unit starts the enable steps. The instruction is ready when the e
steps are finished. If the MaxTime runs out before the I/O unit has finished the enab
steps, a recoverable error will be generated.

After a sequence of IODisable - IOEnable, all outputs for the current I/O unit will be
set to the old values (before IODisable).
System DataTypes and Routines 2-IOEnable-1

IOEnable Instructions

 I/

 to
Example

IOEnable can also be used to check whether some I/O unit is disconnected for some
reason.

VAR num max_retry:=0;
...
IOEnable “cell1”, 0;
SetDO cell1_sig3, 1;
...
ERROR

IF ERRNO = ERR_IOENABLE THEN
IF max_retry < 5 THEN

WaitTime 1;
max_retry := max_retry + 1;
RETRY;

ELSE
RAISE;

ENDIF
ENDIF

Before using signals on the I/O unit cell1, a test is done by trying to enable the
O unit with timeout after 0 sec. If the test fails, a jump is made to the error
handler. In the error handler, the program execution waits for 1 sec. and a new
retry is made. After 5 retry attempts the error ERR_IOENABLE is propagated
the caller of this routine.

Syntax

IOEnable
[UnitName ’:=’] < expression (IN) of string> ’,’
[MaxTime ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

More examples Instructions - IODisable

Disabling an I/O unit Instructions - IODisable

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
2-IOEnable-2 System DataTypes and Routines

Instructions ISignalDI
ISignalDI Orders interrupts from a digital input signal

ISignalDI (Interrupt Signal Digital In) is used to order and enable interrupts from a
digital input signal.

System signals can also generate interrupts.

Examples

VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDI di1,1,sig1int;

Orders an interrupt which is to occur each time the digital input signal di1 is set
to 1. A call is then made to the iroutine1 trap routine.

ISignalDI di1,0,sig1int;

Orders an interrupt which is to occur each time the digital input signal di1 is set
to 0.

ISignalDI \Single, di1,1,sig1int;

Orders an interrupt which is to occur only the first time the digital input signal
di1 is set to 1.

Arguments

ISignalDI [\Single] Signal TriggValue Interrupt

[\Single] Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs once at the most. If the argu-
ment is omitted, an interrupt will occur each time its condition is satisfied.

Signal Data type: signaldi

The name of the signal that is to generate interrupts.

TriggValue Data type: dionum

The value to which the signal must change for an interrupt to occur.

The value is specified as 0 or 1 or as a symbolic value (e.g. high/low). The signal
is edge-triggered upon changeover to 0 or 1.
RAPID Reference Manual 8-ISignalDI-1

ISignalDI Instructions
TriggValue 2 or symbolic value edge can be used for generation of interrupts on
both positive flank (0 -> 1) and negative flank (1 -> 0).

Interrupt Data type: intnum

The interrupt identity. This should have previously been connected to a trap rou-
tine by means of the instruction CONNECT.

Program execution

When the signal assumes the specified value, a call is made to the corresponding trap
routine. When this has been executed, program execution continues from where the
interrupt occurred.

If the signal changes to the specified value before the interrupt is ordered, no interrupt
occurs (see Figure 20).

:

Figure 20 Interrupts from a digital input signal at signal level 1.

Limitations

The same variable for interrupt identity cannot be used more than once, without first
deleting it. Interrupts should therefore be handled as shown in one of the alternatives
below.

PROC main ()
VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDI di1, 1, sig1int;
WHILE TRUE DO
:
:
ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These instruc-
tions are then kept outside the main flow of the program.

0

1
Signal level

Interrupt ordered

1

0
Signal level

Interrupt ordered

Interrupt occurs

Interrupt occurs
8-ISignalDI-2 RAPID Reference Manual

Instructions ISignalDI
PROC main ()
VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDI di1, 1, sig1int;
:
:
IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program, and is then reactivated. It
should be noted, in this case, that the interrupt is inactive for a short period.

Syntax

ISignalDI
[’\’ Single’,’]
[Signal ’:=’] < variable (VAR) of signaldi > ’,’
[TriggValue ’:=’] < expression (IN) of dionum >’,’
[Interrupt ’:=’] < variable (VAR) of intnum > ’;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Interrupt from an output signal Instructions - ISignalDO

More information on interrupt management Basic Characteristics - Interrupts

More examples Data Types - intnum
RAPID Reference Manual 8-ISignalDI-3

ISignalDI Instructions
8-ISignalDI-4 RAPID Reference Manual

Instructions ISignalDO
ISignalDO Interrupts from a digital output signal

ISignalDO (Interrupt Signal Digital Out) is used to order and enable interrupts from a
digital output signal.

System signals can also generate interrupts.

Examples

VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDO do1,1,sig1int;

Orders an interrupt which is to occur each time the digital output signal do1 is
set to 1. A call is then made to the iroutine1 trap routine.

ISignalDO do1,0,sig1int;

Orders an interrupt which is to occur each time the digital output signal do1 is
set to 0.

ISignalDO\Single, do1,1,sig1int;

Orders an interrupt which is to occur only the first time the digital output signal
do1 is set to 1.

Arguments

ISignalDO [\Single] Signal TriggValue Interrupt

[\Single] Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs once at the most. If the argu-
ment is omitted, an interrupt will occur each time its condition is satisfied.

Signal Data type: signaldo

The name of the signal that is to generate interrupts.

TriggValue Data type: dionum

The value to which the signal must change for an interrupt to occur.

The value is specified as 0 or 1 or as a symbolic value (e.g. high/low). The signal
is edge-triggered upon changeover to 0 or 1.
System DataTypes and Routines 2-ISignalDO-1

ISignalDO Instructions
TriggValue 2 or symbolic value edge can be used for generation of interrupts on
both positive flank (0 -> 1) and negative flank (1 -> 0).

Interrupt Data type: intnum

The interrupt identity. This should have previously been connected to a trap rou-
tine by means of the instruction CONNECT.

Program execution

When the signal assumes the specified value 0 or 1, a call is made to the corresponding
trap routine. When this has been executed, program execution continues from where
the interrupt occurred.

If the signal changes to the specified value before the interrupt is ordered, no interrupt
occurs (see Figure 21).

:

Figure 21 Interrupts from a digital output signal at signal level 1.

Limitations

The same variable for interrupt identity cannot be used more than once, without first
deleting it. Interrupts should therefore be handled as shown in one of the alternatives
below.

PROC main ()
VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDO do1, 1, sig1int;
WHILE TRUE DO
:
:
ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These instruc-

0

1
Signal level

Interrupt ordered

1

0
Signal level

Interrupt ordered

Interrupt occurs

Interrupt occurs
2-ISignalDO-2 System DataTypes and Routines

Instructions ISignalDO
tions are then kept outside the main flow of the program.

PROC main ()
VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDO do1, 1, sig1int;
:
:
IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program, and is then reactivated. It
should be noted, in this case, that the interrupt is inactive for a short period.

Syntax

ISignalDO
[’\’ Single’,’]
[Signal ’:=’] < variable (VAR) of signaldo > ’,’
[TriggValue ’:=’] < expression (IN) of dionum >’,’
[Interrupt ’:=’] < variable (VAR) of intnum > ’;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Interrupt from an input signal Instructions - ISignalDI

More information on interrupt management Basic Characteristics- Interrupts

More examples Data Types - intnum
System DataTypes and Routines 2-ISignalDO-3

ISignalDO Instructions
2-ISignalDO-4 System DataTypes and Routines

Instructions ISleep

ter-
he
ISleep Deactivates an interrupt

ISleep (Interrupt Sleep) is used to deactivate an individual interrupt temporarily.

Example

ISleep sig1int;

The interrupt sig1int is deactivated.

Arguments

ISleep Interrupt

Interrupt Data type: intnum

The variable (interrupt identity) of the interrupt.

Program execution

The event connected to this interrupt does not generate any interrupts until the interrupt
has been re-activated by means of the instruction IWatch. Interrupts which are gener-
ated whilst ISleep is in effect are ignored.

Example

VAR intnum timeint;
CONNECT timeint WITH check_serialch;
ITimer 60, timeint;
.
ISleep timeint;
WriteBin ch1, buffer, 30;
IWatch timeint;
.
TRAP check_serialch

WriteBin ch1, buffer, 1;
IF ReadBin(ch1\Time:=5) < 0 THEN

TPWrite “The serial communication is broken”;
EXIT;

ENDIF
ENDTRAP

Communication across the ch1 serial channel is monitored by means of in
rupts which are generated every 60 seconds. The trap routine checks whether t
System DataTypes and Routines 2-ISleep-1

ISleep Instructions
communication is working. When, however, communication is in progress, these
interrupts are not permitted.

Error handling

Interrupts which have neither been ordered nor enabled are not permitted. If the inter-
rupt number is unknown, the system variable ERRNO will be set to ERR_UNKINO
(see “Data types - errnum”). The error can be handled in the error handler.

Syntax

ISleep
[Interrupt ‘:=’] < variable (VAR) of intnum > ‘;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Enabling an interrupt Instructions - IWatch

Disabling all interrupts Instructions - IDisable

Cancelling an interrupt Instructions - IDelete
2-ISleep-2 System DataTypes and Routines

Instructions ITimer
ITimer Orders a timed interrupt

ITimer (Interrupt Timer) is used to order and enable a timed interrupt.

This instruction can be used, for example, to check the status of peripheral equipment
once every minute.

Examples

VAR intnum timeint;
CONNECT timeint WITH iroutine1;
ITimer 60, timeint;

Orders an interrupt that is to occur cyclically every 60 seconds. A call is then
made to the trap routine iroutine1.

ITimer \Single, 60, timeint;

Orders an interrupt that is to occur once, after 60 seconds.

Arguments

ITimer [\Single] Time Interrupt

[\Single] Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs only once. If the argument is
omitted, an interrupt will occur each time at the specified time.

Time Data type: num

The amount of time that must lapse before the interrupt occurs.

The value is specified in second if Single is set, this time may not be less than
0.05 seconds. The corresponding time for cyclical interrupts is 0.25 seconds.

Interrupt Data type: intnum

The variable (interrupt identity) of the interrupt. This should have previously
been connected to a trap routine by means of the instruction CONNECT.

Program execution

The corresponding trap routine is automatically called at a given time following the
interrupt order. When this has been executed, program execution continues from where
the interrupt occurred.
System DataTypes and Routines 2-ITimer-1

ITimer Instructions

rupts
m-

rror

being
If the interrupt occurs cyclically, a new computation of time is started from when the
interrupt occurs.

Example

VAR intnum timeint;
CONNECT timeint WITH check_serialch;
ITimer 60, timeint;
.
TRAP check_serialch

WriteBin ch1, buffer, 1;
IF ReadBin(ch1\Time:=5) < 0 THEN

TPWrite “The serial communication is broken”;
EXIT;

ENDIF
ENDTRAP

Communication across the ch1 serial channel is monitored by means of inter
which are generated every 60 seconds. The trap routine checks whether the co
munication is working. If it is not, program execution is interrupted and an e
message appears.

Limitations

The same variable for interrupt identity cannot be used more than once, without
first deleted. See Instructions - ISignalDI.

Syntax

ITimer
[’\’Single ’,’]
[Time ’:=’] < expression (IN) of num >’,’
[Interrupt ’:=’] < variable (VAR) of intnum > ’;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

More information on interrupt management Basic Characteristics- Interrupts
2-ITimer-2 System DataTypes and Routines

Instructions IVarValue

rays.
IVarValue Orders a variable value interrupt

IVarVal(Interrupt Variable Value) is used to order and enable an interrupt when the
value of a variable accessed via the serial sensor interface has been changed.

This instruction can be used, for example, to get seam volume or gap values from a
seam tracker.

Examples

LOCAL PERS num adtVlt{25}:=[1,1.2,1.4,1.6,1.8,2,2.16667,2.33333,2.5,...];
LOCAL PERS num adptWfd{25}:=[2,2.2,2.4,2.6,2.8,3,3.16667,3.33333,3.5,...];
LOCAL PERS num adptSpd{25}:=10,12,14,16,18,20,21.6667,23.3333,25[,...];
LOCAL CONST num GAP_VARIABLE_NO:=11;
PERS num gap_value;
VAR intnum IntAdap;

PROC main()
! Setup the interrupt. The trap routine AdapTrp will be called
! when the gap variable with number ‘GAP_VARIABLE_NO’ in
! the sensor interface has been changed. The new value will be available
! in the PERS gp_value variable.

CONNECT IntAdap WITH AdapTrp;
IVarValue GAP_VARIABLE_NO, gap_value, IntAdap;

! Start welding
ArcL\On,*,v100,adaptSm,adaptWd,adaptWv,z10,tool\j\Track:=track;
ArcL\On,*,v100,adaptSm,adaptWd,adaptWv,z10,tool\j\Track:=track;

ENDPROC

TRAP AdapTrap
VAR num ArrInd;

!Scale the raw gap value received
ArrInd:=ArrIndx(gap_value);

! Update active welddata PERS variable ‘adaptWd’ with
! new data from the arrays of predefined parameter arrays.
! The scaled gap value is used as index in the voltage, wirefeed and speed ar
adaptWd.weld_voltage:=adptVlt{ArrInd};
adaptWd.weld_wirefeed:=adptWfd{ArrInd};
adaptWd.weld_speed:=adptSpd{ArrInd};

!Request a refresh of AW parameters using the new data i adaptWd
ArcRefresh;

ENDTRAP
System DataTypes and Routines 2-IVarValue-1

IVarValue Instructions
Arguments

IVarValue VarNo Value, Interrupt

VarNo Data type: num

The number of the variable to be supervised.

Value Data type: num

A PERS variable which will hold the new value of Varno.

Interrupt Data type: intnum

The variable (interrupt identity) of the interrupt. This should have previously
been connected to a trap routine by means of the instruction CONNECT.

Program execution

The corresponding trap routine is automatically called at a given time following the
interrupt order. When this has been executed, program execution continues from where
the interrupt occurred.

Limitations

The same variable for interrupt identity cannot be used more than five times, without
first being deleted.

Syntax

IVarValue
[VarNo ’:=’] < expression (IN) of num >’,’
[Value ’:=’] < persistent(PERS) of num >’,’
[Interrupt ’:=’] < variable (VAR) of intnum > ’;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

More information on interrupt management Basic Characteristics- Interrupts
2-IVarValue-2 System DataTypes and Routines

Instructions IWatch

- err-
IWatch Activates an interrupt

IWatch (Interrupt Watch) is used to activate an interrupt which was previously ordered
but was deactivated with ISleep.

Example

IWatch sig1int;

The interrupt sig1int that was previously deactivated is activated.

Arguments

IWatch Interrupt

Interrupt Data type: intnum

Variable (interrupt identity) of the interrupt.

Program execution

The event connected to this interrupt generates interrupts once again. Interrupts gener-
ated during the time the ISleep instruction is in effect, however, are ignored.

Example

VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDI di1,1,sig1int;
.
ISleep sig1int;
weldpart1;
IWatch sig1int;

During execution of the weldpart1 routine, no interrupts are permitted from the
signal di1.

Error handling

Interrupts which have not been ordered are not permitted. If the interrupt number is
unknown, the system variable ERRNO is set to ERR_UNKINO (see “Date types
num”). The error can be handled in the error handler.
System DataTypes and Routines 2-IWatch-1

IWatch Instructions
Syntax

IWatch
[Interrupt ‘:=’] < variable (VAR) of intnum > ‘;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Deactivating an interrupt Instructions - ISleep
2-IWatch-2 System DataTypes and Routines

Instructions label
label Line name

Label is used to name a line in the program. Using the GOTO instruction, this name
can then be used to move program execution.

Example

GOTO next;
.

next:

Program execution continues with the instruction following next.

Arguments

Label:

Label Identifier

The name you wish to give the line.

Program execution

Nothing happens when you execute this instruction.

Limitations

The label must not be the same as

- any other label within the same routine,

- any data name within the same routine.

A label hides global data and routines with the same name within the routine it is
located in.

Syntax

(EBNF)
<identifier>’:’
System DataTypes and Routines 2-label-1

label Instructions
Related information

Described in:

Identifiers Basic Characteristics-
Basic Elements

Moving program execution to a label Instructions - GOTO
2-label-2 System DataTypes and Routines

Instructions Load
Load Load a program module during execution

Load is used to load a program module into the program memory during execution.

The loaded program module will be added to the already existing modules in the pro-
gram memory.

Example

Load ram1disk \File:="PART_A.MOD";

Load the program module PART_A.MOD from the ram1disk into the program
memory. (ram1disk is a predefined string constant "ram1disk:").

Arguments

Load FilePath [\File]

FilePath Data type: string

The file path and the file name to the file that will be loaded into the program
memory. The file name shall be excluded when the argument \File is used.

[\File] Data type: string

When the file name is excluded in the argument FilePath then it must be defined
with this argument.

Program execution

Program execution waits for the program module to finish loading before proceeding
with the next instruction.

To obtain a good program structure, that is easy to understand and maintain, all loading
and unloading of program modules should be done from the main module which is
always present in the program memory during execution.

After the program module is loaded it will be linked and initialised. The initialisation
of the loaded module sets all variables at module level to their init values. Unresolved
references will be accepted if the system parameter for Tasks is set (BindRef = NO).
However, when the program is started or the teach pendant function Program/File/
Check is used, no check for unresolved references will be done if the parameter Bind-
Ref = NO. There will be a run time error on execution of an unresolved reference.
RAPID Reference Manual 8-Load-1

Load Instructions
Examples

Load "ram1disk:DOORDIR/DOOR1.MOD";

Load the program module DOOR1.MOD from the ram1disk at the directory
DOORDIR into the program memory.

Load "ram1disk:DOORDIR/" \File:="DOOR1.MOD";

Same as above but another syntax.

Limitations

Loading a program module that contains a main routine is not allowed.

Avoid ongoing robot movements during the loading.

Avoid using the floppy disk for loading since reading from the floppy drive is very time
consuming.

Error handling

If the file in the Load instructions cannot be found, then the system variable ERRNO is
set to ERR_FILNOTFND. If the module already is loaded into the program memory
then the system variable ERRNO is set to ERR_LOADED (see "Data types - errnum").
The errors above can be handled in an error handler.

Syntax

Load
[FilePath’:=’]<expression (IN) of string>
[’ \’File’:=’ <expression (IN) of string>]’;’

Related information

Described in:

Unload a program module Instructions - UnLoad

Load a program module in parallel Instructions - StartLoad-WaitLoad
with another program execution

Accept unresolved references System Parameters - Controller
System Parameters - Tasks
System Parameters - BindRef
8-Load-2 RAPID Reference Manual

Instructions MoveCSync

een
ld be

d too
rcle
rked

ed
n).

 of the

obot
 data.
MoveCSync Moves the robot circularly
and executes a RAPID procedure

MoveCSync (Move Circular Synchronously) is used to move the tool centre point (TCP)
circularly to a given destination. The specified RAPID procedure is executed at the mid-
dle of the corner path in the destination point. During the movement, the orientation nor-
mally remains unchanged relative to the circle.

Examples

MoveCSync p1, p2, v500, z30, tool2, “proc1”;

The TCP of the tool, tool2, is moved circularly to the position p2, with speed data
v500 and zone data z30. The circle is defined from the start position, the circle
point p1 and the destination point p2. Procedure proc1 is executed in the middle
of the corner path at p2.

Arguments

MoveCSync CirPoint ToPoint Speed [\T] Zone Tool [\WObj]
ProcName

CirPoint Data type: robtarget

The circle point of the robot. The circle point is a position on the circle betw
the start point and the destination point. To obtain the best accuracy, it shou
placed about halfway between the start and destination points. If it is place
close to the start or destination point, the robot may give a warning. The ci
point is defined as a named position or stored directly in the instruction (ma
with an * in the instruction). The position of the external axes are not used.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
TCP, the tool reorientation and external axes.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
and external axes move. It is then substituted for the corresponding speed
System DataTypes and Routines 2-MoveCSync-1

MoveCSync Instructions
Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination point.

[\WObj] (Work Object) Data type: wobjdata

The work object (object coordinate system) to which the robot position in the
instruction is related.

This argument can be omitted, and if it is, the position is related to the world coor-
dinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used, this argument must be specified.

ProcName (Procedure Name) Data type: string

Name of the RAPID procedure to be executed at the middle of the corner path in
the destination point.

Program execution

See the instruction MoveC for more information about circular movements.

The specified RAPID procedure is executed when the TCP reaches the middle of the
corner path in the destination point of the MoveCSync instruction, as shown in Figure 1:

Figure 22 Execution of user-defined RAPID procedure at the middle of the corner path.

For stop points, we recommend the use of “normal” programming sequence with

p4

MoveCSync p2, p3, v1000, z30, tool2, “my_proc”;

p3

Zone

When TCP is here,
my_proc is executed

p1

p2
2-MoveCSync-2 System DataTypes and Routines

Instructions MoveCSync
MoveC + other RAPID instructions in sequence.

Execution of the specified RAPID procedure in different execution modes:

Execution mode: Execution of RAPID procedure:

Continuously or Cycle According to this description

Forward step In the stop point

Backward step Not at all

Limitation

General limitations according to instruction MoveC.

Switching execution mode after program stop from continuously or cycle to stepwise
forward or backward results in an error. This error tells the user that the mode switch
can result in missed execution of a RAPID procedure in the queue for execution on the
path. This error can be avoided if the program is stopped with StopInstr before the
mode switch.

Instruction MoveCSync cannot be used on TRAP level.
The specified RAPID procedure cannot be tested with stepwise execution.

Syntax

MoveCSync
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

 [’\’ T ’:=’ < expression (IN) of num >] ’,’
[Zone ’:=’] < expression (IN) of zonedata > ’,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’,’
[ProcName ‘:=’] < expression (IN) of string >] ’;’
System DataTypes and Routines 2-MoveCSync-3

MoveCSync Instructions
Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems
2-MoveCSync-4 System DataTypes and Routines

Instructions MoveAbsJ
MoveAbsJMoves the robot to an absolute joint position

MoveAbsJ (Move Absolute Joint) is used to move the robot to an absolute position,
defined in axes positions.

This instruction need only be used when:

- the end point is a singular point

- for ambiguous positions on the IRB 6400C, e.g. for movements with the tool
over the robot.

The final position of the robot, during a movement with MoveAbsJ, is neither affected
by the given tool and work object, nor by active program displacement. However, the
robot uses these data to calculating the load, TCP velocity, and the corner path. The
same tools can be used as in adjacent movement instructions.

The robot and external axes move to the destination position along a non-linear path.
All axes reach the destination position at the same time.

Examples

MoveAbsJ p50, v1000, z50, tool2;

The robot with the tool tool2 is moved along a non-linear path to the absolute
axis position, p50, with velocity data v1000 and zone data z50.

MoveAbsJ *, v1000\T:=5, fine, grip3;

The robot with the tool grip3, is moved along a non-linear path to a stop point
which is stored as an absolute axis position in the instruction (marked with an *).
The entire movement takes 5 s.

Arguments

MoveAbsJ [\Conc] ToJointPos Speed [\V] | [\T] Zone [\Z]
Tool [\WObj]

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed while the robot is moving. The argument is
used to shorten the cycle time when, for example, communicating with external
equipment, if synchronisation is not required.

Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath, move-
ment instructions with the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
System DataTypes and Routines 2-MoveAbsJ-1

MoveAbsJ Instructions
zone.

ToJointPos (To Joint Position) Data type: jointtarget

The destination absolute joint position of the robot and external axes. It is defined
as a named position or stored directly in the instruction (marked with an * in the
instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
tool centre point, the tool reorientation and external axes.

[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Z] (Zone) Data type: num

This argument is used to specify the position accuracy of the robot TCP directly
in the instruction. The length of the corner path is given in mm, which is substi-
tuted for the corresponding zone specified in the zone data.

Tool Data type: tooldata

The tool in use during the movement.

The position of the TCP and the load on the tool are defined in the tool data. The
TCP position is used to decide the velocity and the corner path for the movement.

[\WObj] (Work Object) Data type: wobjdata

The work object used during the movement.

This argument can be omitted if the tool is held by the robot. However, if the
robot holds the work object, i.e. the tool is stationary, or with coordinated external
axes, then the argument must be specified.

In the case of a stationary tool or coordinated external axes, the data used by the
system to decide the velocity and the corner path for the movement, is defined in
the work object.
2-MoveAbsJ-2 System DataTypes and Routines

Instructions MoveAbsJ
Program execution

The tool is moved to the destination absolute joint position with interpolation of the
axis angles. This means that each axis is moved with constant axis velocity and that all
axes reach the destination joint position at the same time, which results in a non-linear
path.

Generally speaking, the TCP is moved at approximate programmed velocity. The tool
is reoriented and the external axes are moved at the same time as the TCP moves. If
the programmed velocity for reorientation, or for the external axes, cannot be attained,
the velocity of the TCP will be reduced.

A corner path is usually generated when movement is transferred to the next section of
the path. If a stop point is specified in the zone data, program execution only continues
when the robot and external axes have reached the appropriate joint position.

Examples

MoveAbsJ *, v2000\V:=2200, z40 \Z:=45, grip3;

The tool, grip3, is moved along a non-linear path to a absolute joint position
stored in the instruction. The movement is carried out with data set to v2000 and
z40, the velocity and zone size of the TCP are 2200 mm/s and 45 mm respec-
tively.

MoveAbsJ \Conc, *, v2000, z40, grip3;

The tool, grip3, is moved along a non-linear path to a absolute joint position
stored in the instruction. Subsequent logical instructions are executed while the
robot moves.

GripLoad obj_mass;
MoveAbsJ start, v2000, z40, grip3 \WObj:= obj;

The robot moves the work object obj in relation to the fixed tool grip3 along a
non-linear path to an absolute axis position start.

Error handling

When running the program, a check is made that the arguments Tool and \WObj do not
contain contradictory data with regard to a movable or a stationary tool respectively.

Limitations

A movement with MoveAbsJ is not affected by active program displacement, but is
affected by active offset for external axes.

In order to be able to run backwards with the instruction MoveAbsJ involved, and
System DataTypes and Routines 2-MoveAbsJ-3

MoveAbsJ Instructions
avoiding problems with singular points or ambiguous areas, it is essential that the sub-
sequent instructions fulfil certain requirements, as follows (see Figure 1).

Figure 1 Limitation for backward execution with MoveAbsJ.

Syntax

MoveAbsJ
[’\’ Conc ’,’]
[ToJointPos ’:=’] < expression (IN) of jointtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >
[’\’ Z ‘:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’

MoveAbsJ
MoveJ

Singular point

MoveAbsJ

MoveAbsJ Any Move instr.

Ambiguous area
2-MoveAbsJ-4 System DataTypes and Routines

Instructions MoveAbsJ
Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of jointtarget Data Types - jointtarget

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Concurrent program execution Motion and I/O Principles -
Synchronisation Using Logical Instructions
System DataTypes and Routines 2-MoveAbsJ-5

MoveAbsJ Instructions
2-MoveAbsJ-6 System DataTypes and Routines

Instructions MoveC
MoveC Moves the robot circularly

MoveC is used to move the tool centre point (TCP) circularly to a given destination.
During the movement, the orientation normally remains unchanged relative to the circle.

Examples

MoveC p1, p2, v500, z30, tool2;

The TCP of the tool, tool2, is moved circularly to the position p2, with speed data
v500 and zone data z30. The circle is defined from the start position, the circle
point p1 and the destination point p2.

MoveC *, *, v500 \T:=5, fine, grip3;

The TCP of the tool, grip3, is moved circularly to a fine point stored in the
instruction (marked by the second *). The circle point is also stored in the
instruction (marked by the first *). The complete movement takes 5 seconds.

MoveL p1, v500, fine, tool1;
MoveC p2, p3, v500, z20, tool1;
MoveC p4, p1, v500, fine, tool1;

A complete circle is performed if the positions are the same as those shown in
Figure 2.

Figure 2 A complete circle is performed by two MoveC instructions.

Arguments

MoveC [\Conc] CirPoint ToPoint Speed [\V] | [\T] Zone [\Z]
Tool [\WObj] [\Corr]

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed at once. This argument is used to shorten
the cycle time when, for example, communicating with external equipment, if
synchronisation is not required.

p1

p3

p2p4
System DataTypes and Routines 2-MoveC-1

MoveC Instructions
Using the argument \Conc, the number of movement instructions in succession is
limited to 5. In a program section that includes StorePath-RestoPath, movement
instructions with the argument \Conc are not permitted.

If this argument is omitted, and the ToPoint is not a Stop point the subsequent
instruction is executed some time before the robot has reached the programmed
zone.

CirPoint Data type: robtarget

The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy, it should be
placed about halfway between the start and destination points. If it is placed too
close to the start or destination point, the robot may give a warning. The circle
point is defined as a named position or stored directly in the instruction (marked
with an * in the instruction). The position of the external axes are not used.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation and external axes.

[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
and external axes move. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Z] (Zone) Data type: num

This argument is used to specify the position accuracy of the robot TCP directly
in the instruction. The length of the corner path is given in mm, which is
substituted for the corresponding zone specified in the zone data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination point.
2-MoveC-2 System DataTypes and Routines

Instructions MoveC
[\WObj] (Work Object) Data type: wobjdata

The work object (object coordinate system) to which the robot position in the
instruction is related.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified in order for a circle
relative to the work object to be executed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

Program execution

The robot and external units are moved to the destination point as follows:

- The TCP of the tool is moved circularly at constant programmed velocity.

- The tool is reoriented at a constant velocity, from the orientation at the start
position to the orientation at the destination point.

- The reorientation is performed relative to the circular path. Thus, if the
orientation relative to the path is the same at the start and the destination points,
the relative orientation remains unchanged during the movement (see Figure 3).

.

Figure 3 Tool orientation during circular movement.

- The orientation at the circle point is not critical; it is only used to distinguish
between two possible directions of reorientation. The accuracy of the
reorientation along the path depends only on the orientation at the start and
destination points.

- Uncoordinated external axes are executed at constant velocity in order for them
to arrive at the destination point at the same time as the robot axes. The position
in the circle position is not used.

If it is not possible to attain the programmed velocity for the reorientation or for the
external axes, the velocity of the TCP will be reduced.

Start point

CirPoint

Tool orientation

ToPoint
System DataTypes and Routines 2-MoveC-3

MoveC Instructions
A corner path is usually generated when movement is transferred to the next section of
a path. If a stop point is specified in the zone data, program execution only continues
when the robot and external axes have reached the appropriate position.

Examples

MoveC *, *, v500 \V:=550, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved circularly to a position stored in the
instruction. The movement is carried out with data set to v500 and z40; the
velocity and zone size of the TCP are 550 mm/s and 45 mm respectively.

MoveC \Conc, *, *, v500, z40, grip3;

The TCP of the tool, grip3, is moved circularly to a position stored in the
instruction. The circle point is also stored in the instruction. Subsequent logical
instructions are executed while the robot moves.

MoveC cir1, p15, v500, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved circularly to a position, p15, via the circle
point cir1. These positions are specified in the object coordinate system for
fixture.

Limitations

A change of execution mode from forward to backward or vice versa, while the robot
is stopped on a circular path, is not permitted and will result in an error message.

The instruction MoveC (or any other instruction including circular movement) should
never be started from the beginning, with TCP between the circle point and the end
point. Otherwise the robot will not take the programmed path (positioning around the
circular path in another direction compared with that programmed).

Make sure that the robot can reach the circle point during program execution and divide
the circle segment if necessary.
2-MoveC-4 System DataTypes and Routines

Instructions MoveC
Syntax

MoveC
[’\’ Conc ’,’]
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >
[’\’ Z ’:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Writes to a corrections entry Instructions - CorrWrite

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Concurrent program execution Motion and I/O Principles -
Synchronisation Using Logical
Instructions
System DataTypes and Routines 2-MoveC-5

MoveC Instructions
2-MoveC-6 System DataTypes and Routines

Instructions MoveCDO
MoveCDO Moves the robot circularly
and sets digital output in the corner

MoveCDO (Move Circular Digital Output) is used to move the tool centre point (TCP)
circularly to a given destination. The specified digital output is set/reset in the middle of
the corner path at the destination point. During the movement, the orientation normally
remains unchanged relative to the circle.

Examples

MoveCDO p1, p2, v500, z30, tool2, do1,1;

The TCP of the tool, tool2, is moved circularly to the position p2, with speed data
v500 and zone data z30. The circle is defined from the start position, the circle
point p1 and the destination point p2. Output do1 is set in the middle of the corner
path at p2.

Arguments

MoveCDO CirPoint ToPoint Speed [\T] Zone Tool [\WObj]
Signal Value

CirPoint Data type: robtarget

The circle point of the robot. The circle point is a position on the circle between
the start point and the destination point. To obtain the best accuracy, it should be
placed about halfway between the start and destination points. If it is placed too
close to the start or destination point, the robot may give a warning. The circle
point is defined as a named position or stored directly in the instruction (marked
with an * in the instruction). The position of the external axes are not used.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
TCP, the tool reorientation and external axes.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
and external axes move. It is then substituted for the corresponding speed data.
System DataTypes and Routines 2-MoveCDO-1

MoveCDO Instructions
Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination point.

[\WObj] (Work Object) Data type: wobjdata

The work object (object coordinate system) to which the robot position in the
instruction is related.

This argument can be omitted, and if it is, the position is related to the world coor-
dinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used, this argument must be specified in order for a circle relative to the
work object to be executed.

Signal Data type: signaldo

The name of the digital output signal to be changed.

Value Data type: dionum

The desired value of signal (0 or 1).

Program execution

See the instruction MoveC for more information about circular movement.

The digital output signal is set/reset in the middle of the corner path for flying points,
as shown in Figure 1.

.

Figure 4 Set/Reset of digital output signal in the corner path with MoveCDO.

For stop points, we recommend the use of “normal” programming sequence with
MoveC + SetDO. But when using stop point in instruction MoveCDO, the digital output
signal is set/reset when the robot reaches the stop point.

Start point

CirPoint

ToPoint

Zone

Next
point

Set/Reset
the signal
2-MoveCDO-2 System DataTypes and Routines

Instructions MoveCDO
The specified I/O signal is set/reset in execution mode continuously and stepwise for-
ward but not in stepwise backward.

Limitations

General limitations according to instruction MoveC.

Syntax

MoveCDO
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Zone ’:=’] < expression (IN) of zonedata > ’,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’,’
[Signal ’:=’] < variable (VAR) of signaldo>] ‘,’
[Value ‘:=’] < expression (IN) of dionum >] ’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Movements with I/O settings Motion and I/O Principles - Synchroni-
sation Using Logical Instructions
System DataTypes and Routines 2-MoveCDO-3

MoveCDO Instructions
2-MoveCDO-4 System DataTypes and Routines

Instructions MoveJDO
MoveJDO Moves the robot by joint movement
and sets digital output in the corner

MoveJDO (Move Joint Digital Output) is used to move the robot quickly from one
point to another when that movement does not have to be in a straight line. The speci-
fied digital output signal is set/reset at the middle of the corner path.

The robot and external axes move to the destination position along a non-linear path.
All axes reach the destination position at the same time.

Examples

MoveJDO p1, vmax, z30, tool2, do1, 1;

The tool centre point (TCP) of the tool, tool2, is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30. Output do1 is set in
the middle of the corner path at p1.

Arguments

MoveJDO ToPoint Speed [\T] Zone Tool
[\WObj] Signal Value

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
tool centre point, the tool reorientation and external axes.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point moved
to the specified destination point.
System DataTypes and Routines 2-MoveJDO-1

MoveJDO Instructions

e for-
[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

This argument can be omitted, and if it is, the position is related to the world coor-
dinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used, this argument must be specified.

Signal Data type: signaldo

The name of the digital output signal to be changed.

Value Data type: dionum

The desired value of signal (0 or 1).

Program execution

See the instruction MoveJ for more information about joint movement.

The digital output signal is set/reset in the middle of the corner path for flying points,
as shown in Figure 1.

Figure 5 Set/Reset of digital output signal in the corner path with MoveJDO.

For stop points, we recommend the use of “normal” programming sequence with
MoveJ + SetDO. But when using stop point in instruction MoveJDO, the digital output
signal is set/reset when the robot reaches the stop point.

The specified I/O signal is set/reset in execution mode continuously and stepwis
ward but not in stepwise backward.

Zone
p2

p3

Sets the signal do1 to 1

p1

MoveJDO p2, v1000, z30, tool2, do1, 1;
2-MoveJDO-2 System DataTypes and Routines

Instructions MoveJDO

Sy
Syntax

MoveJDO
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Zone ’:=’] < expression (IN) of zonedata > ’,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’,’
[Signal ’:=’] < variable (VAR) of signaldo>] ‘,’
[Value ‘:=’] < expression (IN) of dionum >] ’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Movements with I/O settings Motion and I/O Principles - Synchronisa-
tion Using Logical Instructions
stem DataTypes and Routines 2-MoveJDO-3

MoveJDO Instructions
2-MoveJDO-4 System DataTypes and Routines

Instructions MoveJ
MoveJ Moves the robot by joint movement

MoveJ is used to move the robot quickly from one point to another when that move-
ment does not have to be in a straight line.

