
Table of Contents

Introduction

RAPID Summary

Basic Characteristics

Motion and I/O Principles

Data Types and System data

Instructions

Functions

Predefined Data and Programs

Programming off-line

ArcWare

SpotWare

GlueWare

Quickreference

Index, Glossary

ABB Flexible Automation AB
RAPID Reference On-line Manual 3.0

MAIN MENU

CONTENTS
Page

-1
-3
-3

-3

2-4

2-4

2-5

-1
5

3-6

3-6

-6

3-7

3-7

8

3-8

3-8

3-8

3-9

3-9

3-9

3-9

10

-10

10

-11

11

-11

-11

-12

-12

-12

-13

-13

-1
1 Table of Contents... 1
2 Introduction .. 2

1 Other Manuals ... 2

2 How to Read this Manual.. 2

 2.1 Typographic conventions..

 2.2 Syntax rules...

 2.3 Formal syntax..

3 RAPID Summary... 3
1 The Structure of the Language... 3-

2 Controlling the Program Flow.. 3-6

 2.1 Programming principles..

 2.2 Calling another routine..

 2.3 Program control within the routine ... 3

 2.4 Stopping program execution ...

 2.5 Stop current cycle..

3 Various Instructions .. 3-

 3.1 Assigning a value to data ..

 3.2 Wait ...

 3.3 Comments ...

 3.4 Loading program modules ..

 3.5 Various functions ..

 3.6 Basic data ..

 3.7 Conversion function..

4 Motion Settings .. 3-

 4.1 Programming principles.. 3

 4.2 Defining velocity... 3-

 4.3 Defining acceleration .. 3

 4.4 Defining configuration management .. 3-

 4.5 Defining the payload... 3

 4.6 Defining the behaviour near singular points ... 3

 4.7 Displacing a program.. 3

 4.8 Soft servo .. 3

 4.9 Adjust the robot tuning values .. 3

 4.10 World Zones.. 3

 4.11 Data for motion settings.. 3

5 Motion ... 34
RAPID Reference Manual 1-1

Page

14

15

-15

5

6

16

-16

17

17

-18

9

19

-19

19

-19

20

20

20

1

21

-21

22

22

-22

3

23

23

24

24

24

24

5

25

5

26

26
 5.1 Programming principles.. 3-

 5.2 Positioning instructions... 3-

 5.3 Searching... 3

 5.4 Activating outputs or interrupts at specific positions 3-1

 5.5 Motion control if an error/interrupt takes place.. 3-1

 5.6 Controlling external axes .. 3-

 5.7 Independent axes... 3

 5.8 Position functions.. 3-

 5.9 Motion data ... 3-

 5.10 Basic data for movements... 3

6 Input and Output Signals.. 3-1

 6.1 Programming principles.. 3-

 6.2 Changing the value of a signal.. 3

 6.3 Reading the value of an input signal... 3-

 6.4 Reading the value of an output signal... 3

 6.5 Testing input on output signals ... 3-

 6.6 Disabling and enabling I/O modules... 3-

 6.7 Defining input and output signals ... 3-

7 Communication.. 3-2

 7.1 Programming principles.. 3-

 7.2 Communicating using the teach pendant .. 3

 7.3 Reading from or writing to a character-based serial channel/file 3-

 7.4 Communicating using binary serial channels/files 3-

 7.5 Data for serial channels... 3

8 Interrupts ... 3-2

 8.1 Programming principles.. 3-

 8.2 Connecting interrupts to trap routines... 3-

 8.3 Ordering interrupts.. 3-

 8.4 Cancelling interrupts... 3-

 8.5 Enabling/disabling interrupts .. 3-

 8.6 Data type of interrupts .. 3-

9 Error Recovery .. 3-2

 9.1 Programming principles .. 3-

 9.2 Creating an error situation from within the program 3-2

 9.3 Restarting/returning from the error handler .. 3-

 9.4 Data for error handling.. 3-
1-2 RAPID Reference Manual

Page

27

-27

-27

-27

28

-28

-28

-28

29

30

-30

-31

-32

-32

-32

33

-33

33

-34

-35

-35

-35

-35

-36

-37

-37

38

-38

39

-39

-39

-40

41

-41

-45
10 System & Time... 3-

 10.1 Programming principles.. 3

 10.2 Using a clock to time an event .. 3

 10.3 Reading current time and date .. 3

11 Mathematics ... 3-

 11.1 Programming principles .. 3

 11.2 Simple calculations on numeric data... 3

 11.3 More advanced calculations .. 3

 11.4 Arithmetic functions.. 3-

12 Spot Welding .. 3-

 12.1 Spot welding features.. 3

 12.2 Principles of SpotWare ... 3

 12.3 Programming principles.. 3

 12.4 Spot welding instructions.. 3

 12.5 Spot welding data.. 3

13 Arc Welding.. 3-

 13.1 Programming principles.. 3

 13.2 Arc welding instructions ... 3-

 13.3 Arc welding data ... 3

14 GlueWare.. 3

 14.1 Glueing features .. 3

 14.2 Programming principles.. 3

 14.3 Glue instructions ... 3

 14.4 Glue data ... 3

15 External Computer Communication ... 3-37

 15.1 Programming principles.. 3

 15.2 Sending a program-controlled message from the robot to a computer 3

16 Service Instructions ... 3-

 16.1 Directing a value to the robot’s test signal.. 3

17 String Functions... 3-

 17.1 Basic Operations ... 3

 17.2 Comparison and Searching ... 3

 17.3 Conversion .. 3

18 Syntax Summary.. 3-

 18.1 Instructions.. 3

 18.2 Functions... 3
RAPID Reference Manual 1-3

Page

-1
-3

-3

5-4

-4

-4

5-4

5-5

5-5

5-5

5-6

-8

5-8

5-9

-9

5-9

-11

-11

-12

13

-13

-14

-15

18

-18

-18

-19

-20

21

-22

-22

22

-23

5

4
5 Basic Characteristics ... 5

1 Basic Elements ... 5

 1.1 Identifiers .. 5

 1.2 Spaces and new-line characters...

 1.3 Numeric values ... 5

 1.4 Logical values ... 5

 1.5 String values..

 1.6 Comments ...

 1.7 Placeholders ..

 1.8 File header...

 1.9 Syntax..

2 Modules... 5

 2.1 Program modules ..

 2.2 System modules ..

 2.3 Module declarations.. 5

 2.4 Syntax ...

3 Routines .. 5

 3.1 Routine scope.. 5

 3.2 Parameters... 5

 3.3 Routine termination .. 5-

 3.4 Routine declarations.. 5

 3.5 Procedure call.. 5

 3.6 Syntax ... 5

4 Data Types.. 5-

 4.1 Non-value data types... 5

 4.2 Equal (alias) data types ... 5

 4.3 Syntax ... 5

5 Data ... 5-20

 5.1 Data scope... 5

 5.2 Variable declaration .. 5-

 5.3 Persistent declaration .. 5

 5.4 Constant declaration.. 5

 5.5 Initiating data .. 5-

 5.6 Syntax ... 5

6 Instructions... 5-2
1-4 RAPID Reference Manual

Page

-25

-26

-26

-27

-27

-28

5-29

-29

-30

-31

33

-33

35

-35

-36

37

-37

8

9

-39

40

-40

-41

-42

-42

-43

-43

-3

-3

6-3

6-8

-12

-13

3

 6.1 Syntax.. 5

7 Expressions ... 5

 7.1 Arithmetic expressions.. 5

 7.2 Logical expressions... 5

 7.3 String expressions ... 5

 7.4 Using data in expressions.. 5

 7.5 Using aggregates in expressions ...

 7.6 Using function calls in expressions... 5

 7.7 Priority between operators .. 5

 7.8 Syntax.. 5

8 Error Recovery .. 5-

 8.1 Error handlers.. 5

9 Interrupts.. 5-

 9.1 Interrupt manipulation... 5

 9.2 Trap routines ... 5

10 Backward execution... 5-

 10.1 Backward handlers .. 5

 10.2 Limitation of move instructions in the backward handler 5-3

11 Multitasking ... 5-3

 11.1 Synchronising the tasks... 5

 11.1 Synchronising using polling.. 5-

 11.1 Synchronising using an interrupt... 5

 11.2 Intertask communication... 5

 11.3 Type of task... 5

 11.4 Priorities .. 5

 11.5 Task sizes .. 5

 11.6 Something to think about .. 5

6 Motion and I/O Principles .. 6-1
1 Coordinate Systems ... 6

 1.1 The robot’s tool centre point (TCP) .. 6

 1.2 Coordinate systems used to determine the position of the TCP....................

 1.3 Coordinate systems used to determine the direction of the tool

 1.4 Related information... 6

2 Positioning during Program Execution ... 6-13

 2.1 General .. 6

 2.2 Interpolation of the position and orientation of the tool 6-1
RAPID Reference Manual 1-5

Page

16

-22

-24

-25

26

-27

27

28

-31

32

3

35

36

37

8

38

38

38

39

-39

39

9

40

41

2

-42

43

4

-44

-45

-45

46

46

-1
-1
 2.3 Interpolation of corner paths... 6-

 2.4 Independent axes... 6

 2.5 Soft Servo.. 6

 2.6 Stop and restart ... 6

 2.7 Related information .. 6-

3 Synchronization with logical instructions ... 6-27

 3.1 Sequential program execution at stop points .. 6

 3.2 Sequential program execution at fly-by points ... 6-

 3.3 Concurrent program execution ... 6-

 3.4 Path synchronization... 6

 3.5 Related information .. 6-

4 Robot Configuration.. 6-3

 4.1 Robot configuration data for 6400C ... 6-

 4.2 Related information .. 6-

5 Singularities.. 6-

 5.1 Singularity points/IRB 6400C... 6-3

 5.2 Program execution through singularities .. 6-

 5.3 Jogging through singularities.. 6-

 5.4 Related information .. 6-

6 World Zones... 6-

 6.1 Using global zones.. 6

 6.2 Using World Zones... 6-

 6.3 Definition of World Zones in the world coordinate system 6-3

 6.4 Supervision of the Robot TCP .. 6-

 6.5 Actions .. 6-

 6.6 Minimum size of World Zones. .. 6-4

 6.7 Power failure, restart, and run on.. 6

 6.8 Related information .. 6-

7 I/O Principles ... 6-4

 7.1 Signal characteristics .. 6

 7.2 System signals... 6

 7.3 Cross connections ... 6

 7.4 Limitations .. 6-

 7.5 Related information .. 6-

7 Data Types and System Data .. 7
 bool - Logical values ... 7-bool
1-6 RAPID Reference Manual

Page

1

1

1

1

a-1

1

1

1

-1

1

 clock - Time measurement ... 7-clock-

 confdata - Robot configuration data ... 7-confdata-1

 corrdescr - Correction generator descriptor.................................. 7-corrdescr-1

 dionum - Digital values 0 - 1 .. 7-dionum-1

 errnum - Error number ... 7-errnum-1

 extjoint - Position of external joints .. 7-extjoint-1

 intnum - Interrupt identity .. 7-intnum-1

 iodev - Serial channels and files... 7-iodev-

 jointtarget - Joint position data ... 7-jointtarget-1

 loaddata - Load data... 7-loaddata-

 mecunit - Mechanical unit.. 7-mecunit-1

 motsetdata - Motion settings data ... 7-motsetdata-1

 num - Numeric values (registers) .. 7-num-1

 o_jointtarget - Original joint position data 7-o_jointtarget-1

 orient - Orientation... 7-orient-1

 o_robtarget - Original position data ... 7-o_robtarget-1

 pos - Positions (only X, Y and Z) ... 7-pos-1

 pose - Coordinate transformations.. 7-pose-1

 progdisp - Program displacement ... 7-progdisp-1

 robjoint - Joint position of robot axes... 7-robjoint-1

 robtarget - Position data... 7-robtarget-1

 shapedata - World zone shape data... 7-shape-

 signalxx - Digital and analog signals ... 7-signalxx-1

 speeddata - Speed data ... 7-speeddat

 string - Strings... 7-string-

 symnum - Symbolic number .. 7-symnum-1

 tooldata - Tool data... 7-tooldata-

 tpnum - Teach Pendant Window number 7-tpnum-1

 triggdata - Positioning events - trigg ... 7-triggdata-1

 tunetype - Servo tune type.. 7-tunetype-

 wobjdata - Work object data ... 7-wobjdata-1

 wzstationary - Stationary world zone data..................................... 7-wzstationary-5

 wztemporary - Temporary world zone data 7-wztemporary-7

 zonedata - Zone data... 7--zonedata

 System Data - ..7-System data-
RAPID Reference Manual 1-7

Page

-1
8 Instructions... 8
 “:=” - Assigns a value... 8-:=-1

 AccSet - Reduces the acceleration .. 8-AccSet-1

 ActUnit - Activates a mechanical unit.. 8-ActUnit-1

 Add - Adds a numeric value.. 8-Add-1

 Break - Break program execution .. 8-Break-1

 CallByVar - Call a procedure by a variable 8-CallByVar-1

 Clear - Clears the value ... 8-Clear-1

 ClkReset - Resets a clock used for timing 8-ClkReset-1

 ClkStart - Starts a clock used for timing 8-ClkStart-1

 ClkStop - Stops a clock used for timing ... 8-ClkStop-1

 Close - Closes a file or serial channel ... 8-Close-1

 comment - Comment.. 8-comment-1

 Compact IF - If a condition is met, then... (one instruction) 8-Compact IF-1

 ConfJ - Controls the configuration during joint movement 8-ConfJ-1

 ConfL - Monitors the configuration during linear movement..... 8-ConfL-1

 CONNECT - Connects an interrupt to a trap routine 8-CONNECT-1

 CorrClear - Removes all correction generators 8-CorClear-1

 CorrCon - Connects to a correction generator 8-CorrCon-1

 CorrDiscon - Disconnects from a correction generator................ 8-CorrDiscon-1

 CorrWrite - Writes to a correction generator............................... 8-CorrWrite-1

 DeactUnit - Deactivates a mechanical unit 8-DeActUnit-1

 Decr - Decrements by 1.. 8-Decr-1

 EOffsOff - Deactivates an offset for external axes 8-EOffsOff-1

 EOffsOn - Activates an offset for external axes 8-EOffsOn-1

 EOffsSet - Activates an offset for external axes using a value 8-EOffsSet-1

 ErrWrite - Write an Error Message .. 8-ErrWrite-1

 EXIT - Terminates program execution.. 8-EXIT-1

 ExitCycle - Break current cycle and start next 8-ExitCycle-1

 FOR - Repeats a given number of times .. 8-FOR-1

 GOTO - Goes to a new instruction ... 8-GOTO-1

 GripLoad - Defines the payload of the robot................................. 8-GripLoad-1

 IDelete - Cancels an interrupt... 8-IDelete-1

 IDisable - Disables interrupts.. 8-IDisable-1

 IEnable - Enables interrupts ... 8-IEnable-1

 IF - If a condition is met, then ...; otherwise 8-IF-1
1-8 RAPID Reference Manual

Page

1

 Incr - Increments by 1.. 8-Incr-1

 IndAMove - Independent Absolute position Movement............... 8-IndAMove-1

 IndCMove - Independent Continuous Movement......................... 8-IndCMove-1

 IndDMove - Independent Delta position Movement..................... 8-IndRMove-1

 IndReset - Independent Reset ... 8-IndReset-1

 IndRMove - Independent Relative position Movement................ 8-IndRMove-1

 InvertDO - Inverts the value of a digital output signal................. 8-InvertDO-1

 IODisable - Disable I/O unit.. 8-IODisable-1

 IOEnable - Enable I/O unit ... 8-IOEnable-1

 ISignalDI - Orders interrupts from a digital input signal............ 8-ISignalDI-1

 ISignalDO - Interrupts from a digital output signal..................... 8-ISignalDO-1

 ISleep - Deactivates an interrupt .. 8-ISleep-1

 ITimer - Orders a timed interrupt... 8-ITimer-1

 IVarValue - Orders a variable value interrupt 8-IVarVal-1

 IWatch - Activates an interrupt.. 8-IWatch-1

 label - Line name .. 8-label-

 Load - Load a program module during execution 8-Load-1

 MoveAbsJ - Moves the robot to an absolute joint position 8-MoveAbsJ-1

 MoveC - Moves the robot circularly... 8-MoveC-1

 MoveJ - Moves the robot by joint movement 8-MoveJ-1

 MoveL - Moves the robot linearly .. 8-MoveL-1

 Open - Opens a file or serial channel.. 8-Open-1

 PathResol - Override path resolution... 8-PathResol-1

 PDispOff - Deactivates program displacement 8-PDispOff-1

 PDispOn - Activates program displacement.................................. 8-PDispOn-1

 PDispSet - Activates program displacement using a value 8-PDispSet-1

 ProcCall - Calls a new procedure ... 8-ProcCall-1

 PulseDO - Generates a pulse on a digital output signal................ 8-PulseDO-1

 RAISE - Calls an error handler .. 8-RAISE-1

 Reset - Resets a digital output signal .. 8-Reset-1

 RestoPath - Restores the path after an interrupt 8-RestoPath-1

 RETRY - Restarts following an error .. 8-RETRY-1

 RETURN - Finishes execution of a routine.................................... 8-RETURN-1

 Rewind - Rewind file position ... 8-Rewind-1

 SearchC - Searches circularly using the robot 8-SearchC-1

 SearchL - Searches linearly using the robot 8-SearchL-1
RAPID Reference Manual 1-9

Page

1

 Set - Sets a digital output signal .. 8-Set-1

 SetAO - Changes the value of an analog output signal 8-SetAO-1

 SetDO - Changes the value of a digital output signal.................... 8-SetDO-1

 SetGO - Changes the value of a group of digital output signals .. 8-SetGO-1

 SingArea - Defines interpolation around singular points............. 8-SingArea-1

 SoftAct - Activating the soft servo .. 8-SoftAct-1

 SoftDeact - Deactivating the soft servo... 8-SoftDeAct-1

 StartMove - Restarts robot motion... 8-StartMove-1

 Stop - Stops program execution .. 8-Stop-1

 StopMove - Stops robot motion... 8-StopMove-1

 StorePath - Stores the path when an interrupt occurs 8-StorePath-1

 TEST - Depending on the value of an expression 8-TEST-1

 TPErase - Erases text printed on the teach pendant..................... 8-TPErase-1

 TPReadFK - Reads function keys... 8-TPReadFK-1

 TPReadNum - Reads a number from the teach pendant 8-TPReadNum-1

 TPShow - Switch window on the teach pendant............................ 8-TPShow-1

 TPWrite - Writes on the teach pendant ... 8-TPWrite-1

 TriggC - Circular robot movement with events 8-TriggC-1

 TriggEquip - Defines a fixed position-time I/O event 8-TriggEquip-1

 TriggInt - Defines a position related interrupt.............................. 8-TriggInt-1

 TriggIO - Defines a fixed position I/O event.................................. 8-TriggIO-1

 TriggJ - Axis-wise robot movements with events.......................... 8-TriggJ-1

 TriggL - Linear robot movements with events.............................. 8-TriggL-1

 TRYNEXT - Jumps over an instruction which has caused an error 8-TRYNEXT-1

 TuneReset - Resetting servo tuning .. 8-TuneServo-1

 TuneServo - Tuning servos.. 8-TuneServo-1

 UnLoad - UnLoad a program module during execution.............. 8-UnLoad-1

 VelSet - Changes the programmed velocity................................... 8-VelSet-1

 WaitDI - Waits until a digital input signal is set 8-WaitDI-1

 WaitDO - Waits until a digital output signal is set........................ 8-WaitDO-1

 WaitTime - Waits a given amount of time 8-WaitTime-1

 WaitUntil - Waits until a condition is met 8-WaitUntil-1

 WHILE - Repeats as long as.. 8-WHILE-1

 Write - Writes to a character-based file or serial channel 8-Write-1

 WriteBin - Writes to a binary serial channel................................. 8-WriteBin-1

 WriteStrBin - Writes a string to a binary serial channel.............. 8-WriteStrBin-1
-10 RAPID Reference Manual

Page

9-1
1

1

-1

1

 WZBoxDef - Define a box-shaped world zone 8-WZBoxDef-1

 WZCylDef - Define a cylinder-shaped world zone 8-WZCylDef-1

 WZDisable - Deactivate temporary world zone supervision 8-WZDisable-1

 WZDOSet - Activate world zone to set digital output................... 8-WZDOSet-1

 WZEnable - Activate temporary world zone supervision............. 8-WZEnable-1

 WZFreecErase temporary world zone supervision....................... 8-WZFree-1

 WZLimSup - Activate world zone limit supervision 8-WZLimSup-1

 WZSphDef - Define a sphere-shaped world zone 8-WZSphDef-1

9 Functions ..
 Abs - Gets the absolute value... 9-Abs-

 ACos - Calculates the arc cosine value.. 9-ACos-

 AOutput - Reads the value of an analog output signal.................... 9-AOutput-1

 ArgName - Gets argument name... 9-ArgName-1

 ASin - Calculates the arc sine value .. 9-ASin-1

 ATan - Calculates the arc tangent value... 9-ATan-1

 ATan2 - Calculates the arc tangent2 value....................................... 9-ATan2-1

 ByteToStr - Converts a byte to a string data.................................... 9-ByteToStr-1

 CDate - Reads the current date as a string....................................... 9-CDate-1

 CJointT - Reads the current joint angles.. 9-CJointT-1

 ClkRead - Reads a clock used for timing.. 9-ClkRead-1

 CorrRead - Reads the current total offsets 9-CorrRead-1

 Cos - Calculates the cosine value... 9--Cos

 CPos - Reads the current position (pos) data 9-CPos-1

 CRobT - Reads the current position (robtarget) data..................... 9-CRobT-1

 CTime - Reads the current time as a string...................................... 9-CTime-1

 CTool - Reads the current tool data.. 9-CTool-1

 CWObj - Reads the current work object data 9-CWobj-1

 DefDFrame - Define a displacement frame 9-DefDFrame-1

 DefFrame - Define a frame .. 9-DefFrame-

 Dim - Obtains the size of an array... 9-Dim-1

 DOutput - Reads the value of a digital output signal 9-DOutput-1

 EulerZYX - Gets Euler angles from orient 9-EulerZYX-1

 Exp - Calculates the exponential value ... 9-Exp-1

 GetTime - Reads the current time as a numeric value.................... 9-GetTime-1

 GOutput - Reads the value of a group of digital output signals 9-GOutput-1

 IndInpos - Independent In position status.. 9-IndInpos-1
RAPID Reference Manual 1-11

Page

1

1

1

 IndSpeed - Independent Speed status... 9-IndSpeed-

 IsPers - Is Persistent ... 9-IsPers-

 IsVar - Is Variable .. 9-IsVar-1

 MirPos - Mirroring of a position... 9-MirPos-1

 NumToStr - Converts numeric value to string 9-NumToStr-1

 Offs - Displaces a robot position.. 9-Offs-1

 OpMode - Read the operating mode... 9-OpMode-1

 OrientZYX - Builds an orient from Euler angles 9-OrientZYX-1

 ORobT - Removes a program displacement from a position 9-ORobT-1

 PoseInv - Inverts the pose .. 9-PoseInv-

 PoseMult - Multiplies pose data .. 9-PoseMult-1

 PoseVect - Applies a transformation to a vector 9-PoseVect-1

 Pow - Calculates the power of a value .. 9-Pow-1

 Present - Tests if an optional parameter is used 9-Present-1

 ReadBin - Reads from a binary serial channel or file 9-ReadBin-1

 ReadMotor - Reads the current motor angles 9-ReadMotor-1

 ReadNum - Reads a number from a file or the serial channel 9-ReadNum-1

 ReadStr - Reads a string from a file or serial channel 9-ReadStr-1

 RelTool - Make a displacement relative to the tool 9-RelTool-1

 Round - Round is a numeric value.. 9-Round-1

 RunMode - Read the running mode ... 9-RunMode-1

 Sin - Calculates the sine value ... 9-Sin-1

 Sqrt - Calculates the square root value .. 9-Sqrt-1

 StrFind - Searches for a character in a string.................................. 9-StrFind-1

 StrLen - Gets the string length .. 9-StrLen-1

 StrMap - Maps a string .. 9-StrMap-1

 StrMatch - Search for pattern in string.. 9-StrMatch-1

 StrMemb - Checks if a character belongs to a set 9-StrMemb-1

 StrOrder - Checks if strings are ordered ... 9-StrOrder-1

 StrPart - Finds a part of a string... 9-StrPart-1

 StrToByte - Converts a string to a byte data 9-StrToByte-1

 StrToVal - Converts a string to a value.. 9-StrToVal-1

 Tan - Calculates the tangent value.. 9-Tan-1

 TestDI - Tests if a digital input is set .. 9-TestDI-1

 Trunc - Truncates a numeric value... 9-Trunc-1

 ValToStr - Converts a value to a string.. 9-ValToStr-1
1-12 RAPID Reference Manual

Page

-1
-3

0-3

0-3

0-4

3
3

1-3

1-3

1-3

1-4

-4

-1
a-1

-1

1

1

4-1
1

1

1

1

-1
1

10 Predefined Data and Programs.. 10
1 System Module User .. 10

 1.1 Contents... 1

 1.2 Creating new data in this module.. 1

 1.3 Deleting this data... 1

11 Programming Off-line... 11-
1 Programming Off-line ... 11-

 1.1 File format ... 1

 1.2 Editing ... 1

 1.3 Syntax check ... 1

 1.4 Examples ... 1

 1.5 Making your own instructions... 11

12

13 ArcWare ... 13
 seamdata - Seam data ... 13-seamdat

 weavedata - Weave data ... 13-weavedata

 welddata - Weld data.. 13-welddata-

 ArcC - Arc welding with circular motion .. 13-ArcC-1

 arcdata - Arc process data ... 13-arcdata-

 ArcL - Arc welding with linear motion... 13-ArcL-1

 ArcKill - Kill the AW process.. 13-ArcKill-1

 ArcRefresh - Refresh arcweld data... 13-ArcRefr-1

14 SpotWare.. 1
 gundata - Spot weld gun data .. 14-gundata-

 spotdata - Spot weld data ... 14-spotdata-

 SpotL - Spot Welding with motion.. 14-SpotL-1

 System Module - SWUSRC.. 14-SWUSRC-

 System Module - SWUSRF .. 14-SWUSRF-

 System Module - SWTOOL... 14-SWTOOL-1

15 GlueWare ... 15
 ggundata - Gluing gun data ... 15-ggundata-

 GlueC - Gluing with circular motion .. 15-GlueC-1

 GlueL - Gluing with linear motion.. 15-GlueL-1

 System Module GLUSER... 15-GLUSER-1
RAPID Reference Manual 1-13

-1
-3

-3

-4

6

-6

8-7

10

11

13

15

16

17

8

18

0

20

2

-22

24

25

26

27

-27

0

30

31

32

-1
16
17
18 Quick Reference... 18

1 The Jogging Window... 18

 1.1 Window: Jogging .. 18

2 The Inputs/Outputs Window.. 18-4

 2.1 Window: Inputs/Outputs... 18

3 The Program Window... 18-

 3.1 Moving between different parts of the program ... 18

 3.2 General menus .. 1

 3.3 Window: Program Instr... 18-

 3.4 Window: Program Routines.. 18-

 3.5 Window: Program Data .. 18-

 3.6 Window: Program Data Types.. 18-

 3.7 Window: Program Test ... 18-

 3.8 Window: Program Modules.. 18-

4 The Production Window ... 18-1

 4.1 Window: Production ... 18-

5 The FileManager.. 18-2

 5.1 Window: FileManager .. 18-

6 The Service Window.. 18-2

 6.1 General menus .. 18

 6.2 Window Service Log .. 18-

 6.3 Window Service Calibration... 18-

 6.4 Window Service Commutation... 18-

7 The System Parameters... 18-

 7.1 Window: System Parameters .. 18

8 Special ArcWare windows .. 18-3

 8.1 Window: Production ... 18-

 8.2 Window: Program Test ... 18-

 8.3 Window when executing... 18-

19 Special Functionality in this Robot .. 19-1
20 Index, Glossary .. 20
1-14 RAPID Reference Manual

Introduction

CONTENTS
Page

4

4

5

1 Other Manuals... 3

2 How to Read this Manual ... 3

2.1 Typographic conventions ...

2.2 Syntax rules ..

2.3 Formal syntax ...
RAPID Reference Manual 2-1

Introduction
2-2 RAPID Reference Manual

Introduction

ing

r’s

art a

pro-

ot.

tion
x,

mer.

the
tion.

eliv-
 sup-

into

ess-
 Introduction

This is a reference manual containing a detailed explanation of the programm
language as well as all data types, instructions and functions. If you are program-
ming off-line, this manual will be particularly useful in this respect.

When you start to program the robot it is normally better to start with the Use
Guide until you are familiar with the system.

1 Other Manuals

Before using the robot for the first time, you should read Basic Operation. This will
provide you with the basics of operating the robot.

The User’s Guide provides step-by-step instructions on how to perform various
tasks, such as how to move the robot manually, how to program, or how to st
program when running production.

The Product Manual describes how to install the robot, as well as maintenance
cedures and troubleshooting. This manual also contains a Product Specification
which provides an overview of the characteristics and performance of the rob

2 How to Read this Manual

To answer the questions Which instruction should I use? or What does this instruc-
tion mean?, see Chapter 3: RAPID Summary. This chapter briefly describes all
instructions, functions and data types grouped in accordance with the instruc
pick-lists you use when programming. It also includes a summary of the synta
which is particularly useful when programming off-line.

Chapter 5: Basic Characteristics explains the inner details of the language. You
would not normally read this chapter unless you are an experienced program

Chapter 6: Motion and I/O Principles describes the various coordinate systems of
robot, its velocity and other motion characteristics during different types of execu

Chapters 7-9 describe all data types, instructions and functions. They are described
in alphabetical order for your convenience.

This manual describes all the data and programs provided with the robot on d
ery. In addition to these, there are a number of predefined data and programs
plied with the robot, either on diskette or, or sometimes already loaded. Chapter 10:
Predefined Data and Programs describes what happens when these are loaded
the robot.

If you program off-line, you will find some tips in Chapter 11: Programming off-
line.

Chapter 13-15 describes the functionality when the robot is equipped with Proc
RAPID Reference Manual 2-3

Introduction

2

er to
hen

ibed

h pen-

alic

mes,

ut to a
 the

al
now
t syn-
Ware, i.e. ArcWare, SpotWare and GlueWare.

If you want to find out what a particular menu command does, you should ref
Chapter 18: Quick Reference. This chapter can also be used as a pocket guide w
you are working with the robot.

To make things easier to locate and understand, Chapter 20 contains an index and a
glossary.

If the robot is delivered or upgraded with some extra functionality, this is descr
in Chapter 19: Special Functionality in this Robot.

2.1 Typographic conventions

The commands located under any of the five menu keys at the top of the teac
dant display are written in the form of Menu: Command. For example, to activate
the Print command in the File menu, you choose File: Print .

The names on the function keys and in the entry fields are specified in bold it
typeface, e.g. Modpos.

Words belonging to the actual programming language, such as instruction na
are written in italics, e.g. MoveL.

Examples of programs are always displayed in the same way as they are outp
diskette or printer. This differs from what is displayed on the teach pendant in
following ways:

- Certain control words that are masked in the teach pendant display are
printed, e.g. words indicating the start and end of a routine.

- Data and routine declarations are printed in the formal form,
e.g. VAR num reg1;.

2.2 Syntax rules

Instructions and functions are described using both simplified syntax and form
syntax. If you use the teach pendant to program, you generally only need to k
the simplified syntax, since the robot automatically makes sure that the correc
tax is used.
-4 RAPID Reference Manual

Introduction

s can

t the

d in

t the

d in

d in

ed in
more

pecial
Simplified syntax

Example:

- Optional arguments are enclosed in square brackets []. These argument
be omitted.

- Arguments that are mutually exclusive, i.e. cannot exist in the instruction a
same time, are separated by a vertical bar |.

- Arguments that can be repeated an arbitrary number of times are enclose
braces { }.

2.3 Formal syntax

Example: TPWrite
[String’:=’] <expression (IN) of string>
[’\’Num’:=’ <expression (IN) of num>] |
[’\’Bool’:=’ <expression (IN) of bool>] |
[’\’Pos’:=’ <expression (IN) of pos>] |
[’\’Orient’:=’ <expression (IN) of orient>]’;’

- The text within the square brackets [] may be omitted.

- Arguments that are mutually exclusive, i.e. cannot exist in the instruction a
same time, are separated by a vertical bar |.

- Arguments that can be repeated an arbitrary number of times are enclose
braces { }.

- Symbols that are written in order to obtain the correct syntax are enclose
single quotation marks (apostrophes) ’ ’.

- The data type of the argument (italics) and other characteristics are enclos
angle brackets < >. See the description of the parameters of a routine for
detailed information.

The basic elements of the language and certain instructions are written using a s
syntax, EBNF. This is based on the same rules, but with some additions.

Example: GOTO <identifier>’;’
<identifier> ::= <ident>

| <ID>
<ident> ::= <letter> {<letter> | <digit> | ’_’}

- The symbol ::= means is defined as.

- Text enclosed in angle brackets < > is defined in a separate line.

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient]

Instruction Optional
argument

Compulsory
argument

Mutually
exclusive
arguments
RAPID Reference Manual 2-5

Introduction
2-6 RAPID Reference Manual

RAPID Summary

CONTENTS
Page

6

6

6

7

7

8

8

9

9

9

0

0

1

1

1

1

12

2

13

3

4

5

1

5

6

6

16

7

1 The Structure of the Language .. 5

2 Controlling the Program Flow... 6

 2.1 Programming principles ..

 2.2 Calling another routine ..

 2.3 Program control within the routine..

 2.4 Stopping program execution..

 2.5 Stop current cycle ..

3 Various Instructions..8

 3.1 Assigning a value to data...

 3.2 Wait ... 8

 3.3 Comments..

 3.4 Loading program modules...

 3.5 Various functions...

 3.6 Basic data...9

 3.7 Conversion function ..

4 Motion Settings.. 10

 4.1 Programming principles .. 1

 4.2 Defining velocity ... 1

 4.3 Defining acceleration... 1

 4.4 Defining configuration management... 1

 4.5 Defining the payload ... 1

 4.6 Defining the behaviour near singular points.. 1

 4.7 Displacing a program...

 4.8 Soft servo...12

 4.9 Adjust the robot tuning values... 1

 4.10 World Zones ..

 4.11 Data for motion settings .. 1

5 Motion .. 14

 5.1 Programming principles .. 1

 5.2 Positioning instructions ... 1

 5.3 Searching ...5

 5.4 Activating outputs or interrupts at specific positions .. 1

 5.5 Motion control if an error/interrupt takes place... 1

 5.6 Controlling external axes... 1

 5.7 Independent axes ...

 5.8 Position functions .. 1
RAPID Reference Manual 3-1

RAPID Summary

Page

7

8

9

9

9

9

0

0

0

1

1

2

2

2

3

3

4

4

4

4

5

6

6

7

7

27

8

8

8

9

 5.9 Motion data.. 1

 5.10 Basic data for movements ... 1

6 Input and Output Signals... 19

 6.1 Programming principles .. 1

 6.2 Changing the value of a signal .. 1

 6.3 Reading the value of an input signal ... 1

 6.4 Reading the value of an output signal ... 1

 6.5 Testing input on output signals ... 2

 6.6 Disabling and enabling I/O modules ... 2

 6.7 Defining input and output signals ... 2

7 Communication ...21

 7.1 Programming principles .. 2

 7.2 Communicating using the teach pendant... 2

 7.3 Reading from or writing to a character-based serial channel/file.......................... 2

 7.4 Communicating using binary serial channels/files.. 2

 7.5 Data for serial channels ... 2

8 Interrupts... 23

 8.1 Programming principles .. 2

 8.2 Connecting interrupts to trap routines ... 2

 8.3 Ordering interrupts .. 2

 8.4 Cancelling interrupts ... 2

 8.5 Enabling/disabling interrupts .. 2

 8.6 Data type of interrupts ... 2

9 Error Recovery.. 25

 9.1 Programming principles .. 2

 9.2 Creating an error situation from within the program... 25

 9.3 Restarting/returning from the error handler... 2

 9.4 Data for error handling .. 2

10 System & Time ..27

 10.1 Programming principles .. 2

 10.2 Using a clock to time an event .. 2

 10.3 Reading current time and date...

11 Mathematics .. 28

 11.1 Programming principles .. 2

 11.2 Simple calculations on numeric data ... 2

 11.3 More advanced calculations .. 2

 11.4 Arithmetic functions .. 2
3-2 RAPID Reference Manual

RAPID Summary

Page

30

1

2

2

32

3

3

4

35

5

35

3

7

37

8

39

39

40

1

41

45
12 Spot Welding.. 30

 12.1 Spot welding features ..

 12.2 Principles of SpotWare.. 3

 12.3 Programming principles .. 3

 12.4 Spot welding instructions .. 3

 12.5 Spot welding data ..

13 Arc Welding... 33

 13.1 Programming principles .. 3

 13.2 Arc welding instructions.. 3

 13.3 Arc welding data.. 3

14 GlueWare... 35

 14.1 Glueing features...

 14.2 Programming principles .. 3

 14.3 Glue instructions..

 14.4 Glue data..6

15 External Computer Communication... 37

 15.1 Programming principles .. 3

 15.2 Sending a program-controlled message from the robot to a computer................

16 Service Instructions...38

 16.1 Directing a value to the robot’s test signal .. 3

17 String Functions .. 39

 17.1 Basic Operations..

 17.2 Comparison and Searching..

 17.3 Conversion...

18 Syntax Summary ... 4

 18.1 Instructions ..

 18.2 Functions ...
RAPID Reference Manual 3-3

RAPID Summary

Page
3-4 RAPID Reference Manual

RAPID Summary The Structure of the Language

RAPID Reference Manual 3-5

1 The Structure of the Language

The program consists of a number of instructions which describe the work of the robot.
Thus, there are specific instructions for the various commands, such as one to move the
robot, one to set an output, etc.

The instructions generally have a number of associated arguments which define what
is to take place in a specific instruction. For example, the instruction for resetting an
output contains an argument which defines which output is to be reset; e.g. Reset do5.
These arguments can be specified in one of the following ways:

- as a numeric value, e.g. 5 or 4.6

- as a reference to data, e.g. reg1

- as an expression, e.g. 5+reg1*2

- as a function call, e.g. Abs(reg1)

- as a string value, e.g. "Producing part A"

There are three types of routines – procedures, functions and trap routines.

- A procedure is used as a subprogram.

- A function returns a value of a specific type and is used as an argument of an
instruction.

- Trap routines provide a means of responding to interrupts. A trap routine can
be associated with a specific interrupt; e.g. when an input is set, it is automati-
cally executed if that particular interrupt occurs.

Information can also be stored in data, e.g. tool data (which contains all information on
a tool, such as its TCP and weight) and numerical data (which can be used, for example,
to count the number of parts to be processed). Data is grouped into different data types
which describe different types of information, such as tools, positions and loads. As
this data can be created and assigned arbitrary names, there is no limit (except that
imposed by memory) on the number of data. These data can exist either globally in the
program or locally within a routine.

There are three kinds of data – constants, variables and persistents.

- A constant represents a static value and can only be assigned a new value man-
ually.

- A variable can also be assigned a new value during program execution.

- A persistent can be described as a “persistent” variable. When a program is
saved the initialization value reflects the current value of the persistent.

Other features in the language are:

- Routine parameters

- Arithmetic and logical expressions

- Automatic error handling

- Modular programs

- Multi tasking

Controlling the Program Flow RAPID Summary

r
tion.

all.

ven
2 Controlling the Program Flow

The program is executed sequentially as a rule, i.e. instruction by instruction.
Sometimes, instructions which interrupt this sequential execution and call anothe
instruction are required to handle different situations that may arise during execu

2.1 Programming principles

The program flow can be controlled according to five different principles:

- By calling another routine (procedure) and, when that routine has been
executed, continuing execution with the instruction following the routine c

- By executing different instructions depending on whether or not a given
condition is satisfied.

- By repeating a sequence of instructions a number of times or until a given
condition is satisfied.

- By going to a label within the same routine.

- By stopping program execution.

2.2 Calling another routine

Instruction Used to:

ProcCall Call (jump to) another routine

CallByVar Call procedures with specific names

RETURN Return to the original routine

2.3 Program control within the routine

Instruction Used to:

Compact IF Execute one instruction only if a condition is satisfied

IF Execute a sequence of different instructions depending on
whether or not a condition is satisfied

FOR Repeat a section of the program a number of times

WHILE Repeat a sequence of different instructions as long as a gi
condition is satisfied

TEST Execute different instructions depending on the value of an
expression

GOTO Jump to a label

label Specify a label (line name)
3-6 RAPID Reference Manual

RAPID Summary Controlling the Program Flow

wed

es

first
2.4 Stopping program execution

Instruction Used to:

Stop Stop program execution

EXIT Stop program execution when a program restart is not allo

Break Stop program execution temporarily for debugging purpos

2.5 Stop current cycle

Instruction Used to:

Exit cycle Stop the current cycle and move the program pointer to the
instruction in the main routine. When the execution mode
CONT is selected, execution will continue with the next
program cycle.
RAPID Reference Manual 3-7

Various Instructions RAPID Summary

 con-

 arbi-

 exe-
3 Various Instructions

Various instructions are used to

- assign values to data

- wait a given amount of time or wait until a condition is satisfied

- insert a comment into the program

- load program modules.

3.1 Assigning a value to data

Data can be assigned an arbitrary value. It can, for example, be initialized with a
stant value, e.g. 5, or updated with an arithmetic expression, e.g. reg1+5*reg3.

Instruction Used to:

:= Assign a value to data

3.2 Wait

The robot can be programmed to wait a given amount of time, or to wait until an
trary condition is satisfied; for example, to wait until an input is set.

Instruction Used to:

WaitTime Wait a given amount of time or to wait until the robot stops
 moving

WaitUntil Wait until a condition is satisfied

WaitDI Wait until a digital input is set

WaitDO Wait until a digital output is set

3.3 Comments

Comments are only inserted into the program to increase its readability. Program
cution is not affected by a comment.

Instruction Used to:

comment Comment on the program
3-8 RAPID Reference Manual

RAPID Summary Various Instructions

 mem-

 a

at.

ata.
3.4 Loading program modules

Program modules can be loaded from mass memory or erased from the program
ory. In this way large programs can be handled with only a small memory.