The robot and external axes move to the destination position along a non-linear path.
All axes reach the destination position at the same time.

Examples

MoveJ p1, vmax, z30, tool2;

The tool centre point (TCP) of the tool, tool2, is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30.

MoveJ *, vmax \T:=5, fine, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a stop point
stored in the instruction (marked with an *). The entire movement takes 5 sec-
onds.

Arguments

MoveJ [\Conc] ToPoint Speed [\V] | [\T] Zone [\Z] Tool
[\WObj]

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed while the robot is moving. The argument is
used to shorten the cycle time when, for example, communicating with external
equipment, if synchronisation is not required.

Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath, move-
ment instructions with the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
System DataTypes and Routines 2-MoveJ-1

MoveJ Instructions
tool centre point, the tool reorientation and external axes.

[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Z] (Zone) Data type: num

This argument is used to specify the position accuracy of the robot TCP directly
in the instruction. The length of the corner path is given in mm, which is substi-
tuted for the corresponding zone specified in the zone data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point moved
to the specified destination point.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

This argument can be omitted, and if it is, the position is related to the world coor-
dinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used, this argument must be specified.

Program execution

The tool centre point is moved to the destination point with interpolation of the axis
angles. This means that each axis is moved with constant axis velocity and that all axes
reach the destination point at the same time, which results in a non-linear path.

Generally speaking, the TCP is moved at the approximate programmed velocity
(regardless of whether or not the external axes are coordinated). The tool is reoriented
and the external axes are moved at the same time as the TCP moves. If the programmed
velocity for reorientation, or for the external axes, cannot be attained, the velocity of
the TCP will be reduced.

A corner path is usually generated when movement is transferred to the next section of
the path. If a stop point is specified in the zone data, program execution only continues
2-MoveJ-2 System DataTypes and Routines

Instructions MoveJ
System DataTypes and Routines 2-MoveJ-3

when the robot and external axes have reached the appropriate position.

Examples

MoveJ *, v2000\V:=2200, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a position stored
in the instruction. The movement is carried out with data set to v2000 and z40;
the velocity and zone size of the TCP are 2200 mm/s and 45 mm respectively.

MoveJ \Conc, *, v2000, z40, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a position stored
in the instruction. Subsequent logical instructions are executed while the robot
moves.

MoveJ start, v2000, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved along a non-linear path to a position, start.
This position is specified in the object coordinate system for fixture.

Syntax

MoveJ
[’\’ Conc ’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >
[’\’ Z ‘:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’

MoveJ Instructions
Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Concurrent program execution Motion and I/O Principles -
Synchronisation Using Logical Instructions
2-MoveJ-4 System DataTypes and Routines

Instructions MoveLDO
MoveLDO Moves the robot linearly
and sets digital output in the corner

MoveLDO (Move Linearly Digital Output) is used to move the tool centre point (TCP)
linearly to a given destination. The specified digital output signal is set/reset at the mid-
dle of the corner path.

When the TCP is to remain stationary, this instruction can also be used to reorient the
tool.

Example

MoveLDO p1, v1000, z30, tool2, do1,1;

The TCP of the tool, tool2, is moved linearly to the position p1, with speed data
v1000 and zone data z30. Output do1 is set in the middle of the corner path at p1.

Arguments

MoveLDO ToPoint Speed [\T] Zone Tool
[\WObj] Signal Value

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the
tool centre point, the tool reorientation and external axes.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point moved
to the specified destination position.
System DataTypes and Routines 2-MoveLDO-1

MoveLDO Instructions

e for-
[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

This argument can be omitted, and if it is, the position is related to the world coor-
dinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used, this argument must be specified.

Signal Data type: signaldo

The name of the digital output signal to be changed.

Value Data type: dionum

The desired value of signal (0 or 1).

Program execution

See the instruction MoveL for more information about linear movements.

The digital output signal is set/reset in the middle of the corner path for flying points,
as shown in Figure 1.

Figure 6 Set/Reset of digital output signal in the corner path with MoveLDO.

For stop points, we recommend the use of “normal” programming sequence with
MoveL + SetDO. But when using stop point in instruction MoveLDO, the digital output
signal is set/reset when the robot reaches the stop point.

The specified I/O signal is set/reset in execution mode continuously and stepwis
ward but not in stepwise backward.

Zone
p2

p3

Sets the signal do1 to 1

p1

MoveLDO p2, v1000, z30, tool2, do1, 1;
2-MoveLDO-2 System DataTypes and Routines

Instructions MoveLDO
Syntax

MoveLDO
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Zone ’:=’] < expression (IN) of zonedata > ’,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’,’
[Signal ’:=’] < variable (VAR) of signaldo>] ‘,’
[Value ‘:=’] < expression (IN) of dionum >] ’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Movements with I/O settings Motion and I/O Principles - Synchroni-
sation Using Logical Instructions
System DataTypes and Routines 2-MoveLDO-3

MoveLDO Instructions
2-MoveLDO-4 System DataTypes and Routines

Instructions MoveL
MoveL Moves the robot linearly

MoveL is used to move the tool centre point (TCP) linearly to a given destination.
When the TCP is to remain stationary, this instruction can also be used to reorientate
the tool.

Example

MoveL p1, v1000, z30, tool2;

The TCP of the tool, tool2, is moved linearly to the position p1, with speed data
v1000 and zone data z30.

MoveL *, v1000\T:=5, fine, grip3;

The TCP of the tool, grip3, is moved linearly to a fine point stored in the
instruction (marked with an *). The complete movement takes 5 seconds.

Arguments

MoveL [\Conc] ToPoint Speed [\V] | [\T] Zone [\Z] Tool
[\WObj] [\Corr]

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed at once. This argument is used to shorten
the cycle time when, for example, communicating with external equipment, if
synchronisation is not required.

Using the argument \Conc, the number of movement instructions in succession
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the
tool centre point, the tool reorientation and external axes.
System DataTypes and Routines 2-MoveL-1

MoveL Instructions
[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

[\Z] (Zone) Data type: num

This argument is used to specify the position accuracy of the robot TCP directly
in the instruction. The length of the corner path is given in mm, which is
substituted for the corresponding zone specified in the zone data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point moved
to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary tool or coordinated external
axes are used, this argument must be specified in order to perform a linear
movement relative to the work object.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position, if this argument is present.

Program execution

The robot and external units are moved to the destination position as follows:

- The TCP of the tool is moved linearly at constant programmed velocity.

- The tool is reoriented at equal intervals along the path.

- Uncoordinated external axes are executed at a constant velocity in order for
them to arrive at the destination point at the same time as the robot axes.
2-MoveL-2 System DataTypes and Routines

Instructions MoveL
If it is not possible to attain the programmed velocity for the reorientation or for the
external axes, the velocity of the TCP will be reduced.

A corner path is usually generated when movement is transferred to the next section of
a path. If a stop point is specified in the zone data, program execution only continues
when the robot and external axes have reached the appropriate position.

Examples

MoveL *, v2000 \V:=2200, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved linearly to a position stored in the
instruction. The movement is carried out with data set to v2000 and z40; the
velocity and zone size of the TCP are 2200 mm/s and 45 mm respectively.

MoveL \Conc, *, v2000, z40, grip3;

The TCP of the tool, grip3, is moved linearly to a position stored in the
instruction. Subsequent logical instructions are executed while the robot moves.

MoveL start, v2000, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved linearly to a position, start. This position is
specified in the object coordinate system for fixture.

Syntax

MoveL
[’\’ Conc ’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >
[’\’ Z ’:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’
System DataTypes and Routines 2-MoveL-3

MoveL Instructions
Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Writes to a corrections entry Instructions - CorrWrite

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Concurrent program execution Motion and I/O Principles -
Synchronisation Using Logical
Instructions
2-MoveL-4 System DataTypes and Routines

Instructions MoveJSync

ed
n).

 of the

obot

 corner

ved
MoveJSync Moves the robot by joint movement
and executes a RAPID procedure

MoveJSync (Move Joint Synchronously) is used to move the robot quickly from one
point to another when that movement does not have to be in a straight line. The speci-
fied RAPID procedure is executed at the middle of the corner path in the destination
point.

The robot and external axes move to the destination position along a non-linear path.
All axes reach the destination position at the same time.

Examples

MoveJSync p1, vmax, z30, tool2, “proc1”;

The tool centre point (TCP) of the tool, tool2, is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30. Procedure proc1 is
executed in the middle of the corner path at p1.

Arguments

MoveJSync ToPoint Speed [\T] Zone Tool [\WObj]
ProcName

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the tool reorientation and external axes.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point mo
to the specified destination point.
System DataTypes and Routines 2-MoveJSync-1

MoveJSync Instructions
[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

This argument can be omitted, and if it is, the position is related to the world coor-
dinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used, this argument must be specified.

ProcName (Procedure Name) Data type: string

Name of the RAPID procedure to be executed at the middle of the corner path in
the destination point.

Program execution

See the instruction MoveJ for more information about joint movements.

The specified RAPID procedure is executed when the TCP reaches the middle of the
corner path in the destination point of the MoveJSync instruction, as shown in Figure 1:

Figure 7 Execution of user-defined RAPID procedure in the middle of the corner path.

For stop points, we recommend the use of “normal” programming sequence with
MoveJ + other RAPID instructions in sequence.

Execution of the specified RAPID procedure in different execution modes:

p3

p1

MoveJSync p2, v1000, z30, tool2, “my_proc”;

p2

Zone

my_proc is executed

When TCP is here,
2-MoveJSync-2 System DataTypes and Routines

Instructions MoveJSync
System DataTypes and Routines 2-MoveJSync-3

Execution mode: Execution of RAPID procedure:

Continuously or Cycle According to this description

Forward step In the stop point

Backward step Not at all

Limitation

Switching execution mode after program stop from continuously or cycle to stepwise
forward or backward results in an error. This error tells the user that the mode switch
can result in missed execution of a RAPID procedure in the queue for execution on the
path. This error can be avoided if the program is stopped with StopInstr before the
mode switch.

Instruction MoveJSync cannot be used on TRAP level.
The specified RAPID procedure cannot be tested with stepwise execution.

Syntax

MoveJSync
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Zone ’:=’] < expression (IN) of zonedata >

[’\’ Z ‘:=’ < expression (IN) of num >] ’,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’,’
[ProcName‘:=’] < expression (IN) of string >] ’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

MoveJSync Instructions
2-MoveJSync-4 System DataTypes and Routines

Instructions MoveLSync

r

ed
n).

for the

obot

 corner

ved
MoveL Sync Moves the robot linearly
and executes a RAPID procedure

MoveLSync (Move Linearly Synchronously) is used to move the tool centre point
(TCP) linearly to a given destination.The specified RAPID procedure is executed at the
middle of the corner path in the destination point.

When the TCP is to remain stationary, this instruction can also be used to reorient the
tool.

Example

MoveLSync p1, v1000, z30, tool2, “proc1”;

The TCP of the tool, tool2, is moved linearly to the position p1, with speed data
v1000 and zone data z30. Procedure proc1 is executed in the middle of the corne
path at p1.

Arguments

MoveLSync ToPoint Speed [\T] Zone Tool
[\WObj] ProcName

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the tool reorientation and external axes.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point mo
to the specified destination position.
System DataTypes and Routines 2-MoveLSync-1

MoveLSync Instructions
[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

This argument can be omitted, and if it is, the position is related to the world coor-
dinate system. If, on the other hand, a stationary TCP or coordinated external
axes are used, this argument must be specified.

ProcName (Procedure Name) Data type: string

Name of the RAPID procedure to be executed at the middle of the corner path in
the destination point.

Program execution

See the instruction MoveL for more information about linear movements.

The specified RAPID procedure is executed when the TCP reaches the middle of the
corner path in the destination point of the MoveLSync instruction, as shown in Figure 1:

Figure 8 Execution of user-defined RAPID procedure in the middle of the corner path.

For stop points, we recommend the use of “normal” programming sequence with
MoveL + other RAPID instructions in sequence.

Execution of the specified RAPID procedure in different execution modes:

p3

p1

MoveLSync p2, v1000, z30, tool2, “my_proc”;

p2

Zone

my_proc is executed

When TCP is here,
2-MoveLSync-2 System DataTypes and Routines

Instructions MoveLSync
Execution mode: Execution of RAPID procedure:

Continuously or Cycle According to this description

Forward step In the stop point

Backward step Not at all

Limitation

Switching execution mode after program stop from continuously or cycle to stepwise
forward or backward results in an error. This error tells the user that the mode switch
can result in missed execution of a RAPID procedure in the queue for execution on the
path. This error can be avoided if the program is stopped with StopInstr before the
mode switch.

Instruction MoveLSync cannot be used on TRAP level.
The specified RAPID procedure cannot be tested with stepwise execution.

Syntax

MoveLSync
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Zone ’:=’] < expression (IN) of zonedata > ’,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’,’
[ProcName‘:=’] < expression (IN) of string >] ‘;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems
System DataTypes and Routines 2-MoveLSync-3

MoveLSync Instructions
2-MoveLSync-4 System DataTypes and Routines

Instructions Open
Open Opens a file or serial channel

Open is used to open a file or serial channel for reading or writing.

Example

VAR iodev logfile;
.
Open "flp1:LOGDIR/" \File:= "LOGFILE1.DOC",logfile;

The file LOGFILE1.DOC in unit flp1: (diskette), directory LOGDIR, is opened
for writing. The reference name logfile is used later in the program when writing
to the file.

Arguments

Open Object [\File] IODevice [\Read] | [\Write] | [\Append] | [\Bin]

Object Data type: string

The I/O object that is to be opened, e.g. "flp1:", "ram1disk:".

[\File] Data type: string

The name of the file. This name can also be specified in the argument Object, e.g.
"flp1:LOGDIR/LOGFILE.DOC".

IODevice Data type: iodev

A reference to the file or serial channel to open. This reference is then used for
reading from and writing to the file/channel.

The arguments \Read, \Write, \Append and \Bin are mutually exclusive. If none of these
are specified, the instruction acts in the same way as the \Write argument.

[\Read] Data type: switch

Opens a character-based file or serial channel for reading. When reading from a
file, the reading is started from the beginning of the file.

[\Write] Data type: switch

Opens a character-based file or serial channel for writing. If the selected file
already exists, its contents are deleted. Anything subsequently written is written
at the start of the file.
System DataTypes and Routines 2-Open-1

Open Instructions
[\Append] Data type: switch

Opens a character-based file or serial channel for writing. If the selected file
already exists, anything subsequently written is written at the end of the file.

[\Bin] Data type: switch

Opens a binary serial channel for reading and writing.
Works as append, i.e. file pointer at end of file.

Example

VAR iodev printer;
.
Open "sio1:", printer \Bin;
Write printer, "This is a message to the printer";
Close printer;

The serial channel sio1: is opened for binary reading and writing. The reference
name printer is used later when writing to and closing the serial channel.

Program execution

The specified serial channel/file is activated so that it can be read from or written to.
Several files can be open on the same unit at the same time.

Error handling

If a file cannot be opened, the system variable ERRNO is set to ERR_FILEOPEN. This
error can then be handled in the error handler.

Syntax

Open
[Object ’:=’] <expression (IN) of string>
[’\’File’:=’ <expression (IN) of string>’]’ ’,’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Read] | [’\’Write] | [’\’Append] | [’\’Bin] ’;’

Related information

Described in:

Writing to and reading from serial RAPID Summary - Communication
channels and files.
2-Open-2 System DataTypes and Routines

Instructions Open
System DataTypes and Routines 2-Open-3

Open Instructions
2-Open-4 System DataTypes and Routines

Instructions PathResol
PathResol Override path resolution

PathResol (Path Resolution) is used to override the configured geometric path sample
time defined in the system parameters for the manipulator.

Description

The path resolution affects the accuracy of the interpolated path and the program cycle
time. The path accuracy is improved and the cycle time is often reduced when the
parameter PathSampleTime is decreased. A value for parameter PathSampleTime
which is too low, may however cause CPU load problems in some demanding applica-
tions. However, use of the standard configured path resolution (PathSampleTime
100%) will avoid CPU load problems and provide sufficient path accuracy in most sit-
uations.

Example of PathResol usage:

Dynamically critical movements (max payload, high speed, combined joint motions
close to the border of the work area) may cause CPU load problems. Increase the
parameter PathSampleTime.

Low performance external axes may cause CPU load problems during coordination.
Increase the parameter PathSampleTime.

Arc-welding with high frequency weaving may require high resolution of the interpo-
lated path. Decrease the parameter PathSampleTime.

Small circles or combined small movements with direction changes can decrease the
path performance quality and increase the cycle time. Decrease the parameter Path-
SampleTime.

Gluing with large reorientations and small corner zones can cause speed variations.
Decrease the parameter PathSampleTime.

Example

MoveJ p1,v1000,fine,tool1;
PathResol 150;

With the robot at a stop point, the path sample time is increased to 150% of the
configured.

Arguments

PathResol PathSampleTime

PathSampleTime Data type: num

Override as a percent of the configured path sample time.
System DataTypes and Routines 2-PathResol-1

PathResol Instructions
100% corresponds to the configured path sample time.
Within the range 25-400%.

A lower value of the parameter PathSampleTime improves the path resolution
(path accuracy).

Program execution

The path resolutions of all subsequent positioning instructions are affected until a new
PathResol instruction is executed. This will affect the path resolution during all pro-
gram execution of movements (default path level and path level after StorePath) and
also during jogging.

The default value for override of path sample time is 100%. This value is automatically
set

- at a cold start-up

- when a new program is loaded

- when starting program execution from the beginning.

The current override of path sample time can be read from the variable C_MOTSET
(data type motsetdata) in the component pathresol.

Limitations

The robot must be standing still at a stop point before overriding the path sample time.
When there is a corner path in the program, the system will instead create a stop point
(warning 50146) and it is not possible to restart in this instruction following a power
failure.

Syntax

PathResol
[PathSampleTime ’:=’] < expression (IN) of num> ’;’

Related information

Described in:

Positioning instructions Motion and I/O Principles- Movements

Motion settings RAPID Summary - Motion Settings

Configuration of path resolution System Parameters -
CPU Optimization
2-PathResol-2 System DataTypes and Routines

Instructions PDispOff
PDispOff Deactivates program displacement

PDispOff (Program Displacement Off) is used to deactivate a program displacement.

Program displacement is activated by the instruction PDispSet or PDispOn and applies
to all movements until some other program displacement is activated or until program
displacement is deactivated.

Examples

PDispOff;

Deactivation of a program displacement.

MoveL p10, v500, z10, tool1;
PDispOn \ExeP:=p10, p11, tool1;
MoveL p20, v500, z10, tool1;
MoveL p30, v500, z10, tool1;
PDispOff;
MoveL p40, v500, z10, tool1;

A program displacement is defined as the difference between the positions p10
and p11. This displacement affects the movement to p20 and p30, but not to p40.

Program execution

Active program displacement is reset. This means that the program displacement coor-
dinate system is the same as the object coordinate system, and thus all programmed
positions will be related to the latter.

Syntax

PDispOff ‘;’

Related information

Described in:

Definition of program displacement Instructions - PDispOn
using two positions

Definition of program displacement using Instructions - PDispSet
values
System DataTypes and Routines 2-PDispOff-1

PDispOff Instructions
2-PDispOff-2 System DataTypes and Routines

Instructions PDispOn

tion.

d

lves

ram
PDispOn Activates program displacement

PDispOn (Program Displacement On) is used to define and activate a program
displacement using two robot positions.

Program displacement is used, for example, after a search has been carried out, or
when similar motion patterns are repeated at several different places in the program.

Examples

MoveL p10, v500, z10, tool1;
PDispOn \ExeP:=p10, p20, tool1;

Activation of a program displacement (parallel movement). This is calculated
based on the difference between positions p10 and p20.

MoveL p10, v500, fine, tool1;
PDispOn *, tool1;

Activation of a program displacement (parallel movement). Since a stop point
has been used in the previous instruction, the argument \ExeP does not have to
be used. The displacement is calculated on the basis of the difference between
the robot’s actual position and the programmed point (*) stored in the instruc

PDispOn \Rot \ExeP:=p10, p20, tool1;

Activation of a program displacement including a rotation. This is calculate
based on the difference between positions p10 and p20.

Arguments

PDispOn [\Rot] [\ExeP] ProgPoint Tool [\WObj]

[\Rot] (Rotation) Data type: switch

The difference in the tool orientation is taken into consideration and this invo
a rotation of the program.

[\ExeP] (Executed Point) Data type: robtarget

The robot’s new position at the time of the program execution.
If this argument is omitted, the robot’s current position at the time of the prog
execution is used.

ProgPoint (Programmed Point) Data type: robtarget

The robot’s original position at the time of programming.
System DataTypes and Routines 2-PDispOn-1

PDispOn Instructions
Tool Data type: tooldata

The tool used during programming, i.e. the TCP to which the ProgPoint position
is related.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the ProgPoint position is related.

This argument can be omitted and, if it is, the position is related to the world
coordinate system. However, if a stationary TCP or coordinated external axes are
used, this argument must be specified.

The arguments Tool and \WObj are used both to calculate the ProgPoint during
programming and to calculate the current position during program execution if
no ExeP argument is programmed.

Program execution

Program displacement means that the ProgDisp coordinate system is translated in
relation to the object coordinate system. Since all positions are related to the ProgDisp
coordinate system, all programmed positions will also be displaced. See Figure 9.

Figure 9 Displacement of a programmed position using program displacement.

Program displacement is activated when the instruction PDispOn is executed and
remains active until some other program displacement is activated (the instruction
PDispSet or PDispOn) or until program displacement is deactivated (the instruction
PDispOff).

Only one program displacement can be active at any one time. Several PDispOn
instructions, on the other hand, can be programmed one after the other and, in this case,
the different program displacements will be added.

Program displacement is calculated as the difference between ExeP and ProgPoint. If
ExeP has not been specified, the current position of the robot at the time of the program
execution is used instead. Since it is the actual position of the robot that is used, the
robot should not move when PDispOn is executed.

If the argument \Rot is used, the rotation is also calculated based on the tool orientation

Object Coordinate System

Program Displacement Coordinate SystemProgram displacement

Original
position, ProgPoint

New
position, ExeP

x

y

x

y

(ProgDisp)
2-PDispOn-2 System DataTypes and Routines

Instructions PDispOn
at the two positions. The displacement will be calculated in such a way that the new
position (ExeP) will have the same position and orientation in relation to the displaced
coordinate system, ProgDisp, as the old position (ProgPoint) had in relation to the
original coordinate system (see Figure 10).

Figure 10 Translation and rotation of a programmed position.

The program displacement is automatically reset

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Example

PROC draw_square()
PDispOn *, tool1;
MoveL *, v500, z10, tool1;
MoveL *, v500, z10, tool1;
MoveL *, v500, z10, tool1;
MoveL *, v500, z10, tool1;
PDispOff;

ENDPROC
.
MoveL p10, v500, fine, tool1;
draw_square;
MoveL p20, v500, fine, tool1;
draw_square;
MoveL p30, v500, fine, tool1;
draw_square;

The routine draw_square is used to execute the same motion pattern at three
different positions, based on the positions p10, p20 and p30. See Figure 11.

Object Coordinate System

Program Displacement Coordinate SystemProgram displacement

Original
position, ProgPoint

New
position, ExeP

x

y
x

y

Original
orientation

New
orientation

(ProgDisp)
System DataTypes and Routines 2-PDispOn-3

PDispOn Instructions

e
n
ased
t (*)
Figure 11 Using program displacement, motion patterns can be reused.

SearchL sen1, psearch, p10, v100, tool1\WObj:=fixture1;
PDispOn \ExeP:=psearch, *, tool1 \WObj:=fixture1;

A search is carried out in which the robot’s searched position is stored in th
position psearch. Any movement carried out after this starts from this positio
using a program displacement (parallel movement). The latter is calculated b
on the difference between the searched position and the programmed poin
stored in the instruction. All positions are based on the fixture1 object coordinate
system.

Syntax

PDispOn
[[’\’ Rot]
[’\’ ExeP ’:=’ < expression (IN) of robtarget >] ’,’]

[ProgPoint ’:=’] < expression (IN) of robtarget > ’,’
[Tool ’:=’] < persistent (PERS) of tooldata>
[‘\’WObj ’:=’ < persistent (PERS) of wobjdata>] ‘;’

Related information

Described in:

Deactivation of program displacement Instructions - PDispOff

Definition of program displacement using Instructions - PDispSet
values

Coordinate systems Motion Principles - Coordinate Systems

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

More examples Instructions - PDispOff

p10
p20

p30
2-PDispOn-4 System DataTypes and Routines

Instructions PDispSet
PDispSet Activates program displacement using a value

PDispSet (Program Displacement Set) is used to define and activate a program dis-
placement using values.

Program displacement is used, for example, when similar motion patterns are repeated
at several different places in the program.

Example

VAR pose xp100 := [[100, 0, 0], [1, 0, 0, 0]];
.
PDispSet xp100;

Activation of the xp100 program displacement, meaning that:

- The ProgDisp coordinate system is displaced 100 mm from the object coordi-
nate system, in the direction of the positive x-axis (see Figure 12).

- As long as this program displacement is active, all positions will be displaced
100 mm in the direction of the x-axis.

Figure 12 A 100 mm-program displacement along the x-axis.

Arguments

PDispSet DispFrame

DispFrame (Displacement Frame) Datatyp: pose

The program displacement is defined as data of the type pose.

Program execution

Program displacement involves translating and/or rotating the ProgDisp coordinate
system relative to the object coordinate system. Since all positions are related to the
ProgDisp coordinate system, all programmed positions will also be displaced. See Fig-
ure 13.

ProgDisp

X100

Object
System DataTypes and Routines 2-PDispSet-1

PDispSet Instructions
.

Figure 13 Translation and rotation of a programmed position.

Program displacement is activated when the instruction PDispSet is executed and
remains active until some other program displacement is activated (the instruction
PDispSet or PDispOn) or until program displacement is deactivated (the instruction
PDispOff).

Only one program displacement can be active at any one time. Program displacements
cannot be added to one another using PDispSet.

The program displacement is automatically reset

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

PDispSet
[DispFrame ’:=’] < expression (IN) of pose> ’;’

Related information

Described in:

Deactivation of program displacement Instructions - PDispOff

Definition of program displacement Instructions - PDispOn
using two positions

Definition of data of the type pose Data Types - pose

Coordinate systems Motion Principles- Coordinate Systems

Examples of how program displacement Instructions - PDispOn
can be used

Object Coordinate System

Program Displacement Coordinate SystemProgram displacement

Original
position

New
position

x

y
x

y

Original
orientation

New
orientation

(ProgDisp)
2-PDispSet-2 System DataTypes and Routines

Instructions PulseDO
PulseDO Generates a pulse on a digital output signal

PulseDO is used to generate a pulse on a digital output signal.

Examples

PulseDO do15;

A pulse with a pulse length of 0.2 s is generated on the output signal do15.

PulseDO \PLength:=1.0, ignition;

A pulse of length 1.0 s is generated on the signal ignition.

Arguments

PulseDO [\PLength] Signal

[\PLength] (Pulse Length) Data type: num

The length of the pulse in seconds (0.1 - 32s).
If the argument is omitted, a 0.2 second pulse is generated.

Signal Data type: signaldo

The name of the signal on which a pulse is to be generated.

Program execution

A pulse is generated with a specified pulse length (see Figure 14).

:

Figure 14 Generation of a pulse on a digital output signal.

1

0

0

1

Execution of the instruction PulseDO

Execution of the instruction PulseDO

Pulse length

Signal level

Signal level
System DataTypes and Routines 2-PulseDO-1

PulseDO Instructions
The next instruction is executed directly after the pulse starts. The pulse can then be set/
reset without affecting the rest of the program execution.

Limitations

The length of the pulse has a resolution of 0.01 seconds. Programmed values that differ
from this are rounded off.

Syntax

PulseDO
[’\’ PLength ’:=’ < expression (IN) of num > ’,’]
[Signal ’:=’] < variable (VAR) of signaldo > ’;’

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
2-PulseDO-2 System DataTypes and Routines

Instructions RAISE

 not
alling

r has
RAISE Calls an error handler

RAISE is used to create an error in the program and then to call the error handler of the
routine. RAISE can also be used in the error handler to propagate the current error to
the error handler of the calling routine.

This instruction can, for example, be used to jump back to a higher level in the structure
of the program, e.g. to the error handler in the main routine, if an error occurs at a lower
level.

Example

IF ...
IF ...

IF ...
RAISE escape1;

.
ERROR

IF ERRNO=escape1 RAISE;

The routine is interrupted to enable it to remove itself from a low level in the
program. A jump occurs to the error handler of the called routine.

Arguments

RAISE [Error no.]

Error no. Data type: errnum

Error number: Any number between 1 and 90 which the error handler can use to
locate the error that has occurred (the ERRNO system variable).

It is also possible to book an error number outside the range 1-90 with the
instruction BookErrNo.

The error number must be specified outside the error handler in a RAISE
instruction in order to be able to transfer execution to the error handler of that
routine.

If the instruction is present in a routine’s error handler, the error number may
be specified. In this case, the error is propagated to the error handler of the c
routine.

Program execution

Program execution continues in the routine’s error handler. After the error handle
System DataTypes and Routines 2-RAISE-1

RAISE Instructions

he

ror
been executed, program execution can continue with:

- the routine that called the routine in question (RETURN),

- the error handler of the routine that called the routine in question (RAISE).

If the RAISE instruction is present in a routine’s error handler, program execution
continues in the error handler of the routine that called the routine in question. T
same error number remains active.

If the RAISE instruction is present in a trap routine, the error is dealt with by the
system’s error handler.

Error handling

If the error number is out of range, the system variable ERRNO is set to
ERR_ILLRAISE (see "Data types - errnum"). This error can be handled in the er
handler.

Syntax

(EBNF)
RAISE [<error number>] ’;’

<error number> ::= <expression>

Related information

Described in:

Error handling Basic Characteristics -
Error Recovery

Booking error numbers Instructions - BookErrNo
2-RAISE-2 System DataTypes and Routines

Instructions Reset
Reset Resets a digital output signal

Reset is used to reset the value of a digital output signal to zero.

Examples

Reset do15;

The signal do15 is set to 0.

Reset weld;

The signal weld is set to 0.

Arguments

Reset Signal

Signal Data type: signaldo

The name of the signal to be reset to zero.

Program execution

The true value depends on the configuration of the signal. If the signal is inverted in
the system parameters, this instruction causes the physical channel to be set to 1.

Syntax

Reset
[Signal ’:=’] < variable (VAR) of signaldo > ’;’
System DataTypes and Routines 2-Reset-1

Reset Instructions
Related information

Described in:

Setting a digital output signal Instructions - Set

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O System Parameters
2-Reset-2 System DataTypes and Routines

Instructions RestoPath
RestoPath Restores the path after an interrupt

RestoPath is used to restore a path that was stored at a previous stage using the instruc-
tion StorePath.

Example

RestoPath;

Restores the path that was stored earlier using StorePath.

Program execution

The current movement path of the robot and the external axes is deleted and the path
stored earlier using StorePath is restored. Nothing moves, however, until the instruc-
tion StartMove is executed or a return is made using RETRY from an error handler.

Example

ArcL p100, v100, seam1, weld5, weave1, z10, gun1;
...
ERROR

IF ERRNO=AW_WELD_ERR THEN
gun_cleaning;
RETRY;

ENDIF
...
PROC gun_cleaning()

VAR robtarget p1;
StorePath;
p1 := CRobT();
MoveL pclean, v100, fine, gun1;
...
MoveL p1, v100, fine, gun1;
RestoPath;

ENDPROC

In the event of a welding error, program execution continues in the error handler
of the routine, which, in turn, calls gun_cleaning. The movement path being exe-
cuted at the time is then stored and the robot moves to the position pclean where
the error is rectified. When this has been done, the robot returns to the position
where the error occurred, p1, and stores the original movement once again. The
weld then automatically restarts, meaning that the robot is first reversed along
the path before welding starts and ordinary program execution can continue.
RAPID Reference Manual 8-RestoPath-1

RestoPath Instructions
Limitations

Only the movement path data is stored with the instruction StorePath.
If the user wants to order movements on the new path level, the actual stop position
must be stored directly after StorePath and before RestoPath make a movement to the
stored stop position on the path.

The movement instruction which precedes this instruction should be terminated with a
stop point.

Syntax

RestoPath‘;’

Related information

Described in:

Storing paths Instructions - StorePath

More examples Instructions - StorePath
8-RestoPath-2 RAPID Reference Manual

Instructions RETRY

sing
RETRY Restarts following an error

RETRY is used to restart program execution after an error has occurred.

Example

reg2 := reg3/reg4;
.

ERROR
IF ERRNO = ERR_DIVZERO THEN

reg4 := 1;
RETRY;

ENDIF

An attempt is made to divide reg3 by reg4. If reg4 is equal to 0 (division by zero),
a jump is made to the error handler, which initialises reg4. The RETRY
instruction is then used to jump from the error handler and another attempt is
made to complete the division.

Program execution

Program execution continues with (re-executes) the instruction that caused the error.

Error handling

If the maximum number of retries (4 retries) is exceeded, the program execution stops
with an error message and the system variable ERRNO is set to ERR_EXCRTYMAX
(see "Data types - errnum").

Limitations

The instruction can only exist in a routine’s error handler. If the error was created u
a RAISE instruction, program execution cannot be restarted with a RETRY instruction,
then the instruction TRYNEXT should be used.

Syntax

RETRY ’;’
System DataTypes and Routines 2-RETRY-1

RETRY Instructions
Related information

Described in:

Error handlers Basic Characteristics-
Error Recovery

Continue with the next instruction Instructions - TRYNEXT
2-RETRY-2 System DataTypes and Routines

Instructions RETURN
RETURN Finishes execution of a routine

RETURN is used to finish the execution of a routine. If the routine is a function, the
function value is also returned.

Examples

errormessage;
Set do1;

.

PROC errormessage()
TPWrite "ERROR";
RETURN;

ENDPROC

The errormessage procedure is called. When the procedure arrives at the
RETURN instruction, program execution returns to the instruction following the
procedure call, Set do1.

FUNC num abs_value(num value)
IF value<0 THEN

RETURN -value;
ELSE

RETURN value;
ENDIF

ENDFUNC

The function returns the absolute value of a number.

Arguments

RETURN [Return value]

Return value Data type: According to the function decla-
ration

The return value of a function.

The return value must be specified in a RETURN instruction present in a func-
tion.

If the instruction is present in a procedure or trap routine, a return value may not
be specified.
System DataTypes and Routines 2-RETURN-1

RETURN Instructions
Program execution

The result of the RETURN instruction may vary, depending on the type of routine it is
used in:

- Main routine: If a program stop has been ordered at the end of the cycle, the
program stops. Otherwise, program execution continues with
the first instruction of the main routine.

- Procedure: Program execution continues with the instruction following the
procedure call.

- Function: Returns the value of the function.

- Trap routine: Program execution continues from where the interrupt
occurred.

- Error handler: In a procedure:
Program execution continues with the routine that called the
routine with the error handler (with the instruction following
the procedure call).

In a function:
The function value is returned.

Syntax

(EBNF)
RETURN [<expression>]’;’

Related information

Described in:

Functions and Procedures Basic Characteristics - Routines

Trap routines Basic Characteristics - Interrupts

Error handlers Basic Characteristics - Error Recovery
2-RETURN-2 System DataTypes and Routines

Instructions Rewind
Rewind Rewind file position

Rewind sets the file position to the beginning of the file.

Example

Rewind iodev1;

The file referred to by iodev1 will have the file position set to the beginning of
the file.

Arguments

Rewind IODevice

IODevice Data type: iodev

Name (reference) of the file to be rewound.

Program execution

The specified file is rewound to the beginning.
System DataTypes and Routines 2-Rewind-1

Rewind Instructions
Example

! IO device and numeric variable for use together with a binary file
VAR iodev dev;
VAR num bindata;

! Open the binary file with \Write switch to erase old contents
Open "flp1:"\File := "bin_file",dev \Write;
Close dev;

! Open the binary file with \Bin switch for binary read and write access
Open "flp1:"\File := "bin_file",dev \Bin;
WriteStrBin dev,"Hello world";

! Rewind the file pointer to the beginning of the binary file
! Read contents of the file and write the binary result on TP
! (gives 72 101 108 108 111 32 119 111 114 108 100)
Rewind dev;
bindata := ReadBin(dev);
WHILE bindata <> EOF_BIN DO

TPWrite " " \Num:=bindata;
bindata := ReadBin(dev);

ENDWHILE

! Close the binary file
Close dev;

The instruction Rewind is used to rewind a binary file to the beginning so that the
contents of the file can be read back with ReadBin.

Syntax

Rewind
[IODevice ’:=’] <variable (VAR) of iodev>’;’

Related information

Described in:

Opening (etc.) of files RAPID Summary - Communication
2-Rewind-2 System DataTypes and Routines

Instructions Save
Save Save a program module

Save is used to save a program module.

The specified program module in the program memory will be saved with the original
(specified in Load or StartLoad) or specified file path.

It is also possible to save a system module at the specified file path.

Example

Load "ram1disk:PART_B.MOD";
...
Save "PART_B";

Load the program module with the file name PART_B.MOD from the ram1disk
into the program memory.

Save the program module PART_B with the original file path ram1disk with the
original file name PART_B.MOD.

Arguments

Save [\Task] ModuleName [\FilePath] [\File]

[\Task] Data type: taskid

The program task in which the program module should be saved.

If this argument is omitted, the specified program module in the current (execut-
ing) program task will be saved.

For all program tasks in the system, predefined variables of the data type taskid
will be available. The variable identity will be "taskname"+"Id", e.g. for the
MAIN task the variable identity will be MAINId, TSK1 - TSK1Id etc.

ModuleName Data type: string

The program module to save.

[\FilePath] Data type: string

The file path and the file name to the place where the program module is to be
saved. The file name shall be excluded when the argument \File is used.
System DataTypes and Routines 2-Save-3

Save Instructions
[\File] Data type: string

When the file name is excluded in the argument \FilePath, it must be specified
with this argument.

The argument \FilePath can only be omitted for program modules loaded with Load or
StartLoad-WaitLoad and the program module will be stored at the same destination as
specified in these instructions. To store the program module at another destination, it is
also possible to use the argument \FilePath.

To be able to save a program module that previously was loaded from the teach pen-
dant, external computer, or system configuration, then the argument \FilePath must be
used.

Program execution

Program execution waits for the program module to finish saving before proceeding
with the next instruction.

Example

Save "PART_A" \FilePath:="ram1disk:DOORDIR/PART_A.MOD";

Save the program module PART_A to the ram1disk in the file PART_A.MOD
and in the directory DOORDIR.

Save "PART_A" \FilePath:="ram1disk:DOORDIR/" \File:="PART_A.MOD";

Same as above but another syntax.

Save \Task:=TSK1Id, "PART_A" \FilePath:="ram1disk:DOORDIR/PART_A.MOD";

Save program module PART_A in program task TSK1 to the specified destina-
tion. This is an example where the instruction Save is executing in one program
task and the saving is done in another program task.

Limitations

TRAP routines, system I/O events and other program tasks cannot execute during the
saving operation. Therefore, any such operations will be delayed.

The save operation can interrupt update of PERS data done step by step from other pro-
gram tasks. This will result in inconsistent whole PERS data.

A program stop during execution of the Save instruction can result in a guard stop with
motors off and the error message "20025 Stop order timeout" will be displayed on the
Teach Pendant.
2-Save-4 System DataTypes and Routines

Instructions Save
Avoid ongoing robot movements during the saving.

Error handling

If the program module cannot be saved because of no module name, unknown, or
ambiguous module name, the system variable ERRNO is set to ERR_MODULE.

If the save file cannot be opened because of permission denied, no such directory, or
no space left on device, then the system variable ERRNO is set to ERR_IOERROR.

If argument \FilePath is not specified for program modules loaded from the Teach Pen-
dant, System Parameters, or an external computer, the system variable ERRNO is set
to ERR_PATH.

The errors above can be handled in the error handler.

Syntax

Save
[’\’ Task ’:=’ <variable (VAR) of taskid> ’,’]
[ModuleName ’:=’] <expression (IN) of string>
[’\’ FilePath ’:=’<expression (IN) of string>]
[’ \’ File ’:=’ <expression (IN) of string>] ’;’

Related information

Described in:

Program tasks Data Types - taskid
System DataTypes and Routines 2-Save-5

Save Instructions
2-Save-6 System DataTypes and Routines

Instructions SearchC
SearchC Searches circularly using the robot

SearchC (Search Circular) is used to search for a position when moving the tool centre
point (TCP) circularly.

During the movement, the robot supervises a digital input signal. When the value of
the signal changes to the requested one, the robot immediately reads the current
position.

This instruction can typically be used when the tool held by the robot is a probe for
surface detection. Using the SearchC instruction, the outline coordinates of a work
object can be obtained.

Examples

SearchC sen1, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10 at a speed of
v100. When the value of the signal sen1 changes to active, the position is stored
in sp.

SearchC \Stop, sen1, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the
value of the signal sen1 changes to active, the position is stored in sp and the
robot stops immediately.

Arguments

SearchC [\Stop] | [\PStop] | [\Sup] Signal [\Flanks] SearchPoint
CirPoint ToPoint Speed [\V] | [\T] Tool [\WObj] [\Corr]

[\Stop] Data type: switch

The robot movement is stopped, as quickly as possible, without keeping the TCP
on the path (hard stop), when the value of the search signal changes to active.
However, the robot is moved a small distance before it stops and is not moved
back to the searched position, i.e. to the position where the signal changed.

[\PStop] (Path Stop) Data type: switch

The robot movement is stopped as quickly as possible, while keeping the TCP
on the path (soft stop), when the value of the search signal changes to active.
However, the robot is moved a small distance before it stops and is not moved
back to the searched position, i.e. to the position where the signal changed.
System DataTypes and Routines 2-SearchC-1

SearchC Instructions
[\Sup] (Supervision) Data type: switch

The search instruction is sensitive to signal activation during the complete
movement (flying search), i.e. even after the first signal change has been
reported. If more than one match occurs during a search, program execution
stops.

If the argument \Stop, \PStop or \Sup is omitted, the movement continues (flying
search) to the position specified in the ToPoint argument (same as with argument
\Sup),

Signal Data type: signaldi

The name of the signal to supervise.

[\Flanks] Data type: switch

The positive and the negative edge of the signal is valid for a search hit.

If the argument \Flanks is omitted, only the positive edge of the signal is valid for
a search hit and a signal supervision will be activated at the beginning of a search
process. This means that if the signal has a positive value already at the beginning
of a search process, the robot movement is stopped as quickly as possible, while
keeping the TCP on the path (soft stop). However, the robot is moved a small
distance before it stops and is not moved back to the start position. A user
recovery error (ERR_SIGSUPSEARCH) will be generated and can be dealt with
by the error handler.

SearchPoint Data type: robtarget

The position of the TCP and external axes when the search signal has been
triggered. The position is specified in the outermost coordinate system, taking the
specified tool, work object and active ProgDisp/ExtOffs coordinate system into
consideration.

CirPoint Data type: robtarget

The circle point of the robot. See the instruction MoveC for a more detailed
description of circular movement. The circle point is defined as a named position
or stored directly in the instruction (marked with an * in the instruction).

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).
SearchC always uses a stop point as zone data for the destination.

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
tool centre point, the external axes and of the tool reorientation.
2-SearchC-2 System DataTypes and Routines

Instructions SearchC
[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot positions in the
instruction are related.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified for a linear movement
relative to the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, when this argument is present.

Program execution

See the instruction MoveC for information about circular movement.

The movement is always ended with a stop point, i.e. the robot is stopped at the
destination point.

When a flying search is used, i.e. the \Sup argument is specified, the robot movement
always continues to the programmed destination point. When a search is made using
the switch \Stop or \PStop, the robot movement stops when the first signal is detected.

The SearchC instruction returns the position of the TCP when the value of the digital
signal changes to the requested one, as illustrated in Figure 15.
System DataTypes and Routines 2-SearchC-3

SearchC Instructions
Figure 15 Flank-triggered signal detection (the position is stored when the signal is changed the
first time only).

Example

SearchC \Sup, sen1\Flanks, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the
value of the signal sen1 changes to active or passive, the position is stored in sp.
If the value of the signal changes twice, program execution stops.

Limitations

Zone data for the positioning instruction that precedes SearchC must be used carefully.
The start of the search, i.e. when the I/O signal is ready to react, is not, in this case, the
programmed destination point of the previous positioning instruction, but a point along
the real robot path. Figure 16 illustrates an example of something that may go wrong
when zone data other than fine is used.

The instruction SearchC should never be restarted after the circle point has been
passed. Otherwise the robot will not take the programmed path (positioning around the
circular path in another direction compared with that programmed).

Figure 16 A match is made on the wrong side of the object because the wrong zone data was used.

time
1
0

= Instruction reaction when
the signal changes

time
1
0

With switch \FlanksWithout switch \Flanks

Start point with
zone data z10

Start point with
zone data fine

End point

Search object
2-SearchC-4 System DataTypes and Routines

Instructions SearchC

cess -

e:

med
H

ble at

f the

med
Typical stop distance using a search velocity of 50 mm/s:

- without TCP on path (switch \Stop) 1-3 mm

- with TCP on path (switch \PStop) 12-16 mm

Error handling

An error is reported during a search when:

- no signal detection occurred - this generates the error ERR_WHLSEARCH.

- more than one signal detection occurred – this generates the error
ERR_WHLSEARCH only if the \Sup argument is used.

- the signal has already a positive value at the beginning of the search pro
this generates the error ERR_SIGSUPSEARCH only if the \Flanks argument
is omitted.

Errors can be handled in different ways depending on the selected running mod

Continuous forward / ERR_WHLSEARCH
No position is returned and the movement always continues to the program
destination point. The system variable ERRNO is set to ERR_WHLSEARC
and the error can be handled in the error handler of the routine.

Continuous forward / Instruction forward / ERR_SIGSUPSEARCH
No position is returned and the movement always stops as quickly as possi
the beginning of the search path. The system variable ERRNO is set to
ERR_SIGSUPSEARCH and the error can be handled in the error handler o
routine.

Instruction forward / ERR_WHLSEARCH
No position is returned and the movement always continues to the program
destination point. Program execution stops with an error message.

Instruction backward
During backward execution, the instruction just carries out the movement
without any signal supervision.
System DataTypes and Routines 2-SearchC-5

SearchC Instructions
Syntax

SearchC
[’\’ Stop’,’] | [’\’ PStop ’,’] | [’\’ Sup ’,’]
[Signal ’:=’] < variable (VAR) of signaldi >

[‘\’ Flanks]’,’
[SearchPoint ’:=’] < var or pers (INOUT) of robtarget > ’,’
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Linear searches Instructions - SearchL

Writes to a corrections entry Instructions - CorrWrite

Circular movement Motion and I/O Principles -
Positioning during Program Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Using error handlers RAPID Summary - Error Recovery

Motion in general Motion and I/O Principles

More searching examples Instructions - SearchL
2-SearchC-6 System DataTypes and Routines

Instructions SearchL
SearchL Searches linearly using the robot

SearchL (Search Linear) is used to search for a position when moving the tool centre
point (TCP) linearly.

During the movement, the robot supervises a digital input signal. When the value of
the signal changes to the requested one, the robot immediately reads the current
position.

This instruction can typically be used when the tool held by the robot is a probe for
surface detection. Using the SearchL instruction, the outline coordinates of a work
object can be obtained.

Examples

SearchL sen1, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10 at a speed of
v100. When the value of the signal sen1 changes to active, the position is stored
in sp.

SearchL \Stop, sen1, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10. When the
value of the signal sen1 changes to active, the position is stored in sp and the
robot stops immediately.

Arguments

SearchL [\Stop] | [\PStop] |[\Sup] Signal [\Flanks] SearchPoint
ToPoint Speed [\V] | [\T] Tool [\WObj] [\Corr]

[\Stop] Data type: switch

The robot movement is stopped as quickly as possible, without keeping the TCP
on the path (hard stop), when the value of the search signal changes to active.
However, the robot is moved a small distance before it stops and is not moved
back to the searched position, i.e. to the position where the signal changed.

[\PStop] (Path Stop) Data type: switch

The robot movement is stopped as quickly as possible, while keeping the TCP
on the path (soft stop), when the value of the search signal changes to active.
However, the robot is moved a small distance before it stops and is not moved
back to the searched position, i.e. to the position where the signal changed.
System DataTypes and Routines 2-SearchL-1

SearchL Instructions
[\Sup] (Supervision) Data type: switch

The search instruction is sensitive to signal activation during the complete
movement (flying search), i.e. even after the first signal change has been
reported. If more than one match occurs during a search, program execution
stops.

If the argument \Stop, \PStop or \Sup is omitted, the movement continues (flying
search) to the position specified in the ToPoint argument (same as with argument
\Sup).

Signal Data type: signaldi

The name of the signal to supervise.

[\Flanks] Data type: switch

The positive and the negative edge of the signal is valid for a search hit.

If the argument \Flanks is omitted, only the positive edge of the signal is valid for
a search hit and a signal supervision will be activated at the beginning of a search
process. This means that if the signal has the positive value already at the
beginning of a search process, the robot movement is stopped as quickly as
possible, while keeping the TCP on the path (soft stop). A user recovery error
(ERR_SIGSUPSEARCH) will be generated and can be handled in the error
handler.

SearchPoint Data type: robtarget

The position of the TCP and external axes when the search signal has been
triggered. The position is specified in the outermost coordinate system, taking the
specified tool, work object and active ProgDisp/ExtOffs coordinate system into
consideration.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).
SearchL always uses a stop point as zone data for the destination.

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
tool centre point, the external axes and of the tool reorientation.

[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the
instruction. It is then substituted for the corresponding velocity specified in the
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
2-SearchL-2 System DataTypes and Routines

Instructions SearchL
moves. It is then substituted for the corresponding speed data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the
instruction is related.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified for a linear movement
relative to the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

Program execution

See the instruction MoveL for information about linear movement.

The movement always ends with a stop point, i.e. the robot stops at the destination
point.

If a flying search is used, i.e. the \Sup argument is specified, the robot movement
always continues to the programmed destination point. If a search is made using the
switch \Stop or \PStop, the robot movement stops when the first signal is detected.

The SearchL instruction stores the position of the TCP when the value of the digital
signal changes to the requested one, as illustrated in Figure 17.

Figure 17 Flank-triggered signal detection (the position is stored when the signal is changed the
first time only).

time
1
0

= Instruction reaction when
the signal changes

time
1
0

With switch \FlanksWithout switch \Flanks
System DataTypes and Routines 2-SearchL-3

SearchL Instructions
In order to get a fast response, use the interrupt-driven sensor signals sen1, sen2 or sen3
on the system board.

Examples

SearchL \Sup, sen1\Flanks, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10. When the value
of the signal sen1 changes to active or passive, the position is stored in sp. If the
value of the signal changes twice, program execution stops after the search
process is finished.

SearchL \Stop, sen1, sp, p10, v100, tool1;
MoveL sp, v100, fine, tool1;
PDispOn *, tool1;
MoveL p100, v100, z10, tool1;
MoveL p110, v100, z10, tool1;
MoveL p120, v100, z10, tool1;
PDispOff;

At the beginning of the search process, a check on the signal sen1 will be done
and if the signal already has a positive value, the program execution stops.
Otherwise the TCP of tool1 is moved linearly towards the position p10. When the
value of the signal sen1 changes to active, the position is stored in sp and the
robot is moved back to this point. Using program displacement, the robot then
moves relative to the searched position, sp.

Limitations

Zone data for the positioning instruction that precedes SearchL must be used carefully.
The start of the search, i.e. when the I/O signal is ready to react, is not, in this case, the
programmed destination point of the previous positioning instruction, but a point along
the real robot path. Figure 18 to Figure 20 illustrate examples of things that may go
wrong when zone data other than fine is used.

Figure 18 A match is made on the wrong side of the object because the wrong zone data was used.

Search object
End point

Start point with
zone data fine

Start point with
zone data z10
2-SearchL-4 System DataTypes and Routines

Instructions SearchL

cess -

e:

med
H

ble at

f the
Figure 19 No match detected because the wrong zone data was used.

Figure 20 No match detected because the wrong zone data was used.

Typical stop distance using a search velocity of 50 mm/s:

- without TCP on path (switch \Stop) 1-3 mm

- with TCP on path (switch \PStop) 12-16 mm

Error handling

An error is reported during a search when:

- no signal detection occurred - this generates the error ERR_WHLSEARCH.

- more than one signal detection occurred – this generates the error
ERR_WHLSEARCH only if the \Sup argument is used.

- the signal already has a positive value at the beginning of the search pro
this generates the error ERR_SIGSUPSEARCH only if the \Flanks argument
is omitted.

Errors can be handled in different ways depending on the selected running mod

Continuous forward / ERR_WHLSEARCH
No position is returned and the movement always continues to the program
destination point. The system variable ERRNO is set to ERR_WHLSEARC
and the error can be handled in the error handler of the routine.

Continuous forward / Instruction forward / ERR_SIGSUPSEARCH
No position is returned and the movement always stops as quickly as possi
the beginning of the search path.The system variable ERRNO is set to
ERR_SIGSUPSEARCH and the error can be handled in the error handler o
routine.

Search object
End point

Start point with
zone data fine

Start point with
zone data z10

Search object

End point

Start point with
zone data fine

Start point with
zone data z10
System DataTypes and Routines 2-SearchL-5

SearchL Instructions

dialog
er
gram

rches
 to
Instruction forward / ERR_WHLSEARCH
No position is returned and the movement continues to the programmed
destination point. Program execution stops with an error message.

Instruction backward
During backward execution, the instruction just carries out the movement
without any signal supervision.

Example

VAR num fk;
.
MoveL p10, v100, fine, tool1;
SearchL \Stop, sen1, sp, p20, v100, tool1;
.
ERROR

IF ERRNO=ERR_WHLSEARCH THEN
MoveL p10, v100, fine, tool1;
RETRY;

ELSEIF ERRNO=ERR_SIGSUPSEARCH THEN
TPWrite “The signal of the SearchL instruction is already high!”;
TPReadFK fk,”Try again after manual reset of signal ?”,”YES”,””,””,””,”NO”;
IF fk = 1 THEN

MoveL p10, v100, fine, tool1;
RETRY;

ELSE
Stop;

ENDIF
ENDIF

If the signal is already active at the beginning of the search process, a user
will be activated (TPReadFK ...;). Reset the signal and push YES on the us
dialog and the robot moves back to p10 and tries once more. Otherwise pro
execution will stop.

If the signal is passive at the beginning of the search process, the robot sea
from position p10 to p20. If no signal detection occurs, the robot moves back
p10 and tries once more.
2-SearchL-6 System DataTypes and Routines

Instructions SearchL
Syntax

SearchL
[’\’ Stop ’,’] | [’\’ PStop ’,’] | [’\’ Sup ’,’]
[Signal ’:=’] < variable (VAR) of signaldi >

[‘\’ Flanks] ’,’
[SearchPoint ’:=’] < var or pers (INOUT) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Circular searches Instructions - SearchC

Writes to a corrections entry Instructions - CorrWrite

Linear movement Motion and I/O Principles -
Positioning during Program
Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Using error handlers RAPID Summary - Error Recovery

Motion in general Motion and I/O Principles
System DataTypes and Routines 2-SearchL-7

SearchL Instructions
2-SearchL-8 System DataTypes and Routines

Instructions Set
Set Sets a digital output signal

Set is used to set the value of a digital output signal to one.

Examples

Set do15;

The signal do15 is set to 1.

Set weldon;

The signal weldon is set to 1.

Arguments

Set Signal

Signal Data type: signaldo

The name of the signal to be set to one.

Program execution

The true value depends on the configuration of the signal. If the signal is inverted in
the system parameters, this instruction causes the physical channel to be set to zero.

Syntax

Set
[Signal ’:=’] < variable (VAR) of signaldo > ’;’
System DataTypes and Routines 2-Set-1

Set Instructions
Related information

Described in:

Setting a digital output signal to zero Instructions - Reset

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O System Parameters
2-Set-2 System DataTypes and Routines

Instructions SetAO
SetAO Changes the value of an analog output signal

SetAO is used to change the value of an analog output signal.

Example

SetAO ao2, 5.5;

The signal ao2 is set to 5.5.

Arguments

SetAO Signal Value

Signal Data type: signalao

The name of the analog output signal to be changed.

Value Data type: num

The desired value of the signal.

Program execution

The programmed value is scaled (in accordance with the system parameters) before it
is sent on the physical channel. See Figure 21.

Figure 21 Diagram of how analog signal values are scaled.

Logical value in the
program

Physical value of the
output signal (V, mA, etc.)

MAX SIGNAL

MIN SIGNAL

MAX PROGRAM

MIN PROGRAM
System DataTypes and Routines 2-SetAO-1

SetAO Instructions
Example

SetAO weldcurr, curr_outp;

The signal weldcurr is set to the same value as the current value of the variable
curr_outp.

Syntax

SetAO
[Signal ’:=’] < variable (VAR) of signalao > ’,’
[Value ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O System Parameters
2-SetAO-2 System DataTypes and Routines

Instructions SetDO
SetDO Changes the value of a digital output signal

SetDO is used to change the value of a digital output signal, with or without a time-
delay.

Examples

SetDO do15, 1;

The signal do15 is set to 1.

SetDO weld, off;

The signal weld is set to off.

SetDO \SDelay := 0.2, weld, high;

The signal weld is set to high with a delay of 0.2 s. Program execution, however,
continues with the next instruction.

Arguments

SetDO [\SDelay] Signal Value

[\SDelay] (Signal Delay) Data type: num

Delays the change for the amount of time given in seconds (0.1 - 32s).
Program execution continues directly with the next instruction. After the given
time-delay, the signal is changed without the rest of the program execution being
affected.

If the argument is omitted, the value of the signal is changed directly.

Signal Data type: signaldo

The name of the signal to be changed.

Value Data type: dionum

The desired value of the signal.

The value is specified as 0 or 1.
System DataTypes and Routines 2-SetDO-1

SetDO Instructions
Program execution

The true value depends on the configuration of the signal. If the signal is inverted in the
system parameters, the value of the physical channel is the opposite.

Syntax

SetDO
[’\’ SDelay ’:=’ < expression (IN) of num > ’,’]
[Signal ’:=’] < variable (VAR) of signaldo > ’,’
[Value ’:=’] < expression (IN) of dionum > ’;’

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
2-SetDO-2 System DataTypes and Routines

Instructions SetGO
SetGO Changes the value of a group
of digital output signals

SetGO is used to change the value of a group of digital output signals, with or without
a time delay.

Example

SetGO go2, 12;

The signal go2 is set to 12. If go2 comprises 4 signals, e.g. outputs 6-9, outputs
6 and 7 are set to zero, while outputs 8 and 9 are set to one.

SetGO \SDelay := 0.4, go2, 10;

The signal go2 is set to 10. If go2 comprises 4 signals, e.g. outputs 6-9, outputs
6 and 8 are set to zero, while outputs 7 and 9 are set to one, with a delay of 0.4 s.
Program execution, however, continues with the next instruction.

Arguments

SetGO [\SDelay] Signal Value

[\SDelay] (Signal Delay) Data type: num

Delays the change for the period of time stated in seconds (0.1 - 32s).
Program execution continues directly with the next instruction. After the
specified time delay, the value of the signals is changed without the rest of the
program execution being affected.

If the argument is omitted, the value is changed directly.

Signal Data type: signalgo

The name of the signal group to be changed.

Value Data type: num

The desired value of the signal group (a positive integer).

The permitted value is dependent on the number of signals in the group:
System DataTypes and Routines 2-SetGO-1

SetGO Instructions
No. of signals Permitted value No. of signals Permitted value

1 0 - 1 9 0 - 511

2 0 - 3 10 0 - 1023

3 0 - 7 11 0 - 2047

4 0 - 15 12 0 - 4095

5 0 - 31 13 0 - 8191

6 0 - 63 14 0 - 16383

7 0 - 127 15 0 - 32767

8 0 - 255 16 0 - 65535

Program execution

The programmed value is converted to an unsigned binary number. This binary number
is sent on the signal group, with the result that individual signals in the group are set to
0 or 1. Due to internal delays, the value of the signal may be undefined for a short
period of time.

Syntax

SetDO
[’\’ SDelay ’:=’ < expression (IN) of num > ’,’]
[Signal ’:=’] < variable (VAR) of signalgo > ’,’
[Value ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Other input/output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O (system parameters) System Parameters
2-SetGO-2 System DataTypes and Routines

Instructions SingArea
SingArea Defines interpolation around singular points

SingArea is used to define how the robot is to move in the proximity of singular points.

SingArea is also used to define linear and circular interpolation for robots with less
than six axes.

Examples

SingArea \Wrist;

The orientation of the tool may be changed slightly in order to pass a singular
point (axes 4 and 6 in line).

Robots with less than six axes may not be able to reach an interpolated tool ori-
entation. By using SingArea \Wrist, the robot can achieve the movement but the
orientation of the tool will be slightly changed.

SingArea \Off;

The tool orientation is not allowed to differ from the programmed orientation. If
a singular point is passed, one or more axes may perform a sweeping movement,
resulting in a reduction in velocity.

Robots with less than six axes may not be able to reach a programmed tool ori-
entation. As a result the robot will stop.

Arguments

SingArea [\Wrist] | [\Off]

[\Wrist] Data type: switch

The tool orientation is allowed to differ somewhat in order to avoid wrist singu-
larity. Used when axes 4 and 6 are parallel (axis 5 at 0 degrees). Also used for
linear and circular interpolation of robots with less than six axes where the tool
orientation is allowed to differ.

[\Off] Data type: switch

The tool orientation is not allowed to differ. Used when no singular points are
passed, or when the orientation is not permitted to be changed.

If none of the arguments are specified, program execution automatically uses the
robot’s default argument. For robots with six axes the default argument is \Off.
System DataTypes and Routines 2-SingArea-1

SingArea Instructions
Program execution

If the arguments \Wrist is specified, the orientation is joint-interpolated to avoid singu-
lar points. In this way, the TCP follows the correct path, but the orientation of the tool
deviates somewhat. This will also happen when a singular point is not passed.

The specified interpolation applies to all subsequent movements until a new SingArea
instruction is executed.

The movement is only affected on execution of linear or circular interpolation.

By default, program execution automatically uses the /Off argument for robots with six
axes. Robots with less than six axes may use either the /Off argument (IRB640) or the
/Wrist argument by default. This is automatically set in event routine SYS_RESET.

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

SingArea
[’\’ Wrist] | [’\’ Off] ’;’

Related information

Described in:

Singularity Motion Principles- Singularity

Interpolation Motion Principles - Positioning during
Program Execution
2-SingArea-2 System DataTypes and Routines

Instructions SoftAct

tion

ess),

gage-
r val-
 for
SoftAct Activating the soft servo

SoftAct (Soft Servo Activate) is used to activate the so called “soft” servo on any axis
of the robot or external mechanical unit.

Example

SoftAct 3, 20;

Activation of soft servo on robot axis 3, with softness value 20%.

SoftAct 1, 90 \Ramp:=150;

Activation of the soft servo on robot axis 1, with softness value 90% and ramp
factor150%.

SoftAct \MechUnit:=orbit1, 1, 40 \Ramp:=120;

Activation of soft servo on axis 1 for the mechanical unit orbit1, with softness
value 40% and ramp factor120%.

Arguments

SoftAct [\MechUnit] Axis Softness [\Ramp]

[\MechUnit] (Mechanical Unit) Data type: mecunit

The name of the mechanical unit. If this argument is omitted, it means activa
of the soft servo for specified robot axis.

Axis Data type: num

Number of the robot or external axis to work with soft servo.

Softness Data type: num

Softness value in percent (0 - 100%). 0% denotes min. softness (max. stiffn
and 100% denotes max. softness.

Ramp Data type: num

Ramp factor in percent (>= 100%). The ramp factor is used to control the en
ment of the soft servo. A factor 100% denotes the normal value; with greate
ues the soft servo is engaged more slowly (longer ramp). The default value
ramp factor is 100 %.
System DataTypes and Routines 2-SoftAct-1

SoftAct Instructions
Program execution

Softness is activated at the value specified for the current axis. The softness value is
valid for all movements, until a new softness value is programmed for the current axis,
or until the soft servo is deactivated by an instruction.

Limitations

The same axis must not be activated twice, unless there is a moving instruction in
between. Thus, the following program sequence should be avoided, otherwise there
will be a jerk in the robot movement:

SoftAct n , x ;
SoftAct n , y ;

(n = robot axis n, x and y softness values)

Syntax

SoftAct
[’\’MechUnit ’:=’ < variable (VAR) of mecunit> ’,’]
[Axis ’:=’] < expression (IN) of num> ’,’
[Softness ’:=’] < expression (IN) of num>
[’\’Ramp ’:=’ < expression (IN) of num>]’;’

Related information

Described in:

Behaviour with the soft servo engaged Motion and I/O Principles- Positioning
during program execution
2-SoftAct-2 System DataTypes and Routines

Instructions SoftDeact

eac-
ater
alue
SoftDeact Deactivating the soft servo

SoftDeact (Soft Servo Deactivate) is used to deactivate the so called “soft” servo on all
robot and external axes.

Example

SoftDeact;

Deactivating the soft servo on all axes.

SoftDeact \Ramp:=150;

Deactivating the soft servo on all axes, with ramp factor 150%.

Arguments

SoftDeact [\Ramp]

Ramp Data type: num

Ramp factor in percent (>= 100%). The ramp factor is used to control the d
tivating of the soft servo. A factor 100% denotes the normal value; with gre
values the soft servo is deactivated more slowly (longer ramp). The default v
for ramp factor is 100 %.

Program execution

The soft servo is deactivated for all robot and external axes.

Syntax

SoftDeact
[’\’Ramp ’:=’ < expression (IN) of num>]’;’

Related information

Described in:

Activating the soft servo Instructions - SoftAct
System DataTypes and Routines 2-SoftDeact-1

SoftDeact Instructions
2-SoftDeact-2 System DataTypes and Routines

Instructions StartLoad
StartLoad Load a program module during execution

StartLoad is used to start the loading of a program module into the program memory
during execution.

When loading is in progress, other instructions can be executed in parallel.
The loaded module must be connected to the program task with the instruction Wait-
Load, before any of its symbols/routines can be used.

The loaded program module will be added to the modules already existing in the pro-
gram memory.

Example

VAR loadsession load1;

! Start loading of new program module PART_B containing routine routine_b
StartLoad ram1disk \File:="PART_B.MOD", load1;

! Executing in parallel in old module PART_A containing routine_a
%"routine_a"%;

! Unload of old program module PART_A
UnLoad ram1disk \File:="PART_A.MOD";

! Wait until loading and linking of new program module PART_B is ready
WaitLoad load1;

! Execution in new program module PART_B
%"routine_b"%;

Start loading of program module PART_B.MOD from ram1disk into the program
memory with instruction StartLoad. In parallel with the loading, the program
executes routine_a in module PART_A.MOD. Then instruction WaitLoad waits
until the loading and linking is finished.

Variable load1 holds the identity of the load session, updated by StartLoad and
referenced by WaitLoad.

To save linking time, the instruction UnLoad and WaitLoad can be combined in
the instruction WaitLoad by using the option argument \UnLoadPath.
System DataTypes and Routines 2-StartLoad-3

StartLoad Instructions
Arguments

StartLoad FilePath [\File] LoadNo

FilePath Data type: string

The file path and the file name to the file that will be loaded into the program
memory. The file name shall be excluded when the argument \File is used.

[\File] Data type: string

When the file name is excluded in the argument FilePath, then it must be defined
with this argument.

LoadNo Data type: loadsession

This is a reference to the load session that should be used in the instruction Wait-
Load to connect the loaded program module to the program task.

Program execution

Execution of StartLoad will only order the loading and then proceed directly with the
next instruction, without waiting for the loading to be completed.

The instruction WaitLoad will then wait at first for the loading to be completed, if it is
not already finished, and then it will be linked and initialised. The initialisation of the
loaded module sets all variables at module level to their init values.

Unsolved references will be accepted if the system parameter for Tasks/BindRef is set
to NO. However, when the program is started or the teach pendant function Program
Window/File/Check Program is used, no check for unsolved references will be done if
BindRef = NO. There will be a run time error on execution of an unsolved reference.

Another way to use references to instructions that are not in the task from the begin-
ning, is to use Late Binding. This makes it possible to specify the routine to call with a
string expression, quoted between two %%. In this case the BindRef parameter could
be set to YES (default behaviour). The Late Binding way is preferable.

To obtain a good program structure, that is easy to understand and maintain, all loading
and unloading of program modules should be done from the main module, which is
always present in the program memory during execution.
2-StartLoad-4 System DataTypes and Routines

Instructions StartLoad
Examples

StartLoad "ram1disk:DOORDIR/DOOR1.MOD", load1;

Load the program module DOOR1.MOD from the ram1disk at the directory
DOORDIR into the program memory.

StartLoad "ram1disk:DOORDIR/" \File:="DOOR1.MOD", load1;

Same as above but with another syntax.

StartLoad "ram1disk:DOORDIR/" \File:="DOOR1.MOD", load1;
...
WaitLoad load1;

is the same as

Load "ram1disk:DOORDIR/" \File:="DOOR1.MOD";

Limitations

It is not allowed to load a system module or a program module that contains a main
routine.

Syntax

StartLoad
[FilePath ’:=’] <expression (IN) of string>
[’ \’File ’:=’ <expression (IN) of string>] ’,’
[LoadNo ’:=’] <variable (VAR) of loadsession> ’;’
System DataTypes and Routines 2-StartLoad-5

StartLoad Instructions
Related information

Described in:

Connect the loaded module to the task Instructions - WaitLoad

Load session Data Types - loadsession

Load a program module Instructions - Load

Unload a program module Instructions - UnLoad

Accept unsolved references System Parameters - Controller/Task/
BindRef
2-StartLoad-6 System DataTypes and Routines

Instructions StartMove
StartMove Restarts robot motion

StartMove is used to resume robot and external axes motion when this has been
stopped by the instruction StopMove.

Example

StopMove;
WaitDI ready_input, 1;
StartMove;

The robot starts to move again when the input ready_input is set.

Program execution

Any processes associated with the stopped movement are restarted at the same time as
motion resumes.

Error handling

If the robot is too far from the path (more than 10 mm or 20 degrees) to perform a start
of the interrupted movement, the system variable ERRNO is set to ERR_PATHDIST.
This error can then be handled in the error handler.

Syntax

StartMove’;’

Related information

Described in:

Stopping movements Instructions - StopMove

More examples Instructions - StorePath

-
System DataTypes and Routines 2-StartMove-1

StartMove Instructions
2-StartMove-2 System DataTypes and Routines

Instructions Stop
Stop Stops program execution

Stop is used to temporarily stop program execution.

Program execution can also be stopped using the instruction EXIT. This, however,
should only be done if a task is complete, or if a fatal error occurs, since program
execution cannot be restarted with EXIT.

Example

TPWrite "The line to the host computer is broken";
Stop;

Program execution stops after a message has been written on the teach pendant.

Arguments

Stop [\NoRegain]

[\NoRegain] Data type: switch

Specifies for the next program start in manual mode, whether or not the robot and
external axes should regain to the stop position. In automatic mode the robot and
external axes always regain to the stop position.

If the argument NoRegain is set, the robot and external axes will not regain to the
stop position (if they have been jogged away from it).

If the argument is omitted and if the robot or external axes have been jogged
away from the stop position, the robot displays a question on the teach pendant.
The user can then answer, whether or not the robot should regain to the stop
position.

Program execution

The instruction stops program execution as soon as the robot and external axes reach
the programmed destination point for the movement it is performing at the time.
Program execution can then be restarted from the next instruction.

If there is a Stop instruction in some event routine, the routine will be executed from
the beginning in the next event.
System DataTypes and Routines 2-Stop-1

Stop Instructions

ith a
e.
Example

MoveL p1, v500, fine, tool1;
TPWrite “Jog the robot to the position for pallet corner 1”;
Stop \NoRegain;
p1_read := CRobT();
MoveL p2, v500, z50, tool1;

Program execution stops with the robot at p1. The operator jogs the robot to
p1_read. For the next program start, the robot does not regain to p1, so the
position p1_read can be stored in the program.

Limitations

The movement instruction which precedes this instruction should be terminated w
stop point, in order to be able to restart in this instruction following a power failur

Syntax

Stop
[’\’ NoRegain]’;’

Related information

Described in:

Stopping after a fatal error Instructions - EXIT

Terminating program execution Instructions - EXIT

Only stopping robot movements Instructions - StopMove
2-Stop-2 System DataTypes and Routines

Instructions StopMove
StopMove Stops robot motion

StopMove is used to stop robot and external axes movements temporarily. If the
instruction StartMove is given, movement resumes.

This instruction can, for example, be used in a trap routine to stop the robot temporarily
when an interrupt occurs.

Example

StopMove;
WaitDI ready_input, 1;
StartMove;

The robot movement is stopped until the input, ready_input, is set.

Program execution

The movements of the robot and external axes stop without the brakes being engaged.
Any processes associated with the movement in progress are stopped at the same time
as the movement is stopped.

Program execution continues without waiting for the robot and external axes to stop
(standing still).

Examples

VAR intnum intno1;
...
CONNECT intno1 WITH go_to_home_pos;
ISignalDI di1,1,intno1;

TRAP go_to_home_pos
VAR robtarget p10;

StopMove;
StorePath;
p10:=CRobT();
MoveL home,v500,fine,tool1;
WaitDI di1,0;
Move L p10,v500,fine,tool1;
RestoPath;
StartMove;

ENDTRAP

When the input di1 is set to 1, an interrupt is activated which in turn activates the
System DataTypes and Routines 2-StopMove-1

StopMove Instructions
interrupt routine go_to_home_pos. The current movement is stopped
immediately and the robot moves instead to the home position. When di1 is set
to 0, the robot returns to the position at which the interrupt occurred and
continues to move along the programmed path.