Instruction Used to:

Load Load a program module into the program memory

UnLoad Unload a program module from the program memory

3.5 Various functions

Function Used to:

OpMode Read the current operating mode of the robot

RunMode Read the current program execution mode of the robot

Dim Obtain the dimensions of an array

Present Find out whether an optional parameter was present when
routine call was made

IsPers Check whether a parameter is a persistent

IsVar Check whether a parameter is a variable

3.6 Basic data

Data type Used to define:

bool Logical data (with the values true or false)

num Numeric values (decimal or integer)

symnum Numeric data with symbolic value

string Character strings

switch Routine parameters without value

3.7 Conversion function

Function Used to:

StrToByte Convert a byte to a string data with a defined byte data form

ByteToStr Convert a string with a defined byte data format to a byte d
RAPID Reference Manual 3-9

Motion Settings RAPID Summary

 each
hich

n also

n. In

4 Motion Settings

Some of the motion characteristics of the robot are determined using logical
instructions that apply to all movements:

- Maximum velocity and velocity override

- Acceleration

- Management of different robot configurations

- Payload

- Behaviour close to singular points

- Program displacement

- Soft servo

- Tuning values

4.1 Programming principles

The basic characteristics of the robot motion are determined by data specified for
positioning instruction. Some data, however, is specified in separate instructions w
apply to all movements until that data changes.

The general motion settings are specified using a number of instructions, but ca
be read using the system variable C_MOTSET or C_PROGDISP.

Default values are automatically set (by executing the routine SYS_RESET in system
module BASE)

- at a cold start-up,

- when a new program is loaded,

- when the program is started from the beginning.

4.2 Defining velocity

The absolute velocity is programmed as an argument in the positioning instructio
addition to this, the maximum velocity and velocity override (a percentage of the
programmed velocity) can be defined.

Instruction Used to define:

VelSet The maximum velocity and velocity override
3-10 RAPID Reference Manual

RAPID Summary Motion Settings

r part

s)
tion
ck is
e this,

tation
4.3 Defining acceleration

When fragile parts, for example, are handled, the acceleration can be reduced fo
of the program.

Instruction Used to define:

AccSet The maximum acceleration

4.4 Defining configuration management

The robot’s configuration is normally checked during motion. If joint (axis-by-axi
motion is used, the correct configuration will be achieved. If linear or circular mo
are used, the robot will always move towards the closest configuration, but a che
performed to see if it is the same as the programmed one. It is possible to chang
however.

Instruction Used to define:

ConfJ Configuration control on/off during joint motion

ConfL Configuration check on/off during linear motion

4.5 Defining the payload

To achieve the best robot performance, the correct payload must be defined.

Instruction Used to define:

GripLoad The payload of the gripper

4.6 Defining the behaviour near singular points

The robot can be programmed to avoid singular points by changing the tool orien
automatically.

Instruction Used to define:

SingArea The interpolation method through singular points
RAPID Reference Manual 3-11

Motion Settings RAPID Summary

robot

eme
es to
4.7 Displacing a program

When part of the program must be displaced, e.g. following a search, a program
displacement can be added.

Instruction Used to:

PDispOn Activate program displacement

PDispSet Activate program displacement by specifying a value

PDispOff Deactivate program displacement

EOffsOn Activate an external axis offset

EOffsSet Activate an external axis offset by specifying a value

EOffsOff Deactivate an external axis offset

Function Used to:

DefDFrame Calculate a program displacement from three positions

DefFrame Calculate a program displacement from six positions

ORobT Remove program displacement from a position

4.8 Soft servo

One or more of the robot axes can be made “soft”. When using this function, the
will be compliant and can replace, for example, a spring tool.

Instruction Used to:

SoftAct Activate the soft servo for one or more axes

SoftDeact Deactivate the soft servo

4.9 Adjust the robot tuning values

In general, the performance of the robot is self-optimising; however, in certain extr
cases, overrunning, for example, can occur. You can adjust the robot tuning valu
obtain the required performance.

Instruction Used to:

TuneServo Adjust the robot tuning values

TuneReset Reset tuning to normal

PathResol Adjust the geometric path resolution

Data type Used to:

tunetype Represent the tuning type as a symbolic constant
3-12 RAPID Reference Manual

RAPID Summary Motion Settings

hese

e

4.10 World Zones

Up to 10 different volumes can be defined within the working area of the robot. T
can be used for:

- Indicating that the robot’s TCP is a definite part of the working area.

- Delimiting the working area for the robot and preventing a collision with th
tool.

- Creating a working area common to two robots. The working area is then
available only to one robot at a time.

Instruction Used to:

WZBoxDef1 Define a box-shaped global zone

WZCylDef 1 Define a cylindrical global zone

WZSphDef Define a spherical global zone

WZLimSup1 Activate limit supervision for a global zone

WZDOSet1 Activate global zone to set digital outputs

WZDisable1 Deactivate supervision of a temporary global zone

WZEnable1 Activate supervision of a temporary global zone

WZFree1 Erase supervision of a temporary global zone

Data type Used to:

wztemporary Identify a temporary global zone

wzstationary Identify a stationary global zone

shapedata Describe the geometry of a global zone

4.11 Data for motion settings

Data type Used to define:

motsetdata Motion settings except program displacement

progdisp Program displacement

1. Only when the robot is equipped with the option “Advanced functions”
RAPID Reference Manual 3-13

Motion RAPID Summary

 from
then

ing the

 The
 same
5 Motion

The robot movements are programmed as pose-to-pose movements, i.e. “move
the current position to a new position”. The path between these two positions is
automatically calculated by the robot.

5.1 Programming principles

The basic motion characteristics, such as the type of path, are specified by choos
appropriate positioning instruction.

The remaining motion characteristics are specified by defining data which are
arguments of the instruction:

- Position data (end position for robot and external axes)

- Speed data (desired speed)

- Zone data (position accuracy)

- Tool data (e.g. the position of the TCP)

- Work-object data (e.g. the current coordinate system)

Some of the motion characteristics of the robot are determined using logical
instructions which apply to all movements (See Motion Settings on page 10):

- Maximum velocity and velocity override

- Acceleration

- Management of different robot configurations

- Payload

- Behaviour close to singular points

- Program displacement

- Soft servo

- Tuning values

Both the robot and the external axes are positioned using the same instructions.
external axes are moved at a constant velocity, arriving at the end position at the
time as the robot.
3-14 RAPID Reference Manual

RAPID Summary Motion

e used

an be

on
5.2 Positioning instructions

Instruction Type of movement:

MoveC TCP moves along a circular path

MoveJ Joint movement

MoveL TCP moves along a linear path

MoveAbsJ Absolute joint movement

5.3 Searching

During the movement, the robot can search for the position of a work object, for
example. The searched position (indicated by a sensor signal) is stored and can b
later to position the robot or to calculate a program displacement.

Instruction Type of movement:

SearchC TCP along a circular path

SearchL TCP along a linear path

5.4 Activating outputs or interrupts at specific positions

Normally, logical instructions are executed in the transition from one positioning
instruction to another. If, however, special motion instructions are used, these c
executed instead when the robot is at a specific position.

Instruction Used to:

TriggIO1 Define a trigg condition to set an output at a given position

TriggInt1 Define a trigg condition to execute a trap routine at a given
position

TriggEquip1 Define a trigg condition to set an output at a given position
with the possibility to include time compensation for the lag
in the external equipment

TriggC1 Run the robot (TCP) circularly with an activated trigg
condition

TriggJ1 Run the robot axis-by-axis with an activated trigg condition

TriggL1 Run the robot (TCP) linearly with an activated trigg conditi

Data type Used to define:

triggdata1 Trigg conditions

1. Only if the robot is equipped with the option “Advanced functions”
RAPID Reference Manual 3-15

Motion RAPID Summary

 then

Some

et,

 an

ving

 a

ng

ed
5.5 Motion control if an error/interrupt takes place

In order to rectify an error or an interrupt, motion can be stopped temporarily and
restarted again.

Instruction Used to:

StopMove Stop the robot movements

StartMove Restart the robot movements

StorePath1 Store the last path generated

RestoPath1 Regenerate a path stored earlier

1. Only if the robot is equipped with the option “Advanced Functions”.

5.6 Controlling external axes

The robot and external axes are usually positioned using the same instructions.
instructions, however, only affect the external axis movements.

Instruction Used to:

DeactUnit Deactivate an external mechanical unit

ActUnit Activate an external mechanical unit

5.7 Independent axes

The robot axis 6 (and 4 on IRB 2400 /4400) or an external axis can be moved
independently of other movements. The working area of an axis can also be res
which will reduce the cycle times.

Function Used to:

IndAMove2 Change an axis to independent mode and move the axis to
absolute position

IndCMove2 Change an axis to independent mode and start the axis mo
continuously

IndDMove2 Change an axis to independent mode and move the axis a
delta distance

IndRMove2 Change an axis to independent mode and move the axis to
relative position (within the axis revolution)

IndReset2 Change an axis to dependent mode or/and reset the worki
area

IndInpos2 Check whether an independent axis is in position

IndSpeed2 Check whether an independent axis has reached programm
speed

2. Only if the robot is equipped with the option “Advanced Motion”.
3-16 RAPID Reference Manual

RAPID Summary Motion

he
5.8 Position functions

Function Used to:

Offs Add an offset to a robot position, expressed in relation to t
work object

RelTool Add an offset, expressed in the tool coordinate system

CPos Read the current position (only x, y, z of the robot)

CRobT Read the current position (the complete robtarget)

CJointT Read the current joint angles

ReadMotor Read the current motor angles

CTool Read the current tooldata value

CWObj Read the current wobjdata value

ORobT Remove a program displacement from a position

MirPos Mirror a position

5.9 Motion data

Motion data is used as an argument in the positioning instructions.

Data type Used to define:

robtarget The end position

jointtarget The end position for a MoveAbsJ instruction

speeddata The speed

zonedata The accuracy of the position (stop point or fly-by point)

tooldata The tool coordinate system and the load of the tool

wobjdata The work object coordinate system
RAPID Reference Manual 3-17

Motion RAPID Summary
5.10 Basic data for movements

Data type Used to define:

pos A position (x, y, z)

orient An orientation

pose A coordinate system (position + orientation)

confdata The configuration of the robot axes

extjoint The position of the external axes

robjoint The position of the robot axes

o_robtarget Original robot position when Limit ModPos is used

o_jointtarget Original robot position when Limit ModPos is used for
MoveAbsJ

loaddata A load

mecunit An external mechanical unit
3-18 RAPID Reference Manual

RAPID Summary Input and Output Signals

an be

, can be

ric

;
6 Input and Output Signals

The robot can be equipped with a number of digital and analog user signals that c
read and changed from within the program.

6.1 Programming principles

The signal names are defined in the system parameters and, using these names
read from the program.

The value of an analog signal or a group of digital signals is specified as a nume
value.

6.2 Changing the value of a signal

Instruction Used to:

InvertDO Invert the value of a digital output signal

PulseDO Generate a pulse on a digital output signal

Reset Reset a digital output signal (to 0)

Set Set a digital output signal (to 1)

SetAO Change the value of an analog output signal

SetDO Change the value of a digital output signal (symbolic value
e.g. high/low)

SetGO Change the value of a group of digital output signals

6.3 Reading the value of an input signal

The value of an input signal can be read directly, e.g. IF di1=1 THEN ...

6.4 Reading the value of an output signal

Function Used to read:

DOutput The value of a digital output signal

GOutput The value of a group of digital output signals

AOutput The current value from an analog output signal
RAPID Reference Manual 3-19

Input and Output Signals RAPID Summary

ng
6.5 Testing input on output signals

Instruction Used to:

WaitDI Wait until a digital input is set or reset

WaitDO Wait until a digital output is set on reset

Function Used to:

TestDI Test whether a digital input is set

6.6 Disabling and enabling I/O modules

I/O modules are automatically enabled at start-up, but they can be disabled duri
program execution and re-enabled later.

Instruction Used to:

IODisable Disable an I/O module

IOEnable Enable an I/O module

6.7 Defining input and output signals

Data type Used to define:

dionum The symbolic value of a digital signal

signalai The name of an analog input signal *

signalao The name of an analog output signal *

signaldi The name of a digital input signal *

signaldo The name of a digital output signal *

signalgi The name of a group of digital input signals *

signalgo The name of a group of digital output signals *

Instruction Used to:

AliasIO1 Define a signal with an alias name

* Only to be defined using system parameters.

1. Only if the robot is equipped with the option “Developer’s Functions”
3-20 RAPID Reference Manual

RAPID Summary Communication

nswer

ass

ter

r

uter,

t on
. A

n is

l/file
 teach

y
7 Communication

There are four possible ways to communicate via serial channels:

- Messages can be output to the teach pendant display and the user can a
questions, such as about the number of parts to be processed.

- Character-based information can be written to or read from text files on m
memory. In this way, for example, production statistics can be stored and
processed later in a PC. Information can also be printed directly on a prin
connected to the robot.

- Binary information can be transferred between the robot and a sensor, fo
example.

- Binary information can be transferred between the robot and another comp
for example, with a link protocol.

7.1 Programming principles

The decision whether to use character-based or binary information is dependen
how the equipment with which the robot communicates handles that information
file, for example, can have data that is stored in character-based or binary form.

If communication is required in both directions simultaneously, binary transmissio
necessary.

Each serial channel or file used must first be opened. On doing this, the channe
receives a descriptor that is then used as a reference when reading/writing. The
pendant can be used at all times and does not need to be opened.

Both text and the value of certain types of data can be printed.

7.2 Communicating using the teach pendant

Instruction Used to:

TPErase Clear the teach pendant operator display

TPWrite Write text on the teach pendant operator display

ErrWrite Write text on the teach pendant display and simultaneousl
store that message in the progam’s error log.

TPReadFK Label the function keys and to read which key is pressed

TPReadNum Read a numeric value from the teach pendant

TPShow Choose a window on the teach pendant from RAPID
RAPID Reference Manual 3-21

Communication RAPID Summary

 for
7.3 Reading from or writing to a character-based serial channel/file

Instruction Used to:

Open1 Open a channel/file for reading or writing

Write1 Write text to the channel/file

Close1 Close the channel/file

Function Used to:

ReadNum1 Read a numeric value

ReadStr1 Read a text string

7.4 Communicating using binary serial channels/files

Instruction Used to:

Open1 Open a serial channel/file for binary transfer of data

WriteBin1 Write to a binary serial channel/file

WriteStrBin1 Write a string to a binary serial channel/file

Rewind1 Set the file position to the beginning of the file

Close1 Close the channel/file

Function Used to:

ReadBin1 Read from a binary serial channel

7.5 Data for serial channels

Data type Used to define:

iodev A reference to a serial channel/file, which can then be used
reading and writing

1. Only if the robot is equipped with the option “Advanced functions”
3-22 RAPID Reference Manual

RAPID Summary Interrupts

rdless

n this
d.
as

 var-

e rea-

rarily

e
abled

his
8 Interrupts

Interrupts are used by the program to enable it to deal directly with an event, rega
of which instruction is being run at the time.

The program is interrupted, for example, when a specific input is set to one. Whe
occurs, the ordinary program is interrupted and a special trap routine is execute
When this has been fully executed, program execution resumes from where it w
interrupted.

8.1 Programming principles

Each interrupt is assigned an interrupt identity. It obtains its identity by creating a
iable (of data type intnum) and connecting this to a trap routine.

The interrupt identity (variable) is then used to order an interrupt, i.e. to specify th
son for the interrupt. This may be one of the following events:

- An input or output is set to one or to zero.

- A given amount of time elapses after an interrupt is ordered.

- A specific position is reached.

When an interrupt is ordered, it is also automatically enabled, but can be tempo
disabled. This can take place in two ways:

- All interrupts can be disabled. Any interrupts occurring during this time ar
placed in a queue and then automatically generated when interrupts are en
again.

- Individual interrupts can be deactivated. Any interrupts occurring during t
time are disregarded.

8.2 Connecting interrupts to trap routines

Instruction Used to:

CONNECT Connect a variable (interrupt identity) to a trap routine
RAPID Reference Manual 3-23

Interrupts RAPID Summary
8.3 Ordering interrupts

Instruction Used to order:

ISignalDI An interrupt from a digital input signal

SignalDO An interrupt from a digital output signal

ITimer A timed interrupt

TriggInt1 A position-fixed interrupt (from the Motion pick list)

8.4 Cancelling interrupts

Instruction Used to:

IDelete Cancel (delete) an interrupt

8.5 Enabling/disabling interrupts

Instruction Used to:

ISleep Deactivate an individual interrupt

IWatch Activate an individual interrupt

IDisable Disable all interrupts

IEnable Enable all interrupts

8.6 Data type of interrupts

Data type Used to define:

intnum The identity of an interrupt

1. Only if the robot is equipped with the option “Advanced functions”
3-24 RAPID Reference Manual

RAPID Summary Error Recovery

 in the
These
 type

ue is

It is
r han-

ler in
ither,
so on
ge and

 data
m the

rnal
an
lty

ndler
9 Error Recovery

Many of the errors that occur when a program is being executed can be handled
program, which means that program execution does not have to be interrupted.
errors are either of a type detected by the robot, such as division by zero, or of a
that is detected by the program, such as errors that occur when an incorrect val
read by a bar code reader.

9.1 Programming principles

When an error occurs, the error handler of the routine is called (if there is one).
also possible to create an error from within the program and then jump to the erro
dler.

If the routine does not have an error handler, a call will be made to the error hand
the routine that called the routine in question. If there is no error handler there e
a call will be made to the error handler in the routine that called that routine, and
until the internal error handler of the robot takes over and outputs an error messa
stops program execution.

In the error handler, errors can be handled using ordinary instructions. The system
ERRNO can be used to determine the type of error that has occurred. A return fro
error handler can then take place in various ways.

In future releases, if the current routine does not have an error handler, the inte
error handler of the robot takes over directly. The internal error handler outputs
error message and stops program execution with the program pointer at the fau
instruction.

So, a good rule already in this issue is as follows: if you want to call the error ha
of the routine that called the current routine (propagate the error), then:

- Add an error handler in the current routine

- Add the instruction RAISE in this error handler.

9.2 Creating an error situation from within the program

Instruction Used to:

RAISE “Create” an error and call the error handler
RAPID Reference Manual 3-25

Error Recovery RAPID Summary

ou-

9.3 Restarting/returning from the error handler

Instruction Used to:

EXIT Stop program execution in the event of a fatal error

RAISE Call the error handler of the routine that called the current r
tine

RETRY Re-execute the instruction that caused the error

TRYNEXT Execute the instruction following the instruction that caused
the error

RETURN Return to the routine that called the current routine

9.4 Data for error handling

Data type Used to define:

errnum The reason for the error
3-26 RAPID Reference Manual

RAPID Summary System & Time

RAPID Reference Manual 3-27

10 System & Time

System and time instructions allow the user to measure, inspect and record time.

10.1 Programming principles

Clock instructions allow the user to use clocks that function as stopwatches. In this way
the robot program can be used to time any desired event.

The current time or date can be retrieved in a string. This string can then be displayed
to the operator on the teach pendant display or used to time and date-stamp log files.

It is also possible to retrieve components of the current system time as a numeric value.
This allows the robot program to perform an action at a certain time or on a certain day
of the week.

10.2 Using a clock to time an event

Instruction Used to:

ClkReset Reset a clock used for timing

ClkStart Start a clock used for timing

ClkStop Stop a clock used for timing

Function Used to:

ClkRead Read a clock used for timing

Data Type Used for:

clock Timing – stores a time measurement in seconds

10.3 Reading current time and date

Function Used to:

CDate Read the Current Date as a string

CTime Read the Current Time as a string

GetTime Read the Current Time as a numeric value

Mathematics RAPID Summary

lue of

ns,
11 Mathematics

Mathematical instructions and functions are used to calculate and change the va
data.

11.1 Programming principles

Calculations are normally performed using the assignment instruction, e.g.
reg1:= reg2 + reg3 / 5. There are also some instructions used for simple calculatio
such as to clear a numeric variable.

11.2 Simple calculations on numeric data

Instruction Used to:

Clear Clear the value

Add Add or subtract a value

Incr Increment by 1

Decr Decrement by 1

11.3 More advanced calculations

Instruction Used to:

:= Perform calculations on any type of data
3-28 RAPID Reference Manual

RAPID Summary Mathematics
11.4 Arithmetic functions

Function Used to:

Abs Calculate the absolute value

Round Round a numeric value

Trunc Truncate a numeric value

Sqrt Calculate the square root

Exp Calculate the exponential value with the base “e”

Pow Calculate the exponential value with an arbitrary base

ACos Calculate the arc cosine value

ASin Calculate the arc sine value

ATan Calculate the arc tangent value in the range [-90,90]

ATan2 Calculate the arc tangent value in the range [-180,180]

Cos Calculate the cosine value

Sin Calculate the sine value

Tan Calculate the tangent value

EulerZYX Calculate Euler angles from an orientation

OrientZYX Calculate the orientation from Euler angles

PoseInv Invert a pose

PoseMult Multiply a pose

PoseVect Multiply a pose and a vector
RAPID Reference Manual 3-29

Spot Welding RAPID Summary

 gun

uts
000,

d. It is
.

12 Spot Welding

The SpotWare package provides support for spot welding applications that are
equipped with a weld timer and on/off weld gun.

The SpotWare application provides fast and accurate positioning combined with
manipulation, process start and supervision of an external weld timer.

Communication with the welding equipment is carried out by means of digital inp
and outputs. Some serial weld timer interfaces are also supported: Bosch PSS5
NADEX, ABB Timer. See separate documentation.

It should be noted that SpotWare is a package that can be extensively customise
the intention that the user adapts the routines to suit the environmental situation

12.1 Spot welding features

The SpotWare package contains the following features:

- Fast and accurate positioning

- Handling of an on/off gun with two strokes

- Dual/single gun

- Gun pre-closing

- User defined supervision of the surrounding equipment before weld start

- User defined supervision of the surrounding equipment after the weld

- User defined open/close gun and supervision

- User defined pressure setting

- User defined preclose time calculation

- Monitoring of the external weld timer

- Weld error recovery with automatic rewelding

- Return to the spot weld position

- Spot counters

- Time- or signal-dependent motion release after a weld

- Quick start after a weld

- User-defined service routines

- Presetting and checking of gun pressure

- Simulated welding

- Reverse execution with gun control

- Parallel and serial weld timer interfaces

- Supports both program and start triggered weld timers
3-30 RAPID Reference Manual

RAPID Summary Spot Welding

rent

sking
, the

nts

e

ision
, this
.

en if
 may

alog

cuted
ach

signal
ol are

The
.

- SpotL current data information

- Spot identity info: the current spotdata parameter name (string format)

- Spot identity transfer to the serial weld timer BOSCH PSS 5000

- User defined autonomous supervision, such as state-controlled weld cur
signal and water cooling start. Note: This feature requires the MultiTasking
option

- Manual weld, gun open and gun close initiated by digital input

- Weld process start disregarding the in position event, is possible

- Optional user defined error recovery

12.2 Principles of SpotWare

SpotWare is based on a separate handling of motion, spot welding and, if MultiTa
is installed, continuous supervision. On its way towards the programmed position
motion task will trigger actions in the spot-welding tasks.

The triggers are activated by virtual digital signals.

The tasks work with their own internal encapsulated variables and with persiste
which are fully transparent for all tasks.

For well defined entries, calls to user routines offer adaptations to the plant
environment. A number of predefined parameters are also available to shape th
behaviour of the SpotL instruction.

A program stop will only stop the motion task execution. The process and superv
carry on their tasks until they come to a well defined process stop. For example
will make the gun open after a finished weld, although the program has stopped

The opening and closing of the gun are always executed by RAPID routines, ev
activated manually from the I/O window on the teach-pendant. These gun routines
be changed from the simple on/off default functionality to a more complex like an
gun control and they may contain additional gun supervision.

Since the process and supervision tasks are acting on I/O triggers, they will be exe
either by the trig that was sent by the motion (SpotL) or by manual activation (te
pendant or external). This offers the possibility of performing a stand-alone weld
anywhere without programming a new position.

It is also possible to define new supervision events and to connect them to digital
triggers. By default, a state dependent weld power and water cooling signal contr
implemented.

Supported equipment:

- One weld timer monitoring with standard parallel (some serial) interface.
weld timer may be of the type, program schedule or start signal triggered

- Any type of single/dual gun close and gun gap control.
RAPID Reference Manual 3-31

Spot Welding RAPID Summary

tors

ed in

 data

 at
- Any type of pressure preset.

- Event controlled SpotL-independent spot weld equipment such as contac
etc. (Note: MultiTasking option required).

12.3 Programming principles

Both the robot’s linear movement and the spot weld process control are embedd
one instruction, SpotL.

The spot welding process is specified by:

- Spotdata: spot weld process data

- Gundata: spot weld gun data

- The system modules SWUSRF and SWUSRC: RAPID routines and global
for customising purposes. See Predefined Data and Programs ProcessWare.

- System parameters: the I/O configuration. See User’s Guide - System
Parameters

12.4 Spot welding instructions

Instruction Used to:

SpotL Control the motion, gun closure/opening and the welding
process
Move the TCP along a linear path and perform a spot weld
the end position

12.5 Spot welding data

Data type Used to define:

spotdata The spot weld process control

gundata The spot weld gun
3-32 RAPID Reference Manual

RAPID Summary Arc Welding

ing
cess
 ana-

ctual
 data

d end

g

s.
13 Arc Welding

The ArcWare package supports most welding functions. Crater-filling and scrap
starts can, for example, be programmed. Using ArcWare, the whole welding pro
can be controlled and monitored by the robot via a number of different digital and
log inputs and outputs.

13.1 Programming principles

The same instructions are used both to control the robot’s movements and the a
welding process. The arc welding instructions indicate which weld data and seam
are used in the weld in question.

The weld settings for the actual weld phase are defined in weld data. The start an
phase are defined in seam data.

Any weaving is defined in weave data, which is also identified by the arc weldin
instruction.

Certain functions, such as a scraping start, are defined in the system parameter

The welding process is divided into the following phases:

13.2 Arc welding instructions

Instruction Type of movement:

ArcC TCP along a circular path

ArcL TCP along a linear path

PREACTION POSTACTIONFILLFINISHIGNITION HEAT

WELDSTART END

t

RAPID Reference Manual 3-33

Arc Welding RAPID Summary
13.3 Arc welding data

Data type Used to define:

welddata The weld phase

seamdata The start and end phase of a weld

weavedata The weaving characteristics
3-34 RAPID Reference Manual

RAPID Summary GlueWare

d with

 gun

 ana-

olled

struc-

zing

the

ith
14 GlueWare

The GlueWare package provides support for gluing applications that are equippe
one or two gluing guns.

The GlueWare application provides fast and accurate positioning combined with
manipulation, process start and stop.

Communication with the glueing equipment is carried out by means of digital and
log outputs.

14.1 Glueing features

The GlueWare package contains the following features:

- Fast and accurate positioning

- Handling of on/off guns as well as proportional guns

- Two different guns can be handled in the same program, each gun contr
by one digital signal (on/off) and two analog signals (flows)

- Gun pre-opening and pre-closing respectively

- Simulated glueing

14.2 Programming principles

Both the robot’s movement and the glue process control are embedded in one in
tion, GlueL and GlueC respectively.

The glueing process is specified by:

- Gundata: glue gun data. See Data types - ggundata.

- The system module GLUSER: RAPID routines and global data for customi
purposes. See Predefined Data and Programs - System Module GLUSER.

- System parameters: the I/O configuration. See System Parameters - Glueing

14.3 Glue instructions

Instruction Used to:

GlueL Move the TCP along a linear path and perform glueing with
given data

GlueC Move the TCP along a circular path and perform glueing w
the given data
RAPID Reference Manual 3-35

GlueWare RAPID Summary
14.4 Glue data

Data type Used to define:

ggundata The used glue gun
3-36 RAPID Reference Manual

RAPID Summary External Computer Communication

RAPID Reference Manual 3-37

15 External Computer Communication

The robot can be controlled from a superordinate computer. In this case, a special com-
munications protocol is used to transfer information.

15.1 Programming principles

As a common communications protocol is used to transfer information from the robot
to the computer and vice versa, the robot and computer can understand each other and
no programming is required. The computer can, for example, change values in the pro-
gram’s data without any programming having to be carried out (except for defining this
data). Programming is only necessary when program-controlled information has to be
sent from the robot to the superordinate computer.

15.2 Sending a program-controlled message from the robot to a computer

Instruction Used to:

SCWrite1 Send a message to the superordinate computer

1. Only if the robot is equipped with the option “RAP Serial Link”.

Service Instructions RAPID Summary

3-38 RAPID Reference Manual

16 Service Instructions

A number of instructions are available to test the robot system. See the chapter on Trou-
bleshooting Tools in the Product Manual for more information.

16.1 Directing a value to the robot’s test signal

A reference signal, such as the speed of a motor, can be directed to an analog output
signal located on the backplane of the robot.

Instruction Used to:

TestSign Define and activate a test signal

Data type Used to define:

testsignal The type of test signal

RAPID Summary String Functions

tion,
17 String Functions

String functions are used for operations with strings such as copying, concatena
comparison, searching, conversion, etc.

17.1 Basic Operations

Data type Used to define:

string String. Predefined constants STR_DIGIT, STR_UPPER,

STR_LOWER and STR_WHITE

Instruction/Operator Used to:

:= Assign a value (copy of string)

+ String concatenation

Function Used to:

StrLen Find string length

StrPart Obtain part of a string

17.2 Comparison and Searching

Operator Used to:

= Test if equal to

<> Test if not equal to

Function Used to:

StrMemb Check if character belongs to a set

StrFind Search for character in a string

StrMatch Search for pattern in a string

StrOrder Check if strings are in order
RAPID Reference Manual 3-39

String Functions RAPID Summary
17.3 Conversion

Function Used to:

NumToStr Convert a numeric value to a string

ValToStr Convert a value to a string

StrToVal Convert a string to a value

StrMap Map a string

StrToByte Convert a byte to string data

ByteToStr Convert a string to a byte
3-40 RAPID Reference Manual

RAPID Summary Syntax Summary
18 Syntax Summary

18.1 Instructions

Data := Value

AccSet Acc Ramp

ActUnit MecUnit

Add Name AddValue

Break

CallBy Var Name Number

Clear Name

ClkReset Clock

ClkStart Clock

ClkStop Clock

Close IODevice

! Comment

ConfJ [\On] | [\Off]

ConfL [\On] | [\Off]

CONNECT Interrupt WITH Trap routine

CorrCon Descr

CorrDiscon Descr

CorrWrite Descr Data

CorrClear

DeactUnit MecUnit

Decr Name

EOffsSet EAxOffs
RAPID Reference Manual 3-41

Syntax Summary RAPID Summary

|
ErrWrite [\W] Header Reason [\RL2] [\RL3] [\RL4]

Exit

ExitCycle

FOR Loop counter FROM Start value TO End value
[STEP Step value] DO ... ENDFOR

GOTO Label

GripLoad Load

IDelete Interrupt

IF Condition ...

IF Condition THEN ...
{ ELSEIF Condition THEN ...}

[ELSE ...]

ENDIF

Incr Name

IndAMove MecUnit Axis [\ToAbsPos] | [\ToAbsNum] Speed
[\Ramp]

IndCMove MecUnit Axis Speed [\Ramp]

IndDMove MecUnit Axis Delta Speed [\Ramp]

IndReset MecUnit Axis [\RefPos] | [\RefNum] | [\Short] | [\Fwd]
[\Bwd] | [\Old]

IndRMove MecUnit Axis [\ToRelPos] | [\ToRelNum] | [\Short] |
[\Fwd] | [\Bwd] Speed [\Ramp]

InvertDO Signal

IODisable UnitName MaxTime

IOEnable UnitName MaxTime

ISignalDI [\Single] Signal TriggValue Interrupt

ISignalDO [\Single] Signal TriggValue Interrupt

ISleep Interrupt
3-42 RAPID Reference Manual

RAPID Summary Syntax Summary

t

ITimer [\Single] Time Interrupt

IVarValue VarNo Value, Interrupt

IWatch Interrupt

Label:

MoveAbsJ [\Conc] ToJointPos Speed [\V] | [\T] Zone [\Z]
Tool [\WObj]

MoveC [\Conc] CirPoint ToPoint Speed [\V] | [\T] Zone [\Z]
Tool [\WObj]

MoveJ [\Conc] ToPoint Speed [\V] | [\T] Zone [\Z] Tool
 [\WObj]

MoveL [\Conc] ToPoint Speed [\V] | [\T] Zone [\Z] Tool
 [\WObj]

Open Object [\File] IODevice [\Read] | [\Write] | [\Append] | [\Bin]

PathResol Value

PDispOn [\Rot] [\ExeP] ProgPoint Tool [\WObj]

PDispSet DispFrame

Procedure { Argument }

PulseDO [\PLength] Signal

RAISE [Error no]

Reset Signal

RETURN [Return value]

Rewind IODevice

SearchC [\Stop] | [\PStop] | [\Sup] Signal SearchPoint CirPoin
ToPoint Speed [\V] | [\T] Tool [\WObj]

SearchL [\Stop] | [\PStop] | [\Sup] Signal SearchPoint ToPoint
Speed [\V] | [\T] Tool [\WObj]

Set Signal

SetAO Signal Value
RAPID Reference Manual 3-43

Syntax Summary RAPID Summary

|

SetDO [\SDelay] Signal Value

SetGO Signal Value

SingArea [\Wrist] | [\Arm] | [\Off]

SoftAct Axis Softness [\Ramp]

Stop [\NoRegain]

TEST Test data {CASE Test value {, Test value} : ...}
[DEFAULT: ...] ENDTEST

TPReadFK Answer String FK1 FK2 FK3 FK4 FK5 [\MaxTime]
[\DIBreak] [\BreakFlag]

TPReadNum Answer String [\MaxTime] [\DIBreak] [\BreakFlag]

TPShow Window

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient]

TriggC CirPoint ToPoint Speed [\T] Trigg_1 [\T2] [\T3]
[\T4] Zone Tool [\WObj]

TriggInt TriggData Distance [\Start] | [\Time] Interrupt

TriggIO TriggData Distance [\Start] | [\Time] [\DOp] | [\GOp]
 [\AOp] SetValue [\DODelay] | [\AORamp]

TriggJ ToPoint Speed [\T] Trigg_1 [\T2] [\T3] [\T4]
Zone Tool [\WObj]

TriggL ToPoint Speed [\T] Trigg_1 [\T2] [\T3] [\T4]
Zone Tool [\WObj]

TuneServo MecUnit Axis TuneValue

TuneServo MecUnit Axis TuneValue [\Type]

UnLoad FilePath [\File]

VelSet Override Max

WaitDI Signal Value [\MaxTime] [\TimeFlag]

WaitDO Signal Value [\MaxTime] [\TimeFlag]

WaitTime [\InPos] Time
3-44 RAPID Reference Manual

RAPID Summary Syntax Summary
WaitUntil [\InPos] Cond [\MaxTime] [\TimeFlag]

WHILE Condition DO ... ENDWHILE

Write IODevice String [\Num] | [\Bool] | [\Pos] | [\Orient]
[\NoNewLine]

WriteBin IODevice Buffer NChar

WriteStrBin IODevice Str

WZBoxDef [\Inside] | [\Outside] Shape LowPoint HighPoint 1

WZCylDef [\Inside] | [\Outside] Shape CentrePoint Radius Height

WZDisable WorldZone

WZDOSet [\Temp] | [\Stat] WorldZone [\Inside] | [\Before] Shape
Signal SetValue

WZEnable WorldZone

WZFree WorldZone

WZLimSup [\Temp] | [\Stat] WorldZone Shape

WZSphDef [\Inside] | [\Outside] Shape CentrePoint Radius

18.2 Functions

Abs (Input)

ACos (Value)

AOutput (Signal)

ArgName (Parameter)

ASin (Value)

ATan (Value)

ATan2 (Y X)

ByteToStr (ByteData [\Hex] | [\Okt] | [\Bin] | [\Char])

ClkRead (Clock)
RAPID Reference Manual 3-45

Syntax Summary RAPID Summary
CorrRead

Cos (Angle)

CPos ([Tool] [\WObj])

CRobT ([Tool] [\WObj])

DefDFrame (OldP1 OldP2 OldP3 NewP1 NewP2 NewP3)

DefFrame (NewP1 NewP2 NewP3 [\Origin])

Dim (ArrPar DimNo)

DOutput (Signal)

EulerZYX ([\X] | [\Y] | [\Z] Rotation)

Exp (Exponent)

GOutput (Signal)

GetTime ([\WDay] | [\Hour] | [\Min] | [\Sec])

IndInpos MecUnit Axis

IndSpeed MecUnit Axis [\InSpeed] | [\ZeroSpeed]

IsPers (DatObj)

IsVar (DatObj)

MirPos (Point MirPlane [\WObj] [\MirY])

NumToStr (Val Dec [\Exp])

Offs (Point XOffset YOffset ZOffset)

OrientZYX (ZAngle YAngle XAngle)

ORobT (OrgPoint [\InPDisp] | [\InEOffs])

PoseInv (Pose)

PoseMult (Pose1 Pose2)

PoseVect (Pose Pos)

Pow (Base Exponent)
3-46 RAPID Reference Manual

RAPID Summary Syntax Summary
Present (OptPar)

ReadBin (IODevice [\Time])

ReadMotor [\MecUnit] Axis

ReadNum (IODevice [\Time])

ReadStr (IODevice [\Time])

RelTool (Point Dx Dy Dz [\Rx] [\Ry] [\Rz])

Round (Val [\Dec])

Sin (Angle)

Sqrt (Value)

StrFind (Str ChPos Set [\NotInSet])

StrLen (Str)

StrMap (Str FromMap ToMap)

StrMatch (Str ChPos Pattern)

StrMemb (Str ChPos Set)

StrOrder (Str1 Str2 Order)

StrPart (Str ChPos Len)

StrToByte (ConStr [\Hex] | [\Okt] | [\Bin] | [\Char])

StrToVal (Str Val)

Tan (Angle)

TestDI (Signal)

Trunc (Val [\Dec])

ValToStr (Val)
RAPID Reference Manual 3-47

Syntax Summary RAPID Summary
3-48 RAPID Reference Manual

Basic Characteristics RAPID

CONTENTS
Page

4

4

4

4

5

5

5

8

9

9

11

12

3

13

14

18

18

2

1

22

22
1 Basic Elements... 3

1.1 Identifiers .. 3

1.2 Spaces and new-line characters ..

1.3 Numeric values ...

1.4 Logical values...

1.5 String values ...

1.6 Comments ...

1.7 Placeholders ..

1.8 File header ..

1.9 Syntax ... 6

2 Modules .. 8

2.1 Program modules..

2.2 System modules..

2.3 Module declarations ...

2.4 Syntax ... 9

3 Routines.. 11

3.1 Routine scope ...

3.2 Parameters ..

3.3 Routine termination .. 1

3.4 Routine declarations ...

3.5 Procedure call ...

3.6 Syntax ... 15

4 Data Types ... 18

4.1 Non-value data types ..

4.2 Equal (alias) data types...

4.3 Syntax ... 19

5 Data... 20

5.1 Data scope...0

5.2 Variable declaration.. 2

5.3 Persistent declaration..

5.4 Constant declaration ...

5.5 Initiating data.. 22

5.6 Syntax ... 23

6 Instructions .. 25

6.1 Syntax ... 25

7 Expressions .. 26
RAPID Reference Manual 5-1

Basic Characteristics RAPID

Page

6

7

27

28

29

9

0

3

5

6

7

7

9

1

2

4

3

7.1 Arithmetic expressions ... 2

7.2 Logical expressions .. 2

7.3 String expressions...

7.4 Using data in expressions ...

7.5 Using aggregates in expressions...

7.6 Using function calls in expressions .. 2

7.7 Priority between operators.. 3

7.8 Syntax... 31

8 Error Recovery.. 33

8.1 Error handlers ... 3

9 Interrupts... 35

9.1 Interrupt manipulation .. 3

9.2 Trap routines... 3

10 Backward execution.. 3

10.1 Backward handlers ... 3

10.2 Limitation of move instructions in the backward handler.................................... 38

11 Multitasking... 39

11.1 Synchronising the tasks .. 3

11.2 Intertask communication .. 4

11.3 Type of task .. 4

11.4 Priorities.. 42

11.5 Task sizes..3

11.6 Something to think about.. 4
5-2 RAPID Reference Manual

Basic Characteristics RAPID Basic Elements

etters,

 being
case,

ctions,
14 and
1 Basic Elements

1.1 Identifiers

Identifiers are used to name modules, routines, data and labels;

e.g. MODULE module_name
PROC routine_name()
VAR pos data_name;
label_name:

The first character in an identifier must be a letter. The other characters can be l
digits or underscores “_”.

The maximum length of any identifier is 16 characters, each of these characters
significant. Identifiers that are the same except that they are typed in the upper
and vice versa, are considered the same.

Reserved words

The words listed below are reserved. They have a special meaning in the RAPID
language and thus must not be used as identifiers.

There are also a number of predefined names for data types, system data, instru
and functions, that must not be used as identifiers. See Chapters 7, 8, 9, 10 ,13,
15 in this manual.

ALIAS AND BACKWARD CASE
CONNECT CONST DEFAULT DIV
DO ELSE ELSEIF ENDFOR
ENDFUNC ENDIF ENDMODULE ENDPROC
ENDRECORD ENDTEST ENDTRAP ENDWHILE
ERROR EXIT FALSE FOR
FROM FUNC GOTO IF
INOUT LOCAL MOD MODULE
NOSTEPIN NOT NOVIEW OR
PERS PROC RAISE READONLY
RECORD RETRY RETURN STEP
SYSMODULE TEST THEN TO
TRAP TRUE TRYNEXT VAR
VIEWONLY WHILE WITH XOR
RAPID Reference Manual 5-3

Basic Elements Basic Characteristics RAPID

es can

sed,

her by

 a

ingle

non-
e

he

uded,
1.2 Spaces and new-line characters

The RAPID programming language is a free format language, meaning that spac
be used anywhere except for in:

- identifiers

- reserved words

- numerical values

- placeholders.

New-line, tab and form-feed characters can be used wherever a space can be u
except for within comments.

Identifiers, reserved words and numeric values must be separated from one anot
a space, a new-line, tab or form-feed character.

Unnecessary spaces and new-line characters will automatically be deleted from
program loaded into the program memory. Consequently, programs loaded from
diskette and then stored again might not be identical.

1.3 Numeric values

A numeric value can be expressed as

- an integer, e.g. 3, -100, 3E2

- a decimal number, e.g. 3.5, -0.345, -245E-2

The value must be in the range specified by the ANSI IEEE 754-1985 standard (s
precision) float format.

1.4 Logical values

A logical value can be expressed as TRUE or FALSE.

1.5 String values

A string value is a sequence of characters (ISO 8859-1) and control characters (
ISO 8859-1 characters in the numeric code range 0-255). Character codes can b
included, making it possible to include non-printable characters (binary data) in t
string as well. String length max. 80 characters.

Example: "This is a string"
"This string ends with the BEL control character \07"

If a backslash (which indicates character code) or double quote character is incl
it must be written twice.

Example: "This string contains a "" character"
"This string contains a \\ character"
5-4 RAPID Reference Manual

Basic Characteristics RAPID Basic Elements

ect the

er. It

ot yet
be
1.6 Comments

Comments are used to make the program easier to understand. They do not aff
meaning of the program in any way.

A comment starts with an exclamation mark “!” and ends with a new-line charact
occupies an entire line and cannot occur between two modules;

e.g. ! comment
IF reg1 > 5 THEN

! comment
reg2 := 0;

ENDIF

1.7 Placeholders

Placeholders can be used to temporarily represent parts of a program that are “n
defined”. A program that contains placeholders is syntactically correct and may
loaded into the program memory.

Placeholder Represents:

<TDN> data type definition

<DDN> data declaration

<RDN> routine declaration

<PAR> formal optional alternative parameter

<ALT> optional formal parameter

<DIM> formal (conformant) array dimension

<SMT> instruction

<VAR> data object (variable, persistent or parameter) reference

<EIT> else if clause of if instruction

<CSE> case clause of test instruction

<EXP> expression

<ARG> procedure call argument

<ID> identifier

1.8 File header

A program file starts with the following file header:

%%%
 VERSION:1 (Program version M94 or M94A)
 LANGUAGE:ENGLISH (or some other language:
%%% GERMAN or FRENCH)
RAPID Reference Manual 5-5

Basic Elements Basic Characteristics RAPID
1.9 Syntax

Identifiers

<identifier> ::=
<ident>
| <ID>

<ident> ::= <letter> {<letter> | <digit> | ’_’}

Numeric values

<num literal> ::=
<integer> [<exponent>]
| <integer> ’.’ [<integer>] [<exponent>]
| [<integer>] ’.’ <integer> [<exponent>]

<integer> ::= <digit> {<digit>}
<exponent> ::= (’E’ | ’e’) [’+’ | ’-’] <integer>

Logical values

<bool literal> ::= TRUE | FALSE

String values

<string literal> ::= ’"’ {<character> | <character code> } ’"’
<character code> ::= ’\’ <hex digit> <hex digit>
<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d | e | f

Comments

<comment> ::=
’!’ {<character> | <tab>} <newline>

Characters

<character> ::= -- ISO 8859-1 --
<newline> ::= -- newline control character --
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<letter> ::=

<upper case letter>
| <lower case letter>
5-6 RAPID Reference Manual

Basic Characteristics RAPID Basic Elements
<upper case letter> ::=
A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1) | Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3) | ß

<lower case letter> ::=
a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | ß | à | á | â
| ã| ä | å | æ | ç | è | é | ê | ë | ì
| í | î | ï | 1) | ñ | ò | ó | ô | õ | ö
| ø | ù | ú | û | ü | 2) | 3) | ÿ

1) Icelandic letter eth.
2) Letter Y with acute accent.
3) Icelandic letter thorn.
RAPID Reference Manual 5-7

Modules Basic Characteristics RAPID

e

gram

ain
y dig-

 may
veral
2 Modules

The program is divided into program and system modules. The program can also be
divided into modules (see Figure 1).

Figure 1 The program can be divided into modules.

2.1 Program modules

A program module can consist of different data and routines. Each module, or th
whole program, can be copied to diskette, RAM disk, etc., and vice versa.

One of the modules contains the entry procedure, a global procedure called main. Exe-
cuting the program means, in actual fact, executing the main procedure. The pro
can include many modules, but only one of these will have a main procedure.

A module may, for example, define the interface with external equipment or cont
geometrical data that is either generated from CAD systems or created on-line b
itizing (teach programming).

Whereas small installations are often contained in one module, larger installations
have a main module that references routines and/or data contained in one or se
other modules.

Main module

Module2

Module3

Module4

Program data

Main routine

Routine1

Routine2

Program data

Routine4

Routine5

Routine3

Module1

System module1

System module2

Program data

Routine6

Routine7

Program memory
Program
5-8 RAPID Reference Manual

Basic Characteristics RAPID Modules

, such
e made
ter

ibutes
les of

om
ant.
d-
be
f-

r data.
2.2 System modules

System modules are used to define common, system-specific data and routines
as tools. They are not included when a program is saved, meaning that any updat
to a system module will affect all existing programs currently in, or loaded at a la
stage into the program memory.

2.3 Module declarations

A module declaration specifies the name and attributes of that module. These attr
can only be added off-line, not using the teach pendant. The following are examp
the attributes of a module:

Attribute If specified, the module:

SYSMODULE is a system module, otherwise a program module

NOSTEPIN cannot be entered during stepwise execution

VIEWONLY cannot be modified

READONLY cannot be modified, but the attribute can be removed

NOVIEW cannot be viewed, only executed. Global routines can be
reached from other modules and are always run as NOS-
TEPIN. The current values for global data can be reached fr
other modules or from the data window on the teach pend
A module or a program containing a NOVIEW program mo
ule cannot be saved. Therefore, NOVIEW should primarily
used for system modules. NOVIEW can only be defined of
line from a PC.

e.g. MODULE module_name (SYSMODULE, VIEWONLY)
!data type definition
!data declarations
!routine declarations

ENDMODULE

A module may not have the same name as another module or a global routine o

2.4 Syntax

Module declaration

<module declaration> ::=
MODULE <module name> [<module attribute list>]
<type definition list>
<data declaration list>
<routine declaration list>
ENDMODULE
RAPID Reference Manual 5-9

Modules Basic Characteristics RAPID
<module name> ::= <identifier>
<module attribute list> ::= ‘(‘ <module attribute> { ‘,’ <module attribute> } ‘)’
<module attribute> ::=

SYSMODULE
| NOVIEW
| NOSTEPIN
| VIEWONLY
| READONLY

(Note. If two or more attributes are used they must be in the above order, the
NOVIEW attribute can only be specified alone or together with the attribute
SYSMODULE.)

<type definition list> ::= { <type definition> }
<data declaration list> ::= { <data declaration> }
<routine declaration list> ::= { <routine declaration> }
5-10 RAPID Reference Manual

Basic Characteristics RAPID Routines

ns.

n be
curs
e

nal
ule),

d.

ame

 data

odule.
global
3 Routines

There are three types of routines (subprograms): procedures, functions and traps.

- Procedures do not return a value and are used in the context of instructio

- Functions return a value of a specific type and are used in the context of
expressions.

- Trap routines provide a means of dealing with interrupts. A trap routine ca
associated with a specific interrupt and then, if that particular interrupt oc
at a later stage, will automatically be executed. A trap routine can never b
explicitly called from the program.

3.1 Routine scope

The scope of a routine denotes the area in which the routine is visible. The optio
local directive of a routine declaration classifies a routine as local (within the mod
otherwise it is global.

Example: LOCAL PROC local_routine (...
PROC global_routine (...

The following scope rules apply to routines (see the example in Figure 2):

- The scope of a global routine may include any module.

- The scope of a local routine comprises the module in which it is containe

- Within its scope, a local routine hides any global routine or data with the s
name.

- Within its scope, a routine hides instructions and predefined routines and
with the same name.

Figure 2 Example: The following routines can be called from Routine h:
Module1 - Routine c, d.
Module2 - All routines.

A routine may not have the same name as another routine or data in the same m
A global routine may not have the same name as a module or a global routine or
data in another module.

Module1 Module2

Local Routine a

Local Routine b

Routine c

Routine d

Routine e

Local Routine a

Local Routine e

Routine f

Routine g

Routine h
RAPID Reference Manual 5-11

Routines Basic Characteristics RAPID

eters)

ent.

be

iable

ntire

 to the

tine

rs

lude
. This

es a
 (not
e a

mply
3.2 Parameters

The parameter list of a routine declaration specifies the arguments (actual param
that must/can be supplied when the routine is called.

There are four different types of parameters (in the access mode):

- Normally, a parameter is used only as an input and is treated as a routine
variable. Changing this variable will not change the corresponding argum

- An INOUT parameter specifies that a corresponding argument must be a
variable (entire, element or component) or an entire persistent which can
changed by the routine.

- A VAR parameter specifies that a corresponding argument must be a var
(entire, element or component) which can be changed by the routine.

- A PERS parameter specifies that a corresponding argument must be an e
persistent which can be changed by the routine.

If an INOUT, VAR or PERS parameter is updated, this means, in actual fact, that the
argument itself is updated, i.e. it makes it possible to use arguments to return values
calling routine.

Example: PROC routine1 (num in_par, INOUT num inout_par,
VAR num var_par, PERS num pers_par)

A parameter can be optional and may be omitted from the argument list of a rou
call. An optional parameter is denoted by a backslash “\” before the parameter.

Example: PROC routine2 (num required_par \num optional_par)

The value of an optional parameter that is omitted in a routine call may not be
referenced. This means that routine calls must be checked for optional paramete
before an optional parameter is used.

Two or more optional parameters may be mutually exclusive (i.e. declared to exc
each other), which means that only one of them may be present in a routine call
is indicated by a stroke “|” between the parameters in question.

Example: PROC routine3 (\num exclude1 | num exclude2)

The special type, switch, may (only) be assigned to optional parameters and provid
means to use switch arguments, i.e. arguments that are only specified by names
values). A value cannot be transferred to a switch parameter. The only way to us
switch parameter is to check for its presence using the predefined function, Present.

Example: PROC routine4 (\switch on | switch off)
...

 IF Present (off) THEN
 ...
ENDPROC

Arrays may be passed as arguments. The degree of an array argument must co
5-12 RAPID Reference Manual

Basic Characteristics RAPID Routines

ay
 on
mine

tion
he

tion
 is

a
e
utine.

or
with the degree of the corresponding formal parameter. The dimension of an arr
parameter is “conformant” (marked with “*”). The actual dimension thus depends
the dimension of the corresponding argument in a routine call. A routine can deter
the actual dimension of a parameter using the predefined function, Dim.

Example: PROC routine5 (VAR num pallet{*,*})

3.3 Routine termination

The execution of a procedure is either explicitly terminated by a RETURN instruc
or implicitly terminated when the end (ENDPROC, BACKWARD or ERROR) of t
procedure is reached.

The evaluation of a function must be terminated by a RETURN instruction.

The execution of a trap routine is explicitly terminated using the RETURN instruc
or implicitly terminated when the end (ENDTRAP or ERROR) of that trap routine
reached. Execution continues from the point where the interrupt occurred.

3.4 Routine declarations

A routine can contain routine declarations (including parameters), data, a body,
backward handler (only procedures) and an error handler (see Figure 3). Routin
declarations cannot be nested, i.e. it is not possible to declare a routine within a ro

Figure 3 A routine can contain declarations, data, a body, a backward handler and an err
handler.

Routine declaration

Data declarations

Body (Instructions)

Backward handler

Module

Data declarations

Routine a

Routine b

Routine c

Routine d

Routine e
Error handler
RAPID Reference Manual 5-13

Routines Basic Characteristics RAPID

));

f the

the

e call

, late
ined

Procedure declaration

Example: Multiply all elements in a num array by a factor;

PROC arrmul(VAR num array{*}, num factor)
FOR index FROM 1 TO dim(array, 1) DO

array{index} := array{index} * factor;
ENDFOR

ENDPROC

Function declaration

A function can return any data type value, but not an array value.

Example: Return the length of a vector;

FUNC num veclen (pos vector)
 RETURN Sqrt(Pow(vector.x,2)+Pow(vector.y,2)+Pow(vector.z,2
ENDFUNC

Trap declaration

Example: Respond to feeder empty interrupt;

TRAP feeder_empty
 wait_feeder;
 RETURN;
ENDTRAP

3.5 Procedure call

When a procedure is called, the arguments that correspond to the parameters o
procedure shall be used:

- Mandatory parameters must be specified. They must also be specified in
correct order.

- Optional arguments can be omitted.

- Conditional arguments can be used to transfer parameters from one routin
to another.

See the Chapter Using function calls in expressions on page 29 for more details.

The procedure name may either be statically specified by using an identifier (early
binding) or evaluated during runtime from a string type expression (late binding). Even
though early binding should be considered to be the “normal” procedure call form
binding sometimes provides very efficient and compact code. Late binding is def
by putting percent signs before and after the string that denotes the name of the
procedure.
5-14 RAPID Reference Manual

Basic Characteristics RAPID Routines

n
stem
dure
 is set
Example: ! early binding
TEST products_id
CASE 1:

proc1 x, y, z;
CASE 2:

proc2 x, y, z;
CASE 3:

...

! same example using late binding
% “proc” + NumToStr(product_id, 0) % x, y, z;

...

! same example again using another variant of late binding
VAR string procname {3} :=[“proc1”, “proc2”, “proc3”];

...
% procname{product_id} % x, y, z;

...

Note that the late binding is available for procedure calls only, and not for functio
calls. If a reference is made to an unknown procedure using late binding, the sy
variable ERRNO is set to ERR_REFUNKPRC. If a reference is made to a proce
call error (syntax, not procedure) using late binding, the system variable ERRNO
to ERR_CALLPROC.

3.6 Syntax

Routine declaration

<routine declaration> ::=
[LOCAL] (<procedure declaration>
 | <function declaration>
 | <trap declaration>)
| <comment>
| <RDN>

Parameters

<parameter list> ::=
<first parameter declaration> { <next parameter declaration> }

<first parameter declaration> ::=
<parameter declaration>
| <optional parameter declaration>
| <PAR>

<next parameter declaration> ::=
’,’ <parameter declaration>

 | <optional parameter declaration>
 | ’,’ <PAR>
RAPID Reference Manual 5-15

Routines Basic Characteristics RAPID
<optional parameter declaration> ::=
’\’ (<parameter declaration> | <ALT>)

{ ’|’ (<parameter declaration> | <ALT>) }
<parameter declaration> ::=

[VAR | PERS | INOUT] <data type>
<identifier> [’{’ (’*’ { ’,’ ’*’ }) | <DIM>] ’}’

| ’switch’ <identifier>

Procedure declaration

<procedure declaration> ::=
PROC <procedure name>
’(’ [<parameter list>] ’)’
<data declaration list>
<instruction list>
[BACKWARD <instruction list>]
[ERROR <instruction list>]
ENDPROC

<procedure name> ::= <identifier>
<data declaration list> ::= {<data declaration>}

Function declaration

<function declaration> ::=
FUNC <value data type>
<function name>
’(’ [<parameter list>] ’)’
<data declaration list>
<instruction list>
[ERROR <instruction list>]
ENDFUNC

<function name> ::= <identifier>

Trap routine declaration

<trap declaration> ::=
TRAP <trap name>
<data declaration list>
<instruction list>
[ERROR <instruction list>]
ENDTRAP

<trap name> ::= <identifier>

Procedure call

<procedure call> ::= <procedure> [<procedure argument list>] ’;’
<procedure> ::=

<identifier>
| ’%’ <expression> ’%’
5-16 RAPID Reference Manual

Basic Characteristics RAPID Routines

nt> }
<procedure argument list> ::= <first procedure argument> { <procedure argume
<first procedure argument> ::=

<required procedure argument>
| <optional procedure argument>
| <conditional procedure argument>
| <ARG>

<procedure argument> ::=
’,’ <required procedure argument>
| <optional procedure argument>
| <conditional procedure argument>
| ’,’ <ARG>

<required procedure argument> ::= [<identifier> ’:=’] <expression>
<optional procedure argument> ::= ’\’ <identifier> [’:=’ <expression>]
<conditional procedure argument> ::= ’\’ <identifier> ’?’ (<parameter> | <VAR>)
RAPID Reference Manual 5-17

Data Types Basic Characteristics RAPID

ther

 e.g.

of that

s1.

not be

ent.

on-

 data
4 Data Types

There are two different kinds of data types:

- An atomic type is atomic in the sense that it is not defined based on any o
type and cannot be divided into parts or components, e.g. num.

- A record data type is a composite type with named, ordered components,
pos. A component may be of an atomic or record type.

A record value can be expressed using an aggregate representation;

e.g. [300, 500, depth] pos record aggregate value.

A specific component of a record data can be accessed by using the name
component;

e.g. pos1.x := 300; assignment of the x-component of po

4.1 Non-value data types

Each available data type is either a value data type or a non-value data type. Simply
speaking, a value data type represents some form of “value”. Non-value data can
used in value-oriented operations:

- Initialisation

- Assignment (:=)

- Equal to (=) and not equal to (<>) checks

- TEST instructions

- IN (access mode) parameters in routine calls

- Function (return) data types

The input data types (signalai, signaldi, signalgi) are of the data type semi value. These
data can be used in value-oriented operations, except initialisation and assignm

In the description of a data type it is only specified when it is a semi value or a n
value data type.

4.2 Equal (alias) data types

An alias data type is defined as being equal to another type. Data with the same
types can be substituted for one another.

Example: VAR dionum high:=1;
VAR num level; This is OK since dionum is an alias
level:= high; data type for num
5-18 RAPID Reference Manual

Basic Characteristics RAPID Data Types
4.3 Syntax

<type definition>::=
[LOCAL] (<record definition>

| <alias definition>)
| <comment>
| <TDN>

<record definition>::=
RECORD <identifier>
 <record component list> ’;’
ENDRECORD

<record component list> ::=
<record component definition> |
<record component definition> <record component list>

<record component definition> ::=
<data type> <record component name>

<alias definition> ::=
ALIAS <data type> <identifier> ’;’

<data type> ::= <identifier>
RAPID Reference Manual 5-19

Data Basic Characteristics RAPID

hed

ram
rrent

.

 type.

al
ise it
e a

ined.

the

e
 or a
r

ine

e
5 Data

There are three kinds of data: variables, persistents and constants.

- A variable can be assigned a new value during program execution.

- A persistent can be described as a “persistent” variable. This is accomplis
by letting an update of the value of a persistent automatically cause the
initialisation value of the persistent declaration to be updated. (When a prog
is saved the initialisation value of any persistent declaration reflects the cu
value of the persistent.)

- A constant represents a static value and cannot be assigned a new value

A data declaration introduces data by associating a name (identifier) with a data
Except for predefined data and loop variables, all data used must be declared.

5.1 Data scope

The scope of data denotes the area in which the data is visible. The optional loc
directive of a data declaration classifies data as local (within the module), otherw
is global. Note that the local directive may only be used at module level, not insid
routine.

Example: LOCAL VAR num local_variable;
VAR num global_variable;

Data declared outside a routine is called program data. The following scope rules apply
to program data:

- The scope of predefined or global program data may include any module.

- The scope of local program data comprises the module in which it is conta

- Within its scope, local program data hides any global data or routine with
same name (including instructions and predefined routines and data).

Program data may not have the same name as other data or a routine in the sam
module. Global program data may not have the same name as other global data
routine in another module. A persistent may not have the same name as anothe
persistent in the same program.

Data declared inside a routine is called routine data. Note that the parameters of a
routine are also handled as routine data. The following scope rules apply to rout
data:

- The scope of routine data comprises the routine in which it is contained.

- Within its scope, routine data hides any other routine or data with the sam
name.

See the example in Figure 4.
5-20 RAPID Reference Manual

Basic Characteristics RAPID Data

 routine.

ng
ter

sion

Figure 4 Example: The following data can be called from routine e:
Module1: Data c, d.
Module2: Data a, f, g, e1.

The following data can be called from routine h:
Module1: Data d.
Module2: Data a, f, g, h1, c.

Routine data may not have the same name as other data or a label in the same

5.2 Variable declaration

A variable is introduced by a variable declaration.

Example: VAR num x;

Variables of any type can be given an array (of degree 1, 2 or 3) format by addi
dimensional information to the declaration. A dimension is an integer value grea
than 0.

Example: VAR pos pallet{14, 18};

Variables with value types may be initialised (given an initial value). The expres
used to initialise a program variable must be constant. Note that the value of an
uninitialized variable may be used, but it is undefined, i.e. set to zero.

Example: VAR string author_name := "John Smith";
VAR pos start := [100, 100, 50];
VAR num maxno{10} := [1, 2, 3, 9, 8, 7, 6, 5, 4, 3];

The initialisation value is set when:

- the program is opened,

- the program is executed from the beginning of the program.

Module1 Module2

Local Data a

Local Data b

Data c

Data d

Data e

Local Data a

Local Data f

Data g

Local Routine e

Routine h

Data e1

Data h1
Data c
RAPID Reference Manual 5-21

Data Basic Characteristics RAPID

 given

 or

ing
ter

ot be

ing
ter

arm
5.3 Persistent declaration

Persistents can only be declared at module level, not inside a routine, and must be
an initial value. The initialisation value must be a single value (without data or
operands), or a single aggregate with members which, in turn, are single values
single aggregates.

Example: PERS pos refpnt := [100.23, 778.55, 1183.98];

Persistents of any type can be given an array (of degree 1, 2 or 3) format by add
dimensional information to the declaration. A dimension is an integer value grea
than 0.

Example: PERS pos pallet{14, 18};

Note that if the value of a persistent is updated, this automatically causes the
initialisation value of the persistent declaration to be updated.

Example: PERS num reg1 := 0;
 ...
reg1 := 5;

After execution, the program looks like this:

PERS num reg1 := 5;
 ...
reg1 := 5;

5.4 Constant declaration

A constant is introduced by a constant declaration. The value of a constant cann
modified.

Example: CONST num pi := 3.141592654;

A constant of any type can be given an array (of degree 1, 2 or 3) format by add
dimensional information to the declaration. A dimension is an integer value grea
than 0.

Example: CONST pos seq{3} := [[614, 778, 1020],
[914, 998, 1021],
[814, 998, 1022]];

5.5 Initiating data

In the table below, you can see what is happening in various activities such as w
start, new program, program start etc.
5-22 RAPID Reference Manual

Basic Characteristics RAPID Data
* Generates an error when there is a semantic error in the actual task program.

5.6 Syntax

Data declaration

<data declaration> ::=
[LOCAL] (<variable declaration>
 | <persistent declaration>
 | <constant declaration>)

 | <comment>
 | <DDN>

Variable declaration

<variable declaration> ::=
VAR <data type> <variable definition> ’;’

<variable definition> ::=
<identifier> [’{’ <dim> { ’,’ <dim> } ’}’]

[’:=’ <constant expression>]
<dim> ::= <constant expression>

Persistent declaration

<persistent declaration> ::=
PERS <data type> <persistent definition> ’;’

Table1

System
event

Affects

Power on
(Warm
start)

Open, Close
or New
program

Start
program

(Move PP to
main)

Start
program

(Move PP to
Routine)

Start
program

(Move PP to
cursor)

Start
program

(Call
Routine)

Start
program
(After
cycle)

Start
program

(After stop)

Constant Unchanged Init Init Init Unchanged Unchanged Unchanged Unchanged

Variable Unchanged Init Init Init Unchanged Unchanged Unchanged Unchanged

Persistent Unchanged Init Init Init Unchanged Unchanged Unchanged Unchanged

Commanded
interrupts

Re-ordered Disappears Disappears Disappears Unchanged Unchanged Unchanged Unchanged

Start up
routine

SYS_RESET
(with motion

settings)

Not run Run* Run Not run Not run Not run Not run Not run

Files Closes Closes Closes Closes Unchanged Unchanged Unchanged Unchanged

Path Recreated at
power on

Disappears Disappears Disappears Disappears Unchanged Unchanged Unchanged
RAPID Reference Manual 5-23

Data Basic Characteristics RAPID
<persistent definition> ::=
<identifier> [’{’ <dim> { ’,’ <dim> } ’}’]

’:=’ <literal expression>

Constant declaration

<constant declaration> ::=
CONST <data type> <constant definition> ’;’

<constant definition> ::=
<identifier> [’{’ <dim> { ’,’ <dim> } ’}’]

’:=’ <constant expression>
<dim> ::= <constant expression>
5-24 RAPID Reference Manual

Basic Characteristics RAPID Instructions

RAPID Reference Manual 5-25

6 Instructions

Instructions are executed in succession unless a program flow instruction or an inter-
rupt or error causes the execution to continue at some other place.

Most instructions are terminated by a semicolon “;”. A label is terminated by a colon
“:”. Some instructions may contain other instructions and are terminated by specific
keywords:

Instruction Termination word

IF ENDIF

FOR ENDFOR

WHILE ENDWHILE

TEST ENDTEST

Example: WHILE index < 100 DO
.

 index := index + 1;
ENDWHILE

6.1 Syntax

<instruction list> ::= { <instruction> }
<instruction> ::=

[<instruction according to separate chapter in this manual>
| <SMT>

Expressions Basic Characteristics RAPID

 alias

re kept
7 Expressions

An expression specifies the evaluation of a value. It can be used, for example:

- in an assignment instruction e.g. a:=3*b/c;

- as a condition in an IF instruction e.g. IF a>=3 THEN ...

- as an argument in an instruction e.g. WaitTime time;

- as an argument in a function call e.g. a:=Abs(3*b);

7.1 Arithmetic expressions

An arithmetic expression is used to evaluate a numeric value.

Example: 2*pi*radius

Table 2 shows the different types of operations possible.

1. The result receives the same type as the operand. If the operand has an
data type, the result receives the alias "base" type (num or pos).

2. Integer operations, e.g. 14 DIV 4=3, 14 MOD 4=2.
(Non-integer operands are illegal.)

3. Preserves integer (exact) representation as long as operands and result a
within the integer subdomain of the num type.

Table 2

Operator Operation Operand types Result type

+ addition num + num num3)

+ unary plus; keep sign +num or +pos same1)3)

+ vector addition pos + pos pos

- subtraction num - num num3)

- unary minus; change sign -num or -pos same1)3)

- vector subtraction pos - pos pos

* multiplication num * num num3)

* scalar vector multiplication num * pos or pos * num pos

* vector product pos * pos pos

* linking of rotations orient * orient orient

/ division num / num num

DIV 2) integer division num DIV num num

MOD 2) integer modulo; remainder num MOD num num
5-26 RAPID Reference Manual

Basic Characteristics RAPID Expressions
7.2 Logical expressions

A logical expression is used to evaluate a logical value (TRUE/FALSE).

Example: a>5 AND b=3

Table 3 shows the different types of operations possible.

1) Only value data types. Operands must have equal types.

7.3 String expressions

A string expression is used to carry out operations on strings.

Example: “IN” + “PUT” gives the result “INPUT”

Table 3

Operator Operation Operand types Result type

< less than num < num bool

<= less than or equal to num <= num bool

= equal to any 1)= any 1) bool

>= greater than or equal to num >= num bool

> greater than num > num bool

<> not equal to any 1) <> any 1) bool

AND and bool AND bool bool

XOR exclusive or bool XOR bool bool

OR or bool OR bool bool

NOT unary not; negation NOT bool bool

a AND b

a
b

True False

True

False

True False

FalseFalse

a XOR b

a
b

True False

True

False

False True

FalseTrue

a OR b

a
b

True False

True

False

True True

FalseTrue

NOT b

b

True

False

False

True
RAPID Reference Manual 5-27

Expressions Basic Characteristics RAPID

whole

 is an
alue 1
lared

whole
Table 4 shows the one operation possible.

.

7.4 Using data in expressions

An entire variable, persistent or constant can be a part of an expression.

Example: 2*pi*radius

Arrays

A variable, persistent or constant declared as an array can be referenced to the
array or a single element.

An array element is referenced using the index number of the element. The index
integer value greater than 0 and may not violate the declared dimension. Index v
selects the first element. The number of elements in the index list must fit the dec
degree (1, 2 or 3) of the array.

Example: VAR num row{3};
VAR num column{3};
VAR num value;

.
value := column{3}; only one element in the array
row := column; all elements in the array

Records

A variable, persistent or constant declared as a record can be referenced to the
record or a single component.

A record component is referenced using the component name.

Example: VAR pos home;
VAR pos pos1;
VAR num yvalue;
..
yvalue := home.y; the Y component only
pos1 := home; the whole position

Table 4

Operator Operation Operand types Result type

+ string concatenation string + string string
5-28 RAPID Reference Manual

Basic Characteristics RAPID Expressions

e data
ember

ed

ei-

e

 the
orre-
order
ters. In
r, in

 a

eter
ment
ent".

ments
ent”
it is
7.5 Using aggregates in expressions

An aggregate is used for record or array values.

Example: pos := [x, y, 2*x]; pos record aggregate
posarr := [[0, 0, 100], [0,0,z]]; pos array aggregate

It must be possible to determine the data type of an aggregate by the context. Th
type of each aggregate member must be equal to the type of the corresponding m
of the determined type.

Example VAR pos pl;
p1 :=[1, -100, 12]; aggregate type pos - determin

by p1

IF [1, -100, 12] = [a,b,b,] THEN illegal since the data type of n
ther of the aggregates can be
determined by the context.

7.6 Using function calls in expressions

A function call initiates the evaluation of a specific function and receives the valu
returned by the function.

Example: Sin(angle)

The arguments of a function call are used to transfer data to (and possibly from)
called function. The data type of an argument must be equal to the type of the c
sponding parameter of the function. Optional arguments may be omitted but the
of the (present) arguments must be the same as the order of the formal parame
addition, two or more optional arguments may be declared to exclude each othe
which case, only one of them may be present in the argument list.

A required (compulsory) argument is separated from the preceding argument by
comma “,”. The formal parameter name may be included or omitted.

Example: Polar(3.937, 0.785398) two required arguments
Polar(Dist:=3.937, Angle:=0.785398)... using names

An optional argument must be preceded by a backslash “\” and the formal param
name. A switch type argument is somewhat special; it may not include any argu
expression. Instead, such an argument can only be either "present" or "not pres

Example: Cosine(45) one required argument
Cosine(0.785398\Rad) ... and one switch
Dist(p2) one required argument
Dist(\distance:=pos1, p2) ... and one optional

Conditional arguments are used to support smooth propagation of optional argu
through chains of routine calls. A conditional argument is considered to be “pres
if the specified optional parameter (of the calling function) is present, otherwise
RAPID Reference Manual 5-29

Expressions Basic Characteristics RAPID

nal.

alled

le
alled

ntire,
rite)

ersis-

ated.
y the

er-
simply considered to be omitted. Note that the specified parameter must be optio

Example: PROC Read_from_file (iodev File \num Maxtime)
..
character:=ReadBin (File \Time?Maxtime);

! Max. time is only used if specified when calling the routine
! Read_from_file

..
ENDPROC

The parameter list of a function assigns an access mode to each parameter. The access
mode can be either in, inout, var or pers:

- An IN parameter (default) allows the argument to be any expression. The c
function views the parameter as a constant.

- An INOUT parameter requires the corresponding argument to be a variab
(entire, array element or record component) or an entire persistent. The c
function gains full (read/write) access to the argument.

- A VAR parameter requires the corresponding argument to be a variable (e
array element or record component). The called function gains full (read/w
access to the argument.

- A PERS parameter requires the corresponding argument to be an entire p
tent. The called function gains full (read/update) access to the argument.

7.7 Priority between operators

The relative priority of the operators determines the order in which they are evalu
Parentheses provide a means to override operator priority. The rules below impl
following operator priority:

* / DIV MOD - highest
+ -
< > <> <= >= =
AND
XOR OR NOT - lowest

An operator with high priority is evaluated prior to an operator with low priority. Op
ators of the same priority are evaluated from left to right.

Example

Expression Evaluation order Comment

a + b + c (a + b) + c left to right rule
a + b * c a + (b * c) * higher than +
a OR b OR c (a OR b) OR c Left to right rule
5-30 RAPID Reference Manual

Basic Characteristics RAPID Expressions
a AND b OR c AND d (a AND b) OR (c AND d) AND higher than
OR

a < b AND c < d (a < b) AND (c < d) < higher than AND

7.8 Syntax

Expressions

<expression> ::=
<expr>
| <EXP>

<expr> ::= [NOT] <logical term> { (OR | XOR) <logical term> }
<logical term> ::= <relation> { AND <relation> }
<relation> ::= <simple expr> [<relop> <simple expr>]
<simple expr> ::= [<addop>] <term> { <addop> <term> }
<term> ::= <primary> { <mulop> <primary> }
<primary> ::=

<literal>
| <variable>
| <persistent>
| <constant>
| <parameter>
| <function call>
| <aggregate>
| ’(’ <expr> ’)’

Operators

<relop> ::= ’<’ | ’<=’ | ’=’ | ’>’ | ’>=’ | ’<>’
<addop> ::= ’+’ | ’-’
<mulop> ::= ’*’ | ’/’ | DIV | MOD

Constant values

<literal> ::= <num literal>
| <string literal>
| <bool literal>

Data

<variable> ::=
<entire variable>
| <variable element>
| <variable component>

<entire variable> ::= <ident>
<variable element> ::= <entire variable> ’{’ <index list> ’}’
RAPID Reference Manual 5-31

Expressions Basic Characteristics RAPID
<index list> ::= <expr> { ’,’ <expr> }
<variable component> ::= <variable> ’.’ <component name>
<component name> ::= <ident>
<persistent> ::=

<entire persistent>
| <persistent element>
| <persistent component>

<constant> ::=
<entire constant>
| <constant element>
| <constant component>

Aggregates

<aggregate> ::= ’[’ <expr> { ’,’ <expr> } ’]’

Function calls

<function call> ::= <function> ’(’ [<function argument list>] ’)’
<function> ::= <ident>
<function argument list> ::= <first function argument> { <function argument> }
<first function argument> ::=

<required function argument>
| <optional function argument>
| <conditional function argument>

<function argument> ::=
’,’ <required function argument>
| <optional function argument>
| <conditional function argument>

<required function argument> ::= [<ident> ’:=’] <expr>
<optional function argument> ::= ’\’ <ident> [’:=’ <expr>]
<conditional function argument> ::= ’\’ <ident> ’?’ <parameter>

Special expressions

<constant expression> ::= <expression>
<literal expression> ::= <expression>
<conditional expression> ::= <expression>

Parameters

<parameter> ::=
<entire parameter>
| <parameter element>
| <parameter component>
5-32 RAPID Reference Manual

Basic Characteristics RAPID Error Recovery

piece
s).
eir

an
sed to
nd,
ution
raceful

e
e
d to

nd
s have

d.
me

 will

 the

n.

n the

tops
8 Error Recovery

An execution error is an abnormal situation, related to the execution of a specific
of a program. An error makes further execution impossible (or at least hazardou
“Overflow” and “division by zero” are examples of errors. Errors are identified by th
unique error number and are always recognized by the robot. The occurrence of
error causes suspension of the normal program execution and the control is pas
an error handler. The concept of error handlers makes it possible to respond to a
possibly, recover from errors that arise during program execution. If further exec
is not possible, the error handler can at least assure that the program is given a g
abortion.

8.1 Error handlers

Any routine may include an error handler. The error handler is really a part of th
routine, and the scope of any routine data also comprises the error handler of th
routine. If an error occurs during the execution of the routine, control is transferre
its error handler.

Example: FUNC num safediv(num x, num y)
RETURN x / y;

ERROR
IF ERRNO = ERR_DIVZERO THEN

TPWrite "The number cannot be equal to 0";
RETURN x;

ENDIF
ENDFUNC

The system variable ERRNO contains the error number of the (most recent) error a
can be used by the error handler to identify that error. After any necessary action
been taken, the error handler can:

- Resume execution, starting with the instruction in which the error occurre
This is done using the RETRY instruction. If this instruction causes the sa
error again, up to four error recoveries will take place; after that execution
stop.

- Resume execution, starting with the instruction following the instruction in
which the error occurred. This is done using the TRYNEXT instruction.

- Return control to the caller of the routine using the RETURN instruction. If
routine is a function, the RETURN instruction must specify an appropriate
return value.

- Propagate the error to the caller of the routine using the RAISE instructio

When an error occurs in a routine that does not contain an error handler or whe
end of the error handler is reached (ENDFUNC, ENDPROC or ENDTRAP), the
system error handler is called. The system error handler just reports the error and s
the execution.
RAPID Reference Manual 5-33

Error Recovery Basic Characteristics RAPID

r
ing

e
e

rror
ystem
n only
r from

s are

ise
plex
ions.
are

 error
In a chain of routine calls, each routine may have its own error handler. If an erro
occurs in a routine with an error handler, and the error is explicitly propagated us
the RAISE instruction, the same error is raised again at the point of the call of th
routine - the error is propagated. When the top of the call chain (the entry routine of th
task) is reached without any error handler being found or when the end of any e
handler is reached within the call chain, the system error handler is called. The s
error handler just reports the error and stops the execution. Since a trap routine ca
be called by the system (as a response to an interrupt), any propagation of an erro
a trap routine is made to the system error handler.

Error recovery is not available for instructions in the backward handler. Such error
always propagated to the system error handler.

In addition to errors detected and raised by the robot, a program can explicitly ra
errors using the RAISE instruction. This facility can be used to recover from com
situations. It can, for example, be used to escape from deeply-nested code posit
Error numbers 1-90 may be used in the raise instruction. Explicitly-raised errors
treated exactly like errors raised by the system.

Note that it is not possible to recover from or respond to errors that occur within an
clause. Such errors are always propagated to the system error handler.
5-34 RAPID Reference Manual

Basic Characteristics RAPID Interrupts

pt
nce

is

nly
 trap

of the

 Note

ion

will be
with.

rupt

e an
until
9 Interrupts

Interrupts are program-defined events, identified by interrupt numbers. An interrupt
occurs when an interrupt condition is true. Unlike errors, the occurrence of an interru
is not directly related to (synchronous with) a specific code position. The occurre
of an interrupt causes suspension of the normal program execution and control
passed to a trap routine.

Even though the robot immediately recognizes the occurrence of an interrupt (o
delayed by the speed of the hardware), its response – calling the corresponding
routine – can only take place at specific program positions, namely:

- when the next instruction is entered,

- any time during the execution of a waiting instruction, e.g. WaitUntil,

- any time during the execution of a movement instruction, e.g. MoveL.

This normally results in a delay of 5-120 ms between interrupt recognition and
response, depending on what type of movement is being performed at the time
interrupt.

The raising of interrupts may be disabled and enabled. If interrupts are disabled, any
interrupt that occurs is queued and not raised until interrupts are enabled again.
that the interrupt queue may contain more than one waiting interrupt. Queued
interrupts are raised in FIFO order. Interrupts are always disabled during the execut
of a trap routine.

When running stepwise and when the program has been stopped, no interrupts
handled. Interrupts that are generated under these circumstances are not dealt

The maximum number of interrupts at any one time are 40 per task. The total
limitation set by the I/O CPU is 100 interrupts.

9.1 Interrupt manipulation

Defining an interrupt makes it known to the robot. The definition specifies the inter
condition and enables the interrupt.

Example: VAR intnum sig1int;
.

ISignalDI di1, high, sig1int;

An enabled interrupt may in turn be disabled (and vice versa).

Example: ISleep sig1int; disabled
.

IWatch sig1int; enabled

Deleting an interrupt removes its definition. It is not necessary to explicitly remov
interrupt definition, but a new interrupt cannot be defined to an interrupt variable
RAPID Reference Manual 5-35

Interrupts Basic Characteristics RAPID

rrupt
If an
 a fatal

ble
y an
ated

ap
red.
the previous definition has been deleted.

Example: IDelete sig1int;

9.2 Trap routines

Trap routines provide a means of dealing with interrupts. A trap routine can be
connected to a particular interrupt using the CONNECT instruction. When an inte
occurs, control is immediately transferred to the associated trap routine (if any).
interrupt occurs, that does not have any connected trap routine, this is treated as
error, i.e. causes immediate termination of program execution.

Example: VAR intnum empty;
VAR intnum full;

.PROC main()

CONNECT empty WITH etrap; connect trap routines
CONNECT full WITH ftrap;
ISignalDI di1, high, empty; define feeder interrupts
ISignalDI di3, high, full;
.
IDelete empty;
IDelete full;

ENDPROC

TRAP etrap responds to "feeder
open_valve; empty" interrupt
RETURN;

ENDTRAP

TRAP ftrap responds to "feeder full"
close_valve; interrupt
RETURN;

ENDTRAP

Several interrupts may be connected to the same trap routine. The system varia
INTNO contains the interrupt number and can be used by a trap routine to identif
interrupt. After the necessary action has been taken, a trap routine can be termin
using the RETURN instruction or when the end (ENDTRAP or ERROR) of the tr
routine is reached. Execution continues from the place where the interrupt occur
5-36 RAPID Reference Manual

Basic Characteristics RAPID Backward execution

neral

ds.

ning

n of a

e data
10 Backward execution

A program can be executed backwards one instruction at a time. The following ge
restrictions are valid for backward execution:

- The instructions IF, FOR, WHILE and TEST cannot be executed backwar

- It is not possible to step backwards out of a routine when reaching the begin
of the routine.

10.1 Backward handlers

Procedures may contain a backward handler that defines the backward executio
procedure call.

The backward handler is really a part of the procedure and the scope of any routin
also comprises the backward handler of the procedure.

Example: PROC MoveTo ()
MoveL p1,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p1,v500,z10,tool1;

ENDPROC

When the procedure is called during forward execution, the following occurs:

PROC MoveTo ()
.. MoveL p1,v500,z10,tool1;
MoveTo; MoveC p2,p3,v500,z10,tool1;
.. MoveL p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p1,v500,z10,tool1;

ENDPROC
RAPID Reference Manual 5-37

Backward execution Basic Characteristics RAPID

chain

ure

ror of
e:

e
When the procedure is called during backwards execution, the following occurs:

PROC MoveTo ()
.. MoveL p1,v500,z10,tool1;
MoveTo; MoveC p2,p3,v500,z10,tool1;
.. MoveL p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p1,v500,z10,tool1;

ENDPROC

Instructions in the backward or error handler of a routine may not be executed
backwards. Backward execution cannot be nested, i.e. two instructions in a call
may not simultaneously be executed backwards.