VAR intnum intno1;
...
CONNECT intno1 WITH go_to_home_pos;
ISignalDI di1,1,intno1;

TRAP go_to_home_pos ()
VAR robtarget p10;

StorePath;
p10:=CRobT();
MoveL home,v500,fine,tool1;
WaitDI di1,0;
Move L p10,v500,fine,tool1;
RestoPath;
StartMove;

ENDTRAP

Similar to the previous example, but the robot does not move to the home position
until the current movement instruction is finished.

Syntax

StopMove’;’

Related information

Described in:

Continuing a movement Instructions - StartMove

Interrupts RAPID Summary - Interrupts
Basic Characteristics- Interrupts
2-StopMove-2 System DataTypes and Routines

Instructions StorePath
StorePath Stores the path when an interrupt occurs

StorePath is used to store the movement path being executed when an error or interrupt
occurs. The error handler or trap routine can then start a new movement and, following
this, restart the movement that was stored earlier.

This instruction can be used to go to a service position or to clean the gun, for example,
when an error occurs.

Example

StorePath;

The current movement path is stored for later use.

Program execution

The current movement path of the robot and external axes is saved. After this, another
movement can be started in a trap routine or an error handler. When the reason for the
error or interrupt has been rectified, the saved movement path can be restarted.

Example

TRAP machine_ready
VAR robtarget p1;
StorePath;
p1 := CRobT();
MoveL p100, v100, fine, tool1;
...
MoveL p1, v100, fine, tool1;
RestoPath;
StartMove;

ENDTRAP

When an interrupt occurs that activates the trap routine machine_ready, the
movement path which the robot is executing at the time is stopped at the end of
the instruction (ToPoint) and stored. After this, the robot remedies the interrupt
by, for example, replacing a part in the machine and the normal movement is
restarted.
RAPID Reference Manual 8-StorePath-1

StorePath Instructions
Limitations

Only the movement path data is stored with the instruction StorePath.
If the user wants to order movements on the new path level, the actual stop position
must be stored directly after StorePath and before RestoPath make a movement to the
stored stop position on the path.

Only one movement path can be stored at a time.

Syntax

StorePath‘;’

Related information

Described in:

Restoring a path Instructions - RestoPath

More examples Instructions - RestoPath
8-StorePath-2 RAPID Reference Manual

Instructions TEST
TEST Depending on the value of an expression ...

TEST is used when different instructions are to be executed depending on the value of
an expression or data.

If there are not too many alternatives, the IF..ELSE instruction can also be used.

Example

TEST reg1
CASE 1,2,3 :

routine1;
CASE 4 :

routine2;
DEFAULT :

TPWrite "Illegal choice";
Stop;

ENDTEST

Different instructions are executed depending on the value of reg1. If the value
is 1-3 routine1 is executed. If the value is 4, routine2 is executed. Otherwise, an
error message is printed and execution stops.

Arguments

TEST Test data {CASE Test value {, Test value} : ...}
[DEFAULT: ...] ENDTEST

Test data Data type: All

The data or expression with which the test value will be compared.

Test value Data type: Same as test data

The value which the test data must have for the associated instructions to be exe-
cuted.

Program execution

The test data is compared with the test values in the first CASE condition. If the com-
parison is true, the associated instructions are executed. After that, program execution
continues with the instruction following ENDTEST.

If the first CASE condition is not satisfied, other CASE conditions are tested, and so
on. If none of the conditions are satisfied, the instructions associated with DEFAULT
are executed (if this is present).
System DataTypes and Routines 2-TEST-1

TEST Instructions
Syntax

(EBNF)
TEST <expression>
{(CASE <test value> { ’,’ <test value> } ’:’

<instruction list>) | <CSE> }
[DEFAULT ’:’ <instruction list>]
ENDTEST

<test value> ::= <expression>

Related information

Described in:

Expressions Basic Characteristics - Expressions
2-TEST-2 System DataTypes and Routines

Instructions TPErase

System DataTypes and Routines 2-TPErase-1

TPErase Erases text printed on the teach pendant

TPErase (Teach Pendant Erase) is used to clear the display of the teach pendant.

Example

TPErase;
TPWrite "Execution started";

The teach pendant display is cleared before Execution started is written.

Program execution

The teach pendant display is completely cleared of all text. The next time text is writ-
ten, it will be entered on the uppermost line of the display.

Syntax

TPErase;

Related information

Described in:

Writing on the teach pendant RAPID Summary - Communication

TPErase Instructions

2-TPErase-2 System DataTypes and Routines

Instructions TPReadFK

s 4

e

lue

ers).

um

ant
TPReadFK Reads function keys

TPReadFK (Teach Pendant Read Function Key) is used to write text above the
functions keys and to find out which key is depressed.

Example

TPReadFK reg1, “More ?”, stEmpty, stEmpty, stEmpty, “Yes”, “No”;

The text More ? is written on the teach pendant display and the function key
and 5 are activated by means of the text strings Yes and No respectively (see
Figure 22). Program execution waits until one of the function keys 4 or 5 is
pressed. In other words, reg1 will be assigned 4 or 5 depending on which of th
keys is depressed.

Figure 22 The operator can input information via the function keys.

Arguments

TPReadFK Answer Text FK1 FK2 FK3 FK4 FK5 [\MaxTime]
[\DIBreak] [\BreakFlag]

Answer Data type: num

The variable for which, depending on which key is pressed, the numeric va
1..5 is returned. If the function key 1 is pressed, 1 is returned, and so on.

Text Data type: string

The information text to be written on the display (a maximum of 80 charact

FKx (Function key text) Data type: string

The text to be written as a prompt for the appropriate function key (a maxim
of 7 characters). FK1 is the left-most key.

Function keys without prompts are specified by the predefined string const
stEmpty with value empty string (“”).

 Yes No

More?
System DataTypes and Routines 2-TPReadFK-1

TPReadFK Instructions

eue)

”
[\MaxTime] Data type: num

The maximum amount of time [s] that program execution waits. If no function key
is depressed within this time, the program continues to execute in the error handler
unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIME can
be used to test whether or not the maximum time has elapsed.

[\DIBreak] (Digital Input Break) Data type: signaldi

The digital signal that may interrupt the operator dialog. If no function key is
depressed when the signal is set to 1 (or is already 1), the program continues to
execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\BreakFlag] Data type: errnum

A variable that will hold the error code if maxtime or dibreak is used. If this
optional variable is omitted, the error handler will be executed. The constants
ERR_TP_MAXTIME and ERR_TP_ DIBREAK can be used to select the reason.

Program execution

The information text is always written on a new line. If the display is full of text, this
body of text is moved up one line first. Strings longer than the width of the teach pendant
(40 characters) are split into two lines.

Prompts are written above the appropriate function keys. Keys without prompts are
deactivated.

Program execution waits until one of the activated function keys is depressed.

Description of concurrent TPReadFK or TPReadNum request on Teach Pendant (TP
request) from same or other program tasks:

• New TP request from other program task will not take focus (new put in queue)

• New TP request from TRAP in the same program task will take focus (old put in qu

• Program stop take focus (old put in queue)

• New TP request in program stop state takes focus (old put in queue)

Example

VAR errnum errvar;
...
TPReadFK reg1, “Go to service position?”, stEmpty, stEmpty, stEmpty, “Yes”, “No
\MaxTime:= 600

\DIBreak:= di5\BreakFlag:= errvar;
IF reg1 = 4 or OR errvar = ERR_TP_DIBREAK THEN

MoveL service, v500, fine, tool1;
2-TPReadFK-2 System DataTypes and Routines

Instructions TPReadFK

, the

s.
Stop;
ENDIF
IF errvar = ERR_TP_MAXTIME EXIT;

The robot is moved to the service position if the forth function key (“Yes”) is
pressed, or if the input 5 is activated. If no answer is given within 10 minutes
execution is terminated.

Predefined data

CONST string stEmpty := “”;

The predefined constant stEmpty should be used for Function Keys without prompt
Using stEmpty instead of “”saves about 80 bytes for every Function Key without
prompts.

Syntax

TPReadFK
[Answer’:=’] <var or pers (INOUT) of num>’,’
[Text’:=’] <expression (IN) of string>’,’
[FK1 ’:=’] <expression (IN) of string>’,’
[FK2 ’:=’] <expression (IN) of string>’,’
[FK3 ’:=’] <expression (IN) of string>’,’
[FK4 ’:=’] <expression (IN) of string>’,’
[FK5 ’:=’] <expression (IN) of string>
[’\’MaxTime ’:=’ <expression (IN) of num>]
[’\’DIBreak ’:=’ <variable (VAR) of signaldi>]
[’\’BreakFlag ’:=’ <var or pers (INOUT) of errnum>]’;’

Related information

Described in:

Writing to and reading from RAPID Summary - Communication
the teach pendant

Replying via the teach pendant Running Production
System DataTypes and Routines 2-TPReadFK-3

TPReadFK Instructions
2-TPReadFK-4 System DataTypes and Routines

Instructions TPReadNum

eric

is
r
E

ut
te in

ts
TPReadNum Reads a number from the teach pendant

TPReadNum (Teach Pendant Read Numerical) is used to read a number from the teach
pendant.

Example

TPReadNum reg1, “How many units should be produced?“;

The text How many units should be produced? is written on the teach pendant
display. Program execution waits until a number has been input from the num
keyboard on the teach pendant. That number is stored in reg1.

Arguments

TPReadNum Answer String [\MaxTime] [\DIBreak]
[\BreakFlag]

Answer Data type: num

The variable for which the number input via the teach pendant is returned.

String Data type: string

The information text to be written on the teach pendant (a maximum of 80
characters).

[\MaxTime] Data type: num

The maximum amount of time that program execution waits. If no number
input within this time, the program continues to execute in the error handle
unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIM
can be used to test whether or not the maximum time has elapsed.

[\DIBreak] (Digital Input Break) Data type: signaldi

The digital signal that may interrupt the operator dialog. If no number is inp
when the signal is set to 1 (or is already 1), the program continues to execu
the error handler unless the BreakFlag is used (see below). The constant
ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\BreakFlag] Data type: errnum

A variable that will hold the error code if maxtime or dibreak is used. If this
optional variable is omitted, the error handler will be executed.The constan
ERR_TP_MAXTIME and ERR_TP_ DIBREAK can be used to select the
reason.
System DataTypes and Routines 2-TPReadNum-1

TPReadNum Instructions

Program execution

The information text is always written on a new line. If the display is full of text, this
body of text is moved up one line first. Strings longer than the width of the teach
pendant (40 characters) are split into two lines.

Program execution waits until a number is typed on the numeric keyboard (followed by
Enter or OK).

Reference to TPReadFK about description of concurrent TPReadFK or TPReadNum
request on Teach Pendant from same or other program tasks.

Example

TPReadNum reg1, “How many units should be produced?“;
FOR i FROM 1 TO reg1 DO

produce_part;
ENDFOR

The text How many units should be produced? is written on the teach pendant
display. The routine produce_part is then repeated the number of times that is
input via the teach pendant.

Syntax

TPReadNum
[Answer’:=’] <var or pers (INOUT) of num>’,’
[String’:=’] <expression (IN) of string>
[’\’MaxTime ’:=’ <expression (IN) of num>]
[’\’DIBreak ’:=’ <variable (VAR) of signaldi>]
[’\’BreakFlag ’:=’ <var or pers (INOUT) of errnum>] ’;’

Related information

Described in:

Writing to and reading from RAPID Summary - Communication
the teach pendant

Entering a number on the teach pendant Production Running

Examples of how to use the arguments Instructions - TPReadFK
MaxTime, DIBreak and BreakFlag
2-TPReadNum-2 System DataTypes and Routines

Instructions TPShow
TPShow Switch window on the teach pendant

TPShow (Teach Pendant Show) is used to select Teach Pendant Window from RAPID.

Examples

TPShow TP_PROGRAM;

The Production Window will be active if the system is in AUTO mode and the
Program Window will be active if the system is in MAN mode after execution of
this instruction.

TPShow TP_LATEST;

The latest used Teach Pendant Window used before the Operator Input&Output
Window will be active after execution of this instruction.

Arguments

TPShow Window

Window Data type: tpnum

The window to show:

TP_PROGRAM = Production Window if in AUTO mode. Program Window if
in MAN mode.

TP_LATEST = Latest used Teach Pendant Window before Operator
Input&Output Window

Predefined data

CONST tpnum TP_PROGRAM := 1;
CONST tpnum TP_LATEST := 2;

Program execution

The selected Teach Pendant Window will be activated.
System DataTypes and Routines 2-TPShow-1

TPShow Instructions
Syntax

TPShow
[Window’:=’] <expression (IN) of tpnum> ‘;’

Related information

Described in:

Communicating using RAPID Summary - Communication
the teach pendant

Teach Pendant Window number Data Types - tpnum

-
2-TPShow-2 System DataTypes and Routines

Instructions TPWrite
TPWrite Writes on the teach pendant

TPWrite (Teach Pendant Write) is used to write text on the teach pendant. The value of
certain data can be written as well as text.

Examples

TPWrite "Execution started";

The text Execution started is written on the teach pendant.

TPWrite "No of produced parts="\Num:=reg1;

If, for example, the answer to No of produced parts=5, enter 5 instead of reg1 on
the teach pendant.

Arguments

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient]

String Data type: string

The text string to be written (a maximum of 80 characters).

[\Num] (Numeric) Data type: num

The data whose numeric value is to be written after the text string.

[\Bool] (Boolean) Data type: bool

The data whose logical value is to be written after the text string.

[\Pos] (Position) Data type: pos

The data whose position is to be written after the text string.

[\Orient] (Orientation) Data type: orient

The data whose orientation is to be written after the text string.

Program execution

Text written on the teach pendant always begins on a new line. When the display is full
of text, this text is moved up one line first. Strings that are longer than the width of the
teach pendant (40 characters) are divided up into two lines.

If one of the arguments \Num, \Bool, \Pos or \Orient is used, its value is first converted
System DataTypes and Routines 2-TPWrite-1

TPWrite Instructions
to a text string before it is added to the first string. The conversion from value to text
string takes place as follows:

Argument Value Text string

 \Num 23 "23"

 \Num 1.141367 "1.14137"

 \Bool TRUE "TRUE"

 \Pos [1817.3,905.17,879.11] "[1817.3,905.17,879.11]"

 \Orient [0.96593,0,0.25882,0] "[0.96593,0,0.25882,0]"

The value is converted to a string with standard RAPID format. This means in principle
6 significant digits. If the decimal part is less than 0.000005 or greater than 0.999995,
the number is rounded to an integer.

Limitations

The arguments \Num, \Bool, \Pos and \Orient are mutually exclusive and thus cannot
be used simultaneously in the same instruction.

Syntax

TPWrite
[String’:=’] <expression (IN) of string>
[’\’Num’:=’ <expression (IN) of num>]
| [’\’Bool’:=’ <expression (IN) of bool>]
| [’\’Pos’:=’ <expression (IN) of pos>]
| [’\’Orient’:=’ <expression (IN) of orient>]’;’

Related information

Described in:

Clearing and reading RAPID Summary - Communication
the teach pendant

-
2-TPWrite-2 System DataTypes and Routines

Instructions TriggC

 of

orten
 and

h

ted.
TriggC Circular robot movement with events

TriggC (Trigg Circular) is used to set output signals and/or run interrupt routines at
fixed positions, at the same time as the robot is moving on a circular path.

One or more (max. 4) events can be defined using the instructions TriggIO,
TriggEquip or TriggInt and afterwards these definitions are referred to in the
instruction TriggC.

Examples

VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveL p1, v500, z50, gun1;
TriggC p2, p3, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint
the corner path of the point p1.

Figure 23 Example of fixed-position IO event.

Arguments

TriggC [\Conc] CirPoint ToPoint Speed [\T]
Trigg_1 [\T2] [\T3] [\T4] Zone Tool [\WObj] [\Corr]

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed at once. This argument is used to sh
the cycle time when, for example, communicating with external equipment,
synchronisation is not required. It can also be used
to tune the execution of the robot path, to avoid warning 50024 Corner pat
failure, or error 40082 Deceleration limit.

When using the argument \Conc, the number of movement instructions in
succession is limited to 5. In a program section that includes StorePath-
RestoPath, movement instructions with the argument \Conc are not permit

End point p3

Start point p1

The output signal gun is set to on
when the TCP of the robot is here

TriggC p2, p3, v500,gunon, fine, gun1;

Circle point p2
System DataTypes and Routines 2-TriggC-1

TriggC Instructions
If this argument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone.

CirPoint Data type: robtarget

The circle point of the robot. See the instruction MoveC for a more detailed
description of circular movement. The circle point is defined as a named position
or stored directly in the instruction (marked with an * in the instruction).

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
tool centre point, the external axes and of the tool reorientation.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Trigg_1 Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T2] (Trigg 2) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T3] (Trigg 3) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T4] (Trigg 4) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.
2-TriggC-2 System DataTypes and Routines

Instructions TriggC
[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the
instruction is related.

This argument can be omitted, and if it is, the position is related to the world
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified for a linear movement
relative to the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

Program execution

See the instruction MoveC for information about circular movement.

As the trigger conditions are fulfilled when the robot is positioned closer and closer to
the end point, the defined trigger activities are carried out. The trigger conditions are
fulfilled either at a certain distance before the end point of the instruction, or at a
certain distance after the start point of the instruction, or at a certain point in time
(limited to a short time) before the end point of the instruction.

During stepping execution forwards, the I/O activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at all
are carried out.

Examples

VAR intnum intno1;
VAR triggdata trigg1;
...
CONNECT intno1 WITH trap1;
TriggInt trigg1, 0.1 \Time, intno1;
...
TriggC p1, p2, v500, trigg1, fine, gun1;
TriggC p3, p4, v500, trigg1, fine, gun1;
...
IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position
0.1 s before the point p2 or p4 respectively.

Limitations

If the current start point deviates from the usual, so that the total positioning length of
System DataTypes and Routines 2-TriggC-3

TriggC Instructions

n
ath
the instruction TriggC is shorter than usual, it may happen that several or all of the
trigger conditions are fulfilled immediately and at the same position. In such cases, the
sequence in which the trigger activities are carried out will be undefined. The program
logic in the user program may not be based on a normal sequence of trigger activities
for an “incomplete movement”.

The instruction TriggC should never be started from the beginning with the robot i
position after the circle point. Otherwise the robot will not take the programmed p
(positioning around the circular path in another direction compared with that
programmed).

Syntax

TriggC
[’\’ Conc ’,’]
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Trigg_1 ’:=’] < variable (VAR) of triggdata >
[’\’ T2 ’:=’ < variable (VAR) of triggdata >]
[’\’ T3 ’:=’ < variable (VAR) of triggdata >]
[’\’ T4 ’:=’ < variable (VAR) of triggdata >] ‘,’
[Zone ’:=’] < expression (IN) of zonedata > ‘,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Linear movement with triggers Instructions - TriggL

Joint movement with triggers Instructions - TriggJ

Definition of triggers Instructions - TriggIO, TriggEquip
TriggInt

Writes to a corrections entry Instructions - CorrWrite

Circular movement Motion Principles - Positioning during
Program Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion Principles
2-TriggC-4 System DataTypes and Routines

Instructions TriggEquip

r.
TriggEquip Defines a fixed position-time I/O event

TriggEquip (Trigg Equipment) is used to define conditions and actions for setting a
digital, a group of digital, or an analog output signal at a fixed position along the
robot’s movement path with possibility to do time compensation for the lag in the
external equipment.

The data defined is used for implementation in one or more subsequent TriggL, TriggC
or TriggJ instructions.

Examples

VAR triggdata gunon;

TriggEquip gunon, 10, 0.1 \DOp:=gun, 1;

TriggL p1, v500, gunon, z50, gun1;

The tool gun1 opens in point p2, when the TCP is 10 mm before the point p1. To
reach this, the digital output signal gun is set to the value 1, when TCP is 0.1 s
before the point p2. The gun is full open when TCP reach point p2.

Figure 24 Example of fixed position-time I/O event.

Arguments

TriggEquip TriggData Distance [\Start] EquipLag
[\DOp] | [\GOp] | [\AOp] | [\ProcID] SetValue [\Inhib]

TriggData Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC or TriggJ instructions.

Distance Data type: num

Defines the position on the path where the I/O equipment event shall occu

Specified as the distance in mm (positive value) from the end point of the
movement path (applicable if the argument \ Start is not set).

TriggL p1, v500, gunon, z50, gun1; End point p1Start point

10 mm

Point p2 for open of the gun
System DataTypes and Routines 2-TriggEquip-1

TriggEquip Instructions
See the section entitled Program execution for further details.

[\Start] Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

EquipLag (Equipment Lag) Data type: num

Specify the lag for the external equipment in s.

For compensation of external equipment lag, use positive argument value.
Positive argument value means that the I/O signal is set by the robot system at
specified time before the TCP physical reach the specified distance in relation to
the movement start or end point.

Negative argument value means that the I/O signal is set by the robot system at
specified time after that the TCP physical has passed the specified distance in
relation to the movement start or end point.

Figure 25 Use of argument EquipLag.

[\DOp] (Digital OutPut) Data type: signaldo

The name of the signal, when a digital output signal shall be changed.

[\GOp] (Group OutPut) Data type: signalgo

The name of the signal, when a group of digital output signals shall be changed.

[\AOp] (Analog Output) Data type: signalao

The name of the signal, when a analog output signal shall be changed.

[\ProcID] (Process Identity) Data type: num

Not implemented for customer use.

(The identity of the IPM process to receive the event. The selector is specified in
the argument SetValue.)

End pointStart point

Distance
\Start

Distance

EquipLag

+ - + -
2-TriggEquip-2 System DataTypes and Routines

Instructions TriggEquip
SetValue Data type: num

Desired value of output signal (within the allowed range for the current signal).

[\Inhib] (Inhibit) Data type: bool

The name of a persistent variable flag for inhibit the setting of the signal at
runtime.

If this optional argument is used and the actual value of the specified flag is
TRUE at the position-time for setting of the signal then the specified signal
(DOp, GOp or AOp) will be set to 0 in stead of specified value.

Program execution

When running the instruction TriggEquip, the trigger condition is stored in the
specified variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC or TriggJ is executed, the
following are applicable, with regard to the definitions in TriggEquip:

The distance specified in the argument Distance:

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path
(to obtain adequate accuracy, the distance should
not exceed one half of the arc length).

Figure 26 Fixed position-time I/O on a corner path.

The position-time related event will be generated when the start point (end point) is
passed, if the specified distance from the end point (start point) is not within the length
of movement of the current instruction (Trigg...). With use of argument EquipLag with
negative time (delay), the I/O signal can be set after the end point.

Examples

VAR triggdata glueflow;

End point with
corner path

If the Distance is 0, the output signal is

set when the robot’s TCP is here
System DataTypes and Routines 2-TriggEquip-3

TriggEquip Instructions
TriggEquip glueflow, 1 \Start, 0.05 \AOp:=glue, 5.3;

MoveJ p1, v1000, z50, tool1;
TriggL p2, v500, glueflow, z50, tool1;

The analog output signal glue is set to the value 5.3 when the TCP passes a point
located 1 mm after the start point p1 with compensation for equipment lag 0.05 s.

...
TriggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the TCP
passes a point located 1 mm after the start point p2.

Limitations

I/O events with distance (without the argument \Time) is intended for flying points
(corner path). I/O events with distance, using stop points, results in worse accuracy than
specified below.

Regarding the accuracy for I/O events with distance and using flying points, the
following is applicable when setting a digital output at a specified distance from the
start point or end point in the instruction TriggL or TriggC:

- Accuracy specified below is valid for positive EquipLag parameter < 60 ms,
equivalent to the lag in the robot servo (without changing the system parameter
Event Preset Time).

- Accuracy specified below is valid for positive EquipLag parameter <
configured Event Preset Time (system parameter).

- Accuracy specified below is not valid for positive EquipLag parameter >
configured Event Preset Time (system parameter). In this case, an approximate
method is used in which the dynamic limitations of the robot are not taken into
consideration. SingArea \Wrist must be used in order to achieve an acceptable
accuracy.

- Accuracy specified below is valid for negative EquipLag.

I/O events with time (with the argument \Time) is intended for stop points. I/O events
with time, using flying points, results in worse accuracy than specified below.
I/O events with time can only be specified from the end point of the movement. This
time cannot exceed the current braking time of the robot, which is max. approx. 0.5 s
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If
the specified time is greater that the current braking time, the event will be generated
anyhow, but not until braking is started (later than specified). However, the whole of
the movement time for the current movement can be utilised during small and fast
movements.

Typical absolute accuracy values for set of digital outputs +/- 5 ms.
Typical repeat accuracy values for set of digital outputs +/- 2 ms.

Used digital output signals (DOp or GOp) cannot be cross connected to other signals.
2-TriggEquip-4 System DataTypes and Routines

Instructions TriggEquip

Syntax

TriggEquip
[TriggData ’:=’] < variable (VAR) of triggdata> ‘,’
[Distance ’:=’] < expression (IN) of num>
[’\’ Start] ‘,’
[EquipLag ’:=’] < expression (IN) of num>
[’\’ DOp ’:=’ < variable (VAR) of signaldo>]
| [’\’ GOp ’:=’ < variable (VAR) of signalgo>]
| [’\’ AOp ’:=’ < variable (VAR) of signalao>]
| [’\’ ProcID ’:=’ < expression (IN) of num>] ‘,’
[SetValue ’:=’] < expression (IN) of num>
[’\’ Inhibit ’:=’ < persistent (PERS) of bool>] ‘,’

Related information

Described in:

Use of triggers Instructions - TriggL, TriggC, TriggJ

Definition of other triggs Instruction - TriggIO, TriggInt

More examples Data Types - triggdata

Set of I/O Instructions - SetDO, SetGO, SetAO

Configuration of Event preset time User‘s guide System Parameters -
Manipulator
System DataTypes and Routines 2-TriggEquip-5

TriggEquip Instructions
2-TriggEquip-6 System DataTypes and Routines

Instructions TriggInt
TriggInt Defines a position related interrupt

TriggInt is used to define conditions and actions for running an interrupt routine at a
position on the robot’s movement path.

The data defined is used for implementation in one or more subsequent TriggL, TriggC
or TriggJ instructions.

Examples

VAR intnum intno1;
VAR triggdata trigg1;
...
CONNECT intno1 WITH trap1;
TriggInt trigg1, 5, intno1;
...
TriggL p1, v500, trigg1, z50, gun1;
TriggL p2, v500, trigg1, z50, gun1;
...
IDelete intno1;

The interrupt routine trap1 is run when the TCP is at a position 5 mm
before the point p1 or p2 respectively.

Figure 27 Example position related interrupt.

Arguments

TriggInt TriggData Distance [\Start] | [\Time]
Interrupt

TriggData Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC or TriggJ instructions.

Distance Data type: num

Defines the position on the path where the interrupt shall be generated.

TriggL p1, v500, trigg1, z50, gun1; End point p1 or p2Start point

5 mm

The interrupt is generated
when the TCP is here
System DataTypes and Routines 2-TriggInt-1

TriggInt Instructions
Specified as the distance in mm (positive value) from the end point of the
movement path (applicable if the argument \ Start or \Time is not set).

See the section entitled Program execution for further details.

[\Start] Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Time] Data type: switch

Used when the value specified for the argument Distance is in fact a time in
seconds (positive value) instead of a distance.

Position related interrupts in time can only be used for short times (< 0.5 s) before
the robot reaches the end point of the instruction. See the section entitled
Limitations for more details.

Interrupt Data type: intnum

Variable used to identify an interrupt.

Program execution

When running the instruction TriggInt, data is stored in a specified variable for the
argument TriggData and the interrupt that is specified in the variable for the argument
Interrupt is activated.

Afterwards, when one of the instructions TriggL, TriggC or TriggJ is executed, the
following are applicable, with regard to the definitions in TriggInt:

The distance specified in the argument Distance:

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path
(to obtain adequate accuracy, the distance should
not exceed one half of the arc length).

Figure 28 Position related interrupt on a corner path.

End point with
corner path

If the Distance is 0, the interrupt will be

generated when the robot’s TCP is here
2-TriggInt-2 System DataTypes and Routines

Instructions TriggInt
The position related interrupt will be generated when the start point (end point) is
passed, if the specified distance from the end point (start point) is not within the length
of movement of the current instruction (Trigg...).

Examples

This example describes programming of the instructions that interact to generate
position related interrupts:

VAR intnum intno2;
VAR triggdata trigg2;

- Declaration of the variables intno2 and trigg2 (shall not be initiated).

CONNECT intno2 WITH trap2;

- Allocation of interrupt numbers that are stored in the variable intno2

- The interrupt number is coupled to the interrupt routine trap2

TriggInt trigg2, 0, intno2;

- The interrupt number in the variable intno2 is flagged as used

- The interrupt is activated

- Defined trigger conditions and interrupt number are stored in the variable
trigg2

TriggL p1, v500, trigg2, z50, gun1;

- The robot is moved to the point p1.

- When the TCP reaches the point p1, an interrupt is generated and the interrupt
routine trap2 is run.

TriggL p2, v500, trigg2, z50, gun1;

- The robot is moved to the point p2

- When the TCP reaches the point p2, an interrupt is generated and the interrupt
routine trap2 is run once more.

IDelete intno2;

- The interrupt number in the variable intno2 is de-allocated.

Limitations

Interrupt events with distance (without the argument \Time) is intended for flying
points (corner path). Interrupt events with distance, using stop points, results in worse
accuracy than specified below.
System DataTypes and Routines 2-TriggInt-3

TriggInt Instructions

bot’s
Interrupt events with time (with the argument \Time) is intended for stop points.
Interrupt events with time, using flying points, results in worse accuracy than specified
below.
I/O events with time can only be specified from the end point of the movement. This
time cannot exceed the current braking time of the robot, which is max. approx. 0.5 s
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If
the specified time is greater that the current braking time, the event will be generated
anyhow, but not until braking is started (later than specified). However, the whole of
the movement time for the current movement can be utilised during small and fast
movements.

Typical absolute accuracy values for generation of interrupts +/- 5 ms.
Typical repeat accuracy values for generation of interrupts +/- 2 ms.

Normally there is a delay of 5 to 120 ms between interrupt generation and response,
depending on the type of movement being performed at the time of the interrupt.
(Ref. to Basic Characteristics RAPID - Interrupts).

To obtain the best accuracy when setting an output at a fixed position along the ro
path, use the instructions TriggIO or TriggEquip in preference to the instructions
TriggInt with SetDO/SetGO/SetAO in an interrupt routine.

Syntax

TriggInt
[TriggData ’:=’] < variable (VAR) of triggdata> ‘,’
[Distance ’:=’] < expression (IN) of num>
[’\’ Start] | [’\’ Time] ’,’
[Interrupt ’:=’] < variable (VAR) of intnum> ’;’

Related information

Described in:

Use of triggers Instructions - TriggL, TriggC, TriggJ

Definition of position fix I/O Instruction - TriggIO, TriggEquip

More examples Data Types - triggdata

Interrupts Basic Characteristics - Interrupts
2-TriggInt-4 System DataTypes and Routines

Instructions TriggIO

t. For
TriggIO Defines a fixed position I/O event

TriggIO is used to define conditions and actions for setting a digital, a group of digital,
or an analog output signal at a fixed position along the robot’s movement path.

To obtain a fixed position I/O event, TriggIO compensates for the lag in the control
system (lag between robot and servo) but not for any lag in the external equipmen
compensation of both lags use TriggEquip.

The data defined is used for implementation in one or more subsequent TriggL, TriggC
or TriggJ instructions.

Examples

VAR triggdata gunon;

TriggIO gunon, 10 \DOp:=gun, 1;

TriggL p1, v500, gunon, z50, gun1;

The digital output signal gun is set to the value 1 when the TCP is 10 mm before
the point p1.

Figure 29 Example of fixed-position IO event.

Arguments

TriggIO TriggData Distance [\Start] | [\Time]
[\DOp] | [\GOp] | [\AOp] | [\ProcID] SetValue
[\DODelay]

TriggData Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC or TriggJ instructions.

Distance Data type: num

Defines the position on the path where the I/O event shall occur.

TriggL p1, v500, gunon, z50, gun1; End point p1Start point

10 mm

The output signal gun is set
when the TCP is here
System DataTypes and Routines 2-TriggIO-1

TriggIO Instructions
Specified as the distance in mm (positive value) from the end point of the
movement path (applicable if the argument \ Start or \Time is not set).

See the section entitled Program execution for further details.

[\Start] Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Time] Data type: switch

Used when the value specified for the argument Distance is in fact a time in
seconds (positive value) instead of a distance.

Fixed position I/O in time can only be used for short times (< 0.5 s) before the
robot reaches the end point of the instruction. See the section entitled Limitations
for more details.

[\DOp] (Digital OutPut) Data type: signaldo

The name of the signal, when a digital output signal shall be changed.

[\GOp] (Group OutPut) Data type: signalgo

The name of the signal, when a group of digital output signals shall be changed.

[\AOp] (Analog Output) Data type: signalao

The name of the signal, when a analog output signal shall be changed.

[\ProcID] (Process Identity) Data type: num

Not implemented for customer use.

(The identity of the IPM process to receive the event. The selector is specified in
the argument SetValue.)

SetValue Data type: num

Desired value of output signal (within the allowed range for the current signal).

[\DODelay] (Digital Output Delay) Data type: num

Time delay in seconds (positive value) for a digital output signal or group of
digital output signals.

Only used to delay setting digital output signals, after the robot has reached the
specified position. There will be no delay if the argument is omitted.

The delay is not synchronised with the movement.
2-TriggIO-2 System DataTypes and Routines

Instructions TriggIO
Program execution

When running the instruction TriggIO, the trigger condition is stored in a specified
variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC or TriggJ is executed, the
following are applicable, with regard to the definitions in TriggIO:

The distance specified in the argument Distance:

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path
(to obtain adequate accuracy, the distance should
not exceed one half of the arc length).

Figure 30 Fixed position I/O on a corner path.

The fixed position I/O will be generated when the start point (end point) is passed, if
the specified distance from the end point (start point) is not within the length of
movement of the current instruction (Trigg...).

Examples

VAR triggdata glueflow;

TriggIO glueflow, 1 \Start \AOp:=glue, 5.3;

MoveJ p1, v1000, z50, tool1;
TriggL p2, v500, glueflow, z50, tool1;

The analog output signal glue is set to the value 5.3 when the work point passes
a point located 1 mm after the start point p1.

...
TriggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the work
point passes a point located 1 mm after the start point p2.

End point with
corner path

If the Distance is 0, the output signal is

set when the robot’s work point is here
System DataTypes and Routines 2-TriggIO-3

TriggIO Instructions
Limitations

I/O events with distance (without the argument \Time) is intended for flying points
(corner path). I/O events with distance, using stop points, results in worse accuracy than
specified below.

I/O events with time (with the argument \Time) is intended for stop points. I/O events
with time, using flying points, results in worse accuracy than specified below.
I/O events with time can only be specified from the end point of the movement. This
time cannot exceed the current braking time of the robot, which is max. approx. 0.5 s
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If
the specified time is greater that the current braking time, the event will be generated
anyhow, but not until braking is started (later than specified). However, the whole of
the movement time for the current movement can be utilised during small and fast
movements.

Typical absolute accuracy values for set of digital outputs +/- 5 ms.
Typical repeat accuracy values for set of digital outputs +/- 2 ms.

Used digital output signals (DOp or GOp) cannot be cross connected to other signals.

Syntax

TriggIO
[TriggData ’:=’] < variable (VAR) of triggdata> ‘,’
[Distance ’:=’] < expression (IN) of num>
[’\’ Start] | [’\’ Time]
[’\’ DOp ’:=’ < variable (VAR) of signaldo>]
| [’\’ GOp ’:=’ < variable (VAR) of signalgo>]
| [’\’ AOp ’:=’ < variable (VAR) of signalao>]
| [’\’ ProcID ’:=’ < expression (IN) of num>] ‘,’
[SetValue ’:=’] < expression (IN) of num>
[’\’ DODelay ’:=’ < expression (IN) of num>] ‘;’

Related information

Described in:

Use of triggers Instructions - TriggL, TriggC, TriggJ

Definition of position-time I/O event Instruction - TriggEquip

Definition of position related interrupts Instruction - TriggInt

More examples Data Types - triggdata

Set of I/O Instructions - SetDO, SetGO, SetAO
2-TriggIO-4 System DataTypes and Routines

Instructions TriggJ

 of

orten
, if

h

sion
ve-
TriggJ Axis-wise robot movements with events

TriggJ (Trigg Joint) is used to set output signals and/or run interrupt routines at fixed
positions, at the same time as the robot is moving on a circular path.

One or more (max. 4) events can be defined using the instructions TriggIO, TriggEquip
or TriggInt and afterwards these definitions are referred to in the instruction TriggJ.

Examples

VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveL p1, v500, z50, gun1;
TriggJ p2, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint
the corner path of the point p1.

Figure 31 Example of fixed-position IO event.

Arguments

TriggJ [\Conc] ToPoint Speed [\T] Trigg_1 [\T2] [\T3] [\T4]
Zone Tool [\WObj]

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed at once. This argument is used to sh
the cycle time when, for example, communicating with external equipment
synchronisation is not required. It can also be used
to tune the execution of the robot path, to avoid warning 50024 Corner pat
failure or error 40082 Deceleration limit.

Using the argument \Conc, the number of movement instructions in succes
is limited to 5. In a program section that includes StorePath-RestoPath, mo
ment instructions with the argument \Conc are not permitted.

End point p2

Start point p1

The output signal gun is set to on
when the robot’s TCP is here

TriggJ p2, v500,gunon, fine, gun1;
System DataTypes and Routines 2-TriggJ-1

TriggJ Instructions
If this argument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone .

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
tool centre point, the external axes and of the tool reorientation.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Trigg_1 Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T2] (Trigg 2) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T3] (Trigg 3) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T4] (Trigg 4) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

This argument can be omitted, and if it is, the position is related to the world
2-TriggJ-2 System DataTypes and Routines

Instructions TriggJ

plete
coordinate system. If, on the other hand, a stationary TCP or coordinated exter-
nal axes are used, this argument must be specified for a linear movement relative
to the work object to be performed.

Program execution

See the instruction MoveJ for information about joint movement.

As the trigger conditions are fulfilled when the robot is positioned closer and closer to
the end point, the defined trigger activities are carried out. The trigger conditions are
fulfilled either at a certain distance before the end point of the instruction, or at a cer-
tain distance after the start point of the instruction, or at a certain point in time (limited
to a short time) before the end point of the instruction.

During stepping execution forwards, the I/O activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at all
are carried out.

Examples

VAR intnum intno1;
VAR triggdata trigg1;
...
CONNECT intno1 WITH trap1;
TriggInt trigg1, 0.1 \Time , intno1;
...
TriggJ p1, v500, trigg1, fine, gun1;
TriggJ p2, v500, trigg1, fine, gun1;
...
IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position
0.1 s before the point p1 or p2 respectively.

Limitations

If the current start point deviates from the usual, so that the total positioning length of
the instruction TriggJ is shorter than usual (e.g. at the start of TriggJ with the robot
position at the end point), it may happen that several or all of the trigger conditions are
fulfilled immediately and at the same position. In such cases, the sequence in which
the trigger activities are carried will be undefined. The program logic in the user pro-
gram may not be based on a normal sequences of trigger activities for an ”incom
movement”.
System DataTypes and Routines 2-TriggJ-3

TriggJ Instructions
Syntax

TriggJ
[’\’ Conc ’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Trigg_1 ’:=’] < variable (VAR) of triggdata >
[’\’ T2 ’:=’ < variable (VAR) of triggdata >]
[’\’ T3 ’:=’ < variable (VAR) of triggdata >]
[’\’ T4 ’:=’ < variable (VAR) of triggdata >] ‘,’
[Zone ’:=’] < expression (IN) of zonedata > ‘,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’

Related information

Described in:

Linear movement with triggs Instructions - TriggL

Circular movement with triggers Instructions - TriggC

Definition of triggers Instructions - TriggIO, TriggEquip or
TriggInt

Joint movement Motion Principles - Positioning during
Program Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion Principles
2-TriggJ-4 System DataTypes and Routines

Instructions TriggL

 of

orten
, if

h

sion
TriggL Linear robot movements with events

TriggL (Trigg Linear) is used to set output signals and/or run interrupt routines at fixed
positions, at the same time as the robot is making a linear movement.

One or more (max. 4) events can be defined using the instructions TriggIO,
TriggEquip or TriggInt and afterwards these definitions are referred to in the
instruction TriggL.

Examples

VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveJ p1, v500, z50, gun1;
TriggL p2, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint
the corner path of the point p1.

Figure 32 Example of fixed-position IO event.

Arguments

TriggL [\Conc] ToPoint Speed [\T] Trigg_1 [\T2] [\T3] [\T4]
Zone Tool [\WObj] [\Corr]

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed at once. This argument is used to sh
the cycle time when, for example, communicating with external equipment
synchronisation is not required. It can also be used
to tune the execution of the robot path, to avoid warning 50024 Corner pat
failure or error 40082 Deceleration limit.

Using the argument \Conc, the number of movement instructions in succes
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.

TriggL p2, v500, gunon, fine, gun1; End point p2

Start point p1

The output signal gun is set to on
when the robot’s TCP is here
System DataTypes and Routines 2-TriggL-1

TriggL Instructions
If this argument is omitted and the ToPoint is not a stop point, the subsequent
instruction is executed some time before the robot has reached the programmed
zone.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the
tool centre point, the external axes and of the tool reorientation.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the robot
moves. It is then substituted for the corresponding speed data.

Trigg_1 Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T2] (Trigg 2) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T3] (Trigg 3) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T4] (Trigg 4) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in the
program using the instructions TriggIO, TriggEquip or TriggInt.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point that is
moved to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

This argument can be omitted, and if it is, the position is related to the world
2-TriggL-2 System DataTypes and Routines

Instructions TriggL

ent”.
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified for a linear movement
relative to the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

Program execution

See the instruction MoveL for information about linear movement.

As the trigger conditions are fulfilled when the robot is positioned closer and closer to
the end point, the defined trigger activities are carried out. The trigger conditions are
fulfilled either at a certain distance before the end point of the instruction, or at a
certain distance after the start point of the instruction, or at a certain point in time
(limited to a short time) before the end point of the instruction.

During stepping execution forwards, the I/O activities are carried out but the interrupt
routines are not run. During stepping execution backwards, no trigger activities at all
are carried out.

Examples

VAR intnum intno1;
VAR triggdata trigg1;
...
CONNECT intno1 WITH trap1;
TriggInt trigg1, 0.1 \Time, intno1;
...
TriggL p1, v500, trigg1, fine, gun1;
TriggL p2, v500, trigg1, fine, gun1;
...
IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position
0.1 s before the point p1 or p2 respectively.

Limitations

If the current start point deviates from the usual, so that the total positioning length of the
instruction TriggL is shorter than usual (e.g. at the start of TriggL with the robot position
at the end point), it may happen that several or all of the trigger conditions are fulfilled
immediately and at the same position. In such cases, the sequence in which the trigger
activities are carried out will be undefined. The program logic in the user program may
not be based on a normal sequence of trigger activities for an “incomplete movem
System DataTypes and Routines 2-TriggL-3

TriggL Instructions
Syntax

TriggL
[’\’ Conc ’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Trigg_1 ’:=’] < variable (VAR) of triggdata >
[’\’ T2 ’:=’ < variable (VAR) of triggdata >]
[’\’ T3 ’:=’ < variable (VAR) of triggdata >]
[’\’ T4 ’:=’ < variable (VAR) of triggdata >] ‘,’
[Zone ’:=’] < expression (IN) of zonedata > ‘,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Circular movement with triggers Instructions - TriggC

Joint movement with triggers Instructions - TriggJ

Definition of triggers Instructions - TriggIO, TriggEquip or
TriggInt

Writes to a corrections entry Instructions - CorrWrite

Linear movement Motion Principles - Positioning during
Program Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion Principles
2-TriggL-4 System DataTypes and Routines

Instructions TRYNEXT
TRYNEXT Jumps over an instruction
which has caused an error

TRYNEXT is used to jump over an instruction which has caused an error. Instead, the
next instruction is run.

Example

reg2 := reg3/reg4;
.

ERROR
IF ERRNO = ERR_DIVZERO THEN

reg2:=0;
TRYNEXT;

ENDIF

An attempt is made to divide reg3 by reg4. If reg4 is equal to 0 (division by zero),
a jump is made to the error handler, where reg2 is set to 0. The TRYNEXT instruc-
tion is then used to continue with the next instruction.

Program execution

Program execution continues with the instruction subsequent to the instruction that
caused the error.

Limitations

The instruction can only exist in a routine’s error handler.

Syntax

TRYNEXT’;’

Related information

Described in:

Error handlers Basic Characteristics-
Error Recovery
System DataTypes and Routines 2-TRYNEXT-1

TRYNEXT Instructions
2-TRYNEXT-2 System DataTypes and Routines

Instructions TuneReset
TuneReset Resetting servo tuning

TuneReset is used to reset the dynamic behaviour of all robot axes and external
mechanical units to their normal values.

Example

TuneReset;

Resetting tuning values for all axes to 100%.

Program execution

The tuning values for all axes are reset to 100%.

The default servo tuning values for all axes are automatically set by executing
instruction TuneReset

- at a cold start-up

- when a new program is loaded

- when starting program execution from the beginning.

Syntax

TuneReset ’;’

Related information

Described in:

Tuning servos Instructions - TuneServo
System DataTypes and Routines 2-TuneReset-1

TuneReset Instructions
2-TuneReset-2 System DataTypes and Routines

Instructions UnLoad
UnLoad UnLoad a program module during execution

UnLoad is used to unload a program module from the program memory during execu-
tion.

The program module must previously have been loaded into the program memory
using the instruction Load or StartLoad - WaitLoad.

Example

UnLoad ram1disk \File:="PART_A.MOD";

UnLoad the program module PART_A.MOD from the program memory, that
previously was loaded into the program memory with Load. (See instructions
Load). (ram1disk is a predefined string constant "ram1disk:").

Arguments

UnLoad [\Save] FilePath [\File]

[\Save] Data type: switch

If this argument is used, the program module is saved before the unloading starts.
The program module will be saved at original place specified in Load or Start-
Load instruction.

FilePath Data type: string

The file path and the file name to the file that will be unloaded from the program
memory. The file path and the file name must be the same as in the previously
executed Load or StartLoad instruction. The file name shall be excluded when
the argument \File is used.

[\File] Data type: string

When the file name is excluded in the argument FilePath, then it must be defined
with this argument. The file name must be the same as in the previously executed
Load or StartLoad instruction.

Program execution

To be able to execute a UnLoad instruction in the program, a Load or StartLoad - Wait-
Load instruction with the same file path and name must have been executed earlier in
the program.

The program execution waits for the program module to be finish unloading before the
System DataTypes and Routines 2-UnLoad-1

UnLoad Instructions
execution proceeds with the next instruction.

After that the program module is unloaded, the rest of the program modules will be
linked.

For more information see the instructions Load or StartLoad-Waitload.

Examples

UnLoad "ram1disk:DOORDIR/DOOR1.MOD";

UnLoad the program module DOOR1.MOD from the program memory, that pre-
viously was loaded into the program memory with Load. (See instructions
Load).

UnLoad "ram1disk:DOORDIR/" \File:="DOOR1.MOD";

Same as above but another syntax.

Unload \Save, "ram1disk:DOORDIR/" \File:="DOOR1.MOD";

Same as above but save the program module before unloading.

Limitations

It is not allowed to unload a program module that is executing.

TRAP routines, system I/O events and other program tasks cannot execute during the
unloading.

Avoid ongoing robot movements during the unloading.

Program stop during execution of UnLoad instruction results in guard stop with motors
off and error message "20025 Stop order timeout" on the Teach Pendant.

Error handling

If the file in the UnLoad instruction cannot be unloaded, because of ongoing execution
within the module or wrong path (module not loaded with Load or StartLoad, then the
system variable ERRNO is set to ERR_UNLOAD. This error can then be handled in
the error handler.
2-UnLoad-2 System DataTypes and Routines

Instructions UnLoad
Syntax

UnLoad
[’ \’Save ’,’]
[FilePath’:=’]<expression (IN) of string>
[’ \’File’:=’ <expression (IN) of string>]’;’

Related information

Described in:

Load a program module Instructions - Load
Instructions - StartLoad-WaitLoad

Accept unresolved references System Parameters - Controller
System Parameters - Tasks
System Parameters - BindRef
System DataTypes and Routines 2-UnLoad-3

UnLoad Instructions
2-UnLoad-4 System DataTypes and Routines

Instructions WaitDI
WaitDI Waits until a digital input signal is set

WaitDI (Wait Digital Input) is used to wait until a digital input is set.

Example

WaitDI di4, 1;

Program execution continues only after the di4 input has been set.

WaitDI grip_status, 0;

Program execution continues only after the grip_status input has been reset.

Arguments

WaitDI Signal Value [\MaxTime] [\TimeFlag]

Signal Data type: signaldi

The name of the signal.

Value Data type: dionum

The desired value of the signal.

[\MaxTime] (Maximum Time) Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this
time runs out before the condition is met, the error handler will be called, if there
is one, with the error code ERR_WAIT_MAXTIME. If there is no error handler,
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition is met. If this parameter is included in
the instruction, it is not considered to be an error if the max. time runs out.
This argument is ignored if the MaxTime argument is not included in the instruc-
tion.

Program Running

If the value of the signal is correct, when the instruction is executed, the program sim-
ply continues with the following instruction.
System DataTypes and Routines 2-WaitDI-1

WaitDI Instructions

 will
If the signal value is not correct, the robot enters a waiting state and when the signal
changes to the correct value, the program continues. The change is detected with an
interrupt, which gives a fast response (not polled).

When the robot is waiting, the time is supervised, and if it exceeds the max time value,
the program will continue if a Time Flag is specified, or raise an error if it’s not. If a
Time Flag is specified, this will be set to true if the time is exceeded, otherwise it
be set to false.

Syntax

WaitDI
[Signal ’:=’] < variable (VAR) of signaldi > ’,’
[Value ’:=’] < expression (IN) of dionum >
[’\’MaxTime ’:=’<expression (IN) of num>]
[’\’TimeFlag’:=’ <variable (VAR) of bool>] ’;’

Related information

Described in:

Waiting until a condition is satisfied Instructions - WaitUntil

Waiting for a specified period of time Instructions - WaitTime
2-WaitDI-2 System DataTypes and Routines

Instructions WaitDO
WaitDO Waits until a digital output signal is set

WaitDO (Wait Digital Output) is used to wait until a digital output is set.

Example

WaitDO do4, 1;

Program execution continues only after the do4 output has been set.

WaitDO grip_status, 0;

Program execution continues only after the grip_status output has been reset.

Arguments

WaitDO Signal Value [\MaxTime] [\TimeFlag]

Signal Data type: signaldo

The name of the signal.

Value Data type: dionum

The desired value of the signal.

[\MaxTime] (Maximum Time) Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this
time runs out before the condition is met, the error handler will be called, if there
is one, with the error code ERR_WAIT_MAXTIME. If there is no error handler,
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition is met. If this parameter is included in
the instruction, it is not considered to be an error if the max. time runs out.
This argument is ignored if the MaxTime argument is not included in the instruc-
tion.

Program Running

If the value of the signal is correct, when the instruction is executed, the program sim-
ply continues with the following instruction.
System DataTypes and Routines 2-WaitDO-1

WaitDO Instructions
If the signal value is not correct, the robot enters a waiting state and when the signal
changes to the correct value, the program continues. The change is detected with an
interrupt, which gives a fast response (not polled).

When the robot is waiting, the time is supervised, and if it exceeds the max time value,
the program will continue if a Time Flag is specified, or raise an error if its not. If a
Time Flag is specified, this will be set to true if the time is exceeded, otherwise it will
be set to false.

Syntax

WaitDO
[Signal ’:=’] < variable (VAR) of signaldo > ’,’
[Value ’:=’] < expression (IN) of dionum >
[’\’MaxTime ’:=’<expression (IN) of num>]
[’\’TimeFlag’:=’ <variable (VAR) of bool>] ’;’

Related information

Described in:

Waiting until a condition is satisfied Instructions - WaitUntil

Waiting for a specified period of time Instructions - WaitTime
2-WaitDO-2 System DataTypes and Routines

Instructions WaitLoad
WaitLoad Connect the loaded module to the task

WaitLoad is used to connect the module, if loaded with StartLoad, to the program task.

The loaded module must be connected to the program task with the instruction Wait-
Load, before any of its symbol/routines can be used.

The loaded program module will be added to the modules already existing in the pro-
gram memory.

This instruction can also be combined with the function to unload some other program
module, to minimise the number of links (1 instead of 2).

Example

VAR loadsession load1;
...
StartLoad "ram1disk:PART_A.MOD", load1;
MoveL p10, v1000, z50, tool1 \WObj:=wobj1;
MoveL p20, v1000, z50, tool1 \WObj:=wobj1;
MoveL p30, v1000, z50, tool1 \WObj:=wobj1;
MoveL p40, v1000, z50, tool1 \WObj:=wobj1;
WaitLoad load1;
%"routine_x"%;
UnLoad "ram1disk:PART_A.MOD";

Load the program module PART_A.MOD from the ram1disk into the program
memory. In parallel, move the robot. Then connect the new program module to
the program task and call the routine routine_x in the module PART_A.

Arguments

WaitLoad [\UnloadPath] [\UnloadFile] LoadNo

[\UnloadPath] Data type: string

The file path and the file name to the file that will be unloaded from the program
memory. The file name should be excluded when the argument \UnloadFile is
used.

[\UnloadFile] Data type: string

When the file name is excluded in the argument \UnloadPath, then it must be
defined with this argument.
System DataTypes and Routines 2-WaitLoad-3

WaitLoad Instructions
LoadNo Data type: loadsession

This is a reference to the load session, fetched by the instruction StartLoad, to
connect the loaded program module to the program task.

Program execution

The instruction WaitLoad will first wait for the loading to be completed, if it is not
already done, and then it will be linked and initialised. The initialisation of the loaded
module sets all variables at module level to their init values.

Unsolved references will be accepted, if the system parameter for Tasks/BindRef is set
to NO. However, when the program is started or the teach pendant function Program
Window/File/Check Program is used, no check for unsolved references will be done if
BindRef = NO. There will be a run time error on execution of an unsolved reference.

Another way to use references to instructions, that are not in the task from the begin-
ning, is to use Late Binding. This makes it possible to specify the routine to call with a
string expression, quoted between two %%. In this case the BindRef parameter could
be set to YES (default behaviour). The Late Binding way is preferable.

To obtain a good program structure, that is easy to understand and maintain, all loading
and unloading of program modules should be done from the main module, which is
always present in the program memory during execution.

Examples

StartLoad "ram1disk:DOORDIR/DOOR2.MOD", load1;
...
WaitLoad \UnloadPath:="ram1disk:DOORDIR/DOOR1.MOD", load1;

Load the program module DOOR2.MOD from the ram1disk at the directory
DOORDIR into the program memory and connect the new module to the task.
The program module DOOR1.MOD will be unloaded from the program memory.
2-WaitLoad-4 System DataTypes and Routines

Instructions WaitLoad
StartLoad "ram1disk:DOORDIR/" \File:="DOOR2.MOD", load1;
! The robot can do some other work
WaitLoad \UnloadPath:="ram1disk:DOORDIR/" \File:= "DOOR1.MOD", load1;

is the same as the instructions below but the robot can do some other work during
the loading time and also faster (only one link).

Load "ram1disk:DOORDIR/" \File:="DOOR2.MOD";
UnLoad "ram1disk:DOORDIR/" \File:="DOOR1.MOD";

Error handling

If the file specified in the StartLoad instruction cannot be found, the system variable
ERRNO is set to ERR_FILNOTFND at execution of WaitLoad.

If argument LoadNo refers to an unknown load session, the system variable ERRNO
is set to ERR_UNKPROC.

If the module is already loaded into the program memory, the system variable ERRNO
is set to ERR_LOADED.

The following errors can only occur when the argument \UnloadPath is used in the
instruction WaitLoad:

- If the program module specified in the argument \UnloadPath cannot be
unloaded because of ongoing execution within the module, the system variable
ERRNO is set to ERR_UNLOAD.

- If the program module specified in the argument \UnloadPath cannot be
unloaded because the program module is not loaded with Load or StartLoad-
WaitLoad from the RAPID program, the system variable ERRNO is also set to
ERR_UNLOAD.

These errors can then be handled in the error handler.

Syntax

WaitLoad
[[’ \’ UnloadPath ’:=’ <expression (IN) of string>]
[’ \’ UnloadFile ’:=’ <expression (IN) of string>] ’,’]

[LoadNo ’:=’] <variable (VAR) of loadsession> ’;’
System DataTypes and Routines 2-WaitLoad-5

WaitLoad Instructions
Related information

Load a program module during execution Instructions - StartLoad

Load session Data Types - loadsession

Load a program module Instructions - Load

Unload a program module Instructions - UnLoad

Accept unsolved references System Parameters - Controller/Task/
BindRef
2-WaitLoad-6 System DataTypes and Routines

Instructions VelSet
VelSet Changes the programmed velocity

VelSet is used to increase or decrease the programmed velocity of all subsequent posi-
tioning instructions. This instruction is also used to maximize the velocity.

Example

VelSet 50, 800;

All the programmed velocities are decreased to 50% of the value in the instruc-
tion. The TCP velocity is not, however, permitted to exceed 800 mm/s.

Arguments

VelSet Override Max

Override Data type: num

Desired velocity as a percentage of programmed velocity. 100% corresponds to
the programmed velocity.

Max Data type: num

Maximum TCP velocity in mm/s.

Program execution

The programmed velocity of all subsequent positioning instructions is affected until a
new VelSet instruction is executed.

The argument Override affects:

- All velocity components (TCP, orientation, rotating and linear external axes) in
speeddata.

- The programmed velocity override in the positioning instruction (the
argument \V).

- Timed movements.

The argument Override does not affect:

- The welding speed in welddata.

- The heating and filling speed in seamdata.

The argument Max only affects the velocity of the TCP.
System DataTypes and Routines 2-VelSet-1

VelSet Instructions
The default values for Override and Max are 100% and 5000 mm/s respectively. These
values are automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Example

VelSet 50, 800;
MoveL p1, v1000, z10, tool1;
MoveL p2, v2000, z10, tool1;
MoveL p3, v1000\T:=5, z10, tool1;

The speed is 500 mm/s to point p1 and 800 mm/s to p2. It takes 10 seconds to
move from p2 to p3.

Limitations

The maximum speed is not taken into consideration when the time is specified in the
positioning instruction.

Syntax

VelSet
[Override ’:=’] < expression (IN) of num > ’,’
[Max ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Definition of velocity Data Types - speeddata

Positioning instructions RAPID Summary - Motion
2-VelSet-2 System DataTypes and Routines

Instructions WHILE
WHILE Repeats as long as ...

WHILE is used when a number of instructions are to be repeated as long as a given con-
dition is met.

If it is possible to determine the number of repetitions in advance, the FOR instruction
can be used.

Example

WHILE reg1 < reg2 DO
...
reg1 := reg1 +1;

ENDWHILE

Repeats the instructions in the WHILE loop as long as reg1 < reg2.

Arguments

WHILE Condition DO ... ENDWHILE

Condition Data type: bool

The condition that must be met for the instructions in the WHILE loop to be exe-
cuted.

Program execution

7. The condition is calculated. If the condition is not met, the WHILE loop terminates
and program execution continues with the instruction following ENDWHILE.

8. The instructions in the WHILE loop are executed.

9. The WHILE loop is repeated, starting from point 1.

Syntax

(EBNF)
WHILE <conditional expression> DO

<instruction list>
ENDWHILE
System DataTypes and Routines 2-WHILE-1

WHILE Instructions
Related information

Described in:

Expressions Basic Characteristics - Expressions
2-WHILE-2 System DataTypes and Routines

Instructions Write
Write Writes to a character-based file or serial channel

Write is used to write to a character-based file or serial channel. The value of certain
data can be written as well as text.

Examples

Write logfile, "Execution started";

The text Execution started is written to the file with reference name logfile.

Write logfile, "No of produced parts="\Num:=reg1;

The text No of produced parts=5, for example, is written to the file with the
reference name logfile (assuming that the contents of reg1 is 5).

Arguments

Write IODevice String [\Num] | [\Bool] | [\Pos] | [\Orient]
[\NoNewLine]

IODevice Data type: iodev

The name (reference) of the current file or serial channel.

String Data type: string

The text to be written.

[\Num] (Numeric) Data type: num

The data whose numeric values are to be written after the text string.

[\Bool] (Boolean) Data type: bool

The data whose logical values are to be written after the text string.

[\Pos] (Position) Data type: pos

The data whose position is to be written after the text string.

[\Orient] (Orientation) Data type: orient

The data whose orientation is to be written after the text string.

[\NoNewLine] Data type: switch

Omits the line-feed character that normally indicates the end of the text.
System DataTypes and Routines 2-Write-1

Write Instructions
Program execution

The text string is written to a specified file or serial channel. If the argument
\NoNewLine is not used, a line-feed character (LF) is also written.

If one of the arguments \Num, \Bool, \Pos or \Orient is used, its value is first converted
to a text string before being added to the first string. The conversion from value to text
string takes place as follows:

Argument Value Text string

 \Num 23 "23"

 \Num 1.141367 "1.14137"

 \Bool TRUE "TRUE"

 \Pos [1817.3,905.17,879.11] "[1817.3,905.17,879.11]"

 \Orient [0.96593,0,0.25882,0] "[0.96593,0,0.25882,0]"

The value is converted to a string with standard RAPID format. This means in principle
6 significant digits. If the decimal part is less than 0.000005 or greater than 0.999995,
the number is rounded to an integer.

Example

VAR iodev printer;
.
Open "sio1:", printer\Write;
WHILE DInput(stopprod)=0 DO

produce_part;
Write printer, "Produced part="\Num:=reg1\NoNewLine;
Write printer, " "\NoNewLine;
Write printer, CTime();

ENDWHILE
Close printer;

A line, including the number of the produced part and the time, is output to a
printer each cycle. The printer is connected to serial channel sio1:. The printed
message could look like this:

Produced part=473 09:47:15

Limitations

The arguments \Num, \Bool, \Pos and \Orient are mutually exclusive and thus cannot
be used simultaneously in the same instruction.

This instruction can only be used for files or serial channels that have been opened for
writing.
2-Write-2 System DataTypes and Routines

Instructions Write
Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.

Syntax

Write
[IODevice’:=’] <variable (VAR) of iodev>’,’
[String’:=’] <expression (IN) of string>
[’\’Num’:=’ <expression (IN) of num>]
| [’\’Bool’:=’ <expression (IN) of bool>]
| [’\’Pos’:=’ <expression (IN) of pos>]
| [’\’Orient’:=’ <expression (IN) of orient>]
[’\’NoNewLine]’;’

Related information

Described in:

Opening a file or serial channel RAPID Summary - Communication
System DataTypes and Routines 2-Write-3

Write Instructions
2-Write-4 System DataTypes and Routines

Instructions WriteBin
WriteBin Writes to a binary serial channel

WriteBin is used to write a number of bytes to a binary serial channel.

Example

WriteBin channel2, text_buffer, 10;

10 characters from the text_buffer list are written to the channel referred to by
channel2.

Arguments

WriteBin IODevice Buffer NChar

IODevice Data type: iodev

Name (reference) of the current serial channel.

Buffer Data type: array of num

The list (array) containing the numbers (characters) to be written.

NChar (Number of Characters) Data type: num

The number of characters to be written from the Buffer.

Program execution

The specified number of numbers (characters) in the list is written to the serial channel.

Limitations

This instruction can only be used for serial channels that have been opened for binary
reading and writing.

Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.
System DataTypes and Routines 2-WriteBin-1

WriteBin Instructions

Example

VAR iodev channel;
VAR num out_buffer{20};
VAR num input;
VAR num nchar;
Open "sio1:", channel\Bin;

out_buffer{1} := 5; (enq)
WriteBin channel, out_buffer, 1;
input := ReadBin (channel \Time:= 0.1);

IF input = 6 THEN (ack)
out_buffer{1} := 2; (stx)
out_buffer{2} := 72; (’H’)
out_buffer{3} := 101; (’e’)
out_buffer{4} := 108; (’l’)
out_buffer{5} := 108; (’l’)
out_buffer{6} := 111; (’o’)
out_buffer{7} := 32; (’ ’)
out_buffer{8} := StrToByte("w"\Char); (’w’)
out_buffer{9} := StrToByte("o"\Char); (’o’)
out_buffer{10} := StrToByte("r"\Char); (’r’)
out_buffer{11} := StrToByte("l"\Char); (’l’)
out_buffer{12} := StrToByte("d"\Char); (’d’)
out_buffer{13} := 3; (etx)
WriteBin channel, out_buffer, 13;

ENDIF

The text string Hello world (with associated control characters) is written to a
serial channel. The function StrToByte is used in the same cases to convert a
string into a byte (num) data.

Syntax

WriteBin
[IODevice’:=’] <variable (VAR) of iodev>’,’
[Buffer’:=’] <array {*} (IN) of num>’,’
[NChar’:=’] <expression (IN) of num>’;’
2-WriteBin-2 System DataTypes and Routines

Instructions WriteBin
Related information

Described in:

Opening (etc.) of serial channels RAPID Summary - Communication

Convert a string to a byte data Functions - StrToByte

Byte data Data Types - byte
System DataTypes and Routines 2-WriteBin-3

WriteBin Instructions
2-WriteBin-4 System DataTypes and Routines

Instructions WriteStrBin
WriteStrBin Writes a string to a binary serial channel

WriteStrBin (Write String Binary) is used to write a string to a binary serial channel or
binary file.

Example

WriteStrBin channel2, "Hello World\0A";

The string "Hello World\0A" is written to the channel referred to by channel2.
The string is in this case ended with new line \0A. All characters and hexadeci-
mal values written with WriteStrBin will be unchanged by the system.

Arguments

WriteStrBin IODevice Str

IODevice Data type: iodev

Name (reference) of the current serial channel.

Str (String) Data type: string

The text to be written.

Program execution

The text string is written to the specified serial channel or file.

Limitations

This instruction can only be used for serial channels or files that have been opened for
binary reading and writing.

Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.
System DataTypes and Routines 2-WriteStrBin-1

WriteStrBin Instructions
Example

VAR iodev channel;
VAR num input;
Open "sio1:", channel\Bin;

! Send the control character enq
WriteStrBin channel, "\05";
! Wait for the control character ack
input := ReadBin (channel \Time:= 0.1);
IF input = 6 THEN

! Send a text starting with control character stx and ending with etx
WriteStrBin channel, "\02Hello world\03";

ENDIF

Close channel;

The text string Hello world (with associated control characters in hexadecimal)
is written to a binary serial channel.

Syntax

WriteStrBin
[IODevice’:=’] <variable (VAR) of iodev>’,’
[Str’:=’] <expression (IN) of string>’;’

Related information

Described in:

Opening (etc.) of serial channels RAPID Summary - Communication
2-WriteStrBin-2 System DataTypes and Routines

Instructions WaitTime
WaitTime Waits a given amount of time

WaitTime is used to wait a given amount of time. This instruction can also be used to
wait until the robot and external axes have come to a standstill.

Example

WaitTime 0.5;

Program execution waits 0.5 seconds.

Arguments

WaitTime [\InPos] Time

 [\InPos] Data type: switch

If this argument is used, the robot and external axes must have come to a
standstill before the waiting time starts to be counted.

Time Data type: num

The time, expressed in seconds, that program execution is to wait.

Program execution

Program execution temporarily stops for the given amount of time. Interrupt handling
and other similar functions, nevertheless, are still active.

Example

WaitTime \InPos,0;

Program execution waits until the robot and the external axes have come to a
standstill.

Limitations

If the argument \Inpos is used, the movement instruction which precedes this
instruction should be terminated with a stop point, in order to be able to restart in this
instruction following a power failure.

Argument \Inpos cannot be used together with SoftServo.
System DataTypes and Routines 2-WaitTime-1

WaitTime Instructions
Syntax

WaitTime
[’\’InPos’,’]
[Time ’:=’] <expression (IN) of num>’;’

Related information

Described in:

Waiting until a condition is met Instructions - WaitUntil

Waiting until an I/O is set/reset Instruction - WaitDI
2-WaitTime-2 System DataTypes and Routines

Instructions WaitUntil

will
WaitUntil Waits until a condition is met

WaitUntil is used to wait until a logical condition is met; for example, it can wait until
one or several inputs have been set.

Example

WaitUntil di4 = 1;

Program execution continues only after the di4 input has been set.

Arguments

WaitUntil [\InPos] Cond [\MaxTime] [\TimeFlag]

 [\InPos] Data type: switch

If this argument is used, the robot and external axes must have stopped moving
before the condition starts being evaluated.

Cond Data type: bool

The logical expression that is to be waited for.

[\MaxTime] Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this
time runs out before the condition is set, the error handler will be called, if there
is one, with the error code ERR_WAIT_MAXTIME. If there is no error handler,
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permitted
waiting time runs out before the condition is met. If this parameter is included in
the instruction, it is not considered to be an error if the max. time runs out. This
argument is ignored if the MaxTime argument is not included in the instruction.

Program execution

If the programmed condition is not met on execution of a WaitUntil instruction, the
condition is checked again every 100 ms.

When the robot is waiting, the time is supervised, and if it exceeds the max time value,
the program will continue if a TimeFlag is specified, or raise an error if it’s not. If a
TimeFlag is specified, this will be set to TRUE if the time is exceeded, otherwise it
be set to false.
System DataTypes and Routines 2-WaitUntil-1

WaitUntil Instructions
Examples

VAR bool timeout;
WaitUntil start_input = 1 AND grip_status = 1\MaxTime := 60

\TimeFlag := timeout;
IF timeout THEN

TPWrite "No start order received within expected time";
ELSE

start_next_cycle;
ENDIF

If the two input conditions are not met within 60 seconds, an error message will
be written on the display of the teach pendant.

WaitUntil \Inpos, di4 = 1;

Program execution waits until the robot has come to a standstill and the di4 input
has been set.

Limitation

If the argument \Inpos is used, the movement instruction which precedes this instruc-
tion should be terminated with a stop point, in order to be able to restart in this instruc-
tion following a power failure.

Syntax

WaitUntil
[’\’InPos’,’]
[Cond ’:=’] <expression (IN) of bool>
[’\’MaxTime ’:=’<expression (IN) of num>]
[’\’TimeFlag’:=’ <variable (VAR) of bool>] ’;’

Related information

Described in:

Waiting until an input is set/reset Instructions - WaitDI

Waiting a given amount of time Instructions - WaitTime

Expressions Basic Characteristics - Expressions
2-WaitUntil-2 System DataTypes and Routines

Instructions WZBoxDef
WZBoxDef Define a box-shaped world zone

WZBoxDef (World Zone Box Definition) is used to define a world zone that has the
shape of a straight box with all its sides parallel to the axes of the World Coordinate
System.

Example

.

VAR shapedata volume;
CONST pos corner1:=[200,100,100];
CONST pos corner2:=[600,400,400];
...
WZBoxDef \Inside, volume, corner1, corner2;

Define a straight box with coordinates parallel to the axes of the world coordinate
system and defined by the opposite corners corner1 and corner2.

Arguments

WZBoxDef [\Inside] | [\Outside] Shape LowPoint HighPoint

\Inside Data type: switch

Define the volume inside the box.

\Outside Data type: switch

Define the volume outside the box (inverse volume).

One of the arguments \Inside or \Outside must be specified.

Shape Data type: shapedata

Variable for storage of the defined volume (private data for the system).

World Coordinate System

Box

X

Y
Z

corner2

corner1

Min. 10 mm
System DataTypes and Routines 2-WZBoxDef-1

WZBoxDef Instructions
LowPoint Data type: pos

Position (x,y,x) in mm defining one lower corner of the box.

HighPoint Data type: pos

Position (x,y,z) in mm defining the corner diagonally opposite to the previous
one.

Program execution

The definition of the box is stored in the variable of type shapedata (argument Shape),
for future use in WZLimSup or WZDOSet instructions.

Limitations

The LowPoint and HighPoint positions must be valid opposite corners (with different
x, y and z coordinate values).

If the robot is used to point out the LowPoint or HighPoint, work object wobj0 must be
active (use of component trans in robtarget e.g. p1.trans as argument).

Syntax

WZBoxDef
[’\’Inside] | [’\’Outside] ’,’
[Shape’:=’]<variable (VAR) of shapedata>’,’
[LowPoint’:=’]<expression (IN) of pos>’,’
[HighPoint’:=’]<expression (IN) of pos>’;’

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Define sphere-shaped world zone Instructions - WZSphDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
2-WZBoxDef-2 System DataTypes and Routines

Instructions WZBoxDef
System DataTypes and Routines 2-WZBoxDef-3

WZBoxDef Instructions
2-WZBoxDef-4 System DataTypes and Routines

Instructions WZCylDef
WZCylDef Define a cylinder-shaped world zone

WZCylDef (World Zone Cylinder Definition) is used to define a world zone that has the
shape of a cylinder with the cylinder axis parallel to the z-axis of the World Coordinate
System.

Example

VAR shapedata volume;
CONST pos C2:=[300,200,200];
CONST num R2:=100;
CONST num H2:=200;
...
WZCylDef \Inside, volume, C2, R2, H2;

Define a cylinder with the centre of the bottom circle in C2, radius R2 and height
H2.

Arguments

WZCylDef [\Inside] | [\Outside] Shape CentrePoint Radius Height

\Inside Data type: switch

Define the volume inside the cylinder.

\Outside Data type: switch

Define the volume outside the cylinder (inverse volume).