A procedure with no backward handler cannot be executed backwards. A proced
with an empty backward handler is executed as “no operation”.

10.2 Limitation of move instructions in the backward handler

The move instruction type and sequence in the backward handler must be a mir
the move instruction type and sequence for forward execution in the same routin

Note that the order of CirPoint p2 and ToPoint p3 in the MoveC should be the same.

By move instructions is meant all instructions that result in some movement of th
robot or external axes such as MoveL, SearchC, TriggJ, ArcC, PaintL ...

Any departures from this programming limitation in the backward handler can
result in faulty backward movement. Linear movement can result in circular
movement and vice versa, for some part of the backward path.

PROC MoveTo ()
MoveL p1,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p1,v500,z10,tool1;

ENDPROC

Mirror plane
5-38 RAPID Reference Manual

Basic Characteristics RAPID Multitasking

rallel?

or-
nless
round
gram.

ack-

t of
ach

nt with
e name,

own

e as
ask is

quest

me

pro-

a pro-
s.

 devel-
s

ently
 is nec-
doing,
11 Multitasking

The events in a robot cell are often in parallel, so why are the programs not in pa

Multitasking RAPID is a way to execute programs in (pseudo) parallel with the n
mal execution. The execution is started at power on and will continue for ever, u
an error occurs in that program. One parallel program can be placed in the backg
or foreground of another program. It can also be on the same level as another pro

To use this function the robot must be configured with one extra TASK for each b
ground program.

Up to 10 different tasks can be run in pseudo parallel. Each task consists of a se
modules, in the same way as the normal program. All the modules are local in e
task.

Variables and constants are local in each task, but persistents are not. A persiste
the same name and type is reachable in all tasks. If two persistents have the sam
but their type or size (array dimension) differ, a runtime error will occur.

A task has its own trap handling and the event routines are triggered only on its
task system states (e.g. Start/Stop/Restart....).

There are a few restrictions on the use of Multitasking RAPID.

- Do not mix up parallel programs with a PLC. The response time is the sam
the interrupt response time for one task. This is true, of course, when the t
not in the background of another busy program

- There is only one physical Teach Pendent, so be careful that a TPWrite re
is not mixed in the Operator Window for all tasks.

- When running a Wait instruction in manual mode, a simulation box will co
up after 3 seconds. This will only occur in the main task.

- Move instructions can only be executed in the main task (the task bind to
gram instance 0, see User’s guide - System parameters).

- The execution of a task will halt during the time that some other tasks are
accessing the file system, that is if the operator chooses to save or open
gram, or if the program in a task uses the load/erase/read/write instruction

- The Teach Pendent cannot access other tasks than the main task. So, the
opment of RAPID programs for other tasks can only be done if the code i
loaded into the main task, or off-line.

For all settings, see User’s Guide - System parameters.

11.1 Synchronising the tasks

In many applications a parallel task only supervises some cell unit, quite independ
of the other tasks being executed. In such cases, no synchronisation mechanism
essary. But there are other applications which need to know what the main task is
RAPID Reference Manual 5-39

Multitasking Basic Characteristics RAPID
for example.

Synchronising using polling

This is the easiest way to do it, but the performance will be the slowest.

Persistents are then used together with the instructions WaitUntil, IF, WHILE or GOTO.

If the instruction WaitUntil is used, it will poll internally every 100 ms. Do not poll
more frequently in other implementations.

Example

TASK 0

MODULE module1
PERS bool startsync:=FALSE;
PROC main()

 startsync:= TRUE;
.

ENDPROC
ENDMODULE

TASK 1

MODULE module2
PERS bool startsync:=FALSE;
PROC main()

WaitUntil startsync;
.

ENDPROC
ENDMODULE

Synchronising using an interrupt

The instruction SetDO and ISignalDO are used.

Example

TASK 0

MODULE module1
PROC main()

SetDO do1,1;
.

5-40 RAPID Reference Manual

Basic Characteristics RAPID Multitasking

les.

same
 error

 first
ENDPROC
ENDMODULE

TASK 1

MODULE module2
VAR intnum isiint1;
PROC main()

CONNECT isiint1 WITH isi_trap;
ISignalDO do1, 1, isiint1;

WHILE TRUE DO
WaitTime 200;

ENDWHILE

IDelete isiint1;

ENDPROC

TRAP isi_trap

.

ENDTRAP
ENDMODULE

11.2 Intertask communication

All types of data can be sent between two (or more) tasks with persistent variab

A persistent variable is global in all tasks. The persistent variable must be of the
type and size (array dimension) in all tasks that declared it. Otherwise a runtime
will occur.

All declarations must specify an init value to the persistent variable, but only the
module loaded with the declaration will use it.

Example

TASK 0

MODULE module1
PERS bool startsync:=FALSE;
PERS string stringtosend:=””;
PROC main()

stringtosend:=”this is a test”;

 startsync:= TRUE
RAPID Reference Manual 5-41

Multitasking Basic Characteristics RAPID

pe
 was

gin-

 was
n only
mmu-

d rob-
rity of
d will
e exe-
t of

ee Fig-
ENDPROC
ENDMODULE

TASK 1

MODULE module2
PERS bool startsync:=FALSE;
PERS string stringtosend:=””;
PROC main()

WaitUntil startsync;

!read string
IF stringtosend = “this is a test” THEN

ENDPROC
ENDMODULE

11.3 Type of task

Each extra task (not 0) is started in the system start sequence. If the task is of ty
STATIC, it will be restarted at the current position (where PP was when the system
powered off), but if the type is set to SEMISTATIC, it will be restarted from the be
ning each time the power is turned on.

It is also possible to set the task to type NORMAL, then it will behave in the same
as task 0 (the main task, controlling the robot movement). The teach pendent ca
be used to start task 0, so the only way to start other NORMAL tasks is to use Co
nicationWare.

11.4 Priorities

The way to run the tasks as default is to run all tasks at the same level in a roun
bin way (one basic step on each instance). But it is possible to change the prio
one task by putting the task in the background of another. Then the backgroun
only execute when the foreground is waiting for some events, or has stopped th
cution (idle). A robot program with move instructions will be in an idle state mos
the time.

The example below describes some situations where the system has 10 tasks (s
ure 5)

Round robbin chain 1: tasks 0, 1, and 8 are busy

Round robbin chain 2: tasks 0, 3, 4, 5 and 8 are busy
tasks 1 and 2 are idle

Round robbin chain 3: tasks 2, 4 and 5 are busy
tasks 0, 1, 8 and 9 are idle.
5-42 RAPID Reference Manual

Basic Characteristics RAPID Multitasking

hat

, and
Round robbin chain 4: tasks 6 and 7 are busy
tasks 0, 1, 2, 3, 4, 5, 8 and 9 are idle

Figure 5 The tasks can have different priorities.

11.5 Task sizes

The system will supply a memory area with an installation depending on size. T
area is shared by all tasks.

The value of a persistent variable will be stored in a separate part of the system
not affect the memory area above. See System parameters - AveragePers.

11.6 Something to think about

When you specify task priorities, you must think about the following:

task 3

task 7

task 6

task 9

task 5

task 2

task 4

task 8

task 1

task 0

chain 1 chain 2

chain 3

chain 4
RAPID Reference Manual 5-43

Multitasking Basic Characteristics RAPID

sks.
er.
 in
- Always use the interrupt mechanism or loops with delays in supervision ta
Otherwise the teach pendent will never get any time to interact with the us
And if the supervision task is in foreground, it will never allow another task
background to execute.
5-44 RAPID Reference Manual

Motion and I/O Principles

CONTENTS
Page

3

3

3

3

4

5

5

6

7

8

9

9

0

2

3

3

4

5

6

6

7

8

9

9

0

0

22

2

2

3

3

24

24
1 Coordinate Systems...

1.1 The robot’s tool centre point (TCP)..

1.2 Coordinate systems used to determine the position of the TCP

1.2.1 Base coordinate system ..

1.2.2 World coordinate system..

1.2.3 User coordinate system ..

1.2.4 Object coordinate system ...

1.2.5 Displacement coordinate system..

1.2.6 Coordinated external axes ..

1.3 Coordinate systems used to determine the direction of the tool

1.3.1 Wrist coordinate system...

1.3.2 Tool coordinate system ..

1.3.3 Stationary TCPs ... 1

1.4 Related information .. 1

2 Positioning during Program Execution... 13

2.1 General.. 13

2.2 Interpolation of the position and orientation of the tool... 1

2.2.1 Joint interpolation .. 1

2.2.2 Linear interpolation.. 1

2.2.3 Circular interpolation ... 1

2.2.4 SingArea\Wrist... 1

2.3 Interpolation of corner paths... 1

2.3.1 Joint interpolation in corner paths.. 1

2.3.2 Linear interpolation of a position in corner paths .. 1

2.3.3 Linear interpolation of the orientation in corner paths 18

2.3.4 Interpolation of external axes in corner paths.. 1

2.3.5 Corner paths when changing the interpolation method 1

2.3.6 Interpolation when changing coordinate system.. 2

2.3.7 Corner paths with overlapping zones... 2

2.3.8 Planning time for fly-by points .. 21

2.4 Independent axes ..

2.4.1 Program execution ... 2

2.4.2 Stepwise execution... 2

2.4.3 Jogging ... 2

2.4.4 Working range.. 2

2.4.5 Speed and acceleration...

2.4.6 Robot axes..
RAPID Reference Manual 6-1

Motion and I/O Principles

25

6

7

7

8

1

2

5

6

8

8

8

9

9

0

0

1

1

2

3

4

45

45

6

2.5 Soft Servo ... 24

2.6 Stop and restart ...

2.7 Related information .. 2

3 Synchronization with logical instructions... 27

3.1 Sequential program execution at stop points.. 2

3.2 Sequential program execution at fly-by points... 2

3.3 Concurrent program execution... 2

3.4 Path synchronization .. 3

3.5 Related information .. 3

4 Robot Configuration... 33

4.1 Robot configuration data for 6400C... 3

4.2 Related information .. 3

5 Singularities ... 37

5.1 Singularity points/IRB 6400C.. 38

5.2 Program execution through singularities.. 3

5.3 Jogging through singularities ... 3

5.4 Related information .. 3

6 World Zones .. 39

6.1 Using global zones ... 3

6.2 Using World Zones .. 3

6.3 Definition of World Zones in the world coordinate system................................... 39

6.4 Supervision of the Robot TCP.. 4

6.4.1 Stationary TCPs ... 4

6.5 Actions.. 41

6.5.1 Set a digital output when the tcp is inside a World Zone. 41

6.5.2 Set a digital output before the tcp reaches a World Zone. 4

6.5.3 Stop the robot before the tcp reaches a World Zone.................................... 4

6.6 Minimum size of World Zones. ... 42

6.7 Power failure, restart, and run on ... 4

6.8 Related information .. 4

7 I/O Principles... 44

7.1 Signal characteristics .. 4

7.2 System signals ..

7.3 Cross connections...

7.4 Limitations.. 46

7.5 Related information .. 4
6-2 RAPID Reference Manual

Motion and I/O Principles Coordinate Systems

point.
 of a

e.
 also

TCP
work

itate

inate

; here
1 Coordinate Systems

1.1 The robot’s tool centre point (TCP)

The position of the robot and its movements are always related to the tool centre
This point is normally defined as being somewhere on the tool, e.g. in the muzzle
glue gun, at the centre of a gripper or at the end of a grading tool.

Several TCPs (tools) may be defined, but only one may be active at any one tim
When a position is recorded, it is the position of the TCP that is recorded. This is
the point that moves along a given path, at a given velocity.

If the robot is holding a work object and working on a stationary tool, a stationary
is used. If that tool is active, the programmed path and speed are related to the
object. See Stationary TCPs on page 10.

1.2 Coordinate systems used to determine the position of the TCP

The tool (TCP’s) position can be specified in different coordinate systems to facil
programming and readjustment of programs.

The coordinate system defined depends on what the robot has to do. When no
coordinate system is defined, the robot’s positions are defined in the base coord
system.

1.2.1 Base coordinate system

In a simple application, programming can be done in the base coordinate system
the z-axis is coincident with axis 1 of the robot (see Figure 1).

Figure 1 The base coordinate system.

Z

X

Y

RAPID Reference Manual 6-3

Coordinate Systems Motion and I/O Principles

face.

. If,
ase
 same
ne a
base

mon

ystem
mple

.

The base coordinate system is located on the base of the robot:

- The origin is situated at the intersection of axis 1 and the base mounting sur

- The xy plane is the same as the base mounting surface.

- The x-axis points forwards.

- The y-axis points to the left (from the perspective of the robot).

- The z-axis points upwards.

1.2.2 World coordinate system

If the robot is floor-mounted, programming in the base coordinate system is easy
however, the robot is mounted upside down (suspended), programming in the b
coordinate system is more difficult because the directions of the axes are not the
as the principal directions in the working space. In such cases, it is useful to defi
world coordinate system. The world coordinate system will be coincident with the
coordinate system, if it is not specifically defined.

Sometimes, several robots work within the same working space at a plant. A com
world coordinate system is used in this case to enable the robot programs to
communicate with one another. It can also be advantageous to use this type of s
when the positions are to be related to a fixed point in the workshop. See the exa
in Figure 2.

Figure 2 Two robots (one of which is suspended) with a common world coordinate system

Base coordinate system robot 2

x

y

z

World coordinate system

Base coordinate system robot 1

Z

X

Y
Z

X

Y

6-4 RAPID Reference Manual

Motion and I/O Principles Coordinate Systems

ns

ture
h as

re

igure 3).

ixtures
 be
or each
w

is
cified
e
1.2.3 User coordinate system

A robot can work with different fixtures or working surfaces having different positio
and orientations. A user coordinate system can be defined for each fixture. If all
positions are stored in object coordinates, you will not need to reprogram if a fix
must be moved or turned. By moving/turning the user coordinate system as muc
the fixture has been moved/turned, all programmed positions will follow the fixtu
and no reprogramming will be required.

The user coordinate system is defined based on the world coordinate system (see F

Figure 3 Two user coordinate systems describe the position of two different fixtures.

1.2.4 Object coordinate system

The user coordinate system is used to get different coordinate systems for different f
or working surfaces. A fixture, however, may include several work objects that are to
processed or handled by the robot. Thus, it often helps to define a coordinate system f
object in order to make it easier to adjust the program if the object is moved or if a ne
object, the same as the previous one, is to be programmed at a different location. A
coordinate system referenced to an object is called an object coordinate system. Th
coordinate system is also very suited to off-line programming since the positions spe
can usually be taken directly from a drawing of the work object. The object coordinat
system can also be used when jogging the robot.

Base coordinate system

x

y

z

World coordinate system

User coordinate system 1

Z

X

Y

Y

Z

X

User coordinate system 2

Y

Z

X

RAPID Reference Manual 6-5

Coordinate Systems Motion and I/O Principles

igure 4).

s

stem.
ser
inate

sed,
akes

being

ject. To
s the
sed in

ystem
The object coordinate system is defined based on the user coordinate system (see F

Figure 4 Two object coordinate systems describe the position of two different work object
located in the same fixture.

The programmed positions are always defined relative to an object coordinate sy
If a fixture is moved/turned, this can be compensated for by moving/turning the u
coordinate system. Neither the programmed positions nor the defined object coord
systems need to be changed. If the work object is moved/turned, this can be
compensated for by moving/turning the object coordinate system.

If the user coordinate system is movable, that is, coordinated external axes are u
then the object coordinate system moves with the user coordinate system. This m
it possible to move the robot in relation to the object even when the workbench is
manipulated.

1.2.5 Displacement coordinate system

Sometimes, the same path is to be performed at several places on the same ob
avoid having to re-program all positions each time, a coordinate system, known a
displacement coordinate system, is defined. This coordinate system can also be u
conjunction with searches, to compensate for differences in the positions of the
individual parts.

The displacement coordinate system is defined based on the object coordinate s
(see Figure 5).

User coordinate system

x

y

z

World coordinate system

Object coordinate system 2

y
y

z

z

x
x

y

z

x

Object coordinate system 1
6-6 RAPID Reference Manual

Motion and I/O Principles Coordinate Systems

robot
dinate

 will,
mmed
s no

echan-
Figure 5 If program displacement is active, all positions are displaced.

1.2.6 Coordinated external axes

Coordination of user coordinate system

If a work object is placed on an external mechanical unit, that is moved whilst the
is executing a path defined in the object coordinate system, a movable user coor
system can be defined. The position and orientation of the user coordinate system
in this case, be dependent on the axes rotations of the external unit. The progra
path and speed will thus be related to the work object (see Figure 6) and there i
need to consider the fact that the object is moved by the external unit.

Figure 6 A user coordinate system, defined to follow the movements of a 3-axis external m
ical unit.

Original position

New position

x

y
x

y

Object coordinate system

Displacement coordinate system

joint 1

joint 2 joint 3

x

y

z

World coordinate system

User coordinate system

y

z

x

RAPID Reference Manual 6-7

Coordinate Systems Motion and I/O Principles

 is of

the
al unit.
Figure
xternal
ystem

obot.

 units

tation

 tool
ated
Coordination of base coordinate system

A movable coordinate system can also be defined for the base of the robot. This
interest for the installation when the robot is mounted on a track or a gantry, for
example. The position and orientation of the base coordinate system will, as for
moveable user coordinate system, be dependent on the movements of the extern
The programmed path and speed will be related to the object coordinate system (
7) and there is no need to think about the fact that the robot base is moved by an e
unit. A coordinated user coordinate system and a coordinated base coordinate s
can both be defined at the same time.

Figure 7 Coordinated interpolation with a track moving the base coordinate system of the r

To be able to calculate the user and the base coordinate systems when involved
are moved, the robot must be aware of:

- The calibration positions of the user and the base coordinate systems

- The relations between the angles of the external axes and the translation/ro
of the user and the base coordinate systems.

These relations are defined in the system parameters.

1.3 Coordinate systems used to determine the direction of the tool

The orientation of a tool at a programmed position is given by the orientation of the
coordinate system. The tool coordinate system is referenced to the wrist coordin
system, defined at the mounting flange on the wrist of the robot.

Object coordinate system

Base coordinate system

World coordinate
system

Track

User coordinate system
6-8 RAPID Reference Manual

Motion and I/O Principles Coordinate Systems

ounting

ace).

inate
tem.
 when

e

ned,
ural for
1.3.1 Wrist coordinate system

In a simple application, the wrist coordinate system can be used to define the
orientation of the tool; here the z-axis is coincident with axis 6 of the robot
(see Figure 8).

Figure 8 The wrist coordinate system.

The wrist coordinate system cannot be changed and is always the same as the m
flange of the robot in the following respects:

- The origin is situated at the centre of the mounting flange (on the mounting surf

- The x-axis points in the opposite direction, towards the control hole of the
mounting flange.

- The z-axis points outwards, at right angles to the mounting flange.

1.3.2 Tool coordinate system

The tool mounted on the mounting flange of the robot often requires its own coord
system to enable definition of its TCP, which is the origin of the tool coordinate sys
The tool coordinate system can also be used to get appropriate motion directions
jogging the robot.

If a tool is damaged or replaced, all you have to do is redefine the tool coordinat
system. The program does not normally have to be changed.

The TCP (origin) is selected as the point on the tool that must be correctly positio
e.g. the muzzle on a glue gun. The tool coordinate axes are defined as those nat
the tool in question.

x
z

y

RAPID Reference Manual 6-9

Coordinate Systems Motion and I/O Principles

TCP
ork
Figure 9 Tool coordinate system, as usually defined for an arc-welding gun (left) and
a spot welding gun (right).

The tool coordinate system is defined based on the wrist coordinate system
(see Figure 10).

Figure 10 The tool coordinate system is defined relative to the wrist coordinate system,
here for a gripper.

1.3.3 Stationary TCPs

If the robot is holding a work object and working on a stationary tool, a stationary
is used. If that tool is active, the programmed path and speed are related to the w
object held by the robot.

This means that the coordinate systems will be reversed, as in Figure 11.

Topx

z

x

z

Top

z

y

x

Tool coordinate system
6-10 RAPID Reference Manual

Motion and I/O Principles Coordinate Systems

 wrist

 they
Figure 11 If a stationary TCP is used, the object coordinate system is usually based on the
coordinate system.

In the example in Figure 11, neither the user coordinate system nor program
displacement is used. It is, however, possible to use them and, if they are used,
will be related to each other as shown in Figure 12.

Figure 12 Program displacement can also be used together with stationary TCPs.

Base coordinate system

x

y

z

World coordinate system

Z

X

Y

Tool coordinate system

Z

X

Y

Z

YX

Object coordinate system

x

y

z

Wrist coordinate system

x

y

z

Object coordinate system

x

y

z

User coordinate system

x

y

z

 Displacement coordinate system
RAPID Reference Manual 6-11

Coordinate Systems Motion and I/O Principles
1.4 Related information

Described in:

Definition of the world coordinate system User’s Guide - System Parameters

Definition of the user coordinate system User’s Guide - Calibration
Data Types - wobjdata

Definition of the object coordinate system User’s Guide - Calibration
Data Types - wobjdata

Definition of the tool coordinate system User’s Guide - Calibration
Data Types - tooldata

Definition of a tool centre point User’s Guide - Calibration
Data Types - tooldata

Definition of displacement frame User’s Guide - Calibration
RAPID Summary - Motion Settings

Jogging in different coordinate systems User’s Guide - Jogging
6-12 RAPID Reference Manual

Motion and I/O Principles Positioning during Program Execution

all
ing

l
 the

he

time

xes
.

tool
from

 (see
2 Positioning during Program Execution

2.1 General

During program execution, positioning instructions in the robot program control
movements. The main task of the positioning instructions is to provide the follow
information on how to perform movements:

- The destination point of the movement (defined as the position of the too
centre point, the orientation of the tool, the configuration of the robot and
position of the external axes).

- The interpolation method used to reach the destination point, e.g. joint
interpolation, linear interpolation or circle interpolation.

- The velocity of the robot and external axes.

- The zone data (defines how the robot and the external axes are to pass t
destination point).

- The coordinate systems (tool, user and object) used for the movement.

As an alternative to defining the velocity of the robot and the external axes, the
for the movement can be programmed. This should, however, be avoided if the
weaving function is used. Instead the velocities of the orientation and external a
should be used to limit the speed, when small or no TCP-movements are made

In material handling and pallet applications with intensive and frequent
movements, the drive system supervision may trip out and stop the robot in order
to prevent overheating of drives or motors. If this occurs, the cycle time needs to
be slightly increased by reducing programmed speed or acceleration.

2.2 Interpolation of the position and orientation of the tool

2.2.1 Joint interpolation

When path accuracy is not too important, this type of motion is used to move the
quickly from one position to another. Joint interpolation also allows an axis to move
any location to another within its working space, in a single movement.

All axes move from the start point to the destination point at constant axis velocity
Figure 13).
RAPID Reference Manual 6-13

Positioning during Program Execution Motion and I/O Principles

bot
 the

te
 the

st
d.
he

ity.

t and

w a
ot is,
a
ely

axes
axes

tant
Figure 13 Joint interpolation is often the fastest way to move between two points as the ro
axes follow the closest path between the start point and the destination point (from
perspective of the axis angles).

The velocity of the tool centre point is expressed in mm/s (in the object coordina
system). As interpolation takes place axis-by-axis, the velocity will not be exactly
programmed value.

During interpolation, the velocity of the limiting axis, i.e. the axis that travels faste
relative to its maximum velocity in order to carry out the movement, is determine
Then, the velocities of the remaining axes are calculated so that all axes reach t
destination point at the same time.

All axes are coordinated in order to obtain a path that is independent of the veloc
Acceleration is automatically optimised to the max performance of the robot.

2.2.2 Linear interpolation

During linear interpolation, the TCP travels along a straight line between the star
destination points (see Figure 14).

e

Figure 14 Linear interpolation without reorientation of the tool.

To obtain a linear path in the object coordinate system, the robot axes must follo
non-linear path in the axis space. The more non-linear the configuration of the rob
the more accelerations and decelerations are required to make the tool move in
straight line and to obtain the desired tool orientation. If the configuration is extrem
non-linear (e.g. in the proximity of wrist and arm singularities), one or more of the
will require more torque than the motors can give. In this case, the velocity of all
will automatically be reduced.

The orientation of the tool remains constant during the entire movement unless a
reorientation has been programmed. If the tool is reorientated, it is rotated at cons
velocity.

Destination point
Joint interpolated
pathStart point

Start point Destination point
6-14 RAPID Reference Manual

Motion and I/O Principles Positioning during Program Execution

ting

city
it for

t to

city.

 next
d the

 arc of

nd the

e
tion

path.

a

ation
A maximum rotational velocity (in degrees per second) can be specified when rota
the tool. If this is set to a low value, reorientation will be smooth, irrespective of the
velocity defined for the tool centre point. If it is a high value, the reorientation velo
is only limited by the maximum motor speeds. As long as no motor exceeds the lim
the torque, the defined velocity will be maintained. If, on the other hand, one of the
motors exceeds the current limit, the velocity of the entire movement (with respec
both the position and the orientation) will be reduced.

All axes are coordinated in order to obtain a path that is independent of the velo
Acceleration is optimised automatically.

2.2.3 Circular interpolation

A circular path is defined using three programmed positions that define a circle
segment. The first point to be programmed is the start of the circle segment. The
point is a support point (circle point) used to define the curvature of the circle, an
third point denotes the end of the circle (see Figure 15).

The three programmed points should be dispersed at regular intervals along the
the circle to make this as accurate as possible.

The orientation defined for the support point is used to select between the short a
long twist for the orientation from start to destination point.

If the programmed orientation is the same relative to the circle at the start and th
destination points, and the orientation at the support is close to the same orienta
relative to the circle, the orientation of the tool will remain constant relative to the

Figure 15 Circular interpolation with a short twist for part of a circle (circle segment) with
start point, circle point and destination point.

However, if the orientation at the support point is programmed closer to the orient
rotated 180°, the alternative twist is selected (see Figure 16).

Start point

Circle point

Destination point

RAPID Reference Manual 6-15

Positioning during Program Execution Motion and I/O Principles

t.

l will
f the
the

ity.

n
eans
r

e
he
rity,

d big
d

ent.
sible
se to

 this

mmed
Figure 16 Circular interpolation with a long twist for orientation is achieved by defining the
orientation in the circle point in the opposite direction compared to the start poin

As long as all motor torques do not exceed the maximum permitted values, the too
move at the programmed velocity along the arc of the circle. If the torque of any o
motors is insufficient, the velocity will automatically be reduced at those parts of
circular path where the motor performance is insufficient.

All axes are coordinated in order to obtain a path that is independent of the veloc
Acceleration is optimised automatically.

2.2.4 SingArea\Wrist

During execution in the proximity of a singular point, linear or circular interpolatio
may be problematic. In this case, it is best to use modified interpolation, which m
that the wrist axes are interpolated axis-by-axis, with the TCP following a linear o
circular path. The orientation of the tool, however, will differ somewhat from the
programmed orientation.

In the SingArea\Wrist case the orientation in the circle support point will be the sam
as programmed. However, the tool will not have a constant direction relative to t
circle plane as for normal circular interpolation. If the circle path passes a singula
the orientation in the programmed positions sometimes must be modified to avoi
wrist movements, which can occur if a complete wrist reconfiguration is generate
when the circle is executed (joints 4 and 6 moved 180 degrees each).

2.3 Interpolation of corner paths

The destination point is defined as a stop point in order to get point-to-point movem
This means that the robot and any external axes will stop and that it will not be pos
to continue positioning until the velocities of all axes are zero and the axes are clo
their destinations.

Fly-by points are used to get continuous movements past programmed positions. In
way, positions can be passed at high speed without having to reduce the speed
unnecessarily. A fly-by point generates a corner path (parabola path) past the progra

Start point

Circle point

Destination point
6-16 RAPID Reference Manual

Motion and I/O Principles Positioning during Program Execution

e
d

city.

 (see
s (in

factor
 the

ition
h

int.
position, which generally means that the programmed position is never reached. Th
beginning and end of this corner path are defined by a zone around the programme
position (see Figure 17).

Figure 17 A fly-by point generates a corner path to pass the programmed position.

All axes are coordinated in order to obtain a path that is independent of the velo
Acceleration is optimised automatically.

2.3.1 Joint interpolation in corner paths

The size of the corner paths (zones) for the TCP movement is expressed in mm
Figure 18). Since the interpolation is performed axis-by-axis, the size of the zone
mm) must be recalculated in axis angles (radians). This calculation has an error
(normally max. 10%), which means that the true zone will deviate somewhat from
one programmed.

If different speeds have been programmed before or after the position, the trans
from one speed to the other will be smooth and take place within the corner pat
without affecting the actual path.

Figure 18 During joint interpolation, a corner path is generated in order to pass a fly-by po

The zone for the path

Corner path

Programmed
position

of the TCP

Start point

ZoneProgrammed
fly-by point

Corner path

Destination point
RAPID Reference Manual 6-17

Positioning during Program Execution Motion and I/O Principles

 (see

int.

he

long
 shape
d

esired

 case,
n

 the
2.3.2 Linear interpolation of a position in corner paths

The size of the corner paths (zones) for the TCP movement is expressed in mm
Figure 19).

Figure 19 During linear interpolation, a corner path is generated in order to pass a fly-by po

If different speeds have been programmed before or after the corner position, the
transition will be smooth and take place within the corner path without affecting t
actual path.

If the tool is to carry out a process (such as arc-welding, gluing or water cutting) a
the corner path, the size of the zone can be adjusted to get the desired path. If the
of the parabolic corner path does not match the object geometry, the programme
positions can be placed closer together, making it possible to approximate the d
path using two or more smaller parabolic paths.

2.3.3 Linear interpolation of the orientation in corner paths

Zones can be defined for tool orientations, just as zones can be defined for tool
positions. The orientation zone is usually set larger than the position zone. In this
the reorientation will start interpolating towards the orientation of the next positio
before the corner path starts. The reorientation will then be smoother and it will
probably not be necessary to reduce the velocity to perform the reorientation.

The tool will be reorientated so that the orientation at the end of the zone will be
same as if a stop point had been programmed (see Figure 20a-c).

Figure 20a Three positions with different tool orientations are programmed as above.

Destination point

Start point

ZoneProgrammed
corner position

Corner path
6-18 RAPID Reference Manual

Motion and I/O Principles Positioning during Program Execution

.

way,
ds. If

ees

int,
city

ion. If
 the
arted
s
f the

or
uch a
. If the
 one
Figure 20b If all positions were stop points, program execution would look like this.

Figure 20c If the middle position was a fly-by point, program execution would look like this

The orientation zone for the tool movement is normally expressed in mm. In this
you can determine directly where on the path the orientation zone begins and en
the tool is not moved, the size of the zone is expressed in angle of rotation degr
instead of TCP-mm.

If different reorientation velocities are programmed before and after the fly-by po
and if the reorientation velocities limit the movement, the transition from one velo
to the other will take place smoothly within the corner path.

2.3.4 Interpolation of external axes in corner paths

Zones can also be defined for external axes, in the same manner as for orientat
the external axis zone is set to be larger than the TCP zone, the interpolation of
external axes towards the destination of the next programmed position, will be st
before the TCP corner path starts. This can be used for smoothing external axe
movements in the same way as the orientation zone is used för the smoothing o
wrist movements.

2.3.5 Corner paths when changing the interpolation method

Corner paths are also generated when one interpolation method is exchanged f
another. The interpolation method used in the actual corner paths is chosen in s
way as to make the transition from one method to another as smooth as possible
corner path zones for orientation and position are not the same size, more than
interpolation method may be used in the corner path (see Figure 21).

Operation zone size
RAPID Reference Manual 6-19

Positioning during Program Execution Motion and I/O Principles

een

hout
be the
TCP-

 a new
hen
.

m
 one

dius is
ain
Figure 21 Interpolation when changing from one interpolation method to another. Linear
interpolation has been programmed between p1 and p2; joint interpolation betw
p2 and p3; and Sing Area\Wrist interpolation between p3 and p4.

If the interpolation is changed from a normal TCP-movement to a reorientation wit
a TCP-movement or vice versa, no corner zone will be generated. The same will
case if the interpolation is changed to or from an external joint movement without
movement.

2.3.6 Interpolation when changing coordinate system

When there is a change of coordinate system in a corner path, e.g. a new TCP or
work object, joint interpolation of the corner path is used. This is also applicable w
changing from coordinated operation to non-coordinated operation, or vice versa

2.3.7 Corner paths with overlapping zones

If programmed positions are located close to each other, it is not unusual for the
programmed zones to overlap. To get a well-defined path and to achieve optimu
velocity at all times, the robot reduces the size of the zone to half the distance from
overlapping programmed position to the other (see Figure 22). The same zone ra
always used for inputs to or outputs from a programmed position, in order to obt
symmetrical corner paths.

p1

p2 p3

p4
Sing Area\Wrist
interpolation

Sing Area\Wrist
interpolation

Linear
interpolation

Joint interpolation

Position zone Orientation zone
6-20 RAPID Reference Manual

Motion and I/O Principles Positioning during Program Execution

rger
es to
trical

these

rger
m p2

ints
Figure 22 Interpolation with overlapping position zones. The zones around p2 and p3 are la
than half the distance from p2 to p3. Thus, the robot reduces the size of the zon
make them equal to half the distance from p2 to p3, thereby generating symme
corner paths within the zones.

Both position and orientation corner path zones can overlap. As soon as one of
corner path zones overlap, that zone is reduced (see Figure 23).

Figure 23 Interpolation with overlapping orientation zones. The orientation zone at p2 is la
than half the distance from p2 to p3 and is thus reduced to half the distance fro
to p3. The position zones do not overlap and are consequently not reduced; the
orientation zone at p3 is not reduced either.

2.3.8 Planning time for fly-by points

Occasionally, if the next movement is not planned in time, programmed fly-by po
can give rise to a stop point. This may happen when:

- A number of logical instructions with long program execution times are

p1

p2

p3

p4

Programmed
 position zones

Corner zones as
calculated by the robot

Generated
path

p1

p2

p3

p4

Position zones

Generated path

Programmed
orientation zone

Generated
orientation zone

Orientation zone
RAPID Reference Manual 6-21

Positioning during Program Execution Motion and I/O Principles

stem.
ode

ant

 new
ssible

hen a
gram

 will
 active

not be
om the

line
programmed between short movements.

- The points are very close together at high speeds.

If stop points are a problem then use concurrent program execution.

2.4 Independent axes

An independent axis is an axis moving independently of other axes in the robot sy
It is possible to change an axis to independent mode and later back to normal m
again.

A special set of instructions handles the independent axes. Four different move
instructions specify the movement of the axis. For instance, the IndCMove instruction
starts the axis for continuous movement. The axis then keeps moving at a const
speed (regardless of what the robot does) until a new independent-instruction is
executed.

To change back to normal mode a reset instruction, IndReset, is used. The reset
instruction can also set a new reference for the measurement system - a type of
synchronization of the axis. Once the axis is changed back to normal mode it is po
to run it as a normal axis.

2.4.1 Program execution

An axis is immediately change to independent mode when an Ind_Move instruction is
executed. This takes place even if the axis is being moved at the time, such as w
previous point has been programmed as a fly-by point, or when simultaneous pro
execution is used.

If a new Ind_Move instruction is executed before the last one is finished, the new
instruction immediately overrides the old one.

If a program execution is stopped when an independent axis is moving, that axis
stop. When the program is restarted the independent axis starts automatically. No
coordination between independent and other axes in normal mode takes place.

If a loss of voltage occurs when an axis is in independent mode, the program can
restarted. An error message is then displayed, and the program must be started fr
beginning.

Note that a mechanical unit may not be deactivated when one of its axes is in
independent mode.

2.4.2 Stepwise execution

During stepwise execution, an independent axis is executed only when another
instruction is being executed. The movement of the axis will also be stepwise in
with the execution of other instruments, see Figure 24.
6-22 RAPID Reference Manual

Motion and I/O Principles Positioning during Program Execution

e axis
n

he

ing

n 0.
Figure 24 Stepwise execution of independent axes.

2.4.3 Jogging

Axes in independent mode cannot be jogged. If an attempt is made to execute th
manually, the axis does not move and an error message is displayed. Execute a
IndReset instruction or move the program pointer to main, in order to leave the
independent mode.

2.4.4 Working range

The physical working range is the total movement of the axis.

The logical working range is the range used by RAPID instructions and read in t
jogging window.

After synchronization (updated revolution counter), the physical and logical work
range coincide. By using the IndReset instruction the logical working area can be
moved, see Figure 25.

Figure 25 The logical working range can be moved, using the instruction IndReset.

The resolution of positions is decreased when moving away from logical positio

IndAMove WaitTime 10

10 s

MoveL MoveL

Independent axis
reaches final position

Independent axis
speed

Normal axis speed

Logical working range
after synchronization

Logical working range
after IndReset

Physical working range

0

0

0

Logical working range
RAPID Reference Manual 6-23

Positioning during Program Execution Motion and I/O Principles

ue,
lose
ath

he axis

ow,
dow

 in the
be

4
ot

e the
cute

f this
 the

ition.
 the
sated

ring.
ction
he
Low resolution together with stiff tuned controller can result in unacceptable torq
noise and controller instability. Check the controller tuning and axis performance c
to the working range limit at installation. Also check if the position resolution and p
performance are acceptable.

2.4.5 Speed and acceleration

In manual mode with reduced speed, the speed is reduced to the same level as if t
was running as non-independent. Note that the IndSpeed\InSpeed function will not be
TRUE if the axis speed is reduced.

The VelSet instruction and speed correction in percentage via the production wind
are active for independent movement. Note that correction via the production win
inhibits TRUE value from the IndSpeed\InSpeed function.

In independent mode, the lowest value of acceleration and deceleration, specified
configuration file, is used both for acceleration and deceleration. This value can
reduced by the ramp value in the instruction (1 - 100%). The AccSet instruction does
not affect axes in independent mode.

2.4.6 Robot axes

Only robot axis 6 can be used as an independent axis. Normally the IndReset instruction
is used only for this axis. However, the IndReset instruction can also be used for axis
on IRB 2400 and 4400 models. If IndReset is used for robot axis 4, then axis 6 must n
be in the independent mode.

If axis 6 is used as an independent axis, singularity problems may occur becaus
normal 6-axes coordinate transform function is still used. If a problem occurs, exe
the same program with axis 6 in normal mode. Modify the points or use SingArea\Wrist
or MoveJ instructions.

The axis 6 is also internally active in the path performance calculation. A result o
is that an internal movement of axis 6 can reduce the speed of the other axes in
system.

The independent working range for axis 6 is defined with axis 4 and 5 in home pos
If axis 4 or 5 is out of home position the working range for axis 6 is moved due to
gear coupling. However, the position read from teach pendant for axis 6 is compen
with the positions of axis 4 and 5 via the gear coupling.

2.5 Soft Servo

In some applications there is a need for a servo, which acts like a mechanical sp
This means that the force from the robot on the work object will increase as a fun
of the distance between the programmed position (behind the work object) and t
contact position (robot tool - work object).
6-24 RAPID Reference Manual

Motion and I/O Principles Positioning during Program Execution

on

ftness
 joints
rvo.

an be
n the

p. With
ition

tween

e so

the

s

ance,
 be

upted
 with

ould
ram
gical
; for
The relationship between the position deviation and the force, is defined by a
parameter called softness. The higher the softness parameter, the larger the positi
deviation required to obtain the same force.

The softness parameter is set in the program and it is possible to change the so
values anywhere in the program. Different softness values can be set for different
and it is also possible to mix joints having normal servo with joints having soft se

Activation and deactivation of soft servo as well as changing of softness values c
made when the robot is moving. When this is done, a tuning will be made betwee
different servo modes and between different softness values to achieve smooth
transitions. The tuning time can be set from the program with the parameter ram
ramp = 1, the transitions will take 0.5 seconds, and in the general case the trans
time will be ramp x 0.5 in seconds.

Note that deactivation of soft servo should not be done when there is a force be
the robot and the work object.

With high softness values there is a risk that the servo position deviations may b
big that the axes will move outside the working range of the robot.

2.6 Stop and restart

A movement can be stopped in three different ways:

1. For a normal stop the robot will stop on the path, which makes a restart easy.

2. For a stiff stop the robot will stop in a shorter time than for the normal stop, but
deceleration path will not follow the programmed path. This stop method is, for
example, used for search stop when it is important to stop the motion as soon a
possible.

3. For a quick-stop the mechanical brakes are used to achieve a deceleration dist
which is as short as specified for safety reasons. The path deviation will usually
bigger for a quick-stop than for a stiff stop.

After a stop (any of the types above) a restart can always be made on the interr
path. If the robot has stopped outside the programmed path, the restart will begin
a return to the position on the path, where the robot should have stopped.

A restart following a power failure is equivalent to a restart after a quick-stop. It sh
be noted that the robot will always return to the path before the interrupted prog
operation is restarted, even in cases when the power failure occurred while a lo
instruction was running. When restarting, all times are counted from the beginning
example, positioning on time or an interruption in the instruction WaitTime.
RAPID Reference Manual 6-25

Positioning during Program Execution Motion and I/O Principles
2.7 Related information

Described in:

Definition of speed Data Types - speeddata

Definition of zones (corner paths) Data Types - zonedata

Instruction for joint interpolation Instructions - MoveJ

Instruction for linear interpolation Instructions - MoveL

Instruction for circular interpolation Instructions - MoveC

Instruction for modified interpolation Instructions - SingArea

Singularity Motion and I/O Principles- Singularity

Concurrent program execution Motion and I/O Principles-
Synchronisation with logical
instructions

CPU Optimization User’s Guide - System parameters
6-26 RAPID Reference Manual

Motion and I/O Principles Synchronization with logical instructions

gical

t or

ent
a
).

ion

uent
for

zone.
3 Synchronization with logical instructions

Instructions are normally executed sequentially in the program. Nevertheless, lo
instructions can also be executed at specific positions or during an ongoing
movement.

A logical instruction is any instruction that does not generate a robot movemen
an external axis movement, e.g. an I/O instruction.

3.1 Sequential program execution at stop points

If a positioning instruction has been programmed as a stop point, the subsequ
instruction is not executed until the robot and the external axes have come to
standstill, i.e. when the programmed position has been attained (see Figure 26

Figure 26 A logical instruction after a stop point is not executed until the destination posit
has been reached.

3.2 Sequential program execution at fly-by points

If a positioning instruction has been programmed as a fly-by point, the subseq
logical instructions are executed some time before reaching the largest zone (
position, orientation or external axes). See Figure 27 and Figure 28. These
instructions are then executed in order.

Figure 27 A logical instruction following a fly-by point is executed before reaching the largest

p1

Execution of SetDO
MoveL p1, v1000, fine, tool1;
SetDO do1, on;

MoveL p2, v1000, z30, tool1;

Execution of SetDO

DT

Orientation zone

Position zone

p1

MoveL p1, v1000, z30, tool1;

SetDO do1, on;

MoveL p2, v1000, z30, tool1;
RAPID Reference Manual 6-27

Synchronization with logical instructions Motion and I/O Principles

zone.

s:

.

 order

Figure 28 A logical instruction following a fly-by point is executed before reaching the largest

The time at which they are executed (DT) comprises the following time component

- The time it takes for the robot to plan the next move: approx. 0.1 seconds

- The robot delay (servo lag) in seconds: 0 - 1.0 seconds depending on the
velocity and the actual deceleration performance of the robot.

3.3 Concurrent program execution

Concurrent program execution can be programmed using the argument \Conc in the
positioning instruction. This argument is used to:

- Execute one or more logical instructions at the same time as the robot moves in
to reduce the cycle time (e.g. used when communicating via serial channels).

When a positioning instruction with the argument \Conc is executed, the following

DT

Execution
of SetDO

p1
p2

MoveL p1, v1000, z30, tool1;

SetDO do1, on;
MoveL p3, v1000, z30, tool1;

MoveL p2, v1000, z30, tool1;
Orientation zone

Position zone

6-28 RAPID Reference Manual

Motion and I/O Principles Synchronization with logical instructions

 a
ning

e
logical instructions are also executed (in sequence):

- If the robot is not moving, or if the previous positioning instruction ended with
stop point, the logical instructions are executed as soon as the current positio
instruction starts (at the same time as the movement). See Figure 29.

- If the previous positioning instruction ends at a fly-by point, the logical
instructions are executed at a given time (DT) before reaching the largest zon
(for position, orientation or external axes). See Figure 30.

Figure 29 In the case of concurrent program execution after a stop point, a positioning
instruction and subsequent logical instructions are started at the same time.

Execution of SetDO

p1

p2

MoveL p1, v1000, fine, tool1;

SetDO do1, on;
MoveL p3, v1000, z30, tool1;

MoveL \Conc, p2, v1000, z30, tool1;
RAPID Reference Manual 6-29

Synchronization with logical instructions Motion and I/O Principles

t

affect

med.
ng that
were
Figure 30 In the case of concurrent program execution after a fly-by point, the logical
instructions start executing before the positioning instructions with the argumen
\Conc are started.

Instructions which indirectly affect movements, such as ConfL and SingArea, are
executed in the same way as other logical instructions. They do not, however,
the movements ordered by previous positioning instructions.

If several positioning instructions with the argument \Conc and several logical
instructions in a long sequence are mixed, the following applies:

- Logical instructions are executed directly, in the order they were program
This takes place at the same time as the movement (see Figure 31) meani
logical instructions are executed at an earlier stage on the path than they
programmed.

DT

Execution
of SetDO

Largest zone

p1
p2

MoveL p1, v1000, z30, tool1;

SetDO do1, on;
MoveL p3, v1000, z30, tool1;

MoveL \Conc, p2, v1000, z30, tool1;
6-30 RAPID Reference Manual

Motion and I/O Principles Synchronization with logical instructions

e first

d to
d

ting
ion

asses
n a
stem
of a

ime)
e
Figure 31 If several positioning instructions with the argument \Conc are programmed in
sequence, all connected logical instructions are executed at the same time as th
position is executed.

During concurrent program execution, the following instructions are programme
end the sequence and subsequently re-synchronize positioning instructions an
logical instructions:

- a positioning instruction without the argument \Conc,

- the instruction WaitTime or WaitUntil with the argument \Inpos.

3.4 Path synchronization

In order to synchronize process equipment (for applications such as gluing, pain
and arc welding) with the robot movements, different types of path synchronizat
signals can be generated.

With a so-called positions event, a trig signal will be generated when the robot p
a predefined position on the path. With a time event, a signal will be generated i
predefined time before the robot stops in a stop position. Moreover, the control sy
also handles weave events, which generate pulses at predefined phase angles
weave motion.

All the position synchronized signals can be achieved both before (look ahead t
and after (delay time) the time that the robot passes the predefined position. Th

DT

Execution of

SetDO and SetAO

Largest zone

p1
p2

MoveL p1, v1000, z30, tool1;

SetDO do1, on;
MoveL \Conc, p3, v1000, z30, tool1;

MoveL \Conc, p2, v1000, z30, tool1;

SetAO ao2, 5;
RAPID Reference Manual 6-31

Synchronization with logical instructions Motion and I/O Principles

before

ce
position is given by a programmed position and can be tuned as a path distance
the programmed position.

Typical repeat accuracy for set of digital outputs on the path is +/-2ms.

If power failure, restart in a Trigg instruction, all trigg events will be generated on
again on the remaining movment path for the trigg instruction .

3.5 Related information

Described in:

Positioning instructions RAPID Summary - Motion

Definition of zone size Data Types - zonedata
6-32 RAPID Reference Manual

Motion and I/O Principles Robot Configuration

eral

of a
igure
xis 4)
(see

on.

ion.
r),

rough
per
4 Robot Configuration

It is usually possible to attain the same robot tool position and orientation in sev
different ways, using different sets of axis angles. We call these different robot
configurations. If, for example, a position is located approximately in the middle
work cell, some robots can get to that position from above and from below (see F
32). This can also be achieved by turning the front part of the robot upper arm (a
upside down while rotating axes 5 and 6 to the desired position and orientation
Figure 33).

Figure 32 Two different arm configurations used to attain the same position and orientati
In one of the configurations, the arms point upwards and to attain the other
configuration, axis 1 must be rotated 180 degrees.

Figure 33 Two different wrist configurations used to attain the same position and orientat
In the configuration in which the front part of the upper arm points upwards (lowe
axis 4 has been rotated 180 degrees, axis 5 through 180 degrees and axis 6 th
180 degrees in order to attain the configuration in which the front part of the up
arm points downwards (upper).

axis 6

axis 5

axis 4
RAPID Reference Manual 6-33

Robot Configuration Motion and I/O Principles

on as
ration

and

s of
uarter

d

tion.
s any

e
ition

ied

tion
Usually you want the robot to attain the same configuration during program executi
the one you programmed. To do this, you can make the robot check the configu
and, if the correct configuration is not attained, program execution will stop. If the
configuration is not checked, the robot may unexpectedly start to move its arms
wrists which, in turn, may cause it to collide with peripheral equipment.

The robot configuration is specified by defining the appropriate quarter revolution
axes 1, 4 and 6. If both the robot and the programmed position have the same q
revolution for these axes, the robot configuration is correct.

Figure 34 Quarter revolution for a positive joint angle: .

Figure 35 Quarter revolution for a negative joint angle: .

The configuration check involves comparing the configuration of the programme
position with that of the robot.

During linear movement, the robot always moves to the closest possible configura
If, however, the configuration check is active, program execution stops as soon a
one of the axes deviates more than the specified number of degrees.

During axis-by-axis or modified linear movement using a configuration check, th
robot always moves to the programmed axis configuration. If the programmed pos
and orientation are not achieved, program execution stops before starting the
movement. If the configuration check is not active, the robot moves to the specif
position and orientation with the closest configuration.

When the execution of a programmed position is stopped because of a configura

1

2 3

0

int joint
angle
π 2⁄

--------------–

-3

-2 -1

-4

int joint
angle
π 2⁄

--------------– 1–

6-34 RAPID Reference Manual

Motion and I/O Principles Robot Configuration

ration

bject,

 the

ot

ns:

ation

arm
pace
error, it may often be caused by one or more of the following reasons:

- The position is programmed off-line with a faulty configuration.

- The robot tool has been changed causing the robot to take another configu
than was programmed.

- The position is subject to an active frame operation (displacement, user, o
base).

The correct configuration in the destination position can be found by positioning
robot near it and reading the configuration on the teach pendant.

If the configuration parameters change because of active frame operation, the
configuration check can be deactivated.

4.1 Robot configuration data for 6400C

The IRB 6400C is slightly different in its way of unambiguously denoting one rob
configuration. The difference is the interpretation of the confdata cf1.

cf1 is used to select one of two possible main axes (axis 1, 2 and 3) configuratio

- cf1 = 0 is the forward configuration

- cf1 = 1 is the backward configuration.

Figure 36 shows an example of a forward configuration and a backward configur
giving the same position and orientation.

Figure 36 Same position and orientation with two different main axes configuration.

The forward configuration is the front part of the robot’s working space with the
directed forward. The backward configuration is the service part for the working s

BACKWARD,
cf1 = 1.

FORWARD,
cf1 = 0
RAPID Reference Manual 6-35

Robot Configuration Motion and I/O Principles
with the arm directed backwards.

4.2 Related information

Described in:

Definition of robot configuration Data Types - confdata

Activating/deactivating the configuration RAPID Summary - Motion Settings
check
6-36 RAPID Reference Manual

Motion and I/O Principles Singularities

mber
as
arm

 wrist

 line,
5 Singularities

Some positions in the robot working space can be attained using an infinite nu
of robot configurations to position and orient the tool. These positions, known
singular points (singularities), constitute a problem when calculating the robot
angles based on the position and orientation of the tool.

Generally speaking, a robot has two types of singularities: arm singularities and
singularities. Arm singularities are all configurations where the wrist centre (the
intersection of axes 4, 5 and 6) ends up directly above axis 1 (see Figure 37).
Wrist singularities are configurations where axis 4 and axis 6 are on the same
i.e. axis 5 has an angle equal to 0 (see Figure 38).

Figure 37 Arm singularity occurs where the wrist centre and axis 1 intersect.

Figure 38 Wrist singularity occurs when axis 5 is 0 degrees.

Xbase

Rotation centre of axis 1

Singularity at the intersection of the
wrist centre and axis 1

Zbase

Axis 6 parallel
to axis 4

Axis 5 with an angle of 0 degrees
RAPID Reference Manual 6-37

Singularities Motion and I/O Principles

 have
/

ts.

me
oint

 the
r

ose to
on,
an

are

ts.

speed.
5.1 Singularity points/IRB 6400C

Between the robot’s working space, with the arm directed forward and the arm
directed backward, there is a singularity point above the robot. There is also a
singularity point on the sides of the robot. These points contain a singularity and
kinematic limitations. A position in these points cannot be specified as forward
backward and can only be reached with MoveAbsJ. When the robot is in a singular
point:

- It is only possible to use MoveAbsJ or to jog the robot axis by axis.

5.2 Program execution through singularities

During joint interpolation, the robot never has any problem passing singular poin

When executing a linear or circular path close to a singularity, the velocities in so
joints (1 and 6/4 and 6) may be very high. In order not to exceed the maximum j
velocities, the linear path velocity is reduced.

The high joint velocities may be reduced by using the mode (Sing Area\Wrist) when the
wrist axes are interpolated in joint angles while still maintaining the linear path of
robot tool. An orientation error compared to the full linear interpolation is howeve
introduced.

Note that the robot configuration changes dramatically when the robot passes cl
a singularity with linear or circular interpolation. In order to avoid the reconfigurati
the first position on the other side of the singularity should be programmed with
orientation that makes the reconfiguration unnecessary.

Also note that the robot should not be in its singularity when external joints only
moved, as this may cause robot joints to make unnecessary movements.

5.3 Jogging through singularities

During joint interpolation, the robot never has any problem passing singular poin

During linear interpolation the robot can pass singular points but at a decreased

5.4 Related information

Described in:

Controlling how the robot is to act on Instructions - SingArea
execution near singular points
6-38 RAPID Reference Manual

Motion and I/O Principles World Zones

obot

ity of
se

den
nt.

ram

e.

arallel
6 World Zones

6.1 Using global zones

When using this function, the robot stops or an output is automatically set if the r
is inside a special user-defined area. Here are some examples of applications:

- When two robots share a part of their respective work areas. The possibil
the two robots colliding can be safely eliminated by the supervision of the
signals.

- When external equipment is located inside the robot’s work area. A forbid
work area can be created to prevent the robot colliding with this equipme

- Indication that the robot is at a position where it is permissible to start prog
execution from a PLC.

6.2 Using World Zones

To indicate that the tool centre point is in a specific part of the working area.
To limit the working area of the robot in order to avoid collision with the tool.
To make a common work area for two robots available to only one robot at a tim

6.3 Definition of World Zones in the world coordinate system

All World Zones are to be defined in the world coordinate system.
The sides of the Boxes are parallel to the coordinate axes and Cylinder axis is p
to the Z axis of the world coordinate system.
RAPID Reference Manual 6-39

World Zones Motion and I/O Principles

re or

r

,

TCP
hen
A World Zone can be defined to be inside or outside the shape of the Box, Sphe
the Cylinder.

6.4 Supervision of the Robot TCP

The movement of the tool centre
point is supervised and not any othe
points on the robot.

The TCP is always supervised
irrespective of the mode of operation
for example, program execution and
jogging.

6.4.1 Stationary TCPs

If the robot is holding a work object and working on a stationary tool, a stationary
is used. If that tool is active, the tool will not move and if it is inside a World Zone t
it is always inside.

Base coordinate system robot

x

y

z

World coordinate system

Z

X

Y

Height

Sphere

Radius

Radius

Cylinder

Box

TCP

TCP

Not supervised
6-40 RAPID Reference Manual

Motion and I/O Principles World Zones

icate

sed to

 with
one

area,
to get
6.5 Actions

6.5.1 Set a digital output when the tcp is inside a World Zone.

This action sets a digital output when the tcp is inside a World Zone. It is useful to ind
that the robot has stopped in a specified area.

6.5.2 Set a digital output before the tcp reaches a World Zone.

This action sets a digital output before the tcp reaches a World Zone. It can be u
stop the robot just inside a World Zone

6.5.3 Stop the robot before the tcp reaches a World Zone.

A World Zone can be defined to be outside the work area. The robot will then stop
the Tool Centre Point just outside the World Zone, when heading towards the Z

When the robot has been moved into a World Zone defined as an outside work
for example, by releasing the brakes and manually pushing, then the only ways
out of the Zone are by jogging or by manual pushing with the brakes released.

Status of digital output

Movement of TCP

Time between checks
against World Zones

World Zone

Stop Time for Robot

Status of digital output

World Zone

Movement of TCP

Time between checks
against World Zones

Stop Time for Robot

Movement of TCP

RAPID Reference Manual 6-41

World Zones Motion and I/O Principles

 with

ight

ween
id an

e
of

er

6.6 Minimum size of World Zones.

Supervision of the movement of the tool centre points is done at discrete points
a time interval between them that depends on the path resolution.
It is up to the user to make the zones large enough so the robot cannot move r
through a zone without being checked inside the Zone.

If the same digital output is used for more than one World Zone, the distance bet
the Zones must exceed the minimum size, as shown in the table above, to avo
incorrect status for the output.

It is possible that the robot can pass right
through a corner of a zone without it being
noticed, if the time that the robot is inside th
zone is too short. Therefore, make the size
the zone larger than the dangerous area.

6.7 Power failure, restart, and run on

Stationary World Zones will be deleted at power off and must be reinserted at pow
on by an event routine connected to the event POWER ON.

Temporary World Zones will survive a power failure but will be erased when a new
program is loaded or when a program is started from the main program.

The digital outputs for the World Zones will be updated first at Motors on.

Min. size of zone

1000 mm/s 2000 mm/s 4000 mm/s

1

2

3

for used path_resolution and max. speed

25 mm

50 mm

75 mm

50 mm

100 mm

150 mm

100 mm

200 mm

300 mm

Resol.

Speed

Time between checks
against World Zones
6-42 RAPID Reference Manual

Motion and I/O Principles World Zones
6.8 Related information

RAPID Reference Manual

Motion and I/O Principles: Coordinate Systems

Data Types: wztemporary

wzstationary

shapedata

Instructions: WZBoxDef

WZSphDef

WZCylDef

WZLimSup

WZDOSet

WZDisable

WZEnable

WZFree

WZTempFree
RAPID Reference Manual 6-43

I/O Principles Motion and I/O Principles

 digital
an be
n done
s be

ve no

above
, on

as how
ines
tics,
in the

They
7 I/O Principles

The robot generally has one or more I/O boards. Each of the boards has several
and/or analog channels which must be connected to logical signals before they c
used. This is carried out in the system parameters and has usually already bee
using standard names before the robot is delivered. Logical names must alway
used during programming.

A physical channel can be connected to several logical names, but can also ha
logical connections (see Figure 39).

Figure 39 To be able to use an I/O board, its channels must be given logical names. In the
example, the physical output 2 is connected to two different logical names. IN16
the other hand, has no logical name and thus cannot be used.

7.1 Signal characteristics

The characteristics of a signal are depend on the physical channel used as well
the channel is defined in the system parameters. The physical channel determ
time delays and voltage levels (see the Product Specification). The characteris
filter times and scaling between programmed and physical values, are defined
system parameters.

When the power supply to the robot is switched on, all signals are set to zero.
are not, however, affected by emergency stops or similar events.

I/O board

IN1
IN2

IN16

.

.

.

.

OUT1
OUT2

OUT16

.

.

.

.

Physical channel Logical signal

do1
feeder

gripper
do2

feeder2

do16
6-44 RAPID Reference Manual

Motion and I/O Principles I/O Principles

 using
utput,

e rest
same
re 40).

efore

f, for

ns are
 9,

t one

.

signal

n can
s to

cal
l will
An output can be set to one or zero from within the program. This can also be done
a delay or in the form of a pulse. If a pulse or a delayed change is ordered for an o
program execution continues. The change is then carried out without affecting th
of the program execution. If, on the other hand, a new change is ordered for the
output before the given time elapses, the first change is not carried out (see Figu

Figure 40 The instruction SetDO is not carried out at all because a new command is given b
the time delay has elapsed.

7.2 System signals

Logical signals can be interconnected by means of special system functions. I
example, an input is connected to the system function Start, a program start is
automatically generated as soon as this input is enabled. These system functio
generally only enabled in automatic mode. For more information, see Chapter
System Parameters, or the chapter on Installation and Commissioning - PLC
Communication in the Product Manual.

7.3 Cross connections

Digital signals can be interconnected in such a way that they automatically affec
another:

- An output signal can be connected to one or more input or output signals

- An input signal can be connected to one or more input or output signals.

- If the same signal is used in several cross connections, the value of that
is the same as the value that was last enabled (changed).

- Cross connections can be interlinked, in other words, one cross connectio
affect another. They must not, however, be connected in such a way so a
form a ”vicious circle”, e.g. cross-connecting di1 to di2 whilst di2 is cross-
connected to di1.

- If there is a cross connection on an input signal, the corresponding physi
connection is automatically disabled. Any changes to that physical channe
thus not be detected.

SetDO \SDelay:=1, do1;
WaitTime 0.5;
PulseDO do1;

Signal value

Time
0 0.5 1

1

RAPID Reference Manual 6-45

I/O Principles Motion and I/O Principles

0
- Pulses or delays are not transmitted over cross connections.

- Logical conditions can be defined using NOT, AND and OR (Option:
Advanced functions).

Examples:

- di2=di1

- di3=di2

- do4=di2

If di1 changes, di2, di3 and do4 will be changed to the corresponding value.

- do8=do7

- do8=di5

If do7 is set to 1, do8 will also be set to 1. If di5 is then set to 0, do8 will also be
changed (in spite of the fact that do7 is still 1).

- do5=di6 and do1

Do5 is set to 1 if both di6 and do1 is set to 1.

7.4 Limitations

A maximum of 10 signals can be pulsed at the same time and a maximum of 2
signals can be delayed at the same time.

7.5 Related information

Described in:

Definition of I/O boards and signals User’s Guide - System Parameters

Instructions for handling I/O RAPID Summary - Input and Output
Signals

Manual manipulation of I/O User’s Guide - Inputs and Outputs
6-46 RAPID Reference Manual

Data Types

CONTENTS
bool Logical values

clock Time measurement

confdata Robot configuration data

corrdescr Correction generator descriptor

dionum Digital values 0 - 1

errnum Error number

extjoint Position of external joints

intnum Interrupt identity

iodev Serial channels and files

jointtarget Joint position data

loaddata Load data

mecunit Mechanical unit

motsetdata Motion settings data

num Numeric values (registers)

orient Orientation

o_jointtarget Original joint position data

o_robtarget Original position data

pos Positions (only X, Y and Z)

pose Coordinate transformations

progdisp Program displacement

robjoint Joint position of robot axes

robtarget Position data

shapedata World zone shape data

signalxx Digital and analog signals

speeddata Speed data

string Strings

symnum Symbolic number

tooldata Tool data

tpnum Teach Pendant Window number

triggdata Positioning events - trigg

tunetype Servo tune type

wobjdata Work object data

wzstationary Stationary world zone data

wztemporary Temporary world zone data

zonedata Zone data

System Data
RAPID Reference Manual 7-1

Data Types

7-2 RAPID Reference Manual

Data Types bool
bool Logical values

Bool is used for logical values (true/false).

Description

The value of data of the type bool can be either TRUE or FALSE.

Examples

flag1 := TRUE;

flag is assigned the value TRUE.

VAR bool highvalue;
VAR num reg1;

.
highvalue := reg1 > 100;

highvalue is assigned the value TRUE if reg1 is greater than 100; otherwise,
FALSE is assigned.

IF highvalue Set do1;

The do1 signal is set if highvalue is TRUE.

highvalue := reg1 > 100;
mediumvalue := reg1 > 20 AND NOT highvalue;

mediumvalue is assigned the value TRUE if reg1 is between 20 and 100.

Related information

Described in:

Logical expressions Basic Characteristics - Expressions

Operations using logical values Basic Characteristics - Expressions
RAPID Reference Manual 7-bool-1

bool Data Types
7-bool-2 RAPID Reference Manual

Data Types clock

-

 of

ys
clock Time measurement

Clock is used for time measurement. A clock functions like a stopwatch used for tim
ing.

Description

Data of the type clock stores a time measurement in seconds and has a resolution
0.01 seconds.

Example

VAR clock clock1;

ClkReset clock1;

The clock, clock1, is declared and reset. Before using ClkReset, ClkStart, ClkStop and
ClkRead, you must declare a variable of data type clock in your program.

Limitations

The maximum time that can be stored in a clock variable is approximately 49 da
(4,294,967 seconds). The instructions ClkStart, ClkStop and ClkRead report clock
overflows in the very unlikely event that one occurs.

A clock must be declared as a VAR variable type, not as a persistent variable type.

Characteristics

Clock is a non-value data type and cannot be used in value-oriented operations.

Related Information

Described in:

Summary of Time and Date Instructions RAPID Summary - System & Time

Non-value data type characteristics Basic Characteristics - Data Types
RAPID Reference Manual 7-clock-1

clock Data Types
7-clock-2 RAPID Reference Manual

Data Types confdata

hen
sible
 tool is
ns or

ration
four
). The
is,

lution
confdata Robot configuration data

Confdata is used to define the axis configurations of the robot.

Description

All positions of the robot are defined and stored using rectangular coordinates. W
calculating the corresponding axis positions, there will often be two or more pos
solutions. This means that the robot is able to achieve the same position, i.e. the
in the same position and with the same orientation, with several different positio
configurations of the robots axes.

To unambiguously denote one of these possible configurations, the robot configu
is specified using four axis values. These values define the current quadrant of
robot axes. The quadrants are numbered 0, 1, 2, etc. (they can also be negative
quadrant number is connected to the current joint angle of the axis. For each ax
quadrant 0 is the first quarter revolution, 0 to 90°, in a positive direction from the zero
position; quadrant 1 is the next revolution, 90 to 180°, etc. Quadrant -1 is the revo
0° to (-90°), etc. (see Figure 1).

Figure 1 The configuration quadrants for axis 6.

Robot Configuration data for IRB540

Only the configuration parameter cf6 is used.

Robot Configuration data for IRB1400, 2400, 3400, 4400, 6400

Only the three configuration parameters cf1, cf4 and cf6 are used.

-2-3

-1-4

21

30
RAPID Reference Manual 7-confdata-1

confdata Data Types

obot

ns:

tion

m
rea

.
Robot Configuration data for IRB5400

All four configuration parameters are used. cf1, cf4, cf6 for joints 1, 4, and 6
respectively and cfx for joint 5.

Robot configuration data for 6400C

The IRB 6400C requires a slightly different way of unambiguously denoting one r
configuration. The difference lies in the interpretation of the confdata cf1.

cf1 is used to select one of two possible main axes (axis 1, 2 and 3) configuratio

- cf1 = 0 is the forward configuration

- cf1 = 1 is the backward configuration.

Figure 2 shows an example of a forward configuration and a backward configura
giving the same position and orientation.

Figure 2 Same position and orientation with two different main axes configurations.

The forward configuration is the front part of the robot’s working area with the ar
directed forward. The backward configuration is the service part of the working a
with the arm directed backwards.

Components

cf1 Data type: num

The current quadrant of axis 1, expressed as a positive or negative integer

BACKWARD,
cf1 = 1.

FORWARD,
cf1 = 0
7-confdata-2 RAPID Reference Manual

Data Types confdata

.

.

or
cf4 Data type: num

The current quadrant of axis 4, expressed as a positive or negative integer

cf6 Data type: num

The current quadrant of axis 6, expressed as a positive or negative integer

cfx Data type: num

The current quadrant of axis 5 for IRB5400 robot, expressed as a positive
negative integer.

Example

VAR confdata conf15 := [1, -1, 0, 0]

A robot configuration conf15 is defined as follows:

- The axis configuration of the robot axis 1 is quadrant 1, i.e. 90-180o.

- The axis configuration of the robot axis 4 is quadrant -1, i.e. 0-(-90o).

- The axis configuration of the robot axis 6 is quadrant 0, i.e. 0 - 90o.

- The axis configuration of the robot axis 5 is quadrant 0, i.e. 0 - 90o.

Structure

< dataobject of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num >

Related information

Described in:

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Handling configuration data Motion and I/O Principles - Robot
Configuration
RAPID Reference Manual 7-confdata-3

confdata Data Types
7-confdata-4 RAPID Reference Manual

Data Types corrdescr

metric

r with
ith

 all

nce
corrdescr Correction generator descriptor

Corrdescr (Correction generator descriptor) is used by correction generators. A
correction generator adds geometric offsets in the path coordinate system.

Description

Data of the type corrdescr contains a reference to a correction generator.

Connection to a correction generator is done by the instruction CorrCon and the
descriptor (the reference to the correction generator) can be used to deliver geo
offsets in the path coordinate system with the instruction CorrWrite.

Offsets provided earlier can be removed by disconnecting a correction generato
the instruction CorrDiscon. All connected correction generators can be removed w
the instruction CorrClear.

The function CorrRead returns the sum of all the delivered offsets so far (includes
connected correction generators).

Example

VAR corrdescr id;
VAR pos offset;
...
CorrCon id;
offset := [1, 2 ,3];
CorrWrite id, offset;

A correction generator is connected with the instruction CorrCon and referenced by
the descriptor id. Offsets are then delivered to the correction generator (with refere
id) using the instruction CorrWrite.

Characteristics

Corrdescr is a non-value data type.
RAPID Reference Manual 7-corrdescr-1

corrdescr Data Types
Related information

Described in:

Connects to a correction generator Instructions - CorrCon

Disconnects from a correction generator Instructions - CorrDiscon

Writes to a correction generator Instructions - CorrWrite

Reads the current total offsets Functions - CorrRead

Removes all correction generators Instructions - CorrClear

Characteristics of non-value data types Basic Characteristics - Data Types
7-corrdescr-2 RAPID Reference Manual

Data Types dionum

igital

ror
dionum Digital values 0 - 1

Dionum (digital input output numeric) is used for digital values (0 or 1).

This data type is used in conjunction with instructions and functions that handle d
input or output signals.

Description

Data of the type dionum represents a digital value 0 or 1.

Examples

CONST dionum close := 1;

Definition of a constant close with a value equal to 1.

SetDO grip1, close;

The signal grip1 is set to close, i.e. 1.

Error handling

If an argument of the type dionum has a value that is neither equal to 0 nor 1, an er
is returned on program execution.

Characteristics

Dionum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Summary input/output instructions RAPID Summary -
Input and Output Signals

Configuration of I/O User’s Guide - System Parameters

Alias data types Basic Characteristics- Data Types
RAPID Reference Manual 7-dionum-1

dionum Data Types
7-dionum-2 RAPID Reference Manual

Data Types errnum

gram

he
h and

ble to
e in

n.
 error

ror,

nue.

dler
ant,
ror
errnum Error number

Errnum is used to describe all recoverable (non fatal) errors that occur during pro
execution, such as division by zero.

Description

If the robot detects an error during program execution, this can be dealt with in t
error handler of the routine. Examples of such errors are values that are too hig
division by zero. The system variable ERRNO, of type errnum, is thus assigned
different values depending on the nature of an error. The error handler may be a
correct an error by reading this variable and then program execution can continu
the correct way.

An error can also be created from within the program using the RAISE instructio
This particular type of error can be detected in the error handler by specifying an
number (within the range 1-90 or booked with instruction BookErrNo) as an argument
to RAISE.

Examples

reg1 := reg2 / reg3;
.
ERROR

IF ERRNO = ERR_DIVZERO THEN
reg3 := 1;
RETRY;

ENDIF

If reg3 = 0, the robot detects an error when division is taking place. This er
however, can be detected and corrected by assigning reg3 the value 1. Following
this, the division can be performed again and program execution can conti

CONST errnum machine_error := 1;
.
IF di1=0 RAISE machine_error;
.
ERROR

IF ERRNO=machine_error RAISE;

An error occurs in a machine (detected by means of the input signal di1). A jump
is made to the error handler in the routine which, in turn, calls the error han
of the calling routine where the error may possibly be corrected. The const
machine_error, is used to let the error handler know exactly what type of er
has occurred.
RAPID Reference Manual 7-errnum-1

errnum Data Types

A
as

tch

a

ing
Predefined data

The system variable ERRNO can be used to read the latest error that occurred.
number of predefined constants can be used to determine the type of error that h
occurred.

Name Cause of error

ERR_ALRDYCNT The interrupt variable is already connected to a
TRAP routine

ERR_ARGDUPCND More than one present conditional argument for
the same parameter

ERR_ARGNAME Argument is expression, not present or of type swi
when executing ArgName

ERR_ARGNOTPER Argument is not a persistent reference
ERR_ARGNOTVAR Argument is not a variable reference
ERR_AXIS_ACT Axis is not active
ERR_AXIS_IND Axis is not independent
ERR_AXIS_MOVING Axis is moving
ERR_AXIS_PAR Parameter axis in instruction TestSign and

SetCurrRef is wrong.
ERR_CALLIO_INTER If an IOEnable or IODisable request is interrupted

by another request to the same unit
ERR_CALLPROC Procedure call error (not procedure)

at runtime (late binding)
ERR_CNTNOTVAR CONNECT target is not a variable reference

ERR_CNV_NOT_ACT The conveyor is not activated.

ERR_CNV_CONNECT The WaitWobj instruction is already active.

ERR_CNV_DROPPED The object that the instruction WaitWobj was
waiting for has been dropped.

ERR_DEV_MAXTIME Timeout when executing a ReadBin, ReadNum or
ReadStr instruction

ERR_DIVZERO Division by zero
ERR_EXCRTYMAX Max. number of retries exceeded
ERR_EXECPHR An attempt was made to execute an instruction us

a place holder
ERR_FILEACC A file is accessed incorrectly
ERR_FILNOTFND File not found
ERR_FILEOPEN A file cannot be opened
ERR_FNCNORET No return value
ERR_ILLDIM Incorrect array dimension
ERR_ILLQUAT Attempt to use illegal orientation (quaternion) valve
ERR_ILLRAISE Error number in RAISE out of range
7-errnum-2 RAPID Reference Manual

Data Types errnum

e

ne

or

ith

f is
ERR_INOMAX No more interrupt numbers available
ERR_IOENABLE Timeout when executing IOEnable
ERR_IODISABLE Timeout when executing IODisable
ERR_MAXINTVAL The integer value is too large
ERR_NAME_INVALID If the unit name does not exist or if the unit is not

allowed to be disabled
ERR_NEGARG Negative argument is not allowed
ERR_NOTARR Data is not an array
ERR_NOTEQDIM The array dimension used when calling the routin

does not coincide with its parameters
ERR_NOTINTVAL Not an integer value
ERR_NOTPRES A parameter is used, despite the fact that the

corresponding argument was not used at the routi
call

ERR_OUTOFBND The array index is outside the permitted limits
ERR_REFUNKDAT Reference to unknown entire data object
ERR_REFUNKFUN Reference to unknown function
ERR_REFUNKPRC Reference to unknown procedure at linking time

at run time (late binding)
ERR_REFUNKTRP Reference to unknown trap
ERR_PATHDIST Too long regain distance for StartMove instruction
ERR_RCVDATA An attempt was made to read non numeric data w

ReadNum
ERR_SC_WRITE Error when sending to external computer
ERR_SIGSUPSEARCH The signal has already a positive value at the

beginning of the search process
ERR_STEP_PAR Parameter Step in SetCurrRef is wrong
ERR_STRTOOLNG The string is too long
ERR_SYM_ACCESS Symbol read/write access error
ERR_TP_DIBREAK A TPRead instruction was interrupted by a digital

input
ERR_TP_MAXTIME Timeout when executing a TPRead instruction
ERR_UNIT_PAR Parameter Mech_unit in TestSign and SetCurrRe

wrong
ERR_UNKINO Unknown interrupt number
ERR_UNLOAD Unload error
ERR_WAIT_MAXTIME Timeout when executing a WaitDI or WaitUntil

instruction
ERR_WHLSEARCH No search stop

Characteristics

Errnum is an alias data type for num and consequently inherits its characteristics.
RAPID Reference Manual 7-errnum-3

errnum Data Types
Related information

Described in:

Error recovery RAPID Summary - Error Recovery
Basic Characteristics - Error Recovery

Data types in general, alias data types Basic Characteristics - Data Types
7-errnum-4 RAPID Reference Manual

Data Types extjoint

iece

.e. a
ach

ection

 - f.

ows:

 the

libra-

sition
ition
axis is
ction,

will
ated,

cted,
extjoint Position of external joints

Extjoint is used to define the axis positions of external axes, positioners or workp
manipulators.

Description

The robot can control up to six external axes in addition to its six internal axes, i
total of twelve axes. The six external axes are logically denoted: a, b, c, d, e, f. E
such logical axis can be connected to a physical axis and, in this case, the conn
is defined in the system parameters.

Data of the type extjoint is used to hold position values for each of the logical axes a

For each logical axis connected to a physical axis, the position is defined as foll

- For rotating axes – the position is defined as the rotation in degrees from
calibration position.

- For linear axes – the position is defined as the distance in mm from the ca
tion position.

If a logical axis is not connected to a physical one, the value 9E9 is used as a po
value, indicating that the axis is not connected. At the time of execution, the pos
data of each axis is checked and it is checked whether or not the corresponding
connected. If the stored position value does not comply with the actual axis conne
the following applies:

- If the position is not defined in the position data (value is 9E9), the value
be ignored if the axis is connected and not activated. But if the axis is activ
it will result in an error.

- If the position is defined in the position data, although the axis is not conne
the value will be ignored.

If an external axis offset is used (instruction EOffsOn or EOffsSet), the positions are
specified in the ExtOffs coordinate system.

Components

eax_a (external axis a) Data type: num

The position of the external logical axis “a”, expressed in degrees or mm
(depending on the type of axis).

eax_b (external axis b) Data type: num

The position of the external logical axis “b”, expressed in degrees or mm
(depending on the type of axis).
RAPID Reference Manual 7-extjoint-1

extjoint Data Types

end-

es or

rees
...

eax_f (external axis f) Data type: num

The position of the external logical axis “f”, expressed in degrees or mm (dep
ing on the type of axis).

Example

VAR extjoint axpos10 := [11, 12.3, 9E9, 9E9, 9E9, 9E9] ;

The position of an external positioner, axpos10, is defined as follows:

- The position of the external logical axis “a” is set to 11, expressed in degre
mm (depending on the type of axis).

- The position of the external logical axis “b” is set to 12.3, expressed in deg
or mm (depending on the type of axis).

- Axes c to f are undefined.

Structure

< dataobject of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Position data Data Types - robtarget

ExtOffs coordinate system Instructions - EOffsOn
7-extjoint-2 RAPID Reference Manual

Data Types intnum

nter-

ystem
t that

l
intnum Interrupt identity

Intnum (interrupt numeric) is used to identify an interrupt.

Description

When a variable of type intnum is connected to a trap routine, it is given a specific
value identifying the interrupt. This variable is then used in all dealings with the i
rupt, such as when ordering or disabling an interrupt.

More than one interrupt identity can be connected to the same trap routine. The s
variable INTNO can thus be used in a trap routine to determine the type of interrup
occurs.

Examples

VAR intnum feeder_error;
.
CONNECT feeder_error WITH correct_feeder;
ISignalDI di1, 1, feeder_error;

An interrupt is generated when the input di1 is set to 1. When this happens, a cal
is made to the correct_feeder trap routine.
RAPID Reference Manual 7-intnum-1

intnum Data Types

d

VAR intnum feeder1_error;
VAR intnum feeder2_error;
.
PROC init_interrupt();
.

CONNECT feeder1_error WITH correct_feeder;
ISignalDI di1, 1, feeder1_error;
CONNECT feeder2_error WITH correct_feeder;
ISignalDI di2, 1, feeder2_error;

.
ENDPROC
.
TRAP correct_feeder

IF INTNO=feeder1_error THEN
.
ELSE
.
ENDIF

.
ENDTRAP

An interrupt is generated when either of the inputs di1 or di2 is set to 1. A call is
then made to the correct_feeder trap routine. The system variable INTNO is use
in the trap routine to find out which type of interrupt has occurred.

Limitations

The maximum number of active variables of type intnum at any one time (between
CONNECT and IDelete) is limited to 40.The maximum number of interrupts, in the
queue for execution of TRAP routine at any one time, is limited to 30.

Characteristics

Intnum is an alias data type for num and thus inherits its properties.

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Alias data types Basic Characteristics-
Data Types
7-intnum-2 RAPID Reference Manual

Data Types iodev

ked
iodev Serial channels and files

Iodev (I/O device) is used for serial channels, such as printers and files.

Description

Data of the type iodev contains a reference to a file or serial channel. It can be lin
to the physical unit by means of the instruction Open and then used for reading and
writing.

Example

VAR iodev file;
.
Open "flp1:LOGDIR/INFILE.DOC", file\Read;
input := ReadNum(file);

The file INFILE.DOC is opened for reading. When reading from the file, file is
used as a reference instead of the file name.

Characteristics

Iodev is a non-value data type.

Related information

Described in:

Communication via serial channels RAPID Summary - Communication

Configuration of serial channels User’s Guide - System Parameters

Characteristics of non-value data types Basic Characteristics - Data Types
RAPID Reference Manual 7-iodev-1

iodev Data Types
7-iodev-2 RAPID Reference Manual

Data Types jointtarget

ove

al

m) in

e cal-

libra-

rame-

ed in
 exe-

l be
ed it

, the
jointtarget Joint position data

Jointtarget is used to define the position that the robot and the external axes will m
to with the instruction MoveAbsJ.

Description

Jointtarget defines each individual axis position, for both the robot and the extern
axes.

Components

robax (robot axes) Data type: robjoint

Axis positions of the robot axes in degrees.

Axis position is defined as the rotation in degrees for the respective axis (ar
a positive or negative direction from the axis calibration position.

extax (external axes) Data type: extjoint

The position of the external axes.

The position is defined as follows for each individual axis (eax_a, eax_b ...
eax_f):

- For rotating axes, the position is defined as the rotation in degrees from th
ibration position.

- For linear axes, the position is defined as the distance in mm from the ca
tion position.

External axes eax_a ... are logical axes. How the logical axis number and the
physical axis number are related to each other is defined in the system pa
ters.

The value 9E9 is defined for axes which are not connected. If the axes defin
the position data differ from the axes that are actually connected on program
cution, the following applies:

- If the position is not defined in the position data (value 9E9) the value wil
ignored, if the axis is connected and not activated. But if the axis is activat
will result in error.

- If the position is defined in the position data yet the axis is not connected
value is ignored.
RAPID Reference Manual 7-jointtarget-1

jointtarget Data Types

];

d.
Examples

CONST jointtarget calib_pos := [[0, 0, 0, 0, 0, 0], [0, 9E9, 9E9, 9E9, 9E9, 9E9]

The normal calibration position for IRB2400 is defined in calib_pos by the data
type jointtarget. The normal calibration position 0 (degrees or mm) is also
defined for the external logical axis a. The external axes b to f are undefine

Structure

< dataobject of jointtarget >
< robax of robjoint >

< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Move to joint position Instructions - MoveAbsJ

Positioning instructions RAPID Summary - Motion

Configuration of external axes User’s Guide - System Parameters
7-jointtarget-2 RAPID Reference Manual

Data Types loaddata

bot

ified

e robot

nces:

 true

d;

m.
 the

. The
loaddata Load data

Loaddata is used to describe loads attached to the mechanical interface of the ro
(the robot’s mounting flange).

Load data usually defines the payload (grip load is defined by the instruction
GripLoad) of the robot, i.e. the load held in the robot gripper. The tool load is spec
in the tool data (tooldata) which includes load data.

Description

Specified loads are used to set up a model of the dynamics of the robot so that th
movements can be controlled in the best possible way.

It is important to always define the actual tool load and when used, the payload
of the robot too. Incorrect definitions of load data can result in overloading of the
robot mechanical structure.

When incorrect load data is specified, it can often lead to the following conseque

- If the value in the specified load data is greater than that of the value of the
load;
-> The robot will not be used to its maximum capacity
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure

- If the value in the specified load data is less than the value of the true loa
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure

The payload is connected/disconnected using the instruction GripLoad.

Components

mass Data type: num

The weight of the load in kg.

cog (centre of gravity) Data type: pos

The centre of gravity of a tool load expressed in the wrist coordinate syste
If a stationary tool is used, it means the centre of gravity for the tool holding
work object.