One of the arguments \Inside or \Outside must be specified.

World Coordinate System X

Y
Z

R2

H2

C2

(min. 10 mm)

(min. 5 mm)
System DataTypes and Routines 2-WZCylDef-1

WZCylDef Instructions
Shape Data type: shapedata

Variable for storage of the defined volume (private data for the system).

CentrePoint Data type: pos

Position (x,y,z) in mm defining the centre of one circular end of the cylinder.

Radius Data type: num

The radius of the cylinder in mm.

Height Data type: num

The height of the cylinder in mm.
If it is positive (+z direction), the CentrePoint argument is the centre of the lower
end of the cylinder (as in the above example).
If it is negative (-z direction), the CentrePoint argument is the centre of the upper
end of the cylinder.

Program execution

The definition of the cylinder is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

Limitations

If the robot is used to point out the CentrePoint, work object wobj0 must be active (use
of component trans in robtarget e.g. p1.trans as argument).

Syntax

WZCylDef
[’\’Inside] | [’\’Outside]’,’
[Shape’:=’]<variable (VAR) of shapedata>’,’
[CentrePoint’:=’]<expression (IN) of pos>’,’
[Radius’:=’]<expression (IN) of num>’,’
[Height’:=’]<expression (IN) of num>’;’
2-WZCylDef-2 System DataTypes and Routines

Instructions WZCylDef
Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Define box-shaped world zone Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
System DataTypes and Routines 2-WZCylDef-3

WZCylDef Instructions
2-WZCylDef-4 System DataTypes and Routines

Instructions WZDisable

ill

e re-

ays
WZDisable Deactivate temporary world zone supervision

WZDisable (World Zone Disable) is used to deactivate the supervision of a temporary
world zone, previously defined either to stop the movement or to set an output.

Example

VAR wztemporary wzone;
...
PROC ...

WZLimSup \Temp, wzone, volume;
MoveL p_pick, v500, z40, tool1;
WZDisable wzone;
MoveL p_place, v200, z30, tool1;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it w
not go inside the specified volume wzone. This supervision is not performed
when going to p_place.

Arguments

WZDisable WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of type wztemporary, which contains the identity
of the world zone to be deactivated.

Program execution

The temporary world zone is deactivated. This means that the supervision of the
robot’s TCP, relative to the corresponding volume, is temporarily stopped. It can b
activated via the WZEnable instruction.

Limitations

Only a temporary world zone can be deactivated. A stationary world zone is alw
active.
System DataTypes and Routines 2-WZDisable-1

WZDisable Instructions
Syntax

WZDisable
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>’;’

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Temporary world zone data Data Types - wztemporary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone set digital output Instructions - WZDOSet

Activate world zone Instructions - WZEnable

Erase world zone Instructions - WZFree
2-WZDisable-2 System DataTypes and Routines

Instructions WZDOSet

ld
lue.

s
ng

ic
WZDOSet Activate world zone to set digital output

WZDOSet (World Zone Digital Output Set) is used to define the action and to activate
a world zone for supervision of the robot movements.

After this instruction is executed, when the robot’s TCP is inside the defined wor
zone or is approaching close to it, a digital output signal is set to the specified va

Example

VAR wztemporary service;

PROC zone_output()
VAR shapedata volume;
CONST pos p_service:=[500,500,700];
...
WZSphDef \Inside, volume, p_service, 50;
WZDOSet \Temp, service \Inside, volume, do_service, 1;

ENDPROC

Definition of temporary world zone service in the application program, that set
the signal do_service, when the robot’s TCP is inside the defined sphere duri
program execution or when jogging.

Arguments

WZDOSet [\Temp] | [\Stat] WorldZone [\Inside] | [\Before] Shape
Signal SetValue

\Temp (Temporary) Data type: switch

The world zone to define is a temporary world zone.

\Stat (Stationary) Data type: switch

The world zone to define is a stationary world zone.

One of the arguments \Temp or \Stat must be specified.

WorldZone Data type: wztemporary

Variable or persistent variable, that will be updated with the identity (numer
value) of the world zone.

If use of switch \Temp, the data type must be wztemporary.
If use of switch \Stat, the data type must be wzstationary.
System DataTypes and Routines 2-WZDOSet-1

WZDOSet Instructions

ed

ned

ess

e or

alue.

 is

\Inside Data type: switch

The digital output signal will be set when the robot’s TCP is inside the defin
volume.

\Before Data type: switch

The digital output signal will be set before the robot’s TCP reaches the defi
volume (as soon as possible before the volume).

One of the arguments \Inside or \Outside must be specified.

Shape Data type: shapedata

The variable that defines the volume of the world zone.

Signal Data type: signaldo

The name of the digital output signal that will be changed.

If a stationary worldzone is used, the signal must be write protected for acc
from the user (RAPID, TP). Set Access = System for the signal in System
Parameters.

SetValue Data type: dionum

Desired value of the signal (0 or 1) when the robot’s TCP is inside the volum
just before it enters the volume.

When outside or just outside the volume, the signal is set to the opposite v

Program execution

The defined world zone is activated. From this moment, the robot’s TCP position
supervised and the output will be set, when the robot’s TCP position is inside the
volume (\Inside) or comes close to the border of the volume (\Before).

Example

VAR wztemporary home;
VAR wztemporary service;
PERS wztemporary equip1:=[0];

PROC main()
...
! Definition of all temporary world zones
zone_output;
...
! equip1 in robot work area
WZEnable equip1;
2-WZDOSet-2 System DataTypes and Routines

Instructions WZDOSet
...
! equip1 out of robot work area
WZDisable equip1;
...
! No use for equip1 any more
WZFree equip1;
...

ENDPROC

PROC zone_output()
VAR shapedata volume;
CONST pos p_home:=[800,0,800];
CONST pos p_service:=[800,800,800];
CONST pos p_equip1:=[-800,-800,0];
...
WZSphDef \Inside, volume, p_home, 50;
WZDOSet \Temp, home \Inside, volume, do_home, 1;
WZSphDef \Inside, volume, p_service, 50;
WZDOSet \Temp, service \Inside, volume, do_service, 1;
WZCylDef \Inside, volume, p_equip1, 300, 1000;
WZLimSup \Temp, equip1, volume;
! equip1 not in robot work area
WZDisable equip1;

ENDPROC

Definition of temporary world zones home and service in the application
program, that sets the signals do_home and do_service, when the robot is inside
the sphere home or service respectively during program execution or when
jogging.

Also, definition of a temporary world zone equip1, which is active only in the
part of the robot program when equip1 is inside the working area for the robot.
At that time the robot stops before entering the equip1 volume, both during
program execution and manual jogging. equip1 can be disabled or enabled from
other program tasks by using the persistent variable equip1 value.

Limitations

A world zone cannot be redefined by using the same variable in the argument
WorldZone.

A stationary world zone cannot be deactivated, activated again or erased in the RAPID
program.

A temporary world zone can be deactivated (WZDisable), activated again (WZEnable)
or erased (WZFree) in the RAPID program.
System DataTypes and Routines 2-WZDOSet-3

WZDOSet Instructions
Syntax

WZDOSet
(’\’Temp) | (’\’Stat) ’,’
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>
(’\’Inside) | (’\’Before) ’,’
[Shape’:=’]<variable (VAR) of shapedata>’,’
[Signal’:=’]<variable (VAR) of signaldo>’,’
[SetValue’:=’]<expression (IN) of dionum>’;’

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Temporary world zone Data Types - wztemporary

Stationary world zone Data Types - wzstationary

Define straight box-shaped world zone Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone limit supervision Instructions - WZLimSup

Signal access mode User’s Guide - System Parameters
I/O Signals
2-WZDOSet-4 System DataTypes and Routines

Instructions WZEnable

ill

d only

orld
WZEnable Activate temporary world zone supervision

WZEnable (World Zone Enable) is used to re-activate the supervision of a temporary
world zone, previously defined either to stop the movement or to set an output.

Example

VAR wztemporary wzone;
...
PROC ...

WZLimSup \Temp, wzone, volume;
MoveL p_pick, v500, z40, tool1;
WZDisable wzone;
MoveL p_place, v200, z30, tool1;
WZEnable wzone;
MoveL p_home, v200, z30, tool1;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it w
not go inside the specified volume wzone. This supervision is not performed
when going to p_place, but is reactivated before going to p_home

Arguments

WZEnable WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of the type wztemporary, which contains the
identity of the world zone to be activated.

Program execution

The temporary world zone is re-activated.
Please note that a world zone is automatically activated when it is created. It nee
be re-activated when it has previously been deactivated by WZDisable.

Limitations

Only a temporary world zone can be deactivated and reactivated. A stationary w
zone is always active.
System DataTypes and Routines 2-WZEnable-1

WZEnable Instructions
Syntax

WZEnable
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>’;’

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Temporary world zone data Data Types - wztemporary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone set digital output Instructions - WZDOSet

Deactivate world zone Instructions - WZDisable

Erase world zone Instructions - WZFree
2-WZEnable-2 System DataTypes and Routines

Instructions WZFree

ill
n

ted.

nary
WZFree Erase temporary world zone supervision

WZFree (World Zone Free) is used to erase the definition of a temporary world zone,
previously defined either to stop the movement or to set an output.

Example

VAR wztemporary wzone;
...
PROC ...

WZLimSup \Temp, wzone, volume;
MoveL p_pick, v500, z40, tool1;
WZDisable wzone;
MoveL p_place, v200, z30, tool1;
WZEnable wzone;
MoveL p_home, v200, z30, tool1;
WZFree wzone;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it w
not go inside a specified volume wzone. This supervision is not performed whe
going to p_place, but is reactivated before going to p_home. When this position
is reached, the world zone definition is erased.

Arguments

WZFree WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of the type wztemporary, which contains the
identity of the world zone to be erased.

Program execution

The temporary world zone is first deactivated and then its definition is erased.

Once erased, a temporary world zone cannot be either re-activated nor deactiva

Limitations

Only a temporary world zone can be deactivated, reactivated or erased. A statio
world zone is always active.
System DataTypes and Routines 2-WZFree-1

WZFree Instructions
Syntax

WZFree
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>’;’

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Temporary world zone data Data Types - wztemporary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone set digital output Instructions - WZDOSet

Deactivate world zone Instructions - WZDisable

Activate world zone Instructions - WZEnable
2-WZFree-2 System DataTypes and Routines

Instructions WZLimSup

ld
g.

a

c
WZLimSup Activate world zone limit supervision

WZLimSup (World Zone Limit Supervision) is used to define the action and to activate
a world zone for supervision of the working area of the robot.

After this instruction is executed, when the robot’s TCP reaches the defined wor
zone, the movement is stopped both during program execution and when joggin

Example

VAR wzstationary max_workarea;
...
PROC POWER_ON()

VAR shapedata volume;
...
WZBoxDef \Outside, volume, corner1, corner2;
WZLimSup \Stat, max_workarea, volume;

ENDPROC

Definition and activation of stationary world zone max_workarea, with the shape
of the area outside a box (temporarily stored in volume) and the action work-area
supervision. The robot stops with an error message before entering the are
outside the box.

Arguments

WZLimSup [\Temp] | [\Stat] WorldZone Shape

\Temp (Temporary) Data type: switch

The world zone to define is a temporary world zone.

\Stat (Stationary) Data type: switch

The world zone to define is a stationary world zone.

One of the arguments \Temp or \Stat must be specified.

WorldZone Data type: wztemporary

Variable or persistent variable that will be updated with the identity (numeri
value) of the world zone.

If use of switch \Temp, the data type must be wztemporary.
If use of switch \Stat, the data type must be wzstationary.
System DataTypes and Routines 2-WZLimSup-1

WZLimSup Instructions

 is

es:

ones
al

APID
Shape Data type: shapedata

The variable that defines the volume of the world zone.

Program execution

The defined world zone is activated. From this moment the robot’s TCP position
supervised. If it reaches the defined area the movement is stopped.

Example

VAR wzstationary box1_invers;
VAR wzstationary box2;

PROC wzone_power_on()
VAR shapedata volume;
CONST pos box1_c1:=[500,-500,0];
CONST pos box1_c2:=[-500,500,500];
CONST pos box2_c1:=[500,-500,0];
CONST pos box2_c2:=[200,-200,300];
...
WZBoxDef \Outside, volume, box1_c1, box1_c2;
WZLimSup \Stat, box1_invers, volume;
WZBoxDef \Inside, volume, box2_c1, box2_c2;
WZLimSup \Stat, box2, volume;

ENDPROC

Limitation of work area for the robot with the following stationary world zon

- Outside working area when outside box1_invers

- Outside working area when inside box2

If this routine is connected to the system event POWER ON, these world z
will always be active in the system, both for program movements and manu
jogging.

Limitations

A world zone cannot be redefined using the same variable in argument WorldZone.

A stationary world zone cannot be deactivated, activated again or erased in the R
program.

A temporary world zone can be deactivated (WZDisable), activated again (WZEnable)
or erased (WZFree) in the RAPID program.
2-WZLimSup-2 System DataTypes and Routines

Instructions WZLimSup
Syntax

WZLimSup
[’\’Temp] | [’\Stat]’,’
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>’,’
[Shape’:=’] <variable (VAR) of shapedata>’;’

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Temporary world zone Data Types - wztemporary

Stationary world zone Data Types - wzstationary

Define straight box-shaped world zone Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone digital output set Instructions - WZDOSet
System DataTypes and Routines 2-WZLimSup-3

WZLimSup Instructions
2-WZLimSup-4 System DataTypes and Routines

Instructions WZSphDef
WZSphDef Define a sphere-shaped world zone

WZSphDef (World Zone Sphere Definition) is used to define a world zone that has the
shape of a sphere.

Example

VAR shapedata volume;
CONST pos C1:=[300,300,200];
CONST num R1:=200;
...
WZSphDef \Inside, volume, C1, R1;

Define a sphere named volume by its centre C1 and its radius R1.

Arguments

WZSphDef [\Inside] | [\Outside] Shape CentrePoint Radius

\Inside Data type: switch

Define the volume inside the sphere.

\Outside Data type: switch

Define the volume outside the sphere (inverse volume).

One of the arguments \Inside or \Outside must be specified.

Shape Data type: shapedata

Variable for storage of the defined volume (private data for the system).

World Coordinate System
X

Y

Z

C1

R1 (min. 5 mm)
System DataTypes and Routines 2-WZSphDef-1

WZSphDef Instructions
CentrePoint Data type: pos

Position (x,y,z) in mm defining the centre of the sphere.

Radius Data type: num

The radius of the sphere in mm.

Program execution

The definition of the sphere is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

Limitations

If the robot is used to point out the CentrePoint, work object wobj0 must be active (use
of component trans in robtarget e.g. p1.trans as argument).

Syntax

WZSphDef
[’\’Inside] | [’\’Outside]’,’
[Shape’:=’]<variable (VAR) of shapedata>’,’
[CentrePoint’:=’]<expression (IN) of pos>’,’
[Radius’:=’]<expression (IN) of num>’;’

Related information

Described in:

World Zones Motion and I/O Principles -
World Zones

World zone shape Data Types - shapedata

Define box-shaped world zone Instructions - WZBoxDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
2-WZSphDef-2 System DataTypes and Routines

Functions

CONTENTS
Abs Gets the absolute value

ACos Calculates the arc cosine value

AOutput Reads the value of an analog output signal

ArgName Gets argument name

ASin Calculates the arc sine value

ATan Calculates the arc tangent value

ATan2 Calculates the arc tangent2 value

ByteToStr Converts a byte to a string data

CDate Reads the current date as a string

CJointT Reads the current joint angles

ClkRead Reads a clock used for timing

Cos Calculates the cosine value

CPos Reads the current position (pos) data

CRobT Reads the current position (robtarget) data

CTime Reads the current time as a string

CTool Reads the current tool data

CWObj Reads the current work object data

DefDFrame Define a displacement frame

DefFrame Define a frame

Dim Obtains the size of an array

DotProd Dot product of two pos vectors

DOutput Reads the value of a digital output signal

EulerZYX Gets Euler angles from orient

Exp Calculates the exponential value

FileTime Retrieve time information about a file

GOutput Reads the value of a group of digital output signals

GetTime Reads the current time as a numeric value

IsPers Is Persistent

IsVar Is Variable

MirPos Mirroring of a position

ModTime Get time of load for a loaded module

NOrient Normalise Orientation

NumToStr Converts numeric value to string

Offs Displaces a robot position

OpMode Read the operating mode

OrientZYX Builds an orient from Euler angles
System DataTypes and Routines 3-1

Functions

ORobT Removes a program displacement from a position

PoseInv Inverts the pose

PoseMult Multiplies pose data

PoseVect Applies a transformation to a vector

Pow Calculates the power of a value

Present Tests if an optional parameter is used

ReadBin Reads from a binary serial channel or file

ReadMotor Reads the current motor angles

ReadNum Reads a number from a file or the serial channel

ReadStr Reads a string from a file or serial channel

RelTool Make a displacement relative to the tool

Round Round is a numeric value

RunMode Read the running mode

Sin Calculates the sine value

Sqrt Calculates the square root value

StrFind Searches for a character in a string

StrLen Gets the string length

StrMap Maps a string

StrMatch Search for pattern in string

StrMemb Checks if a character belongs to a set

StrOrder Checks if strings are ordered

StrPart Finds a part of a string

StrToByte Converts a string to a byte data

StrToVal Converts a string to a value

Tan Calculates the tangent value

TestAndSet Test variable and set if unset

TestDI Tests if a digital input is set

Trunc Truncates a numeric value

ValToStr Converts a value to a string

VectMagn Magnitude of a pos vector
3-2 System DataTypes and Routines

Functions Abs
Abs Gets the absolute value

Abs is used to get the absolute value, i.e. a positive value of numeric data.

Example

reg1 := Abs(reg2);

Reg1 is assigned the absolute value of reg2.

Return value Data type: num

The absolute value, i.e. a positive numeric value.

e.g. Input value Returned value

3 3

-3 3

-2.53 2.53

Arguments

Abs (Input)

Input Data type: num

The input value.

Example

TPReadNum no_of_parts, "How many parts should be produced? ";
no_of_parts := Abs(no_of_parts);

The operator is asked to input the number of parts to be produced. To ensure that
the value is greater than zero, the value given by the operator is made positive.

Syntax

Abs ’(’
[Input ’:=’] < expression (IN) of num > ’)’

A function with a return value of the data type num.
System DataTypes and Routines 3-Abs-1

Abs Functions
Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-Abs-2 System DataTypes and Routines

Functions ACos
ACos Calculates the arc cosine value

ACos (Arc Cosine) is used to calculate the arc cosine value.

Example

VAR num angle;
VAR num value;
.
.
angle := ACos(value);

Return value Data type: num

The arc cosine value, expressed in degrees, range [0, 180].

Arguments

ACos (Value)

Value Data type: num

The argument value, range [-1, 1].

Syntax

Acos’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
System DataTypes and Routines 3-ACos-1

ACos Functions
3-ACos-2 System DataTypes and Routines

Functions AOutput
AOutput Reads the value of an analog output signal

AOutput is used to read the current value of an analog output signal.

Example

IF AOutput(ao4) > 5 THEN ...

If the current value of the signal ao4 is greater than 5, then ...

Return value Data type: num

The current value of the signal.

The current value is scaled (in accordance with the system parameters) before it is read
by the RAPID program. See Figure 33.

Figure 33 Diagram of how analog signal values are scaled.

Arguments

AOutput (Signal)

Signal Data type: signalao

The name of the analog output to be read.

Logical value in the
program

Physical value of the
output signal (V, mA, etc.)

MAX SIGNAL

MIN SIGNAL

MAX PROGRAM

MIN PROGRAM
System DataTypes and Routines 3-AOutput-1

AOutput Functions
Syntax

AOutput ’(’
[Signal ’:=’] < variable (VAR) of signalao > ’)’

A function with a return value of data type num.

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
3-AOutput-2 System DataTypes and Routines

Functions ArgName
ArgName Gets argument name

ArgName (Argument Name) is used to get the name of the original data object for the
current argument or the current data.

Example

VAR num abc123 :=5;
...
proc1 abc123;

PROC proc1 (num par1)
VAR string parstring;
...
parstring:=ArgName(par1);
TPWrite "Argument name "+parstring+" with value "\Num:=par1;

ENDPROC

The variable parstring is assigned the string value "abc123". On TP the follow-
ing string is written: "Argument name abc123 with value 5".

Return value Data type: string

The original data object name.

Arguments

ArgName (Parameter)

Parameter Data type: anytype

The formal parameter identifier (for the routine in which ArgName is located) or
the data identity.

Program execution

The function returns the original data object name for an entire object of the type con-
stant, variable or persistent. The original data object can be global, local in the program
module or local in a routine (normal RAPID scope rules).

If it is a part of a data object, the name of the whole data object is returned.
System DataTypes and Routines 3-ArgName-1

ArgName Functions
Example

Convert from identifier to string

This function can also be used to convert from identifier to string, by stating the iden-
tifier in the argument Parameter for any data object with global, local in module or
local in routine scope:

VAR num chales :=5;
...
proc1;

PROC proc1 ()
VAR string name;
...
name:=ArgName(chales);
TPWrite "Global data object "+name+" has value "\Num:=chales;

ENDPROC

The variable name is assigned the string value "chales" and on TP the following
string is written: "Global data object chales has value 5".

Routine call in several steps

Note that the function returns the original data object name:

VAR num chales :=5;
...
proc1 chales;
...
PROC proc1 (num parameter1)

...
proc2 parameter1;
...

ENDPROC

PROC proc2 (num par1)
VAR string name;
...
name:=ArgName(par1);
TPWrite "Original data object name "+name+" with value "\Num:=par1;

ENDPROC

The variable name is assigned the string value "chales" and on TP the following
string is written: "Original data object name charles with value 5".
3-ArgName-2 System DataTypes and Routines

Functions ArgName
Error handling

If one of the following errors occurs, the system variable ERRNO is set to
ERR_ARGNAME:

- Argument is expression value

- Argument is not present

- Argument is of type switch

This error can then be handled in the error handler.

Syntax

ArgName ’(’
[Parameter’:=’] < reference (REF) of any type> ’)’

A function with a return value of the data type string.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
System DataTypes and Routines 3-ArgName-3

ArgName Functions
3-ArgName-4 System DataTypes and Routines

Functions ASin
ASin Calculates the arc sine value

ASin (Arc Sine) is used to calculate the arc sine value.

Example

VAR num angle;
VAR num value;
.
.
angle := ASin(value);

Return value Data type: num

The arc sine value, expressed in degrees, range [-90, 90].

Arguments

ASin (Value)

Value Data type: num

The argument value, range [-1, 1].

Syntax

ASin’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
System DataTypes and Routines 3-ASin-1

ASin Functions
3-ASin-2 System DataTypes and Routines

Functions ATan
ATan Calculates the arc tangent value

ATan (Arc Tangent) is used to calculate the arc tangent value.

Example

VAR num angle;
VAR num value;
.
.
angle := ATan(value);

Return value Data type: num

The arc tangent value, expressed in degrees, range [-90, 90].

Arguments

ATan (Value)

Value Data type: num

The argument value.

Syntax

ATan’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Arc tangent with a return value in the Functions - ATan2
range [-180, 180]
System DataTypes and Routines 3-ATan-1

ATan Functions
3-ATan-2 System DataTypes and Routines

Functions ATan2
ATan2 Calculates the arc tangent2 value

ATan2 (Arc Tangent2) is used to calculate the arc tangent2 value.

Example

VAR num angle;
VAR num x_value;
VAR num y_value;
.
.
angle := ATan2(y_value, x_value);

Return value Data type: num

The arc tangent value, expressed in degrees, range [-180, 180].

The value will be equal to ATan(y/x), but in the range [-180, 180], since the function
uses the sign of both arguments to determine the quadrant of the return value.

Arguments

ATan2 (Y X)

Y Data type: num

The numerator argument value.

X Data type: num

The denominator argument value.

Syntax

ATan2’(’
[Y ’:=’] <expression (IN) of num> ’,’
[X ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.
System DataTypes and Routines 3-ATan2-1

Atan2 Functions
Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Arc tangent with only one argument Functions - ATan
3-Atan2-2 System DataTypes and Routines

Functions ByteToStr
ByteToStr Converts a byte to a string data

ByteToStr (Byte To String) is used to convert a byte into a string data with a defined
byte data format.

Example

VAR string con_data_buffer{5};
VAR byte data1 := 122;

con_data_buffer{1} := ByteToStr(data1);

The content of the array component con_data_buffer{1} will be "122" after the
ByteToStr ... function.

con_data_buffer{2} := ByteToStr(data1\Hex);

The content of the array component con_data_buffer{2} will be "7A" after the
ByteToStr ... function.

con_data_buffer{3} := ByteToStr(data1\Okt);

The content of the array component con_data_buffer{3} will be "172" after the
ByteToStr ... function.

con_data_buffer{4} := ByteToStr(data1\Bin);

The content of the array component con_data_buffer{4} will be "01111010"after
the ByteToStr ... function.

con_data_buffer{5} := ByteToStr(data1\Char);

The content of the array component con_data_buffer{5} will be "z" after the
ByteToStr ... function.

Return value Data type: string

The result of the conversion operation with the following format:

Format: Characters: String length: Range:
Dec: ’0’ - ’9’ 1-3 "0" - "255"
Hex: ’0’ - ’9’, ’A’ -’F’ 2 "00" - "FF"
Okt: ’0’ - ’7’ 3 "000" - "377"
Bin: ’0’ - ’1’ 8 "00000000" -

"11111111"
Char: Writable ASCII char 1 ASCII table (*)
System DataTypes and Routines 3-ByteToStr-1

ByteToStr Functions
(*) If non-writable ASCII char, the return format will be RAPID character code
format (e.g. “\07” for BEL control character).

Arguments

ByteToStr (ByteData [\Hex] | [\Okt] | [\Bin] | [\Char])

ByteData Data type: byte

The byte data to be converted.

If the optional switch argument is omitted, the data will be converted in decimal (Dec)
format.

[\Hex] (Hexadecimal) Data type: switch

The data will be converted in hexadecimal format.

[\Okt] (Octal) Data type: switch

The data will be converted in octal format.

[\Bin] (Binary) Data type: switch

The data will be converted in binary format.

[\Char] (Character) Data type: switch

The data will be converted in ASCII character format.

Limitations

The range for a data type byte is 0 to 255 decimal.

Syntax

ByteToStr’(’
[ByteData ’:=’] <expression (IN) of byte>
[’\’ Hex] | [’\’ Okt] | [’\’ Bin] | [’\’ Char]
’)’

A function with a return value of the data type string.
3-ByteToStr-2 System DataTypes and Routines

Functions Pow
Related information

Described in:

Convert a string to a byte data Instructions - StrToByte

Other bit (byte) functions RAPID Summary - Bit Functions

Other string functions RAPID Summary - String Functions
System DataTypes and Routines 3-Pow-3

Pow Functions
3-Pow-4 System DataTypes and Routines

Functions CDate
CDate Reads the current date as a string

CDate (Current Date) is used to read the current system date.

This function can be used to present the current date to the operator on the teach pen-
dant display or to paste the current date into a text file that the program writes to.

Example

VAR string date;

date := CDate();

The current date is stored in the variable date.

Return value Data type: string

The current date in a string.

The standard date format is “year-month-day”, e.g. ”1998-01-29”.

Example

date := CDate();
TPWrite “The current date is: “+date;
Write logfile, date;

The current date is written to the teach pendant display and into a text file.

Syntax

CDate ’(’ ’)’

A function with a return value of the type string.

Related Information

Described in:

Time instructions RAPID Summary - System & Time

Setting the system clock User’s Guide - Service
RAPID Reference Manual 9-CDate-1

CDate Functions
9-CDate-2 RAPID Reference Manual

Functions CJointT
CJointT Reads the current joint angles

CJointT (Current Joint Target) is used to read the current angles of the robot axes and
external axes.

Example

VAR jointtarget joints;

joints := CJointT();

The current angles of the axes for the robot and external axes are stored in joints.

Return value Data type: jointtarget

The current angles in degrees for the axes of the robot on the arm side.

The current values for the external axes, in mm for linear axes, in degrees for rotational
axes.

The returned values are related to the calibration position.

Syntax

CJointT’(’’)’

A function with a return value of the data type jointtarget.

Related information

Described in:

Definition of joint Data Types - jointtarget

Reading the current motor angle Functions - ReadMotor
System DataTypes and Routines 3-CJointT-1

CJointT Functions
3-CJointT-2 System DataTypes and Routines

Functions ClkRead
ClkRead Reads a clock used for timing

ClkRead is used to read a clock that functions as a stop-watch used for timing.

Example

reg1:=ClkRead(clock1);

The clock clock1 is read and the time in seconds is stored in the variable reg1.

Return value Data type: num

The time in seconds stored in the clock. Resolution 0.010 seconds.

Argument

ClkRead (Clock)

Clock Data type: clock

The name of the clock to read.

Program execution

A clock can be read when it is stopped or running.

Once a clock is read it can be read again, started again, stopped or reset.

If the clock has overflowed, program execution is stopped with an error message.

Syntax

ClkRead ’(’
[Clock ’:=’] < variable (VAR) of clock > ’)’

A function with a return value of the type num.
System DataTypes and Routines 3-ClkRead-1

ClkRead Functions
Related Information

Described in:

Clock instructions RAPID Summary - System & Time

Clock overflow Data Types - clock

More examples Instructions - ClkStart
3-ClkRead-2 System DataTypes and Routines

Functions Cos
Cos Calculates the cosine value

Cos (Cosine) is used to calculate the cosine value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Cos(angle);

Return value Data type: num

The cosine value, range = [-1, 1] .

Arguments

Cos (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Cos’(’
[Angle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
System DataTypes and Routines 3-Cos-1

Cos Functions
3-Cos-2 System DataTypes and Routines

Functions CPos
CPos Reads the current position (pos) data

CPos (Current Position) is used to read the current position of the robot.

This function returns the x, y, and z values of the robot TCP as data of type pos. If the
complete robot position (robtarget) is to be read, use the function CRobT instead.

Example

VAR pos pos1;

pos1 := CPos(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot TCP is stored in variable pos1. The tool tool1
and work object wobj0 are used for calculating the position.

Return value Data type: pos

The current position (pos) of the robot with x, y, and z in the outermost coordinate sys-
tem, taking the specified tool, work object and active ProgDisp coordinate system into
consideration.

Arguments

CPos ([\Tool] [\WObj])

[\Tool] Data type: tooldata

The tool used for calculation of the current robot position.

If this argument is omitted the current active tool is used.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the current robot position returned
by the function is related.

If this argument is omitted the current active work object is used.

When programming, it is very sensible to always specify arguments \Tool and \WObj.
The function will always then return the wanted position, although some other tool or
work object has been activated manually.
System DataTypes and Routines 3-CPos-1

CPos Functions
Program execution

The coordinates returned represent the TCP position in the ProgDisp coordinate sys-
tem.

Example

VAR pos pos2;
VAR pos pos3;
VAR pos pos4;

pos2 := CPos(\Tool:=grip3 \WObj:=fixture);
.
.
pos3 := CPos(\Tool:=grip3 \WObj:=fixture);
pos4 := pos3-pos2;

The x, y, and z position of the robot is captured at two places within the program
using the CPos function. The tool grip3 and work object fixture are used for cal-
culating the position. The x, y and z distances travelled between these positions
are then calculated and stored in the pos variable pos4.

Syntax

CPos ’(’
[’\’Tool ’:=’ <persistent (PERS) of tooldata>]
[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type pos.

Related information

Described in:

Definition of position Data Types - pos

Definition of tools Data Types- tooldata

Definition of work objects Data Types - wobjdata

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems

Reading the current robtarget Functions - CRobT
3-CPos-2 System DataTypes and Routines

Functions CRobT
CRobT Reads the current position (robtarget) data

CRobT (Current Robot Target) is used to read the current position of the robot and
external axes.

This function returns a robtarget value with position (x, y, z), orientation (q1 ... q4),
robot axes configuration and external axes position. If only the x, y, and z values of the
robot TCP (pos) are to be read, use the function CPos instead.

Example

VAR robtarget p1;

p1 := CRobT(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot and external axes is stored in p1. The tool tool1
and work object wobj0 are used for calculating the position.

Return value Data type: robtarget

The current position of the robot and external axes in the outermost coordinate system,
taking the specified tool, work object and active ProgDisp/ExtOffs coordinate system
into consideration.

Arguments

CRobT ([\Tool] [\WObj])

[\Tool] Data type: tooldata

The tool used for calculation of the current robot position.

If this argument is omitted the current active tool is used.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the current robot position returned
by the function is related.

If this argument is omitted the current active work object is used.

When programming, it is very sensible to always specify arguments \Tool and \WObj.
The function will always then return the wanted position, although some other tool or
work object has been activated manually.
System DataTypes and Routines 3-CRobT-1

CRobT Functions
Program execution

The coordinates returned represent the TCP position in the ProgDisp coordinate sys-
tem. External axes are represented in the ExtOffs coordinate system.

Example

VAR robtarget p2;

p2 := ORobT(RobT(\Tool:=grip3 \WObj:=fixture));

The current position in the object coordinate system (without any ProgDisp or
ExtOffs) of the robot and external axes is stored in p2. The tool grip3 and work
object fixture are used for calculating the position.

Syntax

CRobT’(’
[’\’Tool ’:=’ <persistent (PERS) of tooldata>]
[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Definition of position Data Types - robtarget

Definition of tools Data Types- tooldata

Definition of work objects Data Types - wobjdata

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems

ExtOffs coordinate system Instructions - EOffsOn

Reading the current pos (x, y, z only) Functions - CPos
3-CRobT-2 System DataTypes and Routines

Functions CTime

ext
CTime Reads the current time as a string

CTime is used to read the current system time.

This function can be used to present the current time to the operator on the teach pen-
dant display or to paste the current time into a text file that the program writes to.

Example

VAR string time;

time := CTime();

The current time is stored in the variable time.

Return value Data type: string

The current time in a string.

The standard time format is "hours:minutes:seconds", e.g. "18:20:46".

Example

time := CTime();
TPWrite “The current time is: “+time;
Write logfile, time;

The current time is written to the teach pendant display and written into a t
file.

Syntax

CTime ’(’ ’)’

A function with a return value of the type string.
System DataTypes and Routines 3-CTime-1

CTime Functions
Related Information

Described in:

Time and date instructions RAPID Summary - System & Time

Setting the system clock User’s Guide - System Parameters
3-CTime-2 System DataTypes and Routines

Functions CTool
CTool Reads the current tool data

CTool (Current Tool) is used to read the data of the current tool.

Example

PERS tooldata temp_tool;

temp_tool := CTool();

The value of the current tool is stored in the variable temp_tool.

Return value Data type: tooldata

This function returns a tooldata value holding the value of the current tool, i.e. the tool
last used in a movement instruction.

The value returned represents the TCP position and orientation in the wrist centre coor-
dinate system, see tooldata.

Syntax

CTool’(’’)’

A function with a return value of the data type tooldata.

Related information

Described in:

Definition of tools Data Types- tooldata

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
System DataTypes and Routines 3-CTool-1

CTool Functions
3-CTool-2 System DataTypes and Routines

Functions CWObj
CWObj Reads the current work object data

CWObj (Current Work Object) is used to read the data of the current work object.

Example

PERS wobjdata temp_wobj;

temp_wobj := CWObj();

The value of the current work object is stored in the variable temp_wobj.

Return value Data type: wobjdata

This function returns a wobjdata value holding the value of the current work object,
i.e. the work object last used in a movement instruction.

The value returned represents the work object position and orientation in the world
coordinate system, see wobjdata.

Syntax

CWObj’(’’)’

A function with a return value of the data type wobjdata.

Related information

Described in:

Definition of work objects Data Types- wobjdata

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
System DataTypes and Routines 3-CWObj-1

CWObj Functions
3-CWObj-2 System DataTypes and Routines

Functions DefDFrame
DefDFrame Define a displacement frame

DefDFrame (Define Displacement Frame) is used to calculate a displacement frame
from three original positions and three displaced positions.

Example

Three positions, p1- p3, related to an object in an original position, have been stored.
After a displacement of the object the same positions are searched for and stored as
p4-p6. From these six positions the displacement frame is calculated. Then the
calculated frame is used to displace all the stored positions in the program.

CONST robtarget p1 := [...];
CONST robtarget p2 := [...];
CONST robtarget p3 := [...];
VAR robtarget p4;
VAR robtarget p5;
VAR robtarget p6;
VAR pose frame1;
.
!Search for the new positions
SearchL sen1, p4, *, v50, tool1;
.
SearchL sen1, p5, *, v50, tool1;
.
SearchL sen1, p6, *, v50, tool1;
frame1 := DefDframe (p1, p2, p3, p4, p5, p6);
.
!activation of the displacement defined by frame1
PDispSet frame1;

Return value Data type: pose

The displacement frame.

p1

p3

p2
p4

p6

p5
System DataTypes and Routines 3-DefDFrame-1

DefDFrame Functions
3-DefDFrame-2 System DataTypes and Routines

Arguments

DefDFrame (OldP1 OldP2 OldP3 NewP1 NewP2 NewP3)

OldP1 Data type: robtarget

The first original position.