The centre of gravity of a payload expressed in the tool coordinate system
object coordinate system when a stationary tool is used.
RAPID Reference Manual 7-loaddata-1

loaddata Data Types

l

tool

s the

to

ass

n
en
7-loaddata-2 RAPID Reference Manua

aom (axes of moment) Data type: orient

The orientation of the coordinate system defined by the inertial axes of the
load. It should always be set to 1, 0, 0, 0. Expressed in the wrist coordinate
system as a quaternion (q1, q2, q3, q4). If a stationary tool is used, it mean
inertial axes for the tool holding the work object.

The orientation of the coordinate system defined by the inertial axes of the
payload. It should always be set to 1, 0, 0, 0. Expressed in the tool coordinate
system as a quaternion (q1, q2, q3, q4). The object coordinate system if a
stationary tool is used.

Restriction on orientation of tool load and payload coordinate system (axes
of moment - aom):

The orientation of the tool load coordinate system must coincide with the
orientation of the wrist coordinate system.

The orientation of the payload coordinate system must coincide with the
orientation of the wrist coordinate system. Because of this, the best way is
define the orientation of the tool coordinate system (tool frame) to coincide with
the orientation of the wrist coordinate system.

Figure 1 Restriction on the orientation of tool load and payload coordinate system.

ix (inertia x) Data type: num

The moment of inertia of the load about the x’-axis relative to its centre of m
about the axes of the tool load or payload coordinate system in kgm2.

Correct definition of the inertial moments of inertia will allow optimal utilisatio
of the path planner and axes control. This may be of special importance wh
handling large sheets of metal, etc. All inertial moments of inertia ix, iy and iz
equal to 0 kgm2 implies a point mass.

X

X’

The wrist coordinate system
Y

Y’

Tool coordinate system

Tool load coordinate system -

Payload coordinate system -

IX

IZ

IY

IX

IZ

IYZ

Z’

TCP

Inertial axes of tool load

Inertial axes of payload

Data Types loaddata

nce
 of

oad

m

m

Figure 2 The centre of gravity and inertial axes of the payload.

Normally, the inertial moments of inertia must only be defined when the dista
from the mounting flange to the centre of gravity is less than the dimension
the load (see Figure 3).

Figure 3 The moment of inertia must normally be defined when the distance is less than the l
dimension.

iy (inertia y) Data type: num

The inertial moment of inertia of the load about the y’-axis, expressed in kg2.

For more information, see ix.

iz (inertia z) Data type: num

The inertial moment of inertia of the load about the z’-axis, expressed in kg2.

For more information, see ix.

Wrist coordinate system

Z

X

Y Tool coordinate system

Z’

X’

Y’

The centre of gravity of the payload

Gripper

Payload coordinate

Payload

Inertial axes of payload
system -

Y

Z

X

x

payload

dimension

distance
RAPID Reference Manual 7-loaddata-3

loaddata Data Types

ps

s a

in a
 are

 at

 (it is
Examples

PERS loaddata piece1 := [5, [50, 0, 50], [1, 0, 0, 0], 0, 0, 0];

The payload in Figure 1 is described using the following values:

- Weight 5 kg.

- The centre of gravity is x = 50, y = 0 and z = 50 mm in the tool coordinate
system.

- The payload is a point mass.

Set gripper;
WaitTime 0.3;
GripLoad piece1;

Connection of the payload, piece1, specified at the same time as the robot gri
the load piece1.

Reset gripper;
WaitTime 0.3;
GripLoad load0;

Disconnection of a payload, specified at the same time as the robot release
payload.

Limitations

The payload should only be defined as a persistent variable (PERS) and not with
routine. Current values are then saved when storing the program on diskette and
retrieved on loading.

Arguments of the type load data in the GripLoad instruction should only be an entire
persistent (not array element or record component).

Predefined data

The load load0 defines a payload, the weight of which is equal to 0 kg, i.e. no load
all. This load is used as the argument in the instruction GripLoad to disconnect a
payload.

The load load0 can always be accessed from the program, but cannot be changed
stored in the system module BASE).

PERS loaddata load0 := [0.001, [0, 0, 0.001], [1, 0, 0, 0],0, 0 ,0];
7-loaddata-4 RAPID Reference Manual

Data Types loaddata
Structure

< dataobject of loaddata >
< mass of num >
< cog of pos >

< x of num >
< y of num >
< z of num >

< aom of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< ix of num >
< iy of num >
< iz of num >

Related information

Described in:

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Definition of tool loads Data Types - tooldata

Activation of payload Instructions - GripLoad
RAPID Reference Manual 7-loaddata-5

loaddata Data Types
7-loaddata-6 RAPID Reference Manual

Data Types mecunit

and

onse-

 the

d from

it
mecunit Mechanical unit

Mecunit is used to define the different mechanical units which can be controlled
accessed from the robot and the program.

The names of the mechanical units are defined in the system parameters and, c
quently, must not be defined in the program.

Description

Data of the type mecunit only contains a reference to the mechanical unit.

Limitations

Data of the type mecunit must not be defined in the program. The data type can, on
other hand, be used as a parameter when declaring a routine.

Predefined data

The mechanical units defined in the system parameters can always be accesse
the program (installed data).

Characteristics

Mecunit is a non-value data type. This means that data of this type does not perm
value-oriented operations.

Related information

Described in:

Activating/Deactivating mechanical units Instructions - ActUnit, DeactUnit

Configuration of mechanical units User’s Guide - System Parameters

Characteristics of non-value data types Basic Characteristics - Data Types
RAPID Reference Manual 7-mecunit-1

mecunit Data Types
7-mecunit-2 RAPID Reference Manual

Data Types motsetdata

g

be set

ariable

 of the
motsetdata Motion settings data

Motsetdata is used to define a number of motion settings that affect all positionin
instructions in the program:

- Max. velocity and velocity override

- Acceleration data

- Behaviour around singular points

- Management of different robot configurations

- Payload

- Override of path resolution

This data type does not normally have to be used since these settings can only
using the instructions VelSet, AccSet, SingArea, ConfJ, ConfL, GripLoad and
PathResol.

The current values of these motion settings can be accessed using the system v
C_MOTSET.

Description

The current motion settings (stored in the system variable C_MOTSET) affect all
movements.

Components

vel.oride Data type: veldata/num

Velocity as a percentage of programmed velocity.

vel.max Data type: veldata/num

Maximum velocity in mm/s.

acc.acc Data type: accdata/num

Acceleration and deceleration as a percentage of the normal values.

acc.ramp Data type: accdata/num

The rate by which acceleration and deceleration increases as a percentage
normal values.
RAPID Reference Manual 7-motsetdata-1

motsetdata Data Types

nt

 arm

nt.

).

).

).
sing.wrist Data type: singdata/bool

The orientation of the tool is allowed to deviate somewhat in order to preve
wrist singularity.

sing.arm Data type: singdata/bool

The orientation of the tool is allowed to deviate somewhat in order to prevent
singularity (not implemented).

sing.base Data type: singdata/bool

The orientation of the tool is not allowed to deviate.

conf.jsup Data type: confsupdata/bool

Supervision of joint configuration is active during joint movement.

conf.lsup Data type: confsupdata/bool

Supervision of joint configuration is active during linear and circular moveme

conf.ax1 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 1 (not used in this version

conf.ax4 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 4 (not used in this version

conf.ax6 Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 6 (not used in this version

grip.load Data type:gripdata/loaddata

The payload of the robot (not including the gripper).

pathresol Data type: num

Current override in percentage of the configured path resolution.

Limitations

One and only one of the components sing.wrist, sing.arm or sing.base may have a value
equal to TRUE.
7-motsetdata-2 RAPID Reference Manual

Data Types motsetdata

city

Example

IF C_MOTSET.vel.oride > 50 THEN
...

ELSE
...

ENDIF

Different parts of the program are executed depending on the current velo
override.

Predefined data

C_MOTSET describes the current motion settings of the robot and can always be
accessed from the program (installed data). C_MOTSET, on the other hand, can only
be changed using a number of instructions, not by assignment.

The following default values for motion parameters are set

- at a cold start-up

- when a new program is loaded

- when starting program execution from the beginning.

PERS motsetdata C_MOTSET := [
[100, 500], -> veldata
[100, 100], -> accdata
[FALSE, FALSE, TRUE], -> singdata
[TRUE, TRUE, 30, 45, 90], -> confsupdata
[[0, [0, 0, 0], [1, 0, 0, 0], 0, 0, 0]], -> gripdata
100] -> path resolution
RAPID Reference Manual 7-motsetdata-3

motsetdata Data Types
Structure

<dataobject of motsetdata>
<vel of veldata > -> Affected by instruction VelSet

< oride of num >
< max of num >

<acc of accdata > -> Affected by instruction AccSet
< acc of num >
< ramp of num >

<sing of singdata > -> Affected by instruction SingArea
< wrist of bool >
< arm of bool >
< base of bool >

<conf of confsupdata > -> Affected by instructions ConfJ and ConfL
< jsup of bool >
<lsup of bool >
< ax1 of num >
< ax4 of num >
< ax6 of num >

<grip of gripdata > -> Affected by instruction GripLoad
< load of loaddata >

< mass of num>
< cog of pos >

< x of num >
< y of num >
< z of num >

<aom of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< ix of num >
< iy of num>
< iz of num >

<pathresol of num> -> Affected by instruction PathResol

Related information

Described in:

Instructions for setting motion parameters RAPID Summary -
Motion Settings
7-motsetdata-4 RAPID Reference Manual

Data Types num

sed in
ing
ger.

,

num Numeric values (registers)

Num is used for numeric values; e.g. counters.

Description

The value of the num data type may be

- an integer; e.g. -5,

- a decimal number; e.g. 3.45.

It may also be written exponentially; e.g.2E3 (= 2*103 = 2000), 2.5E-2 (= 0.025).

Integers between -8388607 and +8388608 are always stored as exact integers.

Decimal numbers are only approximate numbers and should not, therefore, be u
is equal to or is not equal to comparisons. In the case of divisions, and operations us
decimal numbers, the result will also be a decimal number; i.e. not an exact inte

E.g. a := 10;
b := 5;
IF a/b=2 THEN As the result of a/b is not an integer

this condition is not necessarily
... satisfied.

Example

VAR num reg1;
.

reg1 := 3;

reg1 is assigned the value 3.

a := 10 DIV 3;
b := 10 MOD 3;

Integer division where a is assigned an integer (=3) and b is assigned the
remainder (=1).

Predefined data

The constant pi (π) is already defined in the system module BASE.

CONST num pi := 3.1415926;
RAPID Reference Manual 7-num-1

num Data Types
Related information

Described in:

Numeric expressions Basic Characteristics - Expressions

Operations using numeric values Basic Characteristics - Expressions
7-num-2 RAPID Reference Manual

Data Types o_jointtarget

 is

nt
i-

ame
o_jointtarget Original joint position data

o_jointtarget (original joint target) is used in combination with the function Absolute
Limit Modpos. When this function is used to modify a position, the original position
stored as a data of the type o_jointtarget.

Description

If the function Absolute Limit Modpos is activated and a named position in a moveme
instruction is modified with the function Modpos, then the original programmed pos
tion is saved.

Example of a program before Modpos:

CONST jointtarget jpos40 := [[0, 0, 0, 0, 0, 0],
[0, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveAbsJ jpos40, v1000, z50, tool1;

The same program after ModPos in which the point jpos40 is corrected to 2 degrees for
robot axis 1:

CONST jointtarget jpos40 := [[2, 0, 0, 0, 0, 0],
 [0, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST o_jointtarget o_jpos40 := [[0, 0, 0, 0, 0, 0],
[0, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveAbsJ jpos40, v1000, z50, tool1;

The original programmed point has now been saved in o_jpos40 (by the data type
o_jointtarget) and the modified point saved in jpos40 (by the data type jointtarget).

By saving the original programmed point, the robot can monitor that further Modpos
of the point in question are within the acceptable limits from the original pro-
grammed point.

The fixed name convention means that an original programmed point with the n
xxxxx is saved with the name o_xxxxx by using Absolute Limit Modpos.

Components

robax (robot axes) Data type: robjoint

Axis positions of the robot axes in degrees.
RAPID Reference Manual 7-o_jointtarget-1

o_jointtarget Data Types
extax (external axes) Data type: extjoint

The position of the external axes.

Structure

< dataobject of o_jointtarget >
< robax of robjoint>

< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Position data Data Types - Jointtarget

Configuration of Limit Modpos User’s Guide - System Parameters
7-o_jointtarget-2 RAPID Reference Manual

Data Types orient

ch as

e-
ow.

s to
orient Orientation

Orient is used for orientations (such as the orientation of a tool) and rotations (su
the rotation of a coordinate system).

Description

The orientation is described in the form of a quaternion which consists of four el
ments: q1, q2, q3 and q4. For more information on how to calculate these, see bel

Components

q1 Data type: num

Quaternion 1.

q2 Data type: num

Quaternion 2.

q3 Data type: num

Quaternion 3.

q4 Data type: num

Quaternion 4.

Example

VAR orient orient1;
.
orient1 := [1, 0, 0, 0];

The orient1 orientation is assigned the value q1=1, q2-q4=0; this correspond
no rotation.

Limitations

The orientation must be normalised; i.e. the sum of the squares must equal 1:

q1
2 q2

2 q3
2 q4

2+ + + 1=
RAPID Reference Manual 7-orient-1

orient Data Types

by a
 in

he

tem

ch of
What is a Quaternion?

The orientation of a coordinate system (such as that of a tool) can be described
rotational matrix that describes the direction of the axes of the coordinate system
relation to a reference system (see Figure 1).

Figure 1 The rotation of a coordinate system is described by a quaternion.

The rotated coordinate systems axes (x, y, z) are vectors which can be expressed in t
reference coordinate system as follows:

x = (x1, x2, x3)

y = (y1, y2, y3)

z = (z1, z2, z3)

This means that the x-component of the x-vector in the reference coordinate sys
will be x1, the y-component will be x2, etc.

These three vectors can be put together in a matrix, a rotational matrix, where ea
the vectors form one of the columns:

A quaternion is just a more concise way to describe this rotational matrix; the
quaternions are calculated based on the elements of the rotational matrix:

sign q2 = sign (y3-z2)

sign q3 = sign (z1-x3)

sign q4 = sign (x2-y1)

z

y

x
y

z

x

Reference
coordinate
system

Rotated
coordinate
system

x1 y1 z1

x2 y2 z2

x3 y3 z3

q1
x1 y2 z3 1+ + +

2
---=

q2
x1 y2– z3– 1+

2
--=

q3
y2 x1– z3– 1+

2
--=

q4
z3 x1– y2– 1+

2
--=
7-orient-2 RAPID Reference Manual

Data Types orient

s the
 Y-

tool

ordi-
d the
tation

t
 tool
Example 1

A tool is orientated so that its Z’-axis points straight ahead (in the same direction a
X-axis of the base coordinate system). The Y’-axis of the tool corresponds to the
axis of the base coordinate system (see Figure 2). How is the orientation of the
defined in the position data (robtarget)?

The orientation of the tool in a programmed position is normally related to the co
nate system of the work object used. In this example, no work object is used an
base coordinate system is equal to the world coordinate system. Thus, the orien
is related to the base coordinate system.

Figure 2 The direction of a tool in accordance with example 1.

The axes will then be related as follows:

x’ = -z = (0, 0, -1)

y’ = y = (0, 1, 0)

z’ = x = (1, 0, 0)

Which corresponds to the following rotational matrix:

The rotational matrix provides a corresponding quaternion:

sign q3 = sign (1+1) = +

Example 2

The direction of the tool is rotated 30o about the X’- and Z’-axes in relation to the wris
coordinate system (see Figure 2). How is the orientation of the tool defined in the
data?

Z´

X´

X

Z

0 0 1

0 1 0

1– 0 0

q1
0 1 0 1+ + +

2

2
2

------- 0,707= = =

q2
0 1– 0– 1+

2
---------------------------------- 0= =

q3
1 0– 0– 1+

2

2
2

------- 0,707= = =

q4
0 0– 1– 1+

2
---------------------------------- 0= =
RAPID Reference Manual 7-orient-3

orient Data Types
Figure 3 The direction of the tool in accordance with example 2.

The axes will then be related as follows:

x’ = (cos30o, 0, -sin30o)

x’ = (0, 1, 0)

x’ = (sin30o, 0, cos30o)

Which corresponds to the following rotational matrix:

The rotational matrix provides a corresponding quaternion:

sign q3 = sign (sin30o+sin30o) = +

Structure

<dataobject of orient>
<q1 of num>
<q2 of num>
<q3 of num>
<q4 of num>

Related information

Described in:

Operations on orientations Basic Characteristics - Expressions

Z´
X´

X

Z

30cos ° 0 30sin °
0 1 0

30sin– ° 0 30cos °

q1
30cos ° 1 30°cos 1+ + +

2
-- 0,965926= =

q2
30°cos 1– 30°cos– 1+

2
-- 0= =

q3
1 30°cos– 30°cos– 1+

2
-- 0,258819= =

q4
30°cos 30°cos– 1– 1+

2
-- 0= =
7-orient-4 RAPID Reference Manual

Data Types o_robtarget

 is

nt
i-

med

ame
o_robtarget Original position data

o_robtarget (original robot target) is used in combination with the function Absolute
Limit Modpos. When this function is used to modify a position, the original position
stored as a data of the type o_robtarget.

Description

If the function Absolute Limit Modpos is activated and a named position in a moveme
instruction is modified with the function Modpos, then the original programmed pos
tion is saved.

Example of a program before Modpos:

CONST robtarget p50 := [[500, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[500, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveL p50, v1000, z50, tool1;

The same program after ModPos in which the point p50 is corrected to 502 in the x-
direction:

CONST robtarget p50 := [[502, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[500, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST o_robtarget o_p50 := [[500, 500, 500], [1, 0, 0, 0], [1, 1, 0, 0],
[500, 9E9, 9E9, 9E9, 9E9, 9E9]];

...
MoveL p50, v1000, z50, tool1;

The original programmed point has now been saved in o_p50 (by the data type
o_robtarget) and the modified point saved in p50 (by the data type robtarget).

By saving the original programmed point, the robot can monitor that further Modpos
of the point in question are within the acceptable limits from the original program
point.

The fixed name convention means that an original programmed point with the n
xxxxx is saved with the name o_xxxxx by using Absolute Limit Modpos.

Components

trans (translation) Data type: pos

The position (x, y and z) of the tool centre point expressed in mm.
RAPID Reference Manual 7-o_robtarget-1

o_robtarget Data Types

d q4).
rot (rotation) Data type: orient

The orientation of the tool, expressed in the form of a quaternion (q1, q2, q3 an

robconf (robot configuration) Data type: confdata

The axis configuration of the robot (cf1, cf4, cf6 and cfx).

extax (external axes) Data type: extjoint

The position of the external axes.

Structure

< dataobject of o_robtarget >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< robconf of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Position data Data Types - Robtarget

Configuration of Limit Modpos User’s Guide - System Parameters
7-o_robtarget-2 RAPID Reference Manual

Data Types pos

 the
pos Positions (only X, Y and Z)

Pos is used for positions (only X, Y and Z).

The robtarget data type is used for the robot’s position including the orientation of
tool and the configuration of the axes.

Description

Data of the type pos describes the coordinates of a position: X, Y and Z.

Components

x Data type: num

The X-value of the position.

y Data type: num

The Y-value of the position.

z Data type: num

The Z-value of the position.

Examples

VAR pos pos1;
.
pos1 := [500, 0, 940];

The pos1 position is assigned the value: X=500 mm, Y=0 mm, Z=940 mm.

pos1.x := pos1.x + 50;

The pos1 position is shifted 50 mm in the X-direction.

Structure

<dataobject of pos>
<x of num>
<y of num>
<z of num>
RAPID Reference Manual 7-pos-1

pos Data Types
Related information

Described in:

Operations on positions Basic Characteristics - Expressions

Robot position including orientation Data Types- robtarget
7-pos-2 RAPID Reference Manual

Data Types pose

 tool
em.

 to a
pose Coordinate transformations

Pose is used to change from one coordinate system to another.

Description

Data of the type pose describes how a coordinate system is displaced and rotated
around another coordinate system. The data can, for example, describe how the
coordinate system is located and oriented in relation to the wrist coordinate syst

Components

trans (translation) Data type: pos

The displacement in position (x, y and z) of the coordinate system.

rot (rotation) Data type: orient

The rotation of the coordinate system.

Example

VAR pose frame1;
.
frame1.trans := [50, 0, 40];
frame1.rot := [1, 0, 0, 0];

The frame1 coordinate transformation is assigned a value that corresponds
displacement in position, where X=50 mm, Y=0 mm, Z=40 mm; there is, how-
ever, no rotation.

Structure

<dataobject of pose>
<trans of pos>
<rot of orient>

Related information

Described in:

What is a Quaternion? Data Types - orient
RAPID Reference Manual 7-pose-1

pose Data Types
7-pose-2 RAPID Reference Manual

Data Types progdisp

exter-

instruc-

ariable

an ori-

essed

 it is
progdisp Program displacement

Progdisp is used to store the current program displacement of the robot and the
nal axes.

This data type does not normally have to be used since the data is set using the
tions PDispSet, PDispOn, PDispOff, EOffsSet, EOffsOn and EOffsOff. It is only used
to temporarily store the current value for later use.

Description

The current values for program displacement can be accessed using the system v
C_PROGDISP.

For more information, see the instructions PDispSet, PDispOn, EOffsSet and EOffsOn.

Components

pdisp (program displacement) Data type: pose

The program displacement for the robot, expressed using a translation and
entation. The translation is expressed in mm.

eoffs (external offset) Data type: extjoint

The offset for each of the external axes. If the axis is linear, the value is expr
in mm; if it is rotating, the value is expressed in degrees.

Example

VAR progdisp progdisp1;
.
SearchL sen1, psearch, p10, v100, tool1;
PDispOn \ExeP:=psearch, *, tool1;
EOffsOn \ExeP:=psearch, *;
.
progdisp1:=C_PROGDISP;
PDispOff;
EOffsOff;
.
PDispSet progdisp1.pdisp;
EOffsSet progdisp1.eoffs;

First, a program displacement is activated from a searched position. Then,
temporarily deactivated by storing the value in the variable progdisp1 and, later
on, re-activated using the instructions PDispSet and EOffsSet.
RAPID Reference Manual 7-progdisp-1

progdisp Data Types

he
 data).

ions,
Predefined data

The system variable C_PROGDISP describes the current program displacement of t
robot and external axes, and can always be accessed from the program (installed
C_PROGDISP, on the other hand, can only be changed using a number of instruct
not by assignment.

Structure

< dataobject of progdisp >
<pdisp of pose>

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< eoffs of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >

Related information

Described in:

Instructions for defining program displacement RAPID Summary - Motion Settings

Coordinate systems Motion and I/O Principles -
Coordinate Systems
7-progdisp-2 RAPID Reference Manual

Data Types robjoint

s 1
m) in
robjoint Joint position of robot axes

Robjoint is used to define the axis position in degrees of the robot axes.

Description

Data of the type robjoint is used to store axis positions in degrees of the robot axe
to 6. Axis position is defined as the rotation in degrees for the respective axis (ar
a positive or negative direction from the axis calibration position.

Components

rax_1 (robot axis 1) Data type: num

The position of robot axis 1 in degrees from the calibration position.

...

rax_6 (robot axis 6) Data type: num

The position of robot axis 6 in degrees from the calibration position.

Structure

< dataobject of robjoint >
< rax_1 of num >
< rax_2 of num >
< rax_3 of num >
< rax_4 of num >
< rax_5 of num >
< rax_6 of num >

Related information

Described in:

Joint position data Data Types - jointtarget

Move to joint position Instructions - MoveAbsJ
RAPID Reference Manual 7-robjoint-1

robjoint Data Types
7-robjoint-2 RAPID Reference Manual

Data Types robtarget

es.

h the

xis
ay

d

,
rld

d q4).

em,
rld

the
robtarget Position data

Robtarget (robot target) is used to define the position of the robot and external ax

Description

Position data is used to define the position in the positioning instructions to whic
robot and external axes are to move.

As the robot is able to achieve the same position in several different ways, the a
configuration is also specified. This defines the axis values if these are in any w
ambiguous, for example:

- if the robot is in a forward or backward position,

- if axis 4 points downwards or upwards,

- if axis 6 has a negative or positive revolution.

The position is defined based on the coordinate system of the work object,
including any program displacement. If the position is programmed with some
other work object than the one used in the instruction, the robot will not move in
the expected way. Make sure that you use the same work object as the one use
when programming positioning instructions. Incorrect use can injure someone or
damage the robot or other equipment.

Components

trans (translation) Data type: pos

The position (x, y and z) of the tool centre point expressed in mm.

The position is specified in relation to the current object coordinate system
including program displacement. If no work object is specified, this is the wo
coordinate system.

rot (rotation) Data type: orient

The orientation of the tool, expressed in the form of a quaternion (q1, q2, q3 an

The orientation is specified in relation to the current object coordinate syst
including program displacement. If no work object is specified, this is the wo
coordinate system.

robconf (robot configuration) Data type: confdata

The axis configuration of the robot (cf1, cf4, cf6 and cfx). This is defined in
form of the current quarter revolution of axis 1, axis 4 and axis 6. The first
RAPID Reference Manual 7-robtarget-1

robtarget Data Types

e

ed in
m

l be
d, it

ted,

stem.

r mm
positive quarter revolution 0 to 90 o is defined as 0. The component cfx is only
used for the robot model IRB5400.

For more information, see data type confdata.

extax (external axes) Data type: extjoint

The position of the external axes.

The position is defined as follows for each individual axis (eax_a, eax_b ...
eax_f):

- For rotating axes, the position is defined as the rotation in degrees from th
calibration position.

- For linear axes, the position is defined as the distance in mm from the
calibration position.

External axes eax_a ... are logical axes. How the logical axis number and the
physical axis number are related to each other is defined in the system
parameters.

The value 9E9 is defined for axes which are not connected. If the axes defin
the position data differ from the axes that are actually connected on progra
execution, the following applies:

- If the position is not defined in the position data (value 9E9), the value wil
ignored, if the axis is connected and not activated. But if the axis is activate
will result in an error.

- If the position is defined in the position data although the axis is not connec
the value is ignored.

Examples

CONST robtarget p15 := [[600, 500, 225.3], [1, 0, 0, 0], [1, 1, 0, 0],
[11, 12.3, 9E9, 9E9, 9E9, 9E9]];

A position p15 is defined as follows:

- The position of the robot: x = 600, y = 500 and z = 225.3 mm in the object
coordinate system.

- The orientation of the tool in the same direction as the object coordinate sy

- The axis configuration of the robot: axes 1 and 4 in position 90-180o, axis 6 in
position 0-90o.

- The position of the external logical axes, a and b, expressed in degrees o
(depending on the type of axis). Axes c to f are undefined.
7-robtarget-2 RAPID Reference Manual

Data Types robtarget

VAR robtarget p20;
. . .
p20 := CRobT();
p20 := Offs(p20,10,0,0);

The position p20 is set to the same position as the current position of the robot by
calling the function CRobT. The position is then moved 10 mm in the x-direction.

Limitations

When using the configurable edit function Absolute Limit Modpos, the number of
characters in the name of the data of the type robtarget, is limited to 14 (in other cases
16).

Structure

< dataobject of robtarget >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< robconf of confdata >
< cf1 of num >
< cf4 of num >
< cf6 of num >
< cfx of num >

< extax of extjoint >
< eax_a of num >
< eax_b of num >
< eax_c of num >
< eax_d of num >
< eax_e of num >
< eax_f of num >
RAPID Reference Manual 7-robtarget-3

robtarget Data Types
Related information

Described in:

Positioning instructions RAPID Summary - Motion

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Handling configuration data Motion and I/O Principles - Robot
Configuration

Configuration of external axes User’s Guide - System Parameters

What is a quaternion? Data Types - Orient
7-robtarget-4 RAPID Reference Manual

Data Types shapedata

fined

d by

 the

. A
d. If
shapedata World zone shape data

shapedata is used to describe the geometry of a world zone.

Description

World zones can be defined in 3 different geometrical shapes:

- a straight box, with all sides parallel to the world coordinate system and de
by a WZBoxDef instruction

- a sphere, defined by a WZSphDef instruction

- a cylinder, parallel to the z axis of the world coordinate system and define
a WZCylDef instruction

The geometry of a world zone is defined by one of the previous instructions and
action of a world zone is defined by the instruction WZLimSup or WZDOSet.

Example

VAR wzstationary pole;
VAR wzstationary conveyor;
...
PROC ...

VAR shapedata volume;
...
WZBoxDef \Inside, volume, p_corner1, p_corner2;
WZLimSup \Stat, conveyor, volume;
WZCylDef \Inside, volume, p_center, 200, 2500;
WZLimSup \Stat, pole, volume;

ENDPROC

A conveyor is defined as a box and the supervision for this area is activated
pole is defined as a cylinder and the supervision of this zone is also activate
the robot reaches one of these areas, the motion is stopped.

Characteristics

shapedata is a non-value data type.
RAPID Reference Manual 7-shapedata-1

shapedata Data Types
Related information

Described in:

Define box-shaped world zone Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
7-shapedata-2 RAPID Reference Manual

Data Types signalxx

.

uently

et

o
lled,

is
ction
ed as a

rogram
oted
RAPID Reference Manual 7-signalxx-1

signalxx Digital and analog signals

Data types within signalxx are used for digital and analog input and output signals

The names of the signals are defined in the system parameters and are conseq
not to be defined in the program.

Description

Data type Used for

signalai analog input signals

signalao analog output signals

signaldi digital input signals

signaldo digital output signals

signalgi groups of digital input signals

signalgo groups of digital output signals

Variables of the type signalxo only contain a reference to the signal. The value is s
using an instruction, e.g. DOutput.

Variables of the type signalxi contain a reference to a signal as well as a method t
retrieve the value. The value of the input signal is returned when a function is ca
e.g. DInput, or when the variable is used in a value context, e.g. IF signal_y=1 THEN.

Limitations

Data of the data type signalxx may not be defined in the program. However, if this
in fact done, an error message will be displayed as soon as an instruction or fun
that refers to this signal is executed. The data type can, on the other hand, be us
parameter when declaring a routine.

Predefined data

The signals defined in the system parameters can always be accessed from the p
by using the predefined signal variables (installed data). It should however be n
that if other data with the same name is defined, these signals cannot be used.

Characteristics

Signalxo is a non-value data type. Thus, data of this type does not permit value-
oriented operations.

Signalxi is a semi-value data type.

signalxx Data Types
Related information

Described in:

Summary input/output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters

Characteristics of non-value data types Basic Characteristics - Data Types
7-signalxx-2 RAPID Reference Manual

Data Types speeddata

axes

ften
ch a

ding

cified

cified
speeddata Speed data

Speeddata is used to specify the velocity at which both the robot and the external
move.

Description

Speed data defines the velocity:

- at which the tool centre point moves,

- of the reorientation of the tool,

- at which linear or rotating external axes move.

When several different types of movement are combined, one of the velocities o
limits all movements. The velocity of the other movements will be reduced in su
way that all movements will finish executing at the same time.

The velocity is also restricted by the performance of the robot. This differs, depen
on the type of robot and the path of movement.

Components

v_tcp (velocity tcp) Data type: num

The velocity of the tool centre point (TCP) in mm/s.

If a stationary tool or coordinated external axes are used, the velocity is spe
relative to the work object.

v_ori (velocity orientation) Data type: num

The velocity of reorientation about the TCP expressed in degrees/s.

If a stationary tool or coordinated external axes are used, the velocity is spe
relative to the work object.

v_leax (velocity linear external axes) Data type: num

The velocity of linear external axes in mm/s.

v_reax (velocity rotational external axes)Data type: num

The velocity of rotating external axes in degrees/s.
RAPID Reference Manual 7-speeddata-1

speeddata Data Types
Example

VAR speeddata vmedium := [1000, 30, 200, 15];

The speed data vmedium is defined with the following velocities:

- 1000 mm/s for the TCP.

- 30 degrees/s for reorientation of the tool.

- 200 mm/s for linear external axes.

- 15 degrees/s for rotating external axes.

vmedium.v_tcp := 900;

The velocity of the TCP is changed to 900 mm/s.

Predefined data

A number of speed data are already defined in the system module BASE.

Name TCP speed Orientation Linear ext. axis Rotating ext. axis

v5 5 mm/s 500o/s 5000 mm/s 1000o/s
v10 10 mm/s 500o/s 5000 mm/s 1000o/s
v20 20 mm/s 500o/s 5000 mm/s 1000o/s
v30 30 mm/s 500o/s 5000 mm/s 1000o/s
v40 40 mm/s 500o/s 5000 mm/s 1000o/s
v50 50 mm/s 500o/s 5000 mm/s 1000o/s
v60 60 mm/s 500o/s 5000 mm/s 1000o/s
v80 80 mm/s 500o/s 5000 mm/s 1000o/s
v100 100 mm/s 500o/s 5000 mm/s 1000o/s
v150 150 mm/s 500o/s 5000 mm/s 1000o/s
v200 200 mm/s 500o/s 5000 mm/s 1000o/s
v300 300 mm/s 500o/s 5000 mm/s 1000o/s
v400 400 mm/s 500o/s 5000 mm/s 1000o/s
v500 500 mm/s 500o/s 5000 mm/s 1000o/s
v600 600 mm/s 500o/s 5000 mm/s 1000o/s
v800 800 mm/s 500o/s 5000 mm/s 1000o/s
v1000 1000 mm/s 500o/s 5000 mm/s 1000o/s
v1500 1500 mm/s 500o/s 5000 mm/s 1000o/s
v2000 2000 mm/s 500o/s 5000 mm/s 1000o/s
v2500 2500 mm/s 500o/s 5000 mm/s 1000o/s
v3000 3000 mm/s 500o/s 5000 mm/s 1000o/s
v4000 4000 mm/s 500o/s 5000 mm/s 1000o/s
v5000 5000 mm/s 500o/s 5000 mm/s 1000o/s
vmax 5000 mm/s 500o/s 5000 mm/s 1000o/s
v6000 6000 mm/s 500o/s 5000 mm/s 1000o/s
v7000 7000 mm/s 500o/s 5000 mm/s 1000o/s
7-speeddata-2 RAPID Reference Manual

Data Types speeddata
Structure

< dataobject of speeddata >
< v_tcp of num >
< v_ori of num >
< v_leax of num >
< v_reax of num >

Related information

Described in:

Positioning instructions RAPID Summary - Motion

Motion/Speed in general Motion and I/O Principles - Position-
ing during Program Execution

Defining maximum velocity Instructions - VelSet

Configuration of external axes User’s Guide - System Parameters

Motion performance Product Specification
RAPID Reference Manual 7-speeddata-3

speeddata Data Types
7-speeddata-4 RAPID Reference Manual

Data Types string

ed by

,

ntrol
string Strings

String is used for character strings.

Description

A character string consists of a number of characters (a maximum of 80) enclos
quotation marks ("),

e.g. "This is a character string".

If the quotation marks are to be included in the string, they must be written twice

e.g. "This string contains a ""character".

Example

VAR string text;
.
text := "start welding pipe 1";
TPWrite text;

The text start welding pipe 1 is written on the teach pendant.

Limitations

A string may have from 0 to 80 characters; inclusive of extra quotation marks.

A string may contain any of the characters specified by ISO 8859-1 as well as co
characters (non-ISO 8859-1 characters with a numeric code between 0-255).
RAPID Reference Manual 7-string-1

string Data Types

ith
Predefined data

A number of predefined string constants (installed data) can be used together w
string functions.

Name Character set

STR_DIGIT <digit> ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

STR_UPPER <upper case letter> ::=
A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1) | Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3)

STR_LOWER <lower case letter> ::=
a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | à | á | â | ã
| ä | å | æ | ç | è | é | ê | ë | ì | í
| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø
| ù | ú | û | ü | 2) | 3) | ß | ÿ

STR_WHITE <blank character> ::=

1) Icelandic letter eth.
2) Letter Y with acute accent.
3) Icelandic letter thorn.

Related information

Described in:

Operations using strings Basic Characteristics - Expressions

String values Basic Characteristics - Basic Elements
7-string-2 RAPID Reference Manual

Data Types symnum

the

symnum Symbolic number

Symnum is used to represent an integer with a symbolic constant.

Description

A symnum constant is intended to be used when checking the return value from
functions OpMode and RunMode. See example below.

Example

IF RunMode() = RUN_CONT_CYCLE THEN
.
.
ELSE
.
.
ENDIF

Predefined data

The following symbolic constants of the data type symnum are predefined and can be
used when checking return values from the functions OpMode and RunMode.

 Value Symbolic constant Comment

0 RUN_UNDEF Undefined running mode

1 RUN_CONT_CYCLE Continuous or cycle running mode

2 RUN_INSTR_FWD Instruction forward running mode

3 RUN_INSTR_BWD Instruction backward running mode

4 RUN_SIM Simulated running mode

Value Symbolic constant Comment

0 OP_UNDEF Undefined operating mode

1 OP_AUTO Automatic operating mode

2 OP_MAN_PROG Manual operating mode
max. 250 mm/s

3 OP_MAN_TEST Manual operating mode
full speed, 100%
RAPID Reference Manual 7-symnum-1

symnum Data Types
Characteristics

Symnum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Data types in general, alias data types Basic Characteristics - Data Types
7-symnum-2 RAPID Reference Manual

Data Types tooldata

ipper.

 tool

ath
rnal
ed

 the

r
till be

g

e load;
tooldata Tool data

Tooldata is used to describe the characteristics of a tool, e.g. a welding gun or a gr

If the tool is fixed in space (a stationary tool), common tool data is defined for this
and the gripper holding the work object.

Description

Tool data affects robot movements in the following ways:

- The tool centre point (TCP) refers to a point that will satisfy the specified p
and velocity performance. If the tool is reorientated or if coordinated exte
axes are used, only this point will follow the desired path at the programm
velocity.

- If a stationary tool is used, the programmed speed and path will relate to
work object.

- Programmed positions refer to the position of the current TCP and the
orientation in relation to the tool coordinate system. This means that if, fo
example, a tool is replaced because it is damaged, the old program can s
used if the tool coordinate system is redefined.

Tool data is also used when jogging the robot to:

- Define the TCP that is not to move when the tool is reorientated.

- Define the tool coordinate system in order to facilitate moving in or rotatin
about the tool directions.

It is important to always define the actual tool load and when used, the payload
of the robot too. Incorrect definitions of load data can result in overloading of the
robot mechanical structure.

When incorrect tool load data is specified, it can often lead to the following
consequences:

- If the value in the specified load is greater than that of the value of the tru
-> The robot will not be used to its maximum capacity
-> Impaired path accuracy including a risk of overshooting

- If the value in the specified load is less than the value of the true load;
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure
RAPID Reference Manual 7-tooldata-1

tooldata Data Types

ate

inate

e
Components

robhold (robot hold) Data type: bool

Defines whether or not the robot is holding the tool:

- TRUE -> The robot is holding the tool.

- FALSE -> The robot is not holding the tool, i.e. a stationary tool.

tframe (tool frame) Data type: pose

The tool coordinate system, i.e.:

- The position of the TCP (x, y and z) in mm, expressed in the wrist coordin
system (See figure 1).

- The orientation of the tool coordinate system, expressed in the wrist coord
system as a quaternion (q1, q2, q3 and q4) (See figure 1).

If a stationary tool is used, the definition is defined in relation to the world
coordinate system.

If the direction of the tool is not specified, the tool coordinate system and th
wrist coordinate system will coincide.

Figure 1 Definition of the tool coordinate system.

Z’

Z

X
X’

The control hole

The tool coordinate system

The wrist coordinate system
Y

Y’
TCP
7-tooldata-2 RAPID Reference Manual

Data Types tooldata

xes

axes

ust

y a
tload (tool load) Data type: loaddata

The load of the tool, i.e.:

- The weight of the tool in kg.

- The centre of gravity of the tool (x, y and z) in mm, expressed in the wrist
coordinate system

- The orientation of the tool load coordinate system defined by the inertial a
of the tool, expressed in the wrist coordinate system. This should always be
set to 1, 0, 0, 0.

- The moments of inertia of the tool relative to its centre of mass about the
parallel (restriction) with the axes of the wrist coordinate system in kgm2.
If all inertial components are defined as being 0 kgm2, the tool is handled as a
point mass.

Figure 2 Tool load parameter definitions

For more information (such as coordinate system for stationary tool or
restrictions), see the data type loaddata.

If a stationary tool is used, the load of the gripper holding the work object m
be defined.

Note that only the load of the tool is to be specified. The payload handled b
gripper is connected and disconnected by means of the instruction GripLoad.

Z’

X
X’

The wrist coordinate system
Y

Y’
TCP

Tool coordinate systeem

Tool load coordinate system -

IX

IZ

IY

Z Inertial axes of tool load
RAPID Reference Manual 7-tooldata-3

tooldata Data Types

tia.

stored

e

e of
r be
Examples

PERS tooldata gripper := [TRUE, [[97.4, 0, 223.1], [0.924, 0, 0.383 ,0]],
[5, [23, 0, 75], [1, 0, 0, 0], 0, 0, 0]];

The tool in Figure 1 is described using the following values:

- The robot is holding the tool.

- The TCP is located at a point 223.1 mm straight out from axis 6 and 97.4 mm
along the X-axis of the wrist coordinate system.

- The X and Z directions of the tool are rotated 45o in relation to the wrist
coordinate system.

- The tool weighs 5 kg.

- The centre of gravity is located at a point 75 mm straight out from axis 6 and
23mm along the X-axis of the wrist coordinate system.

- The load can be considered a point mass, i.e. without any moment of iner

gripper.tframe.trans.z := 225.2;

The TCP of the tool, gripper, is adjusted to 225.2 in the z-direction.

Limitations

The tool data should be defined as a persistent variable (PERS) and should not be
defined within a routine. The current values are then saved when the program is
on diskette and are retrieved on loading.

Arguments of the type tool data in any motion instruction should only be an entir
persistent (not array element or record component).

Predefined data

The tool tool0 defines the wrist coordinate system, with the origin being the centr
the mounting flange. Tool0 can always be accessed from the program, but can neve
changed (it is stored in system module BASE).