OldP2 Data type: robtarget

The second original position.

OldP3 Data type: robtarget

The third original position.

NewP1 Data type: robtarget

The first displaced position. This position must be measured and determined with
great accuracy.

NewP2 Data type: robtarget

The second displaced position. It should be noted that this position can be
measured and determined with less accuracy in one direction, e.g. this position
must be placed on a line describing the new direction of p1 to p2.

NewP3 Data type: robtarget

The third displaced position. This position can be measured and determined with
less accuracy in two directions, e.g. it has to be placed in a plane describing the
new plane of p1, p2 and p3.

Syntax

DefDFrame’(’
[OldP1 ’:=’] <expression (IN) of robtarget> ’,’
[OldP2 ’:=’] <expression (IN) of robtarget> ’,’
[OldP3 ’:=’] <expression (IN) of robtarget> ’,’
[NewP1 ’:=’] <expression (IN) of robtarget> ’,’
[NewP2 ’:=’] <expression (IN) of robtarget> ’,’
[NewP3 ’:=’] <expression (IN) of robtarget> ’)’

A function with a return value of the data type pose.

Related information

Described in:

Activation of displacement frame Instructions - PDispSet

Manual definition of displacement frame User’s Guide - Calibration

Functions DefFrame
DefFrame Define a frame

DefFrame (Define Frame) is used to calculate a frame, from three positions defining
the frame.

Example

Three positions, p1- p3, related to the object coordinate system, are used to define the
new coordinate system, frame1. The first position, p1, is defining the origin of frame1,
the second position, p2, is defining the direction of the x-axis and the third position,
p3, is defining the location of the xy-plane. The defined frame1 may be used as a
displacement frame, as shown in the example below:

CONST robtarget p1 := [...];
CONST robtarget p2 := [...];
CONST robtarget p3 := [...];
VAR pose frame1;
.
.
frame1 := DefFrame (p1, p2, p3);
.
.
!activation of the displacement defined by frame1
PDispSet frame1;

Return value Data type: pose

The calculated frame.

The calculation is related to the active object coordinate system.

p1

p3

p2

x

z

y

object frame

x

y

z

frame1
System DataTypes and Routines 3-DefFrame-1

DefFrame Functions
Arguments

DefFrame (NewP1 NewP2 NewP3 [\Origin])

NewP1 Data type: robtarget

The first position, which will define the origin of the new frame.

NewP2 Data type: robtarget

The second position, which will define the direction of the x-axis of the new
frame.

NewP3 Data type: robtarget

The third position, which will define the xy-plane of the new frame. The position
of point 3 will be on the positive y side, see the figure above.

[\Origin] Data type: num

Optional argument, which will define how the origin of the frame will be placed.
Origin = 1, means that the origin is placed in NewP1, i.e. the same as if this
argument is omitted. Origin = 2 means that the origin is placed in NewP2, see the
figure below.

Origin = 3 means that the origin is placed on the line going through NewP1 and NewP2
and so that NewP3 will be placed on the y axis, see the figure below.

New P1

New P3

New P2

x

z

y

object frame

x

yz

frame1
3-DefFrame-2 System DataTypes and Routines

Functions DefFrame
Other values, or if Origin is omitted, will place the origin in NewP1.

Limitations

The three positions p1 - p3, defining the frame, must define a well shaped triangle. The
most well shaped triangle is the one with all sides of equal length.

The triangle is not considered to be well shaped if the angle θ a is too small. The angle
θ is too small if:

The triangle p1, p2, p3 cannot be too small i.e. the positions cannot be too close. The
distances between the positions p1 - p2 and p1 - p3 cannot be shorter then 0.1 mm.

Error handling

If the frame cannot be calculated because of the above limitations, the system variable
ERRNO is set to ERR_FRAME. This error can then be handled in the error handler.

New P1

New P3

New P2

x

z

y

object frame

x

y

z

frame1

p2
p3

p1
θ

Θcos 1 10
4–

–<
System DataTypes and Routines 3-DefFrame-3

DefFrame Functions
Syntax

DefFrame’(’
[NewP1 ’:=’] <expression (IN) of robtarget> ’,’
[NewP2 ’:=’] <expression (IN) of robtarget> ’,’
[NewP3 ’:=’] <expression (IN) of robtarget>
[’\’ Origin ’:=’ <expression (IN) of num>]’)’

A function with a return value of the data type pose.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Activation of displacement frame Instructions - PDispSet
3-DefFrame-4 System DataTypes and Routines

Functions Dim
Dim Obtains the size of an array

Dim (Dimension) is used to obtain the number of elements in an array.

Example

PROC arrmul(VAR num array{*}, num factor)

FOR index FROM 1 TO Dim(array, 1) DO
array{index} := array{index} * factor;

ENDFOR

ENDPROC

All elements of a num array are multiplied by a factor.
This procedure can take any one-dimensional array of data type num as an input.

Return value Data type: num

The number of array elements of the specified dimension.

Arguments

Dim (ArrPar DimNo)

ArrPar (Array Parameter) Data type: Any type

The name of the array.

DimNo (Dimension Number) Data type: num

The desired array dimension: 1 = first dimension
2 = second dimension
3 = third dimension
System DataTypes and Routines 3-Dim-1

Dim Functions

 a vari-
aram-
Example

PROC add_matrix(VAR num array1{*,*,*}, num array2{*,*,*})

IF Dim(array1,1) <> Dim(array2,1) OR Dim(array1,2) <> Dim(array2,2) OR
Dim(array1,3) <> Dim(array2,3) THEN
TPWrite "The size of the matrices are not the same";
Stop;

ELSE
FOR i1 FROM 1 TO Dim(array1, 1) DO

FOR i2 FROM 1 TO Dim(array1, 2) DO
FOR i3 FROM 1 TO Dim(array1, 3) DO

array1{i1,i2,i3} := array1{i1,i2,i3} + array2{i1,i2,i3};
ENDFOR

ENDFOR
ENDFOR

ENDIF
RETURN;

ENDPROC

Two matrices are added. If the size of the matrices differs, the program stops and
an error message appears.
This procedure can take any three-dimensional arrays of data type num as an
input.

Syntax

Dim ’(’
[ArrPar’:=’] <reference (REF) of any type> ’,’
[DimNo’:=’] <expression (IN) of num> ’)’

A REF parameter requires that the corresponding argument be either a constant,
able or an entire persistent. The argument could also be an IN parameter, a VAR p
eter or an entire PERS parameter.

A function with a return value of the data type num.

Related information

Described in:

Array parameters Basic Characteristics - Routines

Array declaration Basic Characteristics - Data
3-Dim-2 System DataTypes and Routines

Functions DotProd

tween

other
DotProd Dot product of two pos vectors

DotProd (Dot Product) is used to calculate the dot (or scalar) product of two pos vec-
tors. The typical use is to calculate the projection of one vector upon the other or to
calculate the angle between the two vectors.

Example

The dot or scalar product of two vectors A and B is a scalar, which equals the products
of the magnitudes of A and B and the cosine of the angle between them.

The dot product:

• is less than or equal to the product of their magnitudes.

• can be either a positive or a negative quantity, depending whether the angle be
them is smaller or larger then 90 degrees.

• is equal to the product of the magnitude of one vector and the projection of the
vector upon the first one.

• is zero when the vectors are perpendicular to each other.

The vectors are described by the data type pos and the dot product by the data type
num:

VAR num dotprod;
VAR pos vector1;
VAR pos vector2;
.
.
vector1 := [1,1,1];
vector2 := [1,2,3];
dotprod := DotProd(vector1, vector2);

A

B

θAB

B θcos AB A

A B⋅ A B θABcos=
System DataTypes and Routines 3-DotProd-3

DotProd Functions
Return value Data type: num

The value of the dot product of the two vectors.

Arguments

DotProd (Vector1 Vector2)

Vector1 Data type: pos

The first vector described by the pos data type.

Vector2 Data type: pos

The second vector described by the pos data type.

Syntax

DotProd’(’
[Vector1 ’:=’] <expression (IN) of pos> ’,’
[Vector2 ’:=’] <expression (IN) of pos>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-DotProd-4 System DataTypes and Routines

Functions DOutput
DOutput Reads the value of a digital output signal

DOutput is used to read the current value of a digital output signal.

Example

IF DOutput(do2) = 1 THEN . . .

If the current value of the signal do2 is equal to 1, then . . .

Return value Data type: dionum

The current value of the signal (0 or 1).

Arguments

DOutput (Signal)

Signal Data type: signaldo

The name of the signal to be read.

Program execution

The value read depends on the configuration of the signal. If the signal is inverted in
the system parameters, the value returned by this function is the opposite of the true
value of the physical channel.

Example

IF DOutput(auto_on) <> active THEN . . .

If the current value of the system signal auto_on is not active, then ..., i.e. if the
robot is in the manual operating mode, then ... Note that the signal must first be
defined as a system output in the system parameters.

Syntax

DOutput ’(’
[Signal ’:=’] < variable (VAR) of signaldo > ’)’

A function with a return value of the data type dionum.
System DataTypes and Routines 3-DOutput-1

DOutput Functions
Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
3-DOutput-2 System DataTypes and Routines

Functions EulerZYX
EulerZYX Gets Euler angles from orient

EulerZYX (Euler ZYX rotations) is used to get an Euler angle component from an orient
type variable.

Example

VAR num anglex;
VAR num angley;
VAR num anglez;
VAR pose object;
.
.
anglex := GetEuler(\X, object.rot);
angley := GetEuler(\Y, object.rot);
anglez := GetEuler(\Z, object.rot);

Return value Data type: num

The corresponding Euler angle, expressed in degrees, range [-180, 180].

Arguments

EulerZYX ([\X] | [\Y] | [\Z] Rotation)

The arguments \X, \Y and \Z are mutually exclusive. If none of these are specified, a
run-time error is generated.

[\X] Data type: switch

Gets the rotation around the X axis.

[\Y] Data type: switch

Gets the rotation around the Y axis.

[\Z] Data type: switch

Gets the rotation around the Z axis.

Rotation Data type: orient

The rotation in its quaternion representation.
System DataTypes and Routines 3-EulerZYX-1

EulerZYX Functions
Syntax

EulerZYX’(’
['\'X ’,’] | ['\'Y ’,’] | ['\'Z ’,’]
[Rotation ’:=’] <expression (IN) of orient>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-EulerZYX-2 System DataTypes and Routines

Functions Exp
Exp Calculates the exponential value

Exp (Exponential) is used to calculate the exponential value, ex.

Example

VAR num x;
VAR num value;
.
.
value:= Exp(x);

Return value Data type: num

The exponential value ex .

Arguments

Exp (Exponent)

Exponent Data type: num

The exponent argument value.

Syntax

Exp’(’
[Exponent ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
System DataTypes and Routines 3-Exp-1

Exp Functions
3-Exp-2 System DataTypes and Routines

Functions FileTime
FileTime Retrieve time information about a file

FileTime is used to retrieve the last time for modification, access or file status change
of a file. The time is measured in secs since 00:00:00 GMT, Jan. 1 1970. The time is
returned as a num.

Example

Load "ram1disk:notmymod.mod";
WHILE TRUE DO

! Call some routine in notmymod
notmymodrout;
IF FileTime("ram1disk:notmymod.mod" \ModifyTime)

> ModTime("notmymod") THEN
 UnLoad "ram1disk:notmymod.mod";
 Load "ram1disk:notmymod.mod";
ENDIF

ENDWHILE

This program reloads a module if there is a newer at the source. It uses the
ModTime to retrieve the latest loading time for the specified module, and to com-
pare it to the FileTime\ModifyTime at the source. Then, if the source is newer, the
program unloads and loads the module again.

Return value Data type: num

The time measured in secs since 00:00:00 GMT, Jan 1 1970.

Arguments

FileTime (Path [\ModifyTime] | [\AccessTime] | [\StatCTime])

Path Data type: string

The file specified with a full or relative path.

ModifyTime Data type: switch

Last modification time.

AccessTime Data type: switch

Time of last access (read, execute of modify).
System DataTypes and Routines 3-FileTime-3

FileTime Functions
StatCTime Data type: switch

Last file status (access qualification) change time.

Program execution

This function returns a numeric that specifies the time since the last:

- Modification

- Access

- File status change

of the specified file.

Example

This is a complete example that implements an alert service for maximum 10 files.

LOCAL RECORD falert
string filename;
num ftime;

ENDRECORD

LOCAL VAR falert myfiles[10];
LOCAL VAR num currentpos:=0;
LOCAL VAR intnum timeint;

LOCAL TRAP mytrap
VAR num pos:=1;
WHILE pos <= currentpos DO

IF FileTime(myfiles{pos}.filename \ModifyTime) > myfiles{pos}.ftime THEN
 TPWrite "The file "+myfiles{pos}.filename+" is changed";
ENDIF

 pos := pos+1;
ENDWHILE

ENDTRAP

PROC alertInit(num freq)
currentpos:=0;
CONNECT timeint WITH mytrap;
ITimer freq,timeint;

ENDPROC

PROC alertFree()
IDelete timeint;

ENDPROC
3-FileTime-4 System DataTypes and Routines

Functions FileTime
PROC alertNew(string filename)
currentpos := currentpos+1;
IF currentpos <= 10 THEN

myfiles{currentpos}.filename := filename;
myfiles{currentpos}.ftime := FileTime (filename \ModifyTime);

ENDIF
ENDPROC

Error handling

If the file does not exist, the system variable ERRNO is set to ERR_FILEACC. This
error can then be handled in the error handler.

Syntax

FileTime ’(’
[Path ’:=’] < expression (IN) of string>
['\'ModifyTime] |
['\'AccessTime] |
['\'StatCTime] ’)’

A function with a return value of the data type num.

Related information

Described in:

Last time a module was loaded Functions - ModTime
System DataTypes and Routines 3-FileTime-5

FileTime Functions
3-FileTime-6 System DataTypes and Routines

Functions GetTime
GetTime Reads the current time as a numeric value

GetTime is used to read a specified component of the current system time as a numeric
value.

GetTime can be used to :

- have the program perform an action at a certain time,

- perform certain activities on a weekday,

- abstain from performing certain activities on the weekend,

- respond to errors differently depending on the time of day.

Example

hour := GetTime(\Hour);

The current hour is stored in the variable hour.

Return value Data type: num

One of the four time components specified below.

Argument

GetTime ([\WDay] | [\Hour] | [\Min] | [\Sec])

[\WDay] Data type: switch

Return the current weekday.
Range: 1 to 7 (Monday to Sunday).

[\Hour] Data type: switch

Return the current hour.
Range: 0 to 23.

[\Min] Data type: switch

Return the current minute.
Range: 0 to 59.

[\Sec] Data type: switch

Return the current second.
Range: 0 to 59.
System DataTypes and Routines 3-GetTime-1

GetTime Functions
One of the arguments must be specified, otherwise program execution stops with an
error message.

Example

weekday := GetTime(\WDay);
hour := GetTime(\Hour);
IF weekday < 6 AND hour >6 AND hour < 16 THEN

production;
ELSE

maintenance;
ENDIF

If it is a weekday and the time is between 7:00 and 15:59 the robot performs pro-
duction. At all other times, the robot is in the maintenance mode.

Syntax

GetTime ’(’
[’\’ WDay]
| [’\’ Hour]
| [’\’ Min]
| [’\’ Sec] ’)’

A function with a return value of the type num.

Related Information

Described in:

Time and date instructions RAPID Summary - System & Time

Setting the system clock User’s Guide - System Parameters
3-GetTime-2 System DataTypes and Routines

Functions GOutput
GOutput Reads the value of a group of digital output signals

GOutput is used to read the current value of a group of digital output signals.

Example

IF GOutput(go2) = 5 THEN ...

If the current value of the signal go2 is equal to 5, then ...

Return value Data type: num

The current value of the signal (a positive integer).

The values of each signal in the group are read and interpreted as an unsigned binary
number. This binary number is then converted to an integer.

The value returned lies within a range that is dependent on the number of signals in the
group.

No. of signals Return value No. of signals Return value

1 0 - 1 9 0 - 511

2 0 - 3 10 0 - 1023

3 0 - 7 11 0 - 2047

4 0 - 15 12 0 - 4095

5 0 - 31 13 0 - 8191

6 0 - 63 14 0 - 16383

7 0 - 127 15 0 - 32767

8 0 - 255 16 0 - 65535

Arguments

GOutput (Signal)

Signal Data type: signalgo

The name of the signal group to be read.
System DataTypes and Routines 3-GOutput-1

GOutput Functions
Syntax

GOutput ’(’
[Signal ’:=’] < variable (VAR) of signalgo > ’)’

A function with a return value of data type num.

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
3-GOutput-2 System DataTypes and Routines

Functions IsPers
IsPers Is Persistent

IsPers is used to test if a data object is a persistent variable or not.

Example

PROC procedure1 (INOUT num parameter1)
IF IsVar(parameter1) THEN

! For this call reference to a variable
...

ELSEIF IsPers(parameter1) THEN
! For this call reference to a persistent variable
...

ELSE
! Should not happen
EXIT;

ENDIF
ENDPROC

The procedure procedure1 will take different actions depending on whether the
actual parameter parameter1 is a variable or a persistent variable.

Return value Data type: bool

TRUE if the tested actual INOUT parameter is a persistent variable.
FALSE if the tested actual INOUT parameter is not a persistent variable.

Arguments

IsPers (DatObj)

DatObj (Data Object) Data type: any type

The name of the formal INOUT parameter.

Syntax

IsPers’(’
[DatObj ’:=’] < var or pers (INOUT) of any type > ’)’

A function with a return value of the data type bool.
System DataTypes and Routines 3-IsPers-1

IsPers Functions
Related information

Described in:

Test if variable Function - IsVar

Types of parameters (access modes) RAPID Characteristics - Routines
3-IsPers-2 System DataTypes and Routines

Functions IsVar
IsVar Is Variable

IsVar is used to test whether a data object is a variable or not.

Example

PROC procedure1 (INOUT num parameter1)
IF IsVAR(parameter1) THEN

! For this call reference to a variable
...

ELSEIF IsPers(parameter1) THEN
! For this call reference to a persistent variable
...

ELSE
! Should not happen
EXIT;

ENDIF
ENDPROC

The procedure procedure1 will take different actions, depending on whether the
actual parameter parameter1 is a variable or a persistent variable.

Return value Data type: bool

TRUE if the tested actual INOUT parameter is a variable.
FALSE if the tested actual INOUT parameter is not a variable.

Arguments

IsVar (DatObj)

DatObj (Data Object) Data type: any type

The name of the formal INOUT parameter.

Syntax

IsVar’(’
[DatObj ’:=’] < var or pers (INOUT) of any type > ’)’

A function with a return value of the data type bool.
System DataTypes and Routines 3-IsVar-1

IsVar Functions
Related information

Described in:

Test if persistent Function - IsPers

Types of parameters (access modes) RAPID Characteristics - Routines
3-IsVar-2 System DataTypes and Routines

Functions MirPos
MirPos Mirroring of a position

MirPos (Mirror Position) is used to mirror the translation and rotation parts of a posi-
tion.

Example

CONST robtarget p1;
VAR robtarget p2;
PERS wobjdata mirror;
.
.
p2 := MirPos(p1, mirror);

p1 is a robtarget storing a position of the robot and an orientation of the tool. This
position is mirrored in the xy-plane of the frame defined by mirror, relative to the
world coordinate system. The result is new robtarget data, which is stored in p2.

Return value Data type: robtarget

The new position which is the mirrored position of the input position.

Arguments

MirPos (Point MirPlane [\WObj] [\MirY])

Point Data type: robtarget

The input robot position. The orientation part of this position defines the current
orientation of the tool coordinate system.

MirPlane (Mirror Plane) Data type: wobjdata

The work object data defining the mirror plane. The mirror plane is the xy-plane
of the object frame defined in MirPlane. The location of the object frame is
defined relative to the user frame, also defined in MirPlane, which in turn is
defined relative to the world frame.

[\WObj] (Work Object) Data type: wobjdata

The work object data defining the object frame, and user frame, relative to which
the input position, Point, is defined. If this argument is left out, the position is
defined relative to the World coordinate system.
Note. If the position is created with a work object active, this work object must
be referred to in the argument.
System DataTypes and Routines 3-MirPos-1

MirPos Functions
[\MirY] (Mirror Y) Data type: switch

If this switch is left out, which is the default rule, the tool frame will be mirrored
as regards the x-axis and the z-axis. If the switch is specified, the tool frame will
be mirrored as regards the y-axis and the z-axis.

Limitations

No recalculation is done of the robot configuration part of the input robtarget data.

Syntax

MirPos’(’
[Point ’:=’] < expression (IN) of robtarget>’,’
[MirPlane ’:=’] <expression (IN) of wobjdata> ’,’
[’ \’WObj ’:=’ <expression (IN) of wobjdata>]
[’\’ MirY]’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-MirPos-2 System DataTypes and Routines

Functions ModTime
ModTime Get time of load for a loaded module

ModTime (Module Time) is used to retrieve the time of loading a specified module. The
module is specified by its name and must be in the task memory. The time is measured
in secs since 00:00:00 GMT, Jan 1 1970. The time is returned as a num.

Example

MODULE mymod

VAR num mytime;

PROC printMyTime()
mytime := ModTime("mymod");
TPWrite "My time is "+NumToStr(mytime,0);

ENDPROC

Return value Data type: num

The time measured in secs since 00:00:00 GMT, Jan 1 1970.

Arguments

ModTime (Object)

Object Data type: string

The name of the module.

Program execution

This function return a numeric that specify the time when the module was loaded.
System DataTypes and Routines 3-ModTime-1

ModTime Functions
Example

This is a complete example that implements an “update if newer” service.

MODULE updmod
PROC callrout()

Load "ram1disk:mymod.mod";
WHILE TRUE DO

! Call some routine in mymod
mymodrout;
IF FileTime("ram1disk:mymod.mod" \ModifyTime)

> ModTime("mymod") THEN
UnLoad "ram1disk:mymod.mod";

 Load "ram1disk:mymod.mod";
ENDIF

ENDWHILE
ENDPROC

ENDMODULE

This program reloads a module if there is a newer one at the source. It uses the
ModTime to retrieve the latest loading time for the specified module, and com-
pares it to the FileTime\ModifyTime at the source. Then, if the source is newer,
the program unloads and loads the module again.

Syntax

ModTime ’(’
[Object ’:=’] < expression (IN) of string>’)’

A function with a return value of the data type num.

Related information

Described in:

Retrieve time info. about a file Functions - FileTime
3-ModTime-2 System DataTypes and Routines

Functions NOrient
NOrient Normalise Orientation

NOrient (Normalise Orientation) is used to normalise unnormalised orientation
(quaternion).

Description

An orientation must be normalised, i.e. the sum of the squares must
equal 1:

If the orientation is slightly unnormalised, it is possible to normalise it.
The normalisation error is the absolute value of the sum of the squares of the orienta-
tion components.
The orientation is considered to be slightly unnormalised if the normalisation error is
greater then 0.00001 and less then 0.1. If the normalisation error is greater then 0.1 the
orient is unusable.

normerr > 0.1 Unusable
normerr > 0.00001 AND err <= 0.1 Slightly unnormalised
normerr <= 0.00001 Normalised

Example

We have a slightly unnormalised position (0.707170, 0, 0, 0.707170)

VAR orient unnormorient := [0.707170, 0, 0, 0.707170];
VAR orient normorient;
.
.
normorient := NOrient(unnormorient);

The normalisation of the orientation (0.707170, 0, 0, 0.707170) becomes (0.707107,
0, 0, 0.707107).

q1
2 q2

2 q3
2 q4

2+ + + 1=

ABS q1
2

q2
2

q3
2

q4
2

+ + + 1–() normerr=

ABS 0,707170
2

0
2

0
2

0,707170
2

+ + + 1–() 0,0000894=

0,0000894 0,00001 unnormalized⇒>
System DataTypes and Routines 3-NOrient-1

NOrient Functions
Return value Data type: orient

The normalised orientation.

Arguments

NOrient (Rotation)

Orient Data type: orient

The orientation to be normalised.

Syntax

NOrient’(’
[Rotation ’:=’] <expression (IN) of orient>
’)’

A function with a return value of the data type orient.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-NOrient-2 System DataTypes and Routines

Functions NumToStr
NumToStr Converts numeric value to string

NumToStr (Numeric To String) is used to convert a numeric value to a string.

Example

VAR string str;

str := NumToStr(0.38521,3);

The variable str is given the value "0.385".

reg1 := 0.38521

str := NumToStr(reg1, 2\Exp);

The variable str is given the value "3.85E-01".

Return value Data type: string

The numeric value converted to a string with the specified number of decimals, with
exponent if so requested. The numeric value is rounded if necessary. The decimal point
is suppressed if no decimals are included.

Arguments

NumToStr (Val Dec [\Exp])

Val (Value) Data type: num

The numeric value to be converted.

Dec (Decimals) Data type: num

Number of decimals. The number of decimals must not be negative or greater
than the available precision for numeric values.

[\Exp] (Exponent) Data type: switch

To use exponent.
System DataTypes and Routines 3-NumToStr-1

NumToStr Functions
Syntax

NumToStr’(’
[Val ’:=’] <expression (IN) of num> ’,’
[Dec ’:=’] <expression (IN) of num>
[\Exp]
’)’

A function with a return value of the data type string.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-NumToStr-2 System DataTypes and Routines

Functions Offs
Offs Displaces a robot position

Offs is used to add an offset to a robot position.

Examples

MoveL Offs(p2, 0, 0, 10), v1000, z50, tool1;

The robot is moved to a point 10 mm from the position p2 (in the z-direction).

p1 := Offs (p1, 5, 10, 15);

The robot position p1 is displaced 5 mm in the x-direction, 10 mm in the y-direc-
tion and 15 mm in the z-direction.

Return value Data type: robtarget

The displaced position data.

Arguments

Offs (Point XOffset YOffset ZOffset)

Point Data type: robtarget

The position data to be displaced.

XOffset Data type: num

The displacement in the x-direction.

YOffset Data type: num

The displacement in the y-direction.

ZOffset Data type: num

The displacement in the z-direction.
System DataTypes and Routines 3-Offs-1

Offs Functions
Example

PROC pallet (num row, num column, num distance, PERS tooldata tool,
PERS wobjdata wobj)

VAR robtarget palletpos:=[[0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0],
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

palettpos := Offs (palettpos, (row-1)*distance, (column-1)*distance, 0);
MoveL palettpos, v100, fine, tool\WObj:=wobj;

ENDPROC

A routine for picking parts from a pallet is made. Each pallet is defined as a work
object (see Figure 34). The part to be picked (row and column) and the distance
between the parts are given as input parameters.
Incrementing the row and column index is performed outside the routine.

Figure 34 The position and orientation of the pallet is specified by defining a work object.

Syntax

Offs ’(’
[Point ’:=’] <expression (IN) of robtarget> ’,’
[XOffset ’:=’] <expression (IN) of num> ’,’
[YOffset ’:=’] <expression (IN) of num> ’,’
[ZOffset ’:=’] <expression (IN) of num> ’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Position data Data Types - robtarget

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Y-axis

X-axis

Columns

Rows
3-Offs-2 System DataTypes and Routines

Functions OpMode
System DataTypes and Routines 3-OpMode-1

OpMode Read the operating mode

OpMode (Operating Mode) is used to read the current operating mode of the system.

Example

TEST OpMode()
CASE OP_AUTO:

...
CASE OP_MAN_PROG:

...
CASE OP_MAN_TEST:

...
DEFAULT:

...
ENDTEST

Different program sections are executed depending on the current operating mode.

Return value Data type: symnum

The current operating mode as defined in the table below.

Syntax

OpMode’(’ ’)’

A function with a return value of the data type symnum.

Related information
Described in:

Different operating modes User’s Guide - Starting up

Reading running mode Functions - RunMode

Return value Symbolic constant Comment

0 OP_UNDEF Undefined operating mode

1 OP_AUTO Automatic operating mode

2 OP_MAN_PROG Manual operating mode
max. 250 mm/s

3 OP_MAN_TEST Manual operating mode
full speed, 100 %

OpMode Functions
3-OpMode-2 System DataTypes and Routines

Functions OrientZYX
OrientZYX Builds an orient from Euler angles

OrientZYX (Orient from Euler ZYX angles) is used to build an orient type variable out
of Euler angles.

Example

VAR num anglex;
VAR num angley;
VAR num anglez;
VAR pose object;
.
object.rot := OrientZYX(anglez, angley, anglex)

Return value Data type: orient

The orientation made from the Euler angles.

The rotations will be performed in the following order:
-rotation around the z axis,
-rotation around the new y axis
-rotation around the new x axis.

Arguments

OrientZYX (ZAngle YAngle XAngle)

ZAngle Data type: num

The rotation, in degrees, around the Z axis.

YAngle Data type: num

The rotation, in degrees, around the Y axis.

XAngle Data type: num

The rotation, in degrees, around the X axis.

The rotations will be performed in the following order:
-rotation around the z axis,
-rotation around the new y axis
-rotation around the new x axis.
System DataTypes and Routines 3-OrientZYX-1

OrientZYX Functions
Syntax

OrientZYX’(’
[ZAngle ’:=’] <expression (IN) of num> ’,’
[YAngle ’:=’] <expression (IN) of num> ’,’
[XAngle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type orient.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-OrientZYX-2 System DataTypes and Routines

Functions ORobT
ORobT Removes a program displacement from a position

ORobT (Object Robot Target) is used to transform a robot position from the program
displacement coordinate system to the object coordinate system and/or to remove an
offset for the external axes.

Example

VAR robtarget p10;
VAR robtarget p11;

p10 := CRobT();
p11 := ORobT(p10);

The current positions of the robot and the external axes are stored in p10 and p11.
The values stored in p10 are related to the ProgDisp/ExtOffs coordinate system.
The values stored in p11 are related to the object coordinate system without any
offset on the external axes.

Return value Data type: robtarget

The transformed position data.

Arguments

ORobT (OrgPoint [\InPDisp] | [\InEOffs])

OrgPoint (Original Point) Data type: robtarget

The original point to be transformed.

[\InPDisp] (In Program Displacement) Data type: switch

Returns the TCP position in the ProgDisp coordinate system, i.e. removes exter-
nal axes offset only.

[\InEOffs] (In External Offset) Data type: switch

Returns the external axes in the offset coordinate system, i.e. removes program
displacement for the robot only.
System DataTypes and Routines 3-ORobT-1

ORobT Functions
Examples

p10 := ORobT(p10 \InEOffs);

The ORobT function will remove any program displacement that is active, leav-
ing the TCP position relative to the object coordinate system. The external axes
will remain in the offset coordinate system.

p10 := ORobT(p10 \InPDisp);

The ORobT function will remove any offset of the external axes. The TCP posi-
tion will remain in the ProgDisp coordinate system.

Syntax

ORobT ’(’
[OrgPoint ’:=’] < expression (IN) of robtarget>
[’\’InPDisp] | [’\’InEOffs]’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Definition of program displacement for Instructions - PDispOn, PDispSet
the robot

Definition of offset for external axes Instructions - EOffsOn, EOffsSet

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
3-ORobT-2 System DataTypes and Routines

Functions PoseInv
PoseInv Inverts the pose

PoseInv (Pose Invert) calculates the reverse transformation of a pose.

Example

Pose1 represents the coordinates of Frame1 related to Frame0.
The transformation giving the coordinates of Frame0 related to Frame1 is obtained by
the reverse transformation:

VAR pose pose1;
VAR pose pose2;
.
.
pose2 := PoseInv(pose1);

Return value Data type: pose

The value of the reverse pose.

Arguments

PoseInv (Pose)

Pose Data type: pose

The pose to invert.

x0

y0

z0

Frame0 x1
y1

z1

Frame1

Pose1

Pose2
System DataTypes and Routines 3-PoseInv-1

PoseInv Functions
Syntax

PoseInv’(’
[Pose ’:=’] <expression (IN) of pose>
’)’

A function with a return value of the data type pose.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-PoseInv-2 System DataTypes and Routines

Functions PoseMult
PoseMult Multiplies pose data

PoseMult (Pose Multiply) is used to calculate the product of two frame transforma-
tions. A typical use is to calculate a new frame as the result of a displacement acting
on an original frame.

Example

pose1 represents the coordinates of Frame1 related to Frame0.
pose2 represents the coordinates of Frame2 related to Frame1.

The transformation giving pose3, the coordinates of Frame2 related to Frame0, is
obtained by the product of the two transformations:

VAR pose pose1;
VAR pose pose2;
VAR pose pose3;
.
.
pose3 := PoseMult(pose1, pose2);

Return value Data type: pose

The value of the product of the two poses.

x0

y0

z0

Frame0 x1

y1

z1

x2
y2

z2
Frame1

Frame2

pose1
pose2

pose3
System DataTypes and Routines 3-PoseMult-1

PoseMult Functions
Arguments

PoseMult (Pose1 Pose2)

Pose1 Data type: pose

The first pose.

Pose2 Data type: pose

The second pose.

Syntax

PoseMult’(’
[Pose1 ’:=’] <expression (IN) of pose> ’,’
[Pose2 ’:=’] <expression (IN) of pose>
’)’

A function with a return value of the data type pose.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-PoseMult-2 System DataTypes and Routines

Functions PoseVect
PoseVect Applies a transformation to a vector

PoseVect (Pose Vector) is used to calculate the product of a pose and a vector.
It is typically used to calculate a vector as the result of the effect of a displacement on
an original vector.

Example

pose1 represents the coordinates of Frame1 related to Frame0.
pos1 is a vector related to Frame1.

The corresponding vector related to Frame0 is obtained by the product:

VAR pose pose1;
VAR pos pos1;
VAR pos pos2;
.
.
pos2:= PoseVect(pose1, pos1);

Return value Data type: pos

The value of the product of the pose and the original pos.

x0

y0

z0

Frame0

x1

y1

z1

Frame1
pose1

pos1pos2
System DataTypes and Routines 3-PoseVect-1

PoseVect Functions
Arguments

PoseVect (Pose Pos)

Pose Data type: pose

The transformation to be applied.

Pos Data type: pos

The pos to be transformed.

Syntax

PoseVect’(’
[Pose ’:=’] <expression (IN) of pose> ’,’
[Pos ’:=’] <expression (IN) of pos>
’)’

A function with a return value of the data type pos.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-PoseVect-2 System DataTypes and Routines

Functions Pow
Pow Calculates the power of a value

Pow (Power) is used to calculate the exponential value in any base.

Example

VAR num x;
VAR num y
VAR num reg1;
.
reg1:= Pow(x, y);

reg1 is assigned the value xy.

Return value Data type: num

The value of the base x raised to the power of the exponent y (xy).

Arguments

Pow (Base Exponent)

Base Data type: num

The base argument value.

Exponent Data type: num

The exponent argument value.

Limitations

The execution of the function xy will give an error if:

. x < 0 and y is not an integer;

. x = 0 and y 0.

Syntax

Pow’(’
[Base ’:=’] <expression (IN) of num> ’,’
[Exponent ’:=’] <expression (IN) of num>
’)’

≤

System DataTypes and Routines 3-Pow-1

Pow Functions
A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-Pow-2 System DataTypes and Routines

Functions Present
Present Tests if an optional parameter is used

Present is used to test if an optional argument has been used when calling a routine.

An optional parameter may not be used if it was not specified when calling the routine.
This function can be used to test if a parameter has been specified, in order to prevent
errors from occurring.

Example

PROC feeder (\switch on | \switch off)

IF Present (on) Set do1;
IF Present (off) Reset do1;

ENDPROC

The output do1, which controls a feeder, is set or reset depending on the argu-
ment used when calling the routine.

Return value Data type: bool

TRUE = The parameter value or a switch has been defined when calling the routine.

FALSE = The parameter value or a switch has not been defined.

Arguments

Present (OptPar)

OptPar (Optional Parameter) Data type: Any type

The name of the optional parameter to be tested.
System DataTypes and Routines 3-Present-1

Present Functions
Example

PROC glue (\switch on, num glueflow, robtarget topoint, speeddata speed,
zonedata zone, PERS tooldata tool, \PERS wobjdata wobj)

IF Present (on) PulseDO glue_on;
SetAO gluesignal, glueflow;
IF Present (wobj) THEN

MoveL topoint, speed, zone, tool \WObj=wobj;
ELSE

MoveL topoint, speed, zone, tool;
ENDIF

ENDPROC

A glue routine is made. If the argument \on is specified when calling the routine,
a pulse is generated on the signal glue_on. The robot then sets an analog output
gluesignal, which controls the glue gun, and moves to the end position. As the
wobj parameter is optional, different MoveL instructions are used depending on
whether this argument is used or not.

Syntax

Present ’(’
[OptPar’:=’] <reference (REF) of any type> ’)’

A REF parameter requires, in this case, the optional parameter name.

A function with a return value of the data type bool.

Related information

Described in:

Routine parameters Basic Characteristics - Routines
3-Present-2 System DataTypes and Routines

Functions ReadBin
ReadBin Reads from a binary serial channel or file

ReadBin (Read Binary) is used to read a byte (8 bits) from a binary serial channel or
file.