PERS tooldata tool0 := [TRUE, [[0, 0, 0], [1, 0, 0 ,0]],
[0.001, [0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];
7-tooldata-4 RAPID Reference Manual

Data Types tooldata
Structure

< dataobject of tooldata >
< robhold of bool >
< tframe of pose >

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< tload of loaddata >
< mass of num >
< cog of pos >

< x of num >
< y of num >
< z of num >

< aom of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< ix of num >
< iy of num >
< iz of num >

Related information

Described in:

Positioning instructions RAPID Summary - Motion

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Definition of payload Instructions - Gripload

Definition of load Data types - Load data
RAPID Reference Manual 7-tooldata-5

tooldata Data Types
7-tooldata-6 RAPID Reference Manual

Data Types tpnum

tpnum Teach Pendant Window number

tpnum is used to represent the Teach Pendant Window number with a symbolic
constant.

Description

A tpnum constant is intended to be used in instruction TPShow. See example below.

Example

TPShow TP_PROGRAM;

The Production Window will be active if the system is in AUTO mode and the
Program Window will be active if the system is in MAN mode, after execution of
this instruction.

Predefined data

The following symbolic constants of the data type tpnum are predefined and can be
used in instruction TPShow:

Characteristics

tpnum is an alias data type for num and consequently inherits its characteristics.

Related information

Described in:

Data types in general, alias data types Basic Characteristics - Data Types

Communicating using the teach pendant RAPID Summary - Communication

Switch window on the teach pendant Instructions - TPShow

 Value Symbolic constant Comment

1 TP_PROGRAM AUTO: Production Window
MAN: Program Window

2 TP_LATEST Latest used Teach Pendant Window
RAPID Reference Manual 7-tpnum-1

tpnum Data Types
7-tpnum-2 RAPID Reference Manual

Data Types triggdata

nt.

rrupt

ables
 pro-

triggdata Positioning events - trigg

Triggdata is used to store data about a positioning event during a robot moveme

A positioning event can take the form of setting an output signal or running an inte
routine at a specific position along the movement path of the robot.

Description

To define the conditions for the respective measures at a positioning event, vari
of the type triggdata are used. The data contents of the variable are formed in the
gram using one of the instructions TriggIO or TriggInt, and are used by one of the
instructions TriggL, TriggC or TriggJ.

Example

VAR triggdata gunoff;

TriggIO gunoff, 5 \DOp:=gun, off;

TriggL p1, v500, gunoff, fine, gun1;

The digital output signal gun is set to the value off when the TCP is at a position
5 mm before the point p1.

Characteristics

Triggdata is a non-value data type.

Related information

Described in:

Definition of triggs Instructions - TriggIO, TriggInt

Use of triggs Instructions - TriggL, TriggC,
 TriggJ

Characteristics of non-value data types Basic Characteristics- Data Types
RAPID Reference Manual 7-triggdata-1

triggdata Data Types
7-triggdata-2 RAPID Reference Manual

Data Types tunetype

tunetype Servo tune type

Tunetype is used to represent an integer with a symbolic constant.

Description

A tunetype constant is indented to be used as an argument to the instruction TuneServo.
See example below.

Example

TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP;

Predefined data

The following symbolic constants of the data type tunetype are predefined and can be
used as argument for the instruction TuneServo.

The following symbolic constants of the data type tunetype are predefined and can be
used as arguments for the instruction SpeedPrioAct (only available on request).

Characteristics

Tunetype is an alias data type for num and consequently inherits its characteristics.

Value Symbolic constant Comment

0 TUNE_DF Reduces overshoots

1 TUNE_KP Affects position control gain

2 TUNE_KV Affects speed control gain

3 TUNE_TI Affects speed control integration time

Value Symbolic constant Comment

1 SP_MODE1 Speed priority interpolation mode 1

2 SP_MODE2 Speed priority interpolation mode 2
RAPID Reference Manual 7-tunetype-1

tunetype Data Types
Related information

Described in:

Data types in general, alias data types Basic Characteristics - Data Types
7-tunetype-2 RAPID Reference Manual

Data Types wobjdata

oves

 on

lues

n. If,
 be

 this,

e
ad of

ork

ol.

ng

es
wobjdata Work object data

Wobjdata is used to describe the work object that the robot welds, processes, m
within, etc.

Description

If work objects are defined in a positioning instruction, the position will be based
the coordinates of the work object. The advantages of this are as follows:

- If position data is entered manually, such as in off-line programming, the va
can often be taken from a drawing.

- Programs can be reused quickly following changes in the robot installatio
for example, the fixture is moved, only the user coordinate system has to
redefined.

- Variations in how the work object is attached can be compensated for. For
however, some sort of sensor will be required to position the work object.

If a stationary tool or coordinated external axes are used the work object must b
defined, since the path and velocity would then be related to the work object inste
the TCP.

Work object data can also be used for jogging:

- The robot can be jogged in the directions of the work object.

- The current position displayed is based on the coordinate system of the w
object.

Components

robhold (robot hold) Data type: bool

Defines whether or not the robot is holding the work object:

- TRUE -> The robot is holding the work object, i.e. using a stationary to

- FALSE -> The robot is not holding the work object, i.e. the robot is holdi
the tool.

ufprog (user frame programmed) Data type: bool

Defines whether or not a fixed user coordinate system is used:

- TRUE -> Fixed user coordinate system.

- FALSE -> Movable user coordinate system, i.e. coordinated external ax
are used.
RAPID Reference Manual 7-wobjdata-1

wobjdata Data Types

y

it_a".

xture

, q3,

orld
d).

 Fig-

, q3,
ufmec (user frame mechanical unit) Data type: string

The mechanical unit with which the robot movements are coordinated. Onl
specified in the case of movable user coordinate systems (ufprog is FALSE).

Specified with the name that is defined in the system parameters, e.g. "orb

uframe (user frame) Data type: pose

The user coordinate system, i.e. the position of the current work surface or fi
(see Figure 1):

- The position of the origin of the coordinate system (x, y and z) in mm.

- The rotation of the coordinate system, expressed as a quaternion (q1, q2
q4).

If the robot is holding the tool, the user coordinate system is defined in the w
coordinate system (in the wrist coordinate system if a stationary tool is use

When coordinated external axes are used (ufprog is FALSE), the user coordinate
system is defined in the system parameters.

oframe (object frame) Data type: pose

The object coordinate system, i.e. the position of the current work object (see
ure 1):

- The position of the origin of the coordinate system (x, y and z) in mm.

- The rotation of the coordinate system, expressed as a quaternion (q1, q2
q4).

The object coordinate system is defined in the user coordinate system.

Figure 1 The various coordinate systems of the robot (when the robot is holding the tool).

Tool coordinates

Object coordinates

Base coordinates
Z

Y

X
World coordinates

User coordinates

Z

Z

Y

Y

X

X

X

Y

Z
Z

X

Y

TCP
7-wobjdata-2 RAPID Reference Manual

Data Types wobjdata

n are

n are

 is

 an

em
bject.

 stored
Example

PERS wobjdata wobj2 :=[FALSE, TRUE, "", [[300, 600, 200], [1, 0, 0 ,0]],
[[0, 200, 30], [1, 0, 0 ,0]]];

The work object in Figure 1 is described using the following values:

- The robot is not holding the work object.

- The fixed user coordinate system is used.

- The user coordinate system is not rotated and the coordinates of its origi
x= 300, y = 600 and z = 200 mm in the world coordinate system.

- The object coordinate system is not rotated and the coordinates of its origi
x= 0, y= 200 and z= 30 mm in the user coordinate system.

wobj2.oframe.trans.z := 38.3;

- The position of the work object wobj2 is adjusted to 38.3 mm in the z-direction.

Limitations

The work object data should be defined as a persistent variable (PERS) and should not
be defined within a routine. The current values are then saved when the program
stored on diskette and are retrieved on loading.

Arguments of the type work object data in any motion instruction should only be
entire persistent (not array element or record component).

Predefined data

The work object data wobj0 is defined in such a way that the object coordinate syst
coincides with the world coordinate system. The robot does not hold the work o

Wobj0 can always be accessed from the program, but can never be changed (it is
in system module BASE).

PERS wobjdata wobj0 := [FALSE, TRUE, "", [[0, 0, 0], [1, 0, 0 ,0]],
[[0, 0, 0], [1, 0, 0 ,0]]];
RAPID Reference Manual 7-wobjdata-3

wobjdata Data Types
Structure

< dataobject of wobjdata >
< robhold of bool >
< ufprog of bool>
< ufmec of string >
< uframe of pose >

< trans of pos >
< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

< oframe of pose >
< trans of pos >

< x of num >
< y of num >
< z of num >

< rot of orient >
< q1 of num >
< q2 of num >
< q3 of num >
< q4 of num >

Related information

Described in:

Positioning instructions RAPID Summary - Motion

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems

Coordinated external axes Motion and I/O Principles - Coordi-
nate Systems

Calibration of coordinated external axes User’s Guide - System Parameters
7-wobjdata-4 RAPID Reference Manual

Data Types wzstationary

tion
d or a

itch
,

 a

bot

r
wzstationary Stationary world zone data

wzstationary (world zone stationary) is used to identify a stationary world zone and
can only be used in an event routine connected to the event POWER ON.

A world zone is supervised during robot movements both during program execu
and jogging. If the robot’s TCP reaches this world zone, the movement is stoppe
digital output signal is set or reset.

Description

A wzstationary world zone is defined and activated by a WZLimSup or a WZDOSet
instruction.

WZLimSup or WZDOSet gives the variable or persistent variable for wzstationary a
numeric value that identifies the world zone.

A stationary world zone is always active and is only erased by a warm start (sw
power off then on, or change system parameters). It is not possible to deactivate
activate or erase a stationary world zone via RAPID instructions.

Stationary world zones should be active from power on and should be defined in
POWER ON event routine or a semistatic task.

Example

VAR wzstationary conveyor;
...
PROC ...

VAR shapedata volume;
...
WZBoxDef \Inside, volume, p_corner1, p_corner2;
WZLimSup \Stat, conveyor, volume;

ENDPROC

A conveyor is defined as a straight box (the volume below the belt). If the ro
reaches this volume, the movement is stopped.

Limitations

A wzstationary data can only be defined as a global (not local within module or
routine) variable (VAR) or as a persistent data (PERS).

Arguments of the type wzstationary should only be entire data (not array element o
record component).
RAPID Reference Manual 7-wzstationary-5

wzstationary Data Types
Init value for data of type wzstationary is not used by the system. When using a
persistent variable in a multitasking system, set the init value to 0,
e.g. PERS wzstationary share_workarea := [0];

Example

For a complete example see instruction WZLimSup.

Characteristics

wzstationary is an alias data type of wztemporary and inherits its characteristics.

Related information

Described in:

Temporary world zone Data Types - wztemporary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
7-wzstationary-6 RAPID Reference Manual

Data Types wztemporary

d

tion
d or a

ystem

s a

ne)
wztemporary Temporary world zone data

wztemporary (world zone temporary) is used to identify a temporary world zone an
can be used anywhere in the RAPID program for the MAIN task.

A world zone is supervised during robot movements both during program execu
and jogging. If the robot’s TCP reaches this world zone, the movement is stoppe
digital output signal is set or reset.

Description

A wztemporary world zone is defined and activated by a WZLimSup or a WZDOSet
instruction.

WZLimSup or WZDOSet gives the variable or persistent variable for wztemporary a
numeric value, that identifies the world zone.

Once defined and activated, a temporary world zone can be deactivated by
WZDisable, activated again by WZEnable and erased by WZFree.

All temporary world zones in the system are automatically erased (erased in the s
and all data objects of type wztemporary in MAIN task are set to 0):

- when a new program is loaded in the MAIN task

- when starting program execution from the beginning in the MAIN task

Example

VAR wztemporary roll;
...
PROC ...

VAR shapedata volume;
...
WZCylDef \Inside, volume, p_center, 400, 1000;
WZLimSup \Temp, roll, volume;

ENDPROC

A roll (just being brought into the work area by the application) is defined a
cylinder. If the robot reaches this volume, the movement is stopped.

Limitations

A wztemporary data can only be defined as global (not local within module or routi
variable (VAR) or as a persistent data (PERS).
RAPID Reference Manual 7-wztemporary-7

wztemporary Data Types

r
Arguments of the type wztemporary should only be entire data (not array element o
record component).

A temporary world zone (instructions WZLimSup or WZDOSet) should not be defined
in tasks other than MAIN because such a definition is affected by the program
execution in the MAIN task.

Init value for data of type wztemporary is not used by the system.When using a
persistent variable in a multitasking system, set the init value to 0,
e.g. PERS wztemporary share_workarea := [0];

Example

For a complete example see instruction WZDOSet.

Structure

<dataobject of wztemporary>
<wz of num>

Related information

Described in:

Stationary world zone Data Types - wzstationary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet

Deactivate world zone Instructions - WZDisable

Activate world zone Instructions - WZEnable

Erase world zone Instructions - WZFree
7-wztemporary-8 RAPID Reference Manual

Data Types zonedata

 pro-

sition

iffer

wards

eached
zonedata Zone data

Zonedata is used to specify how a position is to be terminated, i.e. how close to the
grammed position the axes must be before moving towards the next position.

Description

A position can be terminated either in the form of a stop point or a fly-by point.

A stop point means that the robot and external axes must reach the specified po
(stand still) before program execution continues with the next instruction.

A fly-by point means that the programmed position is never attained.
Instead, the direction of motion is changed before the position is reached.
Two different zones (ranges) can be defined for each position:

- The zone for the TCP path.

- The extended zone for reorientation of the tool and for external axes.

Figure 1 The zones for a fly-by point.

Zones function in the same way during joint movement, but the zone size may d
somewhat from the one programmed.

The zone size cannot be larger than half the distance to the closest position (for
or backwards). If a larger zone is specified, the robot automatically reduces it.

The zone for the TCP path

A corner path (parabola) is generated as soon as the edge of the zone is r
(see Figure 1).

The zone for Programmed
position

The extended zone

the TCP path

Start of TCP corner path

Start of reorientation
towards next position
RAPID Reference Manual 7-zonedata-1

zonedata Data Types

s it
.
s of a

r stage

xes,
e zone
 com-
The zone for reorientation of the tool

Reorientation starts as soon as the TCP reaches the extended zone. The tool is
reoriented in such a way that the orientation is the same leaving the zone a
would have been in the same position if stop points had been programmed
Reorientation will be smoother if the zone size is increased, and there is les
risk of having to reduce the velocity to carry out the reorientation.

Figure 2a Three positions are programmed, the last with different tool orientation.

Figure 2b If all positions were stop points, program execution would look like this.

Figure 2c If the middle position was a fly-by point, program execution would look like this

The zone for external axes

External axes start to move towards the next position as soon as the TCP reaches
the extended zone. In this way, a slow axis can start accelerating at an earlie
and thus execute more evenly.

Reduced zone

With large reorientations of the tool or with large movements of the external a
the extended zone and even the TCP zone can be reduced by the robot. Th
will be defined as the smallest relative size of the zone based upon the zone
ponents (see next page) and the programmed motion.

Figure 3 Example of reduced zone to 36% of the motion

Zone size

pzone_ori pzone_tcp

The relative sizes of the zone are

angle of reorientation P1 - P2

zone_ori

P2

= 9o/25o = 36%

90 mm 60 mm

9o

MoveL with 200 mm movements

zone_ori

length of movement P1 - P2

pzone_tcp
= 60/200 = 30%

P1
of the tool, 25o reorientation of
the tool and with zone z60

length of movement P1 - P2

pzone_ori
= 90/200 = 45%
7-zonedata-2 RAPID Reference Manual

Data Types zonedata

 as a

d

e dis-

he

nce of

he
Figure 4 Example of reduced zone to 15% of the motion

Components

finep (fine point) Data type: bool

Defines whether the movement is to terminate as a stop point (fine point) or
fly-by point.

- TRUE -> The movement terminates as a stop point.
The remaining components in the zone data are not used.

- FALSE -> The movement terminates as a fly-by point.

pzone_tcp (path zone TCP) Data type: num

The size (the radius) of the TCP zone in mm.

The extended zone will be defined as the smallest relative size of the zone base
upon the following components and the programmed motion.

pzone_ori (path zone orientation) Data type: num

The zone size (the radius) for the tool reorientation. The size is defined as th
tance of the TCP from the programmed point in mm.

The size must be larger than the corresponding value for pzone_tcp.
If a lower value is specified, the size is automatically increased to make it t
same as pzone_tcp.

pzone_eax (path zone external axes) Data type: num

The zone size (the radius) for external axes. The size is defined as the dista
the TCP from the programmed point in mm.

The size must be larger than the corresponding value for pzone_tcp.
If a lower value is specified, the size is automatically increased to make it t
same as pzone_tcp.

pzone_oripzone_tcp

The relative sizes of the zone are

angle of reorientation P1 - P2

zone_ori

P2

= 9o/60o = 15%

90 mm 60 mm
9o

MoveL with 200 mm movements

zone_ori

length of movement P1 - P2

pzone_tcp
= 60/200 = 30%

P1

of the tool, 60o reorientation of
the tool and with zone z60
RAPID Reference Manual 7-zonedata-3

zonedata Data Types

ork

e
ad:
zone_ori (zone orientation) Data type: num

The zone size for the tool reorientation in degrees. If the robot is holding the w
object, this means an angle of rotation for the work object.

zone_leax (zone linear external axes) Data type: num

The zone size for linear external axes in mm.

zone_reax (zone rotational external axes) Data type: num

The zone size for rotating external axes in degrees.

Examples

VAR zonedata path := [FALSE, 25, 40, 40, 10, 35, 5];

The zone data path is defined by means of the following characteristics:

- The zone size for the TCP path is 25 mm.

- The zone size for the tool reorientation is 40 mm (TCP movement).

- The zone size for external axes is 40 mm (TCP movement).

If the TCP is standing still, or there is a large reorientation, or there is a larg
external axis movement, with respect to the zone, the following apply inste

- The zone size for the tool reorientation is 10 degrees.

- The zone size for linear external axes is 35 mm.

- The zone size for rotating external axes is 5 degrees.

path.pzone_tcp := 40;

The zone size for the TCP path is adjusted to 40 mm.
7-zonedata-4 RAPID Reference Manual

Data Types zonedata
Predefined data

A number of zone data are already defined in the system module BASE.

Stop points

Name

fine 0 mm

Fly-by points

TCP movement Tool reorientation

Name TCP path Orientation Ext. axis Orientation Linear axis Rotating axis

z1 1 mm 1 mm 1 mm 0.1 o 1 mm 0.1 o

z5 5 mm 8 mm 8 mm 0.8 o 8 mm 0.8 o

z10 10 mm 15 mm 15 mm 1.5 o 15 mm 1.5 o

z15 15 mm 23 mm 23 mm 2.3 o 23 mm 2.3 o

z20 20 mm 30 mm 30 mm 3.0 o 30 mm 3.0o

z30 30 mm 45 mm 45 mm 4.5 o 45 mm 4.5 o

z40 40 mm 60 mm 60 mm 6.0 o 60 mm 6.0 o

z50 50 mm 75 mm 75 mm 7.5 o 75 mm 7.5 o

z60 60 mm 90 mm 90 mm 9.0 o 90 mm 9.0 o

z80 80 mm 120 mm 120 mm 12 o 120 mm 12 o

z100 100 mm 150 mm 150 mm 15 o 150 mm 15 o

z150 150 mm 225 mm 225 mm 23 o 225 mm 23 o

z200 200 mm 300 mm 300 mm 30 o 300 mm 30 o

Structure

< data object of zonedata >
< finep of bool >
< pzone_tcp of num >
< pzone_ori of num >
< pzone_eax of num >
< zone_ori of num >
< zone_leax of num >
< zone_reax of num >
RAPID Reference Manual 7-zonedata-5

zonedata Data Types
Related information

Described in:

Positioning instructions RAPID Summary - Motion

Movements/Paths in general Motion and I/O Principles - Position-
ing during Program Execution

Configuration of external axes User’s Guide - System Parameters
7-zonedata-6 RAPID Reference Manual

System Data

he pro-
ity.
System Data

System data is the internal data of the robot that can be accessed and read by t
gram. It can be used to read the current status, e.g. the current maximum veloc

The following table contains a list of all system data.

Name Description Data Type Changed by See also

C_MOTSET Current motion settings, i.e.:
- max. velocity and velocity override
- max. acceleration
- movement about singular points
- monitoring the axis configuration
- payload in gripper
- path resolution

motsetdata Instructions
- VelSet
- AccSet
- SingArea
- ConfL,ConfJ
- GripLoad
- PathResol

Data Types - motsetdata
Instructions - VelSet
Instructions - AccSet
Instructions - SingArea
Instructions - ConfL, ConfJ
Instructions - GripLoad
Instructions - PathResol

C_PROGDISP Current program displacement for robot and exter-
nal axes.

progdisp Instructions
- PDispSet
- PDispOn
- PDispOff
- EOffsSet
- EOffsOn
- EOffsOff

Data Types - progdisp
Instructions - PDispSet
Instructions - PDispOn
Instructions - PDispOff
Instructions - EOffsSet
Instructions - EOffsOn
Instructions - EOffsOff

ERRNO The latest error that occurred errnum The robot Data Types - errnum
RAPID Summary -
Error Recovery

INTNO The latest interrupt that occurred intnum The robot Data Types - intnum
RAPID Summary -Interrupts
RAPID Reference Manual 7-System Data-1

System Data
7-System Data-2 RAPID Reference Manual

Instructions

“:=” Assigns a value

AccSet Reduces the acceleration

ActUnit Activates a mechanical unit

Add Adds a numeric value

Break Break program execution

CallByVar Call a procedure by a variable

Clear Clears the value

ClkReset Resets a clock used for timing

ClkStart Starts a clock used for timing

ClkStop Stops a clock used for timing

Close Closes a file or serial channel

comment Comment

ConfJ Controls the configuration during joint movement

ConfL Monitors the configuration during linear movement

CONNECT Connects an interrupt to a trap routine

CorrClear Removes all correction generators

CorrCon Connects to a correction generator

CorrDiscon Disconnects from a correction
generator

CorrWrite Writes to a correction generator

DeactUnit Deactivates a mechanical unit

Decr Decrements by 1

EOffsOff Deactivates an offset for external axes

EOffsOn Activates an offset for external axes

EOffsSet Activates an offset for external axes using a value

ErrWrite Write an Error Message

EXIT Terminates program execution

ExitCycle Break current cycle and start next

FOR Repeats a given number of times

GOTO Goes to a new instruction

GripLoad Defines the payload of the robot

IDelete Cancels an interrupt

IDisable Disables interrupts

IEnable Enables interrupts

Compact IF If a condition is met, then... (one instruction)

IF If a condition is met, then ...; otherwise ...
RAPID Reference Manual 8-1

Instructions

Incr Increments by 1

IndAMove Independent Absolute position Movement

IndCMove Independent Continuous Movement

IndDMove Independent Delta position Movement

IndReset Independent Reset

IndRMove Independent Relative position Movement

InvertDO Inverts the value of a digital output signal

IODisable Disable I/O unit

IOEnable Enable I/O unit

ISignalDI Orders interrupts from a digital input signal

ISignalDO Interrupts from a digital output signal

ISleep Deactivates an interrupt

ITimer Orders a timed interrupt

IVarValue Orders a variable value interrupt

IWatch Activates an interrupt

label Line name

Load Load a program module during execution

MoveAbsJ Moves the robot to an absolute joint position

MoveC Moves the robot circularly

MoveJ Moves the robot by joint movement

MoveL Moves the robot linearly

Open Opens a file or serial channel

PathResol Override path resolution

PDispOff Deactivates program displacement

PDispOn Activates program displacement

PDispSet Activates program displacement using a value

ProcCall Calls a new procedure

PulseDO Generates a pulse on a digital output signal

RAISE Calls an error handler

Reset Resets a digital output signal

RestoPath Restores the path after an interrupt

RETRY Restarts following an error

RETURN Finishes execution of a routine

Rewind Rewind file position

SearchC Searches circularly using the robot

SearchL Searches linearly using the robot
8-2 RAPID Reference Manual

Instructions

Set Sets a digital output signal

SetAO Changes the value of an analog output signal

SetDO Changes the value of a digital output signal

SetGO Changes the value of a group
of digital output signals

SingArea Defines interpolation around singular points

SoftAct Activating the soft servo

SoftDeact Deactivating the soft servo

StartMove Restarts robot motion

Stop Stops program execution

StopMove Stops robot motion

StorePath Stores the path when an interrupt occurs

TEST Depending on the value of an expression ...

TPErase Erases text printed on the teach pendant

TPReadFK Reads function keys

TPReadNum Reads a number from the teach pendant

TPShow Switch window on the teach pendant

TPWrite Writes on the teach pendant

TriggC Circular robot movement with events

TriggEquip Defines a fixed position-time I/O event

TriggInt Defines a position related interrupt

TriggIO Defines a fixed position I/O event

TriggJ Axis-wise robot movements with events

TriggL Linear robot movements with events

TRYNEXT Jumps over an instruction
which has caused an error

TuneReset Resetting servo tuning

TuneServo Tuning servos

UnLoad UnLoad a program module during execution

VelSet Changes the programmed velocity

WaitDI Waits until a digital input signal is set

WaitDO Waits until a digital output signal is set

WaitTime Waits a given amount of time

WaitUntil Waits until a condition is met

WHILE Repeats as long as ...

Write Writes to a character-based file or serial channel

WriteBin Writes to a binary serial channel
RAPID Reference Manual 8-3

Instructions

WriteStrBin Writes a string to a binary serial channel

WZBoxDef Define a box-shaped world zone

WZCylDef Define a cylinder-shaped world zone

WZDisable Deactivate temporary world zone supervision

WZDOSet Activate world zone to set digital output

WZEnable Activate temporary world zone supervision

WZFree Erase temporary world zone supervision

WZLimSup Activate world zone limit supervision

WZSphDef Define a sphere-shaped world zone
8-4 RAPID Reference Manual

Instructions “:=”

thing

 of
“:=” Assigns a value

The “:=” instruction is used to assign a new value to data. This value can be any
from a constant value to an arithmetic expression, e.g. reg1+5*reg3.

Examples

reg1 := 5;

reg1 is assigned the value 5.

reg1 := reg2 - reg3;

reg1 is assigned the value that the reg2-reg3 calculation returns.

counter := counter + 1;

counter is incremented by one.

Arguments

Data := Value

Data Data type: All

The data that is to be assigned a new value.

Value Data type: Same as Data

The desired value.

Examples

tool1.tframe.trans.x := tool1.tframe.trans.x + 20;

The TCP for tool1 is shifted 20 mm in the X-direction.

pallet{ 5,8} := Abs(value);

An element in the pallet matrix is assigned a value equal to the absolute value
the value variable.
RAPID Reference Manual 8-“:=”-1

“:=” Instructions
Limitations

The data (whose value is to be changed) must not be

- a constant

- a non-value data type.

The data and value must have similar (the same or alias) data types.

Syntax

(EBNF)
<assignment target> ’:=’ <expression> ’;’
<assignment target> ::=

<variable>
| <persistent>
| <parameter>
| <VAR>

Related information

Described in:

Expressions Basic Characteristics - Expressions

Non-value data types Basic Characteristics - Data Types

Assigning an initial value to data Basic Characteristics - Data
Programming and Testing

Manually assigning a value to data Programming and Testing
8-“:=”-2 RAPID Reference Manual

Instructions AccSet

eler-

 of the
lue.
AccSet Reduces the acceleration

AccSet is used when handling fragile loads. It allows slower acceleration and dec
ation, which results in smoother robot movements.

Examples

AccSet 50, 100;

The acceleration is limited to 50% of the normal value.

AccSet 100, 50;

The acceleration ramp is limited to 50% of the normal value.

Arguments

AccSet Acc Ramp

Acc Data type: num

Acceleration and deceleration as a percentage of the normal values.
100% corresponds to maximum acceleration. Maximum value: 100%.
Input value < 20% gives 20% of maximum acceleration.

Ramp Data type: num

The rate at which acceleration and deceleration increases as a percentage
normal values (see Figure 1). Jerking can be restricted by reducing this va
100% corresponds to maximum rate. Maximum value: 100%.
Input value < 10% gives 10% of maximum rate.

Figure 1 Reducing the acceleration results in smoother movements.

Acceleration

Time
AccSet 30, 100

Acceleration

Time
AccSet 100, 30

Acceleration

Time
AccSet 100, 100, i.e. normal acceleration
RAPID Reference Manual 8-AccSet-1

AccSet Instructions
Program execution

The acceleration applies to both the robot and external axes until a new AccSet instruc-
tion is executed.

The default values (100%) are automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

AccSet
[Acc ’:=’] < expression (IN) of num > ’,’
[Ramp ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Positioning instructions RAPID Summary - Motion
8-AccSet-2 RAPID Reference Manual

Instructions ActUnit

 drive

anical

e

 stop
re.
ActUnit Activates a mechanical unit

ActUnit is used to activate a mechanical unit.

It can be used to determine which unit is to be active when, for example, common
units are used.

Example

ActUnit orbit_a;

Activation of the orbit_a mechanical unit.

Arguments

ActUnit MecUnit

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit that is to be activated.

Program execution

When the robot and external axes have come to a standstill, the specified mech
unit is activated. This means that it is controlled and monitored by the robot.

If several mechanical units share a common drive unit, activation of one of thes
mechanical units will also connect that unit to the common drive unit.

Limitations

Instruction ActUnit cannot be used in

- program sequence StorePath ... RestoPath

- event routine RESTART

The movement instruction previous to this instruction, should be terminated with a
point in order to make a restart in this instruction possible following a power failu
RAPID Reference Manual 8-ActUnit-1

ActUnit Instructions
Syntax

ActUnit
[MecUnit ’:=’] < variable (VAR) of mecunit> ’;’

Related information

Described in:

Deactivating mechanical units Instructions - DeactUnit

Mechanical units Data Types - mecunit

More examples Instructions - DeactUnit
8-ActUnit-2 RAPID Reference Manual

Instructions Add

t.
Add Adds a numeric value

Add is used to add or subtract a value to or from a numeric variable or persisten

Examples

Add reg1, 3;

3 is added to reg1, i.e. reg1:=reg1+3.

Add reg1, -reg2;

The value of reg2 is subtracted from reg1, i.e. reg1:=reg1-reg2.

Arguments

Add Name AddValue

Name Data type: num

The name of the variable or persistent to be changed.

AddValue Data type: num

The value to be added.

Syntax

Add
[Name ’:=’] < var or pers (INOUT) of num > ’,’
[AddValue ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Incrementing a variable by 1 Instructions - Incr

Decrementing a variable by 1 Instructions - Decr

Changing data using an arbitrary Instructions - :=
expression, e.g. multiplication
RAPID Reference Manual 8-Add-1

Add Instructions
8-Add-2 RAPID Reference Manual

Instructions Break

ram

. for

nd
eing

om
Break Break program execution

Break is used to make an immediate break in program execution for RAPID prog
code debugging purposes.

Example

..
Break;
...

Program execution stops and it is possible to analyse variables, values etc
debugging purposes.

Program execution

The instruction stops program execution at once, without waiting for the robot a
external axes to reach their programmed destination points for the movement b
performed at the time. Program execution can then be restarted from the next
instruction.

If there is a Break instruction in some event routine, the routine will be executed fr
the beginning of the next event.

Syntax

Break’;’

Related information

Described in:

Stopping for program actions Instructions - Stop

Stopping after a fatal error Instructions - EXIT

Terminating program execution Instructions - EXIT

Only stopping robot movements Instructions - StopMove
RAPID Reference Manual 8-Break-1

Break Instructions
8-Break-2 RAPID Reference Manual

Instructions CallByVar

e.g.

rted

cted
CallByVar Call a procedure by a variable

CallByVar (Call By Variable) can be used to call procedures with specific names,
proc_name1, proc_name2, proc_name3 ... proc_namex via a variable.

Example

reg1 := 2;
CallByVar “proc”, reg1;

The procedure proc2 is called.

Arguments

CallByVar Name Number

Name Data type: string

The first part of the procedure name, e.g. proc_name.

Number Data type: num

The numeric value for the number of the procedure. This value will be conve
to a string and gives the 2:nd part of the procedure name e.g. 1. The value must
be a positive integer.

Example

Static selection of procedure call

TEST reg1
CASE 1:

lf_door door_loc;
CASE 2:

rf_door door_loc;
CASE 3:

lr_door door_loc;
CASE 4:

rr_door door_loc;
DEFAULT:

EXIT;
ENDTEST

Depending on whether the value of register reg1 is 1, 2, 3 or 4, different
procedures are called that perform the appropriate type of work for the sele
door.
RAPID Reference Manual 8-CallByVar-1

CallByVar Instructions

ure

 is set

NO is
The door location in argument door_loc.

Dynamic selection of procedure call with RAPID syntax

reg1 := 2;
%”proc”+NumToStr(reg1,0)% door_loc;

The procedure proc2 is called with argument door_loc.

Limitation: All procedures must have a specific name e.g. proc1, proc2, proc3.

Dynamic selection of procedure call with CallByVar

reg1 := 2;
CallByVar “proc”,reg1;

The procedure proc2 is called.

Limitation: All procedures must have specific name, e.g. proc1, proc2, proc3,
and no arguments can be used.

Limitations

Can only be used to call procedures without parameters.

Execution of CallByVar takes a little more time than execution of a normal proced
call.

Error handling

In the event of a reference to an unknown procedure, the system variable ERRNO
to ERR_REFUNKPRC.

In the event of the procedure call error (not procedure), the system variable ERR
set to ERR_CALLPROC.

These errors can be handled in the error handler.

Syntax

CallByVar
[Name ‘:=’] <expression (IN) of string>’,’
[Number ‘:=‘] <expression (IN) of num>’;’
8-CallByVar-2 RAPID Reference Manual

Instructions CallByVar
Related information

Described in:

Calling procedures Basic Characteristic - Routines
User’s Guide - The programming
language RAPID
RAPID Reference Manual 8-CallByVar-3

CallByVar Instructions
8-CallByVar-4 RAPID Reference Manual

Instructions Clear
Clear Clears the value

Clear is used to clear a numeric variable or persistent , i.e. it sets it to 0.

Example

Clear reg1;

Reg1 is cleared, i.e. reg1:=0.

Arguments

Clear Name

Name Data type: num

The name of the variable or persistent to be cleared.

Syntax

Clear
[Name ’:=’] < var or pers (INOUT) of num > ’;’

Related information

Described in:

Incrementing a variable by 1 Instructions - Incr

Decrementing a variable by 1 Instructions - Decr
RAPID Reference Manual 8-Clear-1

Clear Instructions
8-Clear-2 RAPID Reference Manual

Instructions ClkReset

.
ClkReset Resets a clock used for timing

ClkReset is used to reset a clock that functions as a stop-watch used for timing.

This instruction can be used before using a clock to make sure that it is set to 0

Example

ClkReset clock1;

The clock clock1 is reset.

Arguments

ClkReset Clock

Clock Data type: clock

The name of the clock to reset.

Program execution

When a clock is reset, it is set to 0.

 If a clock is running, it will be stopped and then reset.

Syntax

ClkReset
[Clock ’:=’] < variable (VAR) of clock > ’;’

Related Information

Described in:

Other clock instructions RAPID Summary - System & Time
RAPID Reference Manual 8-ClkReset-1

ClkReset Instructions
8-ClkReset-2 RAPID Reference Manual

Instructions ClkStart

ed.

he
ram
while
event

 back-
ClkStart Starts a clock used for timing

ClkStart is used to start a clock that functions as a stop-watch used for timing.

Example

ClkStart clock1;

The clock clock1 is started.

Arguments

ClkStart Clock

Clock Data type: clock

The name of the clock to start.

Program execution

When a clock is started, it will run and continue counting seconds until it is stopp

A clock continues to run when the program that started it is stopped. However, t
event that you intended to time may no longer be valid. For example, if the prog
was measuring the waiting time for an input, the input may have been received
the program was stopped. In this case, the program will not be able to “see” the
that occurred while the program was stopped.

A clock continues to run when the robot is powered down as long as the battery
up retains the program that contains the clock variable.

If a clock is running it can be read, stopped or reset.

Example

VAR clock clock2;

ClkReset clock2;
ClkStart clock2;
WaitUntil DInput(di1) = 1;
ClkStop clock2;
time:=ClkRead(clock2);

The waiting time for di1 to become 1 is measured.
RAPID Reference Manual 8-ClkStart-1

ClkStart Instructions
Syntax

ClkStart
[Clock ’:=’] < variable (VAR) of clock > ’;’

Related Information

Described in:

Other clock instructions RAPID Summary - System & Time
8-ClkStart-2 RAPID Reference Manual

Instructions ClkStop
ClkStop Stops a clock used for timing

ClkStop is used to stop a clock that functions as a stop-watch used for timing.

Example

ClkStop clock1;

The clock clock1 is stopped.

Arguments

ClkStop Clock

Clock Data type: clock

The name of the clock to stop.

Program execution

When a clock is stopped, it will stop running.

If a clock is stopped, it can be read, started again or reset.

Syntax

ClkStop
[Clock ’:=’] < variable (VAR) of clock > ’;’

Related Information

Described in:

Other clock instructions RAPID Summary - System & Time

More examples Instructions - ClkStart
RAPID Reference Manual 8-ClkStop-1

ClkStop Instructions
8-ClkStop-2 RAPID Reference Manual

Instructions Close

ing or
Close Closes a file or serial channel

Close is used to close a file or serial channel.

Example

Close channel2;

The serial channel referred to by channel2 is closed.

Arguments

Close IODevice

IODevice Data type: iodev

The name (reference) of the file or serial channel to be closed.

Program execution

The specified file or serial channel is closed and must be re-opened before read
writing. If it is already closed, the instruction is ignored.

Syntax

Close
[IODevice ’:=’] <variable (VAR) of iodev>’;’

Related information

Described in:

Opening a file or serial channel RAPID Summary - Communication
RAPID Reference Manual 8-Close-1

Close Instructions
8-Close-2 RAPID Reference Manual

Instructions comment

n the
comment Comment

Comment is only used to make the program easier to understand. It has no effect o
execution of the program.

Example

! Goto the position above pallet
MoveL p100, v500, z20, tool1;

A comment is inserted into the program to make it easier to understand.

Arguments

! Comment

Comment Text string

Any text.

Program execution

Nothing happens when you execute this instruction.

Syntax

(EBNF)
’!’ {<character>} <newline>

Related information

Described in:

Characters permitted in a comment Basic Characteristics-
Basic Elements

Comments within data and routine Basic Characteristics-
declarations Basic Elements
RAPID Reference Manual 8-comment-1

comment Instructions
8-comment-2 RAPID Reference Manual

Instructions Compact IF

ition
Compact IF If a condition is met, then... (one instruction)

Compact IF is used when a single instruction is only to be executed if a given cond
is met.

If different instructions are to be executed, depending on whether the specified
condition is met or not, the IF instruction is used.

Examples

IF reg1 > 5 GOTO next;

If reg1 is greater than 5, program execution continues at the next label.

IF counter > 10 Set do1;

The do1 signal is set if counter > 10.

Arguments

IF Condition ...

Condition Data type: bool

The condition that must be satisfied for the instruction to be executed.

Syntax

(EBNF)
IF <conditional expression> (<instruction> | <SMT>) ’;’

Related information

Described in:

Conditions (logical expressions) Basic Characteristics - Expressions

IF with several instructions Instructions - IF
RAPID Reference Manual 8-Compact IF-1

Compact IF Instructions
8-Compact IF-2 RAPID Reference Manual

Instructions ConfJ

on
e-

r a
e clos-

 can
clos-

tion.

 pos-
ops.

axis
op if

o-
 and
ConfJ Controls the configuration during joint movement

ConfJ (Configuration Joint) is used to specify whether or not the robot’s configurati
is to be controlled during joint movement. If it is not controlled, the robot can som
times use a different configuration than that which was programmed.

With ConfJ\Off, the robot cannot switch main axes configuration - it will search fo
solution with the same main axes configuration as the current one. It moves to th
est wrist configuration for axes 4 and 6.

Examples

ConfJ \Off;
MoveJ *, v1000, fine, tool1;

The robot moves to the programmed position and orientation. If this position
be reached in several different ways, with different axis configurations, the
est possible position is chosen.

ConfJ \On;
MoveJ *, v1000, fine, tool1;

The robot moves to the programmed position, orientation and axis configura
If this is not possible, program execution stops.

Arguments

ConfJ [\On] | [\Off]

\On Data type: switch

The robot always moves to the programmed axis configuration. If this is not
sible using the programmed position and orientation, program execution st

The IRB5400 robot will move to the pogrammed axis configuration or to an
configuration close the the programmed one. Program execution will not st
it is impossible to reach the programmed axis configuration.

\Off Data type: switch

The robot always moves to the closest axis configuration.

Program execution

If the argument \On (or no argument) is chosen, the robot always moves to the pr
grammed axis configuration. If this is not possible using the programmed position
RAPID Reference Manual 8-ConfJ-1

ConfJ Instructions

tion.
ectly
orientation, program execution stops before the movement starts.

If the argument \Off is chosen, the robot always moves to the closest axis configura
This may be different to the programmed one if the configuration has been incorr
specified manually, or if a program displacement has been carried out.

The control is active by default. This is automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

ConfJ
[’\’ On] | [’\’ Off] ’;’

Related information

Described in:

Handling different configurations Motion Principles -
Robot Configuration

Robot configuration during linear movement Instructions - ConfL
8-ConfJ-2 RAPID Reference Manual

Instructions ConfL

ra-
the
also
joint

le to

nfig-

the
ConfL Monitors the configuration during linear movement

ConfL (Configuration Linear) is used to specify whether or not the robot’s configu
tion is to be monitored during linear or circular movement. If it is not monitored,
configuration at execution time may differ from that at programmed time. It may
result in unexpected sweeping robot movements when the mode is changed to
movement.

NOTE: For the IRB5400 robot the monotoring is always off independant of the
switch.

Examples

ConfL \On;
MoveL *, v1000, fine, tool1;

Program execution stops when the programmed configuration is not possib
reach from the current position.

SingArea \Wrist;
Confl \On;
MoveL *, v1000, fine, tool1;

The robot moves to the programmed position, orientation and wrist axis co
uration. If this is not possible, program execution stops.