Example

VAR iodev inchannel;
.
Open "sio1:", inchannel\Bin;
character := ReadBin(inchannel);

A byte is read from the binary channel inchannel.

Return value Data type: num

A byte (8 bits) is read from a specified serial channel. This byte is converted to the
corresponding positive numeric value. If the file is empty (end of file), the number -1
is returned.

Arguments

ReadBin (IODevice [\Time])

IODevice Data type: iodev

The name (reference) of the current serial channel or file.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is
not specified, the max. time is set to 60 seconds.

If this time runs out before the reading operation is finished, the error handler
will be called with the error code ERR_DEV_MAXTIME. If there is no error
handler, the execution will be stopped.

The timeout function is in use also during program stop and will be noticed in
RAPID program at program start.

Program execution

Program execution waits until a byte (8 bits) can be read from the binary serial channel.
System DataTypes and Routines 3-ReadBin-1

ReadBin Functions

SCII

binary
Example

Open “flp1:myfile.bin”, file\Bin;
.
Rewind file;
bindata := ReadBin(file);
WHILE bindata <> EOF_BIN DO

TPWrite ByteToStr(bindata\Char);
bindata := ReadBin(file);

ENDWHILE

Read the contents of a binary file myfile.bin from the beginning to the end of the
file and display the binary data received on the teach pendant, converted to A
characters (one char on each line).

Limitations

The function can only be used for channels and files that have been opened for
reading and writing.

Error handling

If an error occurs during reading, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.

Predefined data

The constant EOF_BIN can be used to stop reading at the end of the file.

CONST num EOF_BIN := -1;

Syntax

ReadBin’(’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type num.
3-ReadBin-2 System DataTypes and Routines

Functions ReadBin
Related information

Described in:

Opening (etc.) serial channels RAPID Summary - Communication

Convert a byte to a string data Functions - ByteToStr

Byte data Data Types - byte
System DataTypes and Routines 3-ReadBin-3

ReadBin Functions
3-ReadBin-4 System DataTypes and Routines

Functions ReadMotor
ReadMotor Reads the current motor angles

ReadMotor is used to read the current angles of the different motors of the robot and
external axes. The primary use of this function is in the calibration procedure of the
robot.

Example

VAR num motor_angle2;

motor_angle2 := ReadMotor(2);

The current motor angle of the second axis of the robot is stored in
motor_angle2.

Return value Data type: num

The current motor angle in radians of the stated axis of the robot or external axes.

Arguments

ReadMotor [\MecUnit] Axis

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit for which an axis is to be read. If this argument
is omitted, the axis for the robot is read. (Note, in this release only robot is per-
mitted for this argument).

Axis Data type: num

The number of the axis to be read (1 - 6).

Program execution

The motor angle returned represents the current position in radians for the motor and
independently of any calibration offset. The value is not related to a fix position of the
robot, only to the resolver internal zero position, i.e. normally the resolver zero posi-
tion closest to the calibration position (the difference between the resolver zero posi-
tion and the calibration position is the calibration offset value). The value represents
the full movement of each axis, although this may be several turns.
System DataTypes and Routines 3-ReadMotor-1

ReadMotor Functions
Example

VAR num motor_angle3;

motor_angle3 := ReadMotor(\MecUnit:=robot, 3);

The current motor angle of the third axis of the robot is stored in motor_angle3.

Syntax

ReadMotor’(’
[’ \’MecUnit ’:=’ < variable (VAR) of mecunit>’,’]
[Axis ’:=’] < expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Reading the current joint angle Functions - CJointT
3-ReadMotor-2 System DataTypes and Routines

Functions ReadNum
ReadNum Reads a number from a file or the serial channel

ReadNum (Read Numeric) is used to read a number from a character-based file or the
serial channel.

Example

VAR iodev infile;
.
Open "flp1:file.doc", infile\Read;
reg1 := ReadNum(infile);

Reg1 is assigned a number read from the file file.doc on the diskette.

Return value Data type: num

The numeric value read from a specified file. If the file is empty (end of file), the num-
ber 9.999E36 is returned.

Arguments

ReadNum (IODevice [\Time])

IODevice Data type: iodev

The name (reference) of the file to be read.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is
not specified, the max. time is set to 60 seconds.

If this time runs out before the read operation is finished, the error handler will
be called with the error code ERR_DEV_MAXTIME. If there is no error han-
dler, the execution will be stopped.

The timeout function is also in use during program stop and will be noticed in
RAPID program at program start.

Program execution

The function reads a line from a file, i.e. reads everything up to and including the next
line-feed character (LF), but not more than 80 characters. If the line exceeds 80 char-
acters, the remainder of the characters will be read on the next reading.
System DataTypes and Routines 3-ReadNum-1

ReadNum Functions

rted
.

ure

able
ror
3-ReadNum-2 System DataTypes and Routines

The string that is read is then converted to a numeric value; e.g. “234.4” is conve
to the numeric value 234.4. If all the characters read are not digits, 0 is returned

Example

reg1 := ReadNum(infile);
IF reg1 > EOF_NUM THEN

TPWrite "The file is empty"
..

Before using the number read from the file, a check is performed to make s
that the file is not empty.

Limitations

The function can only be used for files that have been opened for reading.

Error handling

If an access error occurs during reading, the system variable ERRNO is set to
ERR_FILEACC. If there is an attempt to read non numeric data, the system vari
ERRNO is set to ERR_RCVDATA. These errors can then be dealt with by the er
handler.

Predefined data

The constant EOF_NUM can be used to stop reading, at the end of the file.

CONST num EOF_NUM := 9.998E36;

Syntax

ReadNum ’(’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type num.

Related information

Described in:

Opening (etc.) serial channels RAPID Summary - Communication

Functions ReadStr
ReadStr Reads a string from a file or serial channel

ReadStr (Read String) is used to read text from a character-based file or from the serial
channel.

Example

VAR iodev infile;
.
Open "flp1:file.doc", infile\Read;
text := ReadStr(infile);

Text is assigned a text string read from the file file.doc on the diskette.

Return value Data type: string

The text string read from the specified file. If the file is empty (end of file), the string
"EOF" is returned.

Arguments

ReadStr (IODevice [\Time])

IODevice Data type: iodev

The name (reference) of the file to be read.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is
not specified, the max. time is set to 60 seconds.

If this time runs out before the read operation is finished, the error handler will
be called with the error code ERR_DEV_MAXTIME. If there is no error han-
dler, the execution will be stopped.

Program execution

The function reads a line from a file, i.e. reads everything up to and including the next
line-feed character (LF), but not more than 80 characters. If the line exceeds 80 char-
acters, the remainder of the characters will be read on the next reading.
System DataTypes and Routines 3-ReadStr-1

ReadStr Functions
Example

text := ReadStr(infile);
IF text = EOF THEN

TPWrite "The file is empty";
.

Before using the string read from the file, a check is performed to make sure that
the file is not empty.

Limitations

The function can only be used for files that have been opened for reading.

Error handling

If an error occurs during reading, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.

Predefined data

The constant EOF can be used to check if the file was empty when trying to read from
the file or to stop reading at the end of the file.

CONST string EOF := "EOF";

Syntax

ReadStr ’(’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type string.

Related information

Described in:

Opening (etc.) serial channels RAPID Summary - Communication
3-ReadStr-2 System DataTypes and Routines

Functions RelTool
RelTool Make a displacement relative to the tool

RelTool (Relative Tool) is used to add a displacement and/or a rotation, expressed in
the tool coordinate system, to a robot position.

Example

MoveL RelTool (p1, 0, 0, 100), v100, fine, tool1;

The robot is moved to a position that is 100 mm from p1 in the direction of the
tool.

MoveL RelTool (p1, 0, 0, 0 \Rz:= 25), v100, fine, tool1;

The tool is rotated 25o around its z-axis.

Return value Data type: robtarget

The new position with the addition of a displacement and/or a rotation, if any, relative
to the active tool.

Arguments

RelTool (Point Dx Dy Dz [\Rx] [\Ry] [\Rz])

Point Data type: robtarget

The input robot position. The orientation part of this position defines the current
orientation of the tool coordinate system.

Dx Data type: num

The displacement in mm in the x direction of the tool coordinate system.

Dy Data type: num

The displacement in mm in the y direction of the tool coordinate system.

Dz Data type: num

The displacement in mm in the z direction of the tool coordinate system.

[\Rx] Data type: num

The rotation in degrees around the x axis of the tool coordinate system.
System DataTypes and Routines 3-RelTool-1

RelTool Functions
[\Ry] Data type: num

The rotation in degrees around the y axis of the tool coordinate system.

[\Rz] Data type: num

The rotation in degrees around the z axis of the tool coordinate system.

In the event that two or three rotations are specified at the same time, these will be per-
formed first around the x-axis, then around the new y-axis, and then around the new
z-axis.

Syntax

RelTool’(’
[Point ’:=’] < expression (IN) of robtarget>’,’
[Dx ’:=’] <expression (IN) of num> ’,’
[Dy ’:=’] <expression (IN) of num> ’,’
[Dz ’:=’] <expression (IN) of num>
[’ \’Rx ’:=’ <expression (IN) of num>]
[’\’ Ry ’:=’ <expression (IN) of num>]
[’\’ Rz ’:=’ <expression (IN) of num>]’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Positioning instructions RAPID Summary - Motion
3-RelTool-2 System DataTypes and Routines

Functions Round
Round Round is a numeric value

Round is used to round a numeric value to a specified number of decimals or to an inte-
ger value.

Example

VAR num val;

val := Round(0.38521\Dec:=3);

The variable val is given the value 0.385.

val := Round(0.38521\Dec:=1);

The variable val is given the value 0.4.

val := Round(0.38521);

The variable val is given the value 0.

Return value Data type: num

The numeric value rounded to the specified number of decimals.

Arguments

Round (Val [\Dec])

Val (Value) Data type: num

The numeric value to be rounded.

[\Dec] (Decimals Data type: num

Number of decimals.

If the specified number of decimals is 0 or if the argument is omitted, the value
is rounded to an integer.

The number of decimals must not be negative or greater than the available pre-
cision for numeric values.
System DataTypes and Routines 3-Round-1

Round Functions
Syntax

Round’(’
[Val ’:=’] <expression (IN) of num>
[\Dec ’:=’ <expression (IN) of num>]
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Truncating a value Functions - Trunc
3-Round-2 System DataTypes and Routines

Functions RunMode
RunMode Read the running mode

RunMode (Running Mode) is used to read the current running mode of the program
task.

Example

IF RunMode() = RUN_CONT_CYCLE THEN
..
ENDIF

The program section is executed only for continuous or cycle running.

Return value Data type: symnum

The current running mode as defined in the table below.

Arguments

RunMode ([\Main])

[\Main] Data type: switch

Return current running mode for program task main.
Used in multi-tasking system to get current running mode for program task main
from some other program task.

If this argument is omitted, the return value always mirrors the current running
mode for the program task which executes the function RunMode.

Syntax

RunMode ’(’ [’\’Main] ’)’

Return value Symbolic constant Comment

0 RUN_UNDEF Undefined running mode

1 RUN_CONT_CYCLE Continuous or cycle running mode

2 RUN_INSTR_FWD Instruction forward running mode

3 RUN_INSTR_BWD Instruction backward running mode

4 RUN_SIM Simulated running mode
System DataTypes and Routines 3-RunMode-1

RunMode Functions
A function with a return value of the data type symnum.

Related information

Described in:

Reading operating mode Functions - OpMode
3-RunMode-2 System DataTypes and Routines

Functions Sin
Sin Calculates the sine value

Sin (Sine) is used to calculate the sine value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Sin(angle);

Return value Data type: num

The sine value, range [-1, 1] .

Arguments

Sin (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Sin’(’
[Angle’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
System DataTypes and Routines 3-Sin-1

Sin Functions
3-Sin-2 System DataTypes and Routines

Functions Sqrt
Sqrt Calculates the square root value

Sqrt (Square root) is used to calculate the square root value.

Example

VAR num x_value;
VAR num y_value;
.
.
y_value := Sqrt(x_value);

Return value Data type: num

The square root value.

Arguments

Sqrt (Value)

Value Data type: num

The argument value for square root (); it has to be .

Syntax

Sqrt’(’
[Value’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

0≥
System DataTypes and Routines 3-Sqrt-1

Sqrt Functions
3-Sqrt-2 System DataTypes and Routines

Functions StrFind
StrFind Searches for a character in a string

StrFind (String Find) is used to search in a string, starting at a specified position, for a
character that belongs to a specified set of characters.

Example

VAR num found;

found := StrFind("Robotics",1,"aeiou");

The variable found is given the value 2.

found := StrFind("Robotics",1,"aeiou"\NotInSet);

The variable found is given the value 1.

found := StrFind("IRB 6400",1,STR_DIGIT);

The variable found is given the value 5.

found := StrFind("IRB 6400",1,STR_WHITE);

The variable found is given the value 4.

Return value Data type: num

The character position of the first character, at or past the specified position, that
belongs to the specified set. If no such character is found, String length +1 is returned.

Arguments

StrFind (Str ChPos Set [\NotInSet])

Str (String) Data type: string

The string to search in.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outside the
string.

Set Data type: string

Set of characters to test against.
System DataTypes and Routines 3-StrFind-1

StrFind Functions
[\NotInSet] Data type: switch

Search for a character not in the set of characters.

Syntax

StrFind’(’
[Str ’:=’] <expression (IN) of string> ’,’
[ChPos ’:=’] <expression (IN) of num> ’,’
[Set’:=’] <expression (IN) of string>
[’\’NotInSet]
’)’

A function with a return value of the data type num.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-StrFind-2 System DataTypes and Routines

Functions StrLen
StrLen Gets the string length

StrLen (String Length) is used to find the current length of a string.

Example

VAR num len;

len := StrLen("Robotics");

The variable len is given the value 8.

Return value Data type: num

The number of characters in the string (>=0).

Arguments

StrLen (Str)

Str (String) Data type: string

The string in which the number of characters is to be counted.

Syntax

StrLen’(’
[Str ’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type num.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
System DataTypes and Routines 3-StrLen-1

StrLen Functions
3-StrLen-2 System DataTypes and Routines

Functions StrMap
StrMap Maps a string

StrMap (String Mapping) is used to create a copy of a string in which all characters are
translated according to a specified mapping.

Example

VAR string str;

str := StrMap("Robotics","aeiou","AEIOU");

The variable str is given the value "RObOtIcs".

str := StrMap("Robotics",STR_LOWER, STR_UPPER);

The variable str is given the value "ROBOTICS".

Return value Data type: string

The string created by translating the characters in the specified string, as specified by
the "from" and "to" strings. Each character, from the specified string, that is found in
the "from" string is replaced by the character at the corresponding position in the "to"
string. Characters for which no mapping is defined are copied unchanged to the result-
ing string.

Arguments

StrMap (Str FromMap ToMap)

Str (String) Data type: string

The string to translate.

FromMap Data type: string

Index part of mapping.

ToMap Data type: string

Value part of mapping.
System DataTypes and Routines 3-StrMap-1

StrMap Functions
Syntax

StrMap’(’
[Str ’:=’] <expression (IN) of string> ’,’
[FromMap’:=’] <expression (IN) of string> ’,’
[ToMap’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type string.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-StrMap-2 System DataTypes and Routines

Functions StrMatch
StrMatch Search for pattern in string

StrMatch (String Match) is used to search in a string, starting at a specified position,
for a specified pattern.

Example

VAR num found;

found := StrMatch("Robotics",1,"bo");

The variable found is given the value 3.

Return value Data type: num

The character position of the first substring, at or past the specified position, that is
equal to the specified pattern string. If no such substring is found, string length +1 is
returned.

Arguments

StrMatch (Str ChPos Pattern)

Str (String) Data type: string

The string to search in.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outside the
string.

Pattern Data type: string

Pattern string to search for.

Syntax

StrMatch’(’
[Str ’:=’] <expression (IN) of string> ’,’
[ChPos ’:=’] <expression (IN) of num> ’,’
[Pattern’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type num.
System DataTypes and Routines 3-StrMatch-1

StrMatch Functions
Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-StrMatch-2 System DataTypes and Routines

Functions StrMemb

the

 is
StrMemb Checks if a character belongs to a set

StrMemb (String Member) is used to check whether a specified character in a string
belongs to a specified set of characters.

Example

VAR bool memb;

memb := StrMemb("Robotics",2,"aeiou");

The variable memb is given the value TRUE, as o is a member of the set "aeiou".

memb := StrMemb("Robotics",3,"aeiou");

The variable memb is given the value FALSE, as b is not a member of the set
"aeiou".

memb := StrMemb("S-721 68 VÄSTERÅS",3,STR_DIGIT);

The variable memb is given the value TRUE.

Return value Data type: bool

TRUE if the character at the specified position in the specified string belongs to
specified set of characters.

Arguments

StrMemb (Str ChPos Set)

Str (String) Data type: string

The string to check in.

ChPos (Character Position) Data type: num

The character position to check. A runtime error is generated if the position
outside the string.

Set Data type: string

Set of characters to test against.
System DataTypes and Routines 3-StrMemb-1

StrMemb Functions
Syntax

StrMemb’(’
[Str ’:=’] <expression (IN) of string> ’,’
[ChPos ’:=’] <expression (IN) of num> ’,’
[Set’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type bool.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-StrMemb-2 System DataTypes and Routines

Functions StrOrder
StrOrder Checks if strings are ordered

StrOrder (String Order) is used to check whether two strings are in order, according to
a specified character ordering sequence.

Example

VAR bool le;

le := StrOrder("FIRST","SECOND",STR_UPPER);

The variable le is given the value TRUE, because "FIRST" comes before
"SECOND" in the character ordering sequence STR_UPPER.

Return value Data type: bool

TRUE if the first string comes before the second string (Str1 <= Str2) when characters
are ordered as specified.

Characters that are not included in the defined ordering are all assumed to follow the
present ones.

Arguments

StrOrder (Str1 Str2 Order)

Str1 (String 1) Data type: string

First string value.

Str2 (String 2) Data type: string

Second string value.

Order Data type: string

Sequence of characters that define the ordering.
System DataTypes and Routines 3-StrOrder-1

StrOrder Functions
Syntax

StrOrder’(’
[Str1 ’:=’] <expression (IN) of string> ’,’
[Str2 ’:=’] <expression (IN) of string> ’,’
[Order ’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type bool.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-StrOrder-2 System DataTypes and Routines

Functions StrPart
StrPart Finds a part of a string

StrPart (String Part) is used to find a part of a string, as a new string.

Example

VAR string part;

part := StrPart("Robotics",1,5);

The variable part is given the value "Robot".

Return value Data type: string

The substring of the specified string, which has the specified length and starts at the
specified character position.

Arguments

StrPart (Str ChPos Len)

Str (String) Data type: string

The string in which a part is to be found.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outside the
string.

Len (Length) Data type: num

Length of string part. A runtime error is generated if the length is negative or
greater than the length of the string, or if the substring is (partially) outside the
string.

Syntax

StrPart’(’
[Str ’:=’] <expression (IN) of string> ’,’
[ChPos ’:=’] <expression (IN) of num> ’,’
[Len’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type string.
System DataTypes and Routines 3-StrPart-1

StrPart Functions
Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-StrPart-2 System DataTypes and Routines

Functions
StrToByte Converts a string to a byte data

StrToByte (String To Byte) is used to convert a string with a defined byte data format
into a byte data.

Example

VAR string con_data_buffer{5} := ["10", "AE", "176", "00001010", "A"];
VAR byte data_buffer{5};

data_buffer{1} := StrToByte(con_data_buffer{1});

The content of the array component data_buffer{1} will be 10 decimal after the
StrToByte ... function.

data_buffer{2} := StrToByte(con_data_buffer{2}\Hex);

The content of the array component data_buffer{2} will be 174 decimal after the
StrToByte ... function.

data_buffer{3} := StrToByte(con_data_buffer{3}\Okt);

The content of the array component data_buffer{3} will be 126 decimal after the
StrToByte ... function.

data_buffer{4} := StrToByte(con_data_buffer{4}\Bin);

The content of the array component data_buffer{4} will be 10 decimal after the
StrToByte ... function.

data_buffer{5} := StrToByte(con_data_buffer{5}\Char);

The content of the array component data_buffer{5} will be 65 decimal after the
StrToByte ... function.

Return value Data type: byte

The result of the conversion operation in decimal representation.
System DataTypes and Routines 3--1

Functions

d as
Arguments

StrToByte (ConStr [\Hex] | [\Okt] | [\Bin] | [\Char])

ConStr (Convert String) Data type: string

The string data to be converted.

If the optional switch argument is omitted, the string to be converted has decimal (Dec)
format.

[\Hex] (Hexadecimal) Data type: switch

The string to be converted has hexadecimal format.

[\Okt] (Octal) Data type: switch

The string to be converted has octal format.

[\Bin] (Binary) Data type: switch

The string to be converted has binary format.

[\Char] (Character) Data type: switch

The string to be converted has ASCII character format.

Limitations

Depending on the format of the string to be converted, the following string data
is valid:

Format: String length: Range:
Dec: ’0’ - ’9’ 3 "0" - "255"
Hex: ’0’ - ’9’, ’a’ -’f’, ’A’ - ’F’ 2 "0" - "FF"
Okt: ’0’ - ’7’ 3 "0" - "377"
Bin: ’0’ - ’1’ 8 "0" - "11111111"
Char: Any ASCII character 1 ASCII table

RAPID character codes (e.g. "\07" for BEL control character) cannot be use
arguments in ConStr.

Syntax

StrToByte’(’
[ConStr ’:=’] <expression (IN) of string>
[’\’ Hex] | [’\’ Okt] | [’\’ Bin] | [’\’ Char]
’)’ ’;’
3--2 System DataTypes and Routines

Functions Pow
A function with a return value of the data type byte.

Related information

Described in:

Convert a byte to a string data Instructions - ByteToStr

Other bit (byte) functions RAPID Summary - Bit Functions

Other string functions RAPID Summary - String Functions
System DataTypes and Routines 3-Pow-3

Pow Functions
3-Pow-4 System DataTypes and Routines

Functions StrToVal
StrToVal Converts a string to a value

StrToVal (String To Value) is used to convert a string to a value of any data type.

Example

VAR bool ok;
VAR num nval;

ok := StrToVal("3.85",nval);

The variable ok is given the value TRUE and nval is given the value 3.85.

Return value Data type: bool

TRUE if the requested conversion succeeded, FALSE otherwise.

Arguments

StrToVal (Str Val)

Str (String) Data type: string

A string value containing literal data with format corresponding to the data type
used in argument Val. Valid format as for RAPID literal aggregates.

Val (Value) Data type: ANYTYPE

Name of the variable or persistent of any data type for storage of the result from
the conversion. The data is unchanged if the requested conversion failed.

Example

VAR string 15 := “[600, 500, 225.3]”;
VAR bool ok;
VAR pos pos15;

ok := StrToVal(str15,pos15);

The variable ok is given the value TRUE and the variable p15 is given the value
that are specified in the string str15.
System DataTypes and Routines 3-StrToVal-1

StrToVal Functions
Syntax

StrToVal’(’
[Str ’:=’] <expression (IN) of string> ’,’
[Val ’:=’] <var or pers (INOUT) of ANYTYPE>
’)’

A function with a return value of the data type bool.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-StrToVal-2 System DataTypes and Routines

Functions Tan
Tan Calculates the tangent value

Tan (Tangent) is used to calculate the tangent value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Tan(angle);

Return value Data type: num

The tangent value.

Arguments

Tan (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Tan’(’
[Angle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
Arc tangent with return value in the
range [-180, 180] Functions - ATan2
System DataTypes and Routines 3-Tan-1

Tan Functions
3-Tan-2 System DataTypes and Routines

Functions TestDI
TestDI Tests if a digital input is set

TestDI is used to test whether a digital input is set.

Examples

IF TestDI (di2) THEN . . .

If the current value of the signal di2 is equal to 1, then . . .

IF NOT TestDI (di2) THEN . . .

If the current value of the signal di2 is equal to 0, then . . .

WaitUntil TestDI(di1) AND TestDI(di2);

Program execution continues only after both the di1 input and the di2 input have
been set.

Return value Data type: bool

TRUE = The current value of the signal is equal to 1.

FALSE = The current value of the signal is equal to 0.

Arguments

TestDI (Signal)

Signal Data type: signaldi

The name of the signal to be tested.

Syntax

TestDI ’(’
[Signal ’:=’] < variable (VAR) of signaldi > ’)’

A function with a return value of the data type bool.
System DataTypes and Routines 3-TestDI-1

TestDI Functions
Related information

Described in:

Reading the value of a digital input signal Functions - DInput

Input/Output instructions RAPID Summary -
Input and Output Signals
3-TestDI-2 System DataTypes and Routines

Functions TestAndSet

e
ated.

ore.

),
TestAndSet Test variable and set if unset

TestAndSet can be used together with a normal data object of the type bool, as a binary
semaphore, to retrieve exclusive right to specific RAPID code areas or system
resources. The function could be used both between different program tasks and dif-
ferent execution levels (TRAP or Event Routines) within the same program task.

Example of resources that can need protection from access at the same time:

- Use of some RAPID routines with function problems when executed in
parallel.

- Use of the Teach Pendant - Operator Output & Input

Example

MAIN program task:

PERS bool tproutine_inuse := FALSE;
....
WaitUntil TestAndSet(tproutine_inuse);
TPWrite “First line from MAIN”;
TPWrite “Second line from MAIN”;
TPWrite “Third line from MAIN”;
tproutine_inuse := FALSE;

BACK1 program task:

PERS bool tproutine_inuse := FALSE;
.... .
WaitUntil TestAndSet(tproutine_inuse);
TPWrite “First line from BACK1”;
TPWrite “Second line from BACK1”;
TPWrite “Third line from BACK1”;
tproutine_inuse := FALSE;

To avoid mixing up the lines, one from MAIN and one from BACK1, the use of th
TestAndSet function guarantees that all three lines from each task are not separ

If program task MAIN takes the semaphore TestAndSet(tproutine_inuse) first, then
program task BACK1 must wait until the program task MAIN has left the semaph

Return value Data type: num

TRUE if the semaphore has been taken by me (executor of TestAndSet function
otherwise FALSE. ???
System DataTypes and Routines 3-TestAndSet-3

TestAndSet Functions
Arguments

TestAndSet Object

Object Data type: bool

User defined data object to be used as semaphore. The data object could be a VAR
or a PERS. If TestAndSet are used between different program tasks, the object
must be a PERS or an installed VAR (intertask objects).

Program execution

This function will in one indivisible step check the user defined variable and, if it is
unset, will set it and return TRUE, otherwise it will return FALSE.

IF Object = FALSE THEN
Object := TRUE;
RETURN TRUE;

ELSE
RETURN FALSE;

ENDIF

Example

LOCAL VAR bool doit_inuse := FALSE;
...
PROC doit(...)

WaitUntil TestAndSet (doit_inuse);
....
doit_inuse := FALSE;

ENDPROC

If a module is installed built-in and shared, it is possible to use a local module
variable for protection of access from different program tasks at the same time.

Note in this case: If program execution is stopped in the routine doit and the
program pointer is moved to main, the variable doit_inuse will not be reset. To
avoid this, reset the variable doit_inuse to FALSE in the START event routine.

Syntax

TestAndSet ’(’
[Object ’:=’] < variable or persistent (INOUT) of bool> ’)’

A function with a return value of the data type bool.
3-TestAndSet-4 System DataTypes and Routines

Functions TestAndSet
Related information

Described in:

Built-in and shared module User’s Guide - System parameters

Intertask objects RAPID Developer’s Manual -
RAPID Kernel Reference Manual -
Intertask objects
System DataTypes and Routines 3-TestAndSet-5

TestAndSet Functions
3-TestAndSet-6 System DataTypes and Routines

Functions Trunc
Trunc Truncates a numeric value

Trunc (Truncate) is used to truncate a numeric value to a specified number of decimals
or to an integer value.

Example

VAR num val;

val := Trunc(0.38521\Dec:=3);

The variable val is given the value 0.385.

reg1 := 0.38521

val := Trunc(reg1\Dec:=1);

The variable val is given the value 0.3.

val := Trunc(0.38521);

The variable val is given the value 0.

Return value Data type: num

The numeric value truncated to the specified number of decimals.

Arguments

Trunc (Val [\Dec])

Val (Value) Data type: num

The numeric value to be truncated.

[\Dec] (Decimals) Data type: num

Number of decimals.

If the specified number of decimals is 0 or if the argument is omitted, the value
is truncated to an integer.

The number of decimals must not be negative or greater than the available pre-
cision for numeric values.
System DataTypes and Routines 3-Trunc-1

Trunc Functions
Syntax

Trunc’(’
[Val ’:=’] <expression (IN) of num>
[\Dec ’:=’ <expression (IN) of num>]
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Rounding a value Functions - Round
3-Trunc-2 System DataTypes and Routines

Functions ValToStr
ValToStr Converts a value to a string

ValToStr (Value To String) is used to convert a value of any data type to a string.

Example

VAR string str;
VAR pos p := [100,200,300];

str := ValToStr(1.234567);

The variable str is given the value "1.23457".

str := ValToStr(TRUE);

The variable str is given the value "TRUE".

str := ValToStr(p);

The variable str is given the value "[100,200,300]".

Return value Data type: string

The value is converted to a string with standard RAPID format. This means in principle
6 significant digits. If the decimal part is less than 0.000005 or greater than 0.999995,
the number is rounded to an integer.

A runtime error is generated if the resulting string is too long.

Arguments

ValToStr (Val)

Val (Value) Data type: ANYTYPE

A value of any data type.

Syntax

ValToStr’(’
[Val ’:=’] <expression (IN) of ANYTYPE>
’)’

A function with a return value of the data type string.
System DataTypes and Routines 3-ValToStr-1

ValToStr Functions
Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
3-ValToStr-2 System DataTypes and Routines

Functions VectMagn
VectMagn Magnitude of a pos vector

VectMagn (Vector Magnitude) is used to calculate the magnitude of a pos vector.

Example

A vector A can be written as the sum of its components in the three orthogonal direc-
tions:

The magnitude of A is:

The vector is described by the data type pos and the magnitude by the data type num:

VAR num magnitude;
VAR pos vector;
.
.
vector := [1,1,1];
magnitude := VectMagn(vector);

Return value Data type: num

The magnitude of the vector (data type pos).

Az

Ax

Ay

Az

y

x

A Axx Ayy Azz+ +=

A Ax
2 Ay

2 Az
2

+ +=
System DataTypes and Routines 3-VectMagn-1

VectMagn Functions
Arguments

VectMagn (Vector)

Vector Data type: pos

The vector described by the data type pos.

Syntax

VectMagn’(’
[Vector ’:=’] <expression (IN) of pos>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
3-VectMagn-2 System DataTypes and Routines

INDEX
A

Abs 1
absolute value 1
acceleration reduction 1
AccSet 1
ACos 1
ActUnit 1
Add 1
analog output

set 1
AOutput 1
arcus cosine 1
arcus sine 1
arcus tangent 1
ArgName 1
argument name 1
arithmetic 1
array

get size 1
ASin 1
assignment 1
ATan 1
ATan2 1

B

bit manipulation 1
bool 1
Break 1
byte 1

C

C_MOTSET 1
C_PROGDISP 1
call 1
CallByVar 1
CDate 1
circular movement 1
CJointT 1
Clear 1
ClkRead 1
ClkReset 1
ClkStart 1
ClkStop 1
clock 1

read 1

reset 1
start 1
stop 1

Close 1
comment 1
common drive unit 1
Compact IF 1
condition 1
confdata 1
ConfJ 1
ConfL 1
CONNECT 1
corner path 1
Cos 1
CPos 1
CRobT 1
CTime 1
CTool 1
CWobj 1

D

date 1
DeactUnit 1
Decr 1
decrease velocity 1
decrement 1
DefDFrame 1
DefFrame 1
digital output 1

pulse 1
reset 1
set 1

Dim 1
dionum 1
displace

position 1
displacement

tool direction 1
displacement frame 1
DotProd 3, 1
DOutput 1

E

Enable I/O unit 1
EOffsOff 1
EOffsOn 1
System Data Types and Routines 4-1

4

EOffsSet 1
erase teach pendant display 1
ERRNO 1
errnum 1
error recovery

retry 1
ErrWrite 1
EulerZYX 1
EXIT 1
ExitCycle 1
Exp 1
exponential value 1
external axes

activate 1
deactivate 1

extjoint 1

F

file
close 1
load 1, 3
open 1
read 1
rewind 1
unload 1, 3
write 1

fine 1
fly-by point 1
FOR 1
frame 1
Functions 1

G

GetTime 1
GOTO 1
GOutput 1
GripLoad 1
group of I/O 1

I

IDelete 1
IDisable 1
IEnable 1
IF 1
Incr 1
increment 1
interrupt

activate 1
at a position 1
connect 1
deactivate 1
delete 1
disable 1
enable 1
from digital input 1
identity 1
timed 1

INTNO 1
intnum 1
InvertDO 1
IO unit

disable 1
enable 1

iodev 1
IODisable 1
IOEnable 1
ISignalDI 1
ISignalDO 1
ISleep 1
IsPers 1
IsVar 1
ITimer 1
IVarValue 1
IWatch 1

J

joint movement 1
jump 1

L

label 1
linear movement 1
Load 1, 3
load

activate payload 1
loaddata 1
loadsession 7
logical value 1

M

maximum velocity 1
mechanical unit 1

activate 1
deactivate 1
-2 System Data Types and Routines

MechUnitLoad 3
mecunit 1
MirPos 1
mirroring 1
motsetdata 1
MoveAbsJ 1
MoveC 1
MoveCDO 1
MoveCSync 1
MoveJ 1
MoveJDO 1
MoveJSync 1
MoveL 1
MoveLDO 1
MoveLSync 1
movement

circle 1
joint 1
linear 1

N

num 1
numeric value 1
NumToStr 1

O

o_jointtarget 1
object coordinate system 1
Offs 1
offset 1
Open

file 1
serial channel 1

operating mode
read 1

OpMode 1
orient 1
OrientZYX 1
ORobT 1
output

at a position 1

P

path resolution
change 1

PathResol 1
payload 1

activate 1
PDispOff 1
PDispOn 1
pos 1
pose 1
PoseInv 1
PoseMult 1
position fix I/O 1
Pow 1
Present 1
ProcCall 1
procedure call 1
program displacement

activate 1
deactivate 1
remove from position 1

PulseDO 1

Q

quaternion 2

R

RAISE 1
read

clock 1
current date 1
current joint angles 1
current robot position 1
current time 1
current tool data 1
current work object 1
digital output 1
file 1
function key 1
group of outputs 1
serial channel 1

ReadBin 1
ReadMotor 1
ReadNum 1
ReadStr 1
RelTool 1
repeat 1
Reset 1
RestoPath 1
RETRY 1
RETURN 1
Rewind 1
robot position 1
System Data Types and Routines 4-3

4

robtarget 1
Round 1
routine call 1
RunMode 1
running mode

read 1

S

SearchC 1
SearchL 1
serial channel

close 1
file 1
open 1
read 1
rewind 1
write 1

Set 1
SetAO 1
SetDO 1
SetGO 1
shapedata 1
signalai 1
signalao 1
signaldi 1
signaldo 1
signalgi 1
signalgo 1
Sin 1
SingArea 1
soft servo

activating 1
deactivating 1

SoftAct 1
SoftDeact 1
speeddata 1
Sqrt 1
square root 1
StartMove 1
Stop 1
stop point 1
StopMove 1
stopwatch 1
StorePath 1
StrFind 1
string 1
StrLen 1
StrMap 1

StrMatch 1
StrMemb 1
StrOrder 1
StrPart 1
StrToByte 1
StrToVal 1
symnum 1
system data 1

T

Tan 1
TEST 1
TestDI 1
text string 1
time 1
tooldata 1
TPErase 1
tpnum 1
TPReadFK 1
TPReadNum 1
TPShow 1
TPWrite 1
TriggC 1
triggdata 1
TriggEquip 1
TriggInt 1
TriggIO 1
TriggJ 1
TriggL 1
Trunc 1
TRYNEXT 1
TuneReset 1
tunetype 1

U

UnLoad 1, 3
user coordinate system 1

V

ValToStr 1
velocity 1

decrease 1
max. 1

VelSet 1

W

wait
-4 System Data Types and Routines

a specific time 1
any condition 1
digital input 1
digital output 1
until the robot is in position 1

WaitDI 1
WaitDO 1
WaitTime 1
WaitUntil 1
WHILE 1
wobjdata 1
work object 1
Write 1
write

error message 1
on the teach pendant 1

WriteBin 1
WriteStrBin 1
WZBoxDef 1
WZCylDef 1
WZDisable 1
WZDOSet 1
WZEnable 1
WZFree 1
WZLimSup 1
WZSphDef 1
wzstationary 1
wztemporary 1

Z

zonedata 1
System Data Types and Routines 4-5

	Menu
	Data Types
	Instructions
	Functions
	Index