ConfL \Off;
MoveL *, v1000, fine, tool1;

No error message is displayed when the programmed configuration is not
same as the configuration achieved by program execution.

Arguments

ConfL [\On] | [\Off]

\On Data type: switch

The robot configuration is monitored.

\Off Data type: switch

The robot configuration is not monitored.
RAPID Reference Manual 8-ConfL-1

ConfL Instructions

posi-
t

med

 con-
fig-

 axes
ed.
Program execution

During linear or circular movement, the robot always moves to the programmed
tion and orientation that has the closest possible axis configuration. If the argumen\On
(or no argument) is chosen, then the program execution stops as soon as:

- the configuration of the programmed position will not be attained from the
current position.

- the needed reorientation of any one of the wrist axes to get to the program
position from the current position exceeds a limit (140-180 degrees).

However, it is possible to restart the program again, although the wrist axes may
tinue to the wrong configuration. At a stop point, the robot will check that the con
urations of all axes are achieved, not only the wrist axes.

If SingArea\Wrist is also used, the robot always moves to the programmed wrist
configuration and at a stop point the remaining axes configurations will be check

If the argument \Off is chosen, there is no monitoring.

Monitoring is active by default. This is automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

ConfL
[’\’ On] | [’\’ Off] ’;’

Related information

Described in:

Handling different configurations Motion and I/O Principles-
Robot Configuration

Robot configuration during joint movement Instructions - ConfJ
8-ConfL-2 RAPID Reference Manual

Instructions CONNECT

ine.

hus,

ne

ing or

. the

e.

d or
CONNECT Connects an interrupt to a trap routine

CONNECT is used to find the identity of an interrupt and connect it to a trap rout

The interrupt is defined by ordering an interrupt event and specifying its identity. T
when that event occurs, the trap routine is automatically executed.

Example

VAR intnum feeder_low;
CONNECT feeder_low WITH feeder_empty;
ISignalDI di1, 1 , feeder_low;

An interrupt identity feeder_low is created which is connected to the trap routi
feeder_empty. The interrupt is defined as input di1 is getting high. In other words,
when this signal becomes high, the feeder_empty trap routine is executed.

Arguments

CONNECT Interrupt WITH Trap routine

Interrupt Data type: intnum

The variable that is to be assigned the identity of the interrupt.
This must not be declared within a routine (routine data).

Trap routine Identifier

The name of the trap routine.

Program execution

The variable is assigned an interrupt identity which can then be used when order
disabling interrupts. This identity is also connected to the specified trap routine.

Note that before an event can be handled, an interrupt must also be ordered, i.e
event specified.

Limitations

An interrupt (interrupt identity) cannot be connected to more than one trap routin
Different interrupts, however, can be connected to the same trap routine.

When an interrupt has been connected to a trap routine, it cannot be reconnecte
transferred to another routine; it must first be deleted using the instruction IDelete.
RAPID Reference Manual 8-CONNECT-1

CONNECT Instructions

ble

s set

Error handling

If the interrupt variable is already connected to a TRAP routine, the system varia
ERRNO is set to ERR_ALRDYCNT.

If the interrupt variable is not a variable reference, the system variable ERRNO i
to ERR_CNTNOTVAR.

If no more interrupt numbers are available, the system variable ERRNO is set to
ERR_INOMAX.

These errors can be handled in the ERROR handler.

Syntax

(EBNF)
CONNECT <connect target> WITH <trap>‘;’

<connect target> ::= <variable>
| <parameter>
| <VAR>

<trap> ::= <identifier>

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

More information on interrupt management Basic Characteristics- Interrupts
8-CONNECT-2 RAPID Reference Manual

Instructions CorrClear

 can

CorrClear Removes all correction generators

CorrClear is used to remove all connected correction generators. The instruction
be used to remove all offsets provided earlier by all correction generators.

Example

CorrClear;

The instruction removes all connected correction generators.

Note! An easy way to ensure that all correction generators (with corrections) are
removed at program start, is to run CorrClear in a START event routine. See System
Parameters - Topic: Controller.

Syntax

CorrClear ‘ ;’

Related information

Described in:

Connects to a correction generator Instructions - CorrCon

Disconnects from a correction generator Instructions - CorrDiscon

Writes to a correction generator Instructions - CorrWrite

Reads the current total offsets Functions - CorrRead

Correction descriptor Data types - corrdescr
RAPID Reference Manual 8-CorrClear-1

CorrClear Instructions
8-CorrClear-2 RAPID Reference Manual

Instructions CorrCon

. The
CorrCon Connects to a correction generator

CorrCon is used to connect to a correction generator.

Example

VAR corrdescr id;
...
CorrCon id;

The correction generator reference corresponds to the variable id reservation.

Arguments

CorrCon Descr

Descr Data type: corrdescr

Descriptor of the correction generator.

Example

Path coordinate system

All path corrections (offsets on the path) are added in the path coordinate system
path coordinate system is defined as:

Figure 1 Path coordinate system.

P = Path coordinate system
T = Tool coordinate system

Path direction ->

ZT

YT

XT

YP

ZP

XP

Tool
RAPID Reference Manual 8-CorrCon-1

CorrCon Instructions

xis Z

xis X

 two
bject.
- Path coordinate axis X is given as the tangent of the path.

- Path coordinate axis Y is derived as the cross product of tool coordinate a
and path coordinate axis X.

- Path coordinate axis Z is derived as the cross product of path coordinate a
and path coordinate axis Y.

Application example

An example of an application using path corrections is a robot holding a tool with
sensors mounted on it to detect the vertical and horizontal distances to a work o

Figure 2 Path correction device.

Program example

CONST num TARGET_DIST := 5;
CONST num SCALE_FACTOR := 0.5;
VAR intnum intno1;
VAR corrdesc hori_id:
VAR corrdesc vert_id;
VAR pos total_offset;
VAR signalai hori_sig;
VAR signalai vert_sig;
VAR pos write_offset;

PROC PathRoutine()

! Connect to the correction generators for horizontal and vertical correction.
CorrCon hori_id;
CorrCon vert_id;

! Setup a 5 Hz timer interrupt. The trap routine will read the sensor values and
! compute the path corrections.
CONNECT intno1 WITH ReadSensors;
ITimer\singel 0.2, intno1

XP

ZP

YP

Sensor for
vertical correction

Sensor for
horizontal correction.

Path coordinate system Tool
8-CorrCon-2 RAPID Reference Manual

Instructions CorrCon

l

! Position for start of contour tracking
MoveJ p10,v100,z10,tool1;

! Run MoveL with both vertical and horizontel correction.
MoveL p20,v100,z10,tool1\Corr;
! Read the total corrections added by all connected correction generators.
total_offset := CorrRead();
! Write the total vertical correction on the TeachPendant.
TPWrite “The total vertical correction is: ”\Num:=total_offset.z;
! Disconnect the correction generator for vertical correction.
! Horizontal corrections will be unaffected.
CorrDiscon vert_id;
! Run MoveL with only horizontel correction.
MoveL p30,v100,z10,tool1\Corr;

! Remove all outstanding connected correction generators.
! In this case, the only connected correction generator is the one for horizonta
! correction.
CorrClear;

! Remove the timer interrupt.
IDelete intno1;

ENDPROC

TRAP ReadSensors

! Compute the horizontal correction values and execute the correction.
write_offset.x := 0;
write_offset.y := (hori_sig - TARGET_DIST)*SCALE_FACTOR;
write_offset.z := 0;
CorrWrite hori_id, write_offset;

! Compute the vertical correction values and execute the correction.
write_offset.x := 0;
write_offset.y := 0;
write_offset.z := (vert_sig - TARGET_DIST)*SCALE_FACTOR;
CorrWrite vert_id, write_offset;

!Setup interupt again
IDelete intnol;

CONNECT intno1 WITH ReadSensors;
ITimer\singel 0.2, intno1;

ENDTRAP

Program explanation

Two correction generators are connected with the instruction CorrCon. Each
correction generator is referenced by a unique descriptor (hori_id and vert_id) of the
type corrdesc. The two sensors will use one correction generator each.

A timer interrupt is set up to call the trap routine ReadSensors with a frequency of 5
RAPID Reference Manual 8-CorrCon-3

CorrCon Instructions

ritten

the

y the

ction
lso

y.
Hz. The offsets, needed for path correction, are computed in the trap routine and w
to the corresponding correction generator (referenced by the descriptors hori_id and
vert_id) by the instruction CorrWrite. All the corrections will have immediate effect on
the path.

The MoveL instruction must be programmed with the switch argument Corr when path
corrections are used. Otherwise, no corrections will be executed.

When the first MoveL instruction is ready, the function CorrRead is used to read the
sum of all the corrections (the total path correction) given by all the connected
correction generators. The result of the total vertical path correction is written to
TeachPendant with the instruction TPWrite.

CorrDiscon will then disconnect the correction generator for vertical correction
(referenced by the descriptor vert_id). All corrections added by this correction
generator will be removed from the total path correction. The corrections added b
correction generator for horizontal correction will still be preserved.

Finally, the function CorrClear will remove all outstanding connected correction
generators and their previously added corrections. In this case, it is only the corre
generator for horizontal correction that will be removed. The timer interrupt will a
be removed by the instruction IDelete.

The correction generators

Figure 3 Correction generators.

Limitations

A maximum number of 5 correction generators can be connected simultaneousl

Syntax

CorrCon

0 0 3

0 1 0

- - -

- - -

- - -

0 1 3

x y z

Vertical correction generator, with the sum of all its own path corrections.

Horizontal correction generator, with the sum of all its own path corrections.

Not connected correction generator.

Not connected correction generator.

Not connected correction generator.

The sum of all corrections done by all connected correction generators.

Path coordinate axis.
8-CorrCon-4 RAPID Reference Manual

Instructions CorrCon
 [Descr ’ :=’] < variable (VAR) of corrdescr > ’ ;’

Related information

Described in:

Disconnects from a correction generator Instructions - CorrDiscon

Writes to a correction generator Instructions - CorrWrite

Reads the current total offsets Functions - CorrRead

Removes all correction generators Instructions - CorrClear

Correction generator descriptor Data types - corrdescr
RAPID Reference Manual 8-CorrCon-5

CorrCon Instructions
8-CorrCon-6 RAPID Reference Manual

Instructions CorrDiscon

tor.
CorrDiscon Disconnects from a correction
generator

CorrDiscon is used to disconnect from a previously connected correction genera
The instruction can be used to remove corrections given earlier.

Example

VAR corrdescr id;
...
CorrCon id;
...
CorrDiscon id;

CorrDiscon disconnects from the previously connected correction generator
referenced by the descriptor id.

Arguments

CorrDiscon Descr

Descr Data type: corrdescr

Descriptor of the correction generator.

Example

See Instructions - CorrCon

Syntax

CorrDiscon
 [Descr ’ :=’] < variable (VAR) of corrdescr > ’ ;’
RAPID Reference Manual 8-CorrDiscon-1

CorrDiscon Instructions
Related information

Described in:

Connects to a correction generator Instructions - CorrCon

Writes to a correction generator Instructions - CorrWrite

Reads the current total offsets Functions - CorrRead

Removes all correction generators Instructions - CorrClear

Correction descriptor Data types - corrdescr
8-CorrDiscon-2 RAPID Reference Manual

Instructions CorrWrite

r

etween
lso
CorrWrite Writes to a correction generator

CorrWrite is used to write offsets in the path coordinate system to a correction
generator.

Example

VAR corrdescr id;
VAR pos offset;
...
CorrWrite id, offset;

The current offsets, stored in the variable offset, are written to the correction generato
referenced by the descriptor id.

Arguments

CorrWrite Descr Data

Descr Data type: corrdescr

Descriptor of the correction generator.

Data Data type: pos

The offset to be written.

Example

See Instructions - CorrCon

Limitations

The best performance is achieved on straight paths. As the speed and angles b
to consecutive linear paths increase, the deviation from the expected path will a
increase. The same applies to circles with decreasing circle radius.

Syntax

CorrWrite
RAPID Reference Manual 8-CorrWrite-1

CorrWrite Instructions
[Descr ’ :=’] < variable (VAR) of corrdescr > ’ ,’
[Data ’ :=’] < expression (IN) of pos > ’ ;’

Related information

Described in:

Connects to a correction generator Instructions - CorrCon

Disconnects from a correction generator Instructions - CorrDiscon

Reads the current total offsets Functions - CorrRead

Removes all correction generators Instructions - CorrClear

Correction generator descriptor Data types - corrdescr
8-CorrWrite-2 RAPID Reference Manual

Instructions DeactUnit

 drive

anical
til it

e
DeactUnit Deactivates a mechanical unit

DeactUnit is used to deactivate a mechanical unit.

It can be used to determine which unit is to be active when, for example, common
units are used.

Examples

DeactUnit orbit_a;

Deactivation of the orbit_a mechanical unit.

MoveL p10, v100, fine, tool1;
DeactUnit track_motion;
MoveL p20, v100, z10, tool1;
MoveL p30, v100, fine, tool1;
ActUnit track_motion;
MoveL p40, v100, z10, tool1;

The unit track_motion will be stationary when the robot moves to p20 and p30.
After this, both the robot and track_motion will move to p40.

MoveL p10, v100, fine, tool1;
DeactUnit orbit1;
ActUnit orbit2;
MoveL p20, v100, z10, tool1;

The unit orbit1 is deactivated and orbit2 activated.

Arguments

DeactUnit MecUnit

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit that is to be deactivated.

Program execution

When the robot and external axes have come to a standstill, the specified mech
unit is deactivated. This means that it will neither be controlled nor monitored un
is re-activated.

If several mechanical units share a common drive unit, deactivation of one of th
mechanical units will also disconnect that unit from the common drive unit.
RAPID Reference Manual 8-DeactUnit-1

DeactUnit Instructions

 stop
re.
Limitations

Instruction DeactUnit cannot be used

- in program sequence StorePath ... RestoPath

- in event routine RESTART

- when one of the axes in the mechanical unit is in independent mode.

The movement instruction previous to this instruction, should be terminated with a
point in order to make a restart in this instruction possible following a power failu

Syntax

DeactUnit
[MecUnit ’:=’] < variable (VAR) of mecunit> ’;’

Related information

Described in:

Activating mechanical units Instructions - ActUnit

Mechanical units Data Types - mecunit
8-DeactUnit-2 RAPID Reference Manual

Instructions Decr

riable
Decr Decrements by 1

Decr is used to subtract 1 from a numeric variable or persistent.

Example

Decr reg1;

1 is subtracted from reg1, i.e. reg1:=reg1-1.

Arguments

Decr Name

Name Data type: num

The name of the variable or persistent to be decremented.

Example

TPReadNum no_of_parts, "How many parts should be produced? ";
WHILE no_of_parts>0 DO

produce_part;
Decr no_of_parts;

ENDWHILE

The operator is asked to input the number of parts to be produced. The va
no_of_parts is used to count the number that still have to be produced.

Syntax

Decr
[Name ’:=’] < var or pers (INOUT) of num > ’;’
RAPID Reference Manual 8-Decr-1

Decr Instructions
Related information

Described in:

Incrementing a variable by 1 Instructions - Incr

Subtracting any value from a variable Instructions - Add

Changing data using an arbitrary Instructions - :=
expression, e.g. multiplication
8-Decr-2 RAPID Reference Manual

Instructions EOffsOff

 until
EOffsOff Deactivates an offset for external axes

EOffsOff (External Offset Off) is used to deactivate an offset for external axes.

The offset for external axes is activated by the instruction EOffsSet or EOffsOn and
applies to all movements until some other offset for external axes is activated or
the offset for external axes is deactivated.

Examples

EOffsOff;

Deactivation of the offset for external axes.

MoveL p10, v500, z10, tool1;
EOffsOn \ExeP:=p10, p11;
MoveL p20, v500, z10, tool1;
MoveL p30, v500, z10, tool1;
EOffsOff;
MoveL p40, v500, z10, tool1;

An offset is defined as the difference between the position of each axis at p10
and p11. This displacement affects the movement to p20 and p30, but not to p40.

Program execution

Active offsets for external axes are reset.

Syntax

EOffsOff ‘;’

Related information

Described in:

Definition of offset using two positions Instructions - EOffsOn

Definition of offset using values Instructions - EOffsSet

Deactivation of the robot’s motion displacement Instructions - PDispOff
RAPID Reference Manual 8-EOffsOff-1

EOffsOff Instructions
8-EOffsOff-2 RAPID Reference Manual

Instructions EOffsOn

xes

sed

in the
place-
n of

ment
ion is

t the
 axes

sition-
ction
EOffsOn Activates an offset for external axes

EOffsOn (External Offset On) is used to define and activate an offset for external a
using two positions.

Examples

MoveL p10, v500, z10, tool1;
EOffsOn \ExeP:=p10, p20;

Activation of an offset for external axes. This is calculated for each axis ba
on the difference between positions p10 and p20.

MoveL p10, v500, fine, tool1;
EOffsOn *;

Activation of an offset for external axes. Since a stop point has been used
previous instruction, the argument \ExeP does not have to be used. The dis
ment is calculated on the basis of the difference between the actual positio
each axis and the programmed point (*) stored in the instruction.

Arguments

EOffsOn [\ExeP] ProgPoint

[\ExeP] (Executed Point) Data type: robtarget

The new position of the axes at the time of the program execution. If this argu
is omitted, the current position of the axes at the time of the program execut
used.

ProgPoint (Programmed Point) Data type: robtarget

The original position of the axes at the time of programming.

Program execution

The offset is calculated as the difference between ExeP and ProgPoint for each sepa-
rate external axis. If ExeP has not been specified, the current position of the axes a
time of the program execution is used instead. Since it is the actual position of the
that is used, the axes should not move when EOffsOn is executed.

This offset is then used to displace the position of external axes in subsequent po
ing instructions and remains active until some other offset is activated (the instru
RAPID Reference Manual 8-EOffsOn-1

EOffsOn Instructions

ion

 Sev-
y are,

 the

t and
arched
EOffsSet or EOffsOn) or until the offset for external axes is deactivated (the instruct
EOffsOff).

Only one offset for each individual external axis can be activated at any one time.
eral EOffsOn, on the other hand, can be programmed one after the other and, if the
the different offsets will be added.

The external axes’ offset is automatically reset

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Example

SearchL sen1, psearch, p10, v100, tool1;
PDispOn \ExeP:=psearch, *, tool1;
EOffsOn \ExeP:=psearch, *;

A search is carried out in which the searched position of both the robot and
external axes is stored in the position psearch. Any movement carried out after
this starts from this position using a program displacement of both the robo
the external axes. This is calculated based on the difference between the se
position and the programmed point (*) stored in the instruction.

Syntax

EOffsOn
[‘\’ ExeP ’:=’ < expression (IN) of robtarget > ’,’]
[ProgPoint ’:=’] < expression (IN) of robtarget > ’;’

Related information

Described in:

Deactivation of offset for external axes Instructions - EOffsOff

Definition of offset using values Instructions - EOffsSet

Displacement of the robot’s movements Instructions - PDispOn

Coordinate Systems Motion Principles- Coordinate Sys-
tems
8-EOffsOn-2 RAPID Reference Manual

Instructions EOffsSet

es

e

(see

e
EOffsSet Activates an offset for external axes using a value

EOffsSet (External Offset Set) is used to define and activate an offset for external ax
using values.

Example

VAR extjoint eax_a_p100 := [100, 0, 0, 0, 0, 0];
.
EOffsSet eax_a_p100;

Activation of an offset eax_a_p100 for external axes, meaning (provided that th
external axis “a” is linear) that:

- The ExtOffs coordinate system is displaced 100 mm for the logical axis “a”
Figure 1).

- As long as this offset is active, all positions will be displaced 100 mm in th
direction of the x-axis.

.

Figure 1 Displacement of an external axis.

Arguments

EOffsSet EAxOffs

EAxOffs (External Axes Offset) Data type: extjoint

The offset for external axes is defined as data of the type extjoint, expressed in:

- mm for linear axes

- degrees for rotating axes

+ X

+X

0

0

100

Normal
Coordinate System

ExtOffs
Coordinate System
RAPID Reference Manual 8-EOffsSet-1

EOffsSet Instructions

t be
Program execution

The offset for external axes is activated when the EOffsSet instruction is activated and
remains active until some other offset is activated (the instruction EOffsSet or EOffsOn)
or until the offset for external axes is deactivated (the EOffsOff).

Only one offset for external axes can be activated at any one time. Offsets canno
added to one another using EOffsSet.

The external axes’ offset is automatically reset

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

EOffsSet
[EAxOffs ’:=’] < expression (IN) of extjoint> ’;’

Related information

Described in:

Deactivation of offset for external axes Instructions - EOffsOff

Definition of offset using two positions Instructions - EOffsSet

Displacement of the robot’s movements Instructions - PDispOn

Definition of data of the type extjoint Data Types - extjoint

Coordinate Systems Motion Principles- Coordinate Sys-
tems
8-EOffsSet-2 RAPID Reference Manual

Instructions ErrWrite

 and

ach

es.

wn
ErrWrite Write an Error Message

ErrWrite (Error Write) is used to display an error message on the teach pendant
write it in the robot message log.

Example

ErrWrite “PLC error”, “Fatal error in PLC” \RL2:=”Call service”;
Stop;

A message is stored in the robot log. The message is also shown on the te
pendant display.

ErrWrite \ W, “ Search error”, “No hit for the first search”;
RAISE try_search_again;

A message is stored in the robot log only. Program execution then continu

Arguments

ErrWrite [\W] Header Reason [\RL2] [\RL3] [\RL4]

[\W] (Warning) Data type: switch

Gives a warning that is stored in the robot error message log only (not sho
directly on the teach pendant display).

Header Data type: string

Error message heading (max. 24 characters).

Reason Data type: string

Reason for error (line 1 of max. 40 characters).

[\RL2] (Reason Line 2) Data type: string

Reason for error (line 2 of max. 40 characters).

[\RL3] (Reason Line 3) Data type: string

Reason for error (line 3 of max. 40 characters).

[\RL4] (Reason Line 4) Data type: string

Reason for error (line 4 of max. 40 characters).
RAPID Reference Manual 8-ErrWrite-1

ErrWrite Instructions

 the

ing

rs.
Program execution

An error message (max. 5 lines) is displayed on the teach pendant and written in
robot message log.

ErrWrite always generates the program error no. 80001 or in the event of a warn
(argument \W) generates no. 80002.

Limitations

Total string length (Header+Reason+\RL2+\RL3+\RL4) is limited to 145 characte

Syntax

ErrWrite
[’\’ W ’,’]
[Header ’:=’] < expression (IN) of string> ‘,’
[Reason ’:=’] < expression (IN) of string>
[’\’ RL2 ’:=’ < expression (IN) of string>]
[’\’ RL3 ’:=’ < expression (IN) of string>]
[’\’ RL4 ’:=’ < expression (IN) of string>] ‘;’

Related information

Described in:

Display a message on Instructions - TPWrite
the teach pendant only

Message logs Service
8-ErrWrite-2 RAPID Reference Manual

Instructions EXIT

d, i.e.
f the

EXIT Terminates program execution

EXIT is used to terminate program execution. Program restart will then be blocke
the program can only be restarted from the first instruction of the main routine (i
start point is not moved manually).

The EXIT instruction should be used when fatal errors occur or when program
execution is to be stopped permanently. The Stop instruction is used to temporarily stop
program execution.

Example

ErrWrite "Fatal error","Illegal state";
EXIT;

Program execution stops and cannot be restarted from that position in the
program.

Syntax

EXIT ’;’

Related information

Described in:

Stopping program execution temporarily Instructions - Stop
RAPID Reference Manual 8-EXIT-1

EXIT Instructions
8-EXIT-2 RAPID Reference Manual

Instructions ExitCycle

 will
RAPID Reference Manual 8-ExitCycle-1

ExitCycle Break current cycle and start next

ExitCycle is used to break the current cycle and move the PP back to the first
instruction in the main routine. If the execution mode CONT is set, the execution
start to execute the next cycle.

Example

VAR num cyclecount:=0;
VAR intnum error_intno;

PROC main()
IF cyclecount = 0 THEN

CONNECT error_intno WITH error_trap;
ISignalDI di_error,1,error_intno;

ENDIF
cyclecount:=cyclecount+1;
! start to do something intelligent
....

ENDPROC

TRAP error_trap
TPWrite “ERROR, I will start on the next item”;
ExitCycle;

ENDTRAP

This will start the next cycle if the signal di_error is set.

Program Running

All variables, persistents, defined interrupts and motion settings are untouched.

Syntax

ExitCycle’;’

Related information

Described in:

Stopping after a fatal error Instructions - EXIT

Terminating program execution Instructions - EXIT

Stopping for program actions Instructions - Stop

Finishing execution of a routine Instructions - RETURN

ExitCycle Instructions
8-ExitCycle-2 RAPID Reference Manual

Instructions ExitCycle
RAPID Reference Manual 8-ExitCycle-3

ExitCycle Instructions
8-ExitCycle-4 RAPID Reference Manual

Instructions FOR

es.

.
 same

ch loop.

-1 if
FOR Repeats a given number of times

FOR is used when one or several instructions are to be repeated a number of tim

If the instructions are to be repeated as long as a given condition is met, the WHILE
instruction is used.

Example

FOR i FROM 1 TO 10 DO
routine1;

ENDFOR

Repeats the routine1 procedure 10 times.

Arguments

FOR Loop counter FROM Start value TO End value
[STEP Step value] DO ... ENDFOR

Loop counter Identifier

The name of the data that will contain the value of the current loop counter
The data is declared automatically and its name should therefore not be the
as the name of any data that exists already.

Start value Data type: Num

The desired start value of the loop counter.
(usually integer values)

End value Data type: Num

The desired end value of the loop counter.
(usually integer values)

Step value Data type: Num

The value by which the loop counter is to be incremented (or decremented) ea
(usually integer values)

If this value is not specified, the step value will automatically be set to 1 (or
the start value is greater than the end value).
RAPID Reference Manual 8-FOR-1

FOR Instructions

etc.

 the
of the
n con-

 value.

only be

 con-
s run-
Example

FOR i FROM 10 TO 2 STEP -1 DO
a{i} := a{i-1};

ENDFOR

The values in an array are adjusted upwards so that a{10}:=a{9}, a{9}:=a{8}

Program execution

1. The expressions for the start, end and step values are calculated.

2. The loop counter is assigned the start value.

3. The value of the loop counter is checked to see whether its value lies between
start and end value, or whether it is equal to the start or end value. If the value
loop counter is outside of this range, the FOR loop stops and program executio
tinues with the instruction following ENDFOR.

4. The instructions in the FOR loop are executed.

5. The loop counter is incremented (or decremented) in accordance with the step

6. The FOR loop is repeated, starting from point 3.

Limitations

The loop counter (of data type num) can only be accessed from within the FOR loop
and consequently hides other data and routines that have the same name. It can
read (not updated) by the instructions in the FOR loop.

Decimal values for start, end or stop values, in combination with exact termination
ditions for the FOR loop, cannot be used (undefined whether or not the last loop i
ning).

Syntax

(EBNF)
FOR <loop variable> FROM <expression> TO <expression>

[STEP <expression>] DO
<instruction list>

ENDFOR

<loop variable> ::= <identifier>
8-FOR-2 RAPID Reference Manual

Instructions FOR
Related information

Described in:

Expressions Basic Characteristics - Expressions

Identifiers Basic Characteristics -
Basic Elements
RAPID Reference Manual 8-FOR-3

FOR Instructions
8-FOR-4 RAPID Reference Manual

Instructions GOTO

ame

e.

t
GOTO Goes to a new instruction

GOTO is used to transfer program execution to another line (a label) within the s
routine.

Examples

GOTO next;
.

next:

Program execution continues with the instruction following next.

reg1 := 1;
next:

.
reg1 := reg1 + 1;
IF reg1<=5 GOTO next;

The next program loop is executed five times.

IF reg1>100 GOTO highvalue;
lowvalue:

.
GOTO ready;
highvalue:

.
ready:

If reg1 is greater than 100, the highvalue program loop is executed; otherwise
the lowvalue loop is executed.

Arguments

GOTO Label

Label Identifier

The label from where program execution is to continue.

Limitations

It is only possible to transfer program execution to a label within the same routin

It is only possible to transfer program execution to a label within an IF or TEST
instruction if the GOTO instruction is also located within the same branch of tha
RAPID Reference Manual 8-GOTO-1

GOTO Instructions

E
instruction.

It is only possible to transfer program execution to a label within a FOR or WHIL
instruction if the GOTO instruction is also located within that instruction.

Syntax

(EBNF)
GOTO <identifier>’;’

Related information

Described in:

Label Instructions - label

Other instructions that change the program RAPID Summary -
flow Controlling the Program Flow
8-GOTO-2 RAPID Reference Manual

Instructions GripLoad

nces:

 true

;

GripLoad Defines the payload of the robot

GripLoad is used to define the payload which the robot holds in its gripper.

Description

It is important to always define the actual tool load and when used, the payload
of the robot too. Incorrect definitions of load data can result in overloading of the
robot mechanical structure.

When incorrect load data is specified, it can often lead to the following conseque

- If the value in the specified load data is greater than that of the value of the
load;
-> The robot will not be used to its maximum capacity
-> Impaired path accuracy including a risk of overshooting

If the value in the specified load data is less than the value of the true load
-> Impaired path accuracy including a risk of overshooting
-> Risk of overloading the mechanical structure

Examples

GripLoad piece1;

The robot gripper holds a load called piece1.

GripLoad load0;

The robot gripper releases all loads.

Arguments

GripLoad Load

Load Data type: loaddata

The load data that describes the current payload.

Program execution

The specified load affects the performance of the robot.
RAPID Reference Manual 8-GripLoad-1

GripLoad Instructions
The default load, 0 kg, is automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

GripLoad
[Load ’:=’] < persistent (PERS) of loaddata > ’;’

Related information

Described in:

Definition of load data Data Types - loaddata

Definition of tool load Data Types - tooldata

-
8-GripLoad-2 RAPID Reference Manual

Instructions IDelete

t be

be
IDelete Cancels an interrupt

IDelete (Interrupt Delete) is used to cancel (delete) an interrupt.

If the interrupt is to be only temporarily disabled, the instruction ISleep or IDisable
should be used.

Example

IDelete feeder_low;

The interrupt feeder_low is cancelled.

Arguments

IDelete Interrupt

Interrupt Data type: intnum

The interrupt identity.

Program execution

The definition of the interrupt is completely erased. To define it again, it must firs
re-connected to the trap routine.

The instruction should be preceded by a stop point. Otherwise the interrupt will
deactivated before the end point is reached.

Interrupts do not have to be erased; this is done automatically when

- a new program is loaded

- the program is restarted from the beginning

- the program pointer is moved to the start of a routine

Syntax

IDelete
[Interrupt ‘:=’] < variable (VAR) of intnum > ‘;’
RAPID Reference Manual 8-IDelete-1

IDelete Instructions
Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Temporarily disabling an interrupt Instructions - ISleep

Temporarily disabling all interrupts Instructions - IDisable
8-IDelete-2 RAPID Reference Manual

Instructions IDisable

r
pts

e pro-
he
IDisable Disables interrupts

IDisable (Interrupt Disable) is used to disable all interrupts temporarily. It may, fo
example, be used in a particularly sensitive part of the program where no interru
may be permitted to take place in case they disturb normal program execution.

Example

IDisable;
FOR i FROM 1 TO 100 DO

character[i]:=ReadBin(sensor);
ENDFOR
IEnable;

No interrupts are permitted as long as the serial channel is reading.

Program execution

Interrupts which occur during the time in which an IDisable instruction is in effect are
placed in a queue. When interrupts are permitted once more, the interrupt(s) of th
gram then immediately start generating, executed in “first in - first out” order in t
queue.

Syntax

IDisable‘;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupt

Permitting interrupts Instructions - IEnable
RAPID Reference Manual 8-IDisable-1

IDisable Instructions
8-IDisable-2 RAPID Reference Manual

Instructions IEnable

it has

rder
rrupts

nter-
IEnable Enables interrupts

IEnable (Interrupt Enable) is used to enable interrupts during program execution.

Example

IDisable;
FOR i FROM 1 TO 100 DO

character[i]:=ReadBin(sensor);
ENDFOR
IEnable;

No interrupts are permitted as long as the serial channel is reading. When
finished reading, interrupts are once more permitted.

Program execution

Interrupts which occur during the time in which an IDisable instruction is in effect, are
placed in a queue. When interrupts are permitted once more (IEnable), the interrupt(s)
of the program then immediately start generating, executed in “first in - first out” o
in the queue.Program execution then continues in the ordinary program and inte
which occur after this are dealt with as soon as they occur.

Interrupts are always permitted when a program is started from the beginning,. I
rupts disabled by the ISleep instruction are not affected by the IEnable instruction.

Syntax

IEnable‘;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Permitting no interrupts Instructions - IDisable
RAPID Reference Manual 8-IEnable-1

IEnable Instructions
8-IEnable-2 RAPID Reference Manual

Instructions IF

a con-

d
IF If a condition is met, then ...; otherwise ...

IF is used when different instructions are to be executed depending on whether
dition is met or not.

Examples

IF reg1 > 5 THEN
Set do1;
Set do2;

ENDIF

The do1 and do2 signals are set only if reg1 is greater than 5.

IF reg1 > 5 THEN
Set do1;
Set do2;

ELSE
Reset do1;
Reset do2;

ENDIF

The do1 and do2 signals are set or reset depending on whether reg1 is greater
than 5 or not.

Arguments

IF Condition THEN ...
{ELSEIF Condition THEN ...}

[ELSE ...]
ENDIF

Condition Data type: bool

The condition that must be satisfied for the instructions between THEN an
ELSE/ELSEIF to be executed.

Example

IF counter > 100 THEN
counter := 100;

ELSEIF counter < 0 THEN
 counter := 0;
ELSE

counter := counter + 1;
RAPID Reference Manual 8-IF-1

IF Instructions

ram
f the
ing
 first
ENDIF

Counter is incremented by 1. However, if the value of counter is outside the limit
0-100, counter is assigned the corresponding limit value.

Program execution

The conditions are tested in sequential order, until one of them is satisfied. Prog
execution continues with the instructions associated with that condition. If none o
conditions are satisfied, program execution continues with the instructions follow
ELSE. If more than one condition is met, only the instructions associated with the
of those conditions are executed.

Syntax

(EBNF)
IF <conditional expression> THEN

<instruction list>
{ ELSEIF <conditional expression> THEN <instruction list> | <EIF>}
[ELSE

<instruction list>]
ENDIF

Related information

Described in:

Conditions (logical expressions) Basic Characteristics - Expressions
8-IF-2 RAPID Reference Manual

Instructions Incr

.
Incr Increments by 1

Incr is used to add 1 to a numeric variable or persistent.

Example

Incr reg1;

1 is added to reg1, i.e. reg1:=reg1+1.

Arguments

Incr Name

Name Data type: num

The name of the variable or persistent to be changed.

Example

WHILE stop_production=0 DO
produce_part;
Incr no_of_parts;
TPWrite "No of produced parts= "\Num:=no_of_parts;

ENDWHILE

The number of parts produced is updated on the teach pendant each cycle
Production continues to run as long as the signal stop_production is not set.

Syntax

Incr
[Name ’:=’] < var or pers (INOUT) of num > ’;’

Related information

Described in:

Decrementing a variable by 1 Instructions - Decr

Adding any value to a variable Instructions - Add

Changing data using an arbitrary Instructions - :=
expression, e.g. multiplication
RAPID Reference Manual 8-Incr-1

Incr Instructions
8-Incr-2 RAPID Reference Manual

Instructions IndAMove

a

stem.

xis

s
 linear

n

 e.g.
IndAMove Independent Absolute position Movement

IndAMove is used to change an axis to independent mode and move the axis to
specific position.

An independent axis is an axis moving independently of other axes in the robot sy
As program execution continues immediately, it is possible to execute other
instructions (including positioning instructions) during the time the independent a
is moving.

If the axis is to be moved within a revolution, the instruction IndRMove should be used
instead. If the move is to occur a short distance from the current position, the
instruction IndDMove must be used.

Example

IndAMove Station_A,2\ToAbsPos:=p4,20;

Axis 2 of Station_A is moved to the position p4 at the speed 20 degrees/s.

Arguments

IndAMove MecUnit Axis [\ToAbsPos] | [\ToAbsNum] Speed [
\Ramp]

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The number of the current axis for the mechanical unit (1-6).

[\ToAbsPos] (To Absolute Position) Data type: robtarget

Axis position specified as a robtarget. Only the component for this specific axi
is used. The value is used as an absolute position value in degrees (mm for
axes).

The axis position will be affected if the axis is displaced using the instructio
EOffsSet or EOffsOn.

For robot axes, the argument \ToAbsNum is to be used instead.

[\ToAbsNum] (To Absolute Numeric value) Data type: num

Axis position defined in degrees (mm for linear axis).

Using this argument, the position will NOT be affected by any displacement,
EOffsSet or PDispOn.
RAPID Reference Manual 8-IndAMove-1

IndAMove Instructions

peed

he

s and

. The
s long
nd

e, all

e axis
te an
dent

not be
the
Same function as \ToAbsPos but the position is defined as a numeric value to
make it easy to manually change the position.

Speed Data type: num

Axis speed in degrees/s (mm/s for linear axis).

[\Ramp] Data type: num

Decrease acceleration and deceleration from maximum performance
(1 - 100%, 100% = maximum performance).

Program execution

When IndAMove is executed, the specified axis starts to move at the programmed s
to the specified axis position. If \Ramp is programmed, there will be a reduction of
acceleration/deceleration.

To change the axis back to normal mode, the IndReset instruction is used. In connection
with this, the logical position of the axis can be changed, so that a number of
revolutions are erased from the position, for example, to avoid rotating back for t
next movement.

The speed can be altered by executing another IndAMove instruction (or another
Ind_Move instruction). If a speed in the opposite direction is selected, the axis stop
then accelerates to the new speed and direction.

For stepwise execution of the instruction, the axis is set in independent mode only
axis begins its movement when the next instruction is executed, and continues a
as program execution takes place. For more information see Chapter 6, Motion a
I/O principles.

When the program pointer is moved to the start of the program, or to a new routin
axes are automatically set to normal, without changing the measurement system
(equivalent to executing the instruction IndReset\Old).

Note that an IndAMove instruction after an IndCMove operation can result in the axis
spinning back the movement performed in the IndCMove instruction. To prevent this,
use an IndReset instruction before the IndAMove, or use an IndRMove instruction.

Limitations

Axes in independent mode cannot be jogged. If an attempt is made to execute th
manually, the axis will not move, and an error message will be displayed. Execu
IndReset instruction or move the program pointer to main, in order to leave indepen
mode.

If a loss of voltage occurs when an axis is in independent mode, the program can
restarted. An error message is displayed and the program must be started from
beginning.
8-IndAMove-2 RAPID Reference Manual

Instructions IndAMove

is
anged

ke
on B.

T.
Example

ActUnit Station_A;
weld_stationA;
IndAMove Station_A,1\ToAbsNum:=90,20\Ramp:=50;
ActUnit Station_B;
weld_stationB_1;
WaitUntil IndInpos(Station_A,1) = TRUE;
WaitTime 0.2;
DeactUnit Station_A;
weld_stationB_2;

Station_A is activated and the welding is started in station A.

Station_A (axis 1) is then moved to the 90 degrees position while the robot
welding in station B. The speed of the axis is 20 degrees/s . The speed is ch
with acceleration/deceleration reduced to 50% of max performance.

When station A reaches this position, it is deactivated and reloading can ta
place in the station at the same time as the robot continues to weld in stati

Error handling

If the axis is not activated, the system variable ERRNO is set to ERR_AXIS_AC
This error can then be handled in the error handler.

Syntax

IndAMove
[MecUnit’:=’] < variable (VAR) of mecunit> ’,’
[Axis’:=’] < expression (IN) of num>
[’\’ToAbsPos’:=’ < expression (IN) of robtarget>]
| [’\’ ToAbsNum’:=’ < expression (IN) of num>] ’,’
[Speed ’:=’] < expression (IN) of num>
[’\’ Ramp’:=’ < expression (IN) of num >] ’;’
RAPID Reference Manual 8-IndAMove-3

IndAMove Instructions
Related information

Described in:

Independent axes in general Motion and I/O Principles -
Program execution

Change back to normal mode Instructions - IndReset

Reset the measurement system Instructions - IndReset

Move an independent axis to a specific Instructions - IndRMove
position within current revolution

Move an independent axis a specific Instructions - IndDMove
distance

Check the speed status for independent axes Functions - IndSpeed

Check the position status for independent axes Functions - IndInpos
8-IndAMove-4 RAPID Reference Manual

Instructions IndCMove

ving

stem.
ruc-
ov-

d
t. If
IndCMove Independent Continuous Movement

IndCMove is used to change an axis to independent mode and start the axis mo
continuously at a specific speed.

An independent axis is an axis moving independently of other axes in the robot sy
As program execution continues immediately, it is possible to execute other inst
tions (including positioning instructions) during the time the independent axis is m
ing.

Example

IndCMove Station_A,2,-30.5;

Axis 2 of Station_A starts to move in a negative direction at a speed of 30.5
degrees/s.

Arguments

IndCMove MecUnit Axis Speed [\Ramp]

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The number of the current axis for the mechanical unit (1-6).

Speed Data type: num

Axis speed in degrees/s (mm/s for linear axis).
The direction of movement is specified as the sign of the speed argument.

[\Ramp] Data type: num

Decrease acceleration and deceleration from maximum performance
(1 - 100%, 100% = maximum performance).

Program execution

When IndCMove is executed, the specified axis starts to move at the programme
speed. The direction of movement is specified as the sign of the speed argumen
\Ramp is programmed there will be a reduction of acceleration/deceleration.
RAPID Reference Manual 8-IndCMove-1

IndCMove Instructions

volu-

 speed
e in

 only.
s as

n and

 rou-
ment

zero
, the

e axis
te an
dent

nnot
om the
To change the axis back to normal mode, the IndReset instruction is used. The logical
position of the axis can be changed in connection with this - an number of full re
tions can be erased, for example, to avoid rotating back for the next movement.

The speed can be changed by executing a further IndCMove instruction. If a speed in
the opposite direction is ordered, the axis stops and then accelerates to the new
and direction. To stop the axis, speed argument 0 can be used. It will then still b
independent mode.

During stepwise execution of the instruction, the axis is set in independent mode
The axis starts its movement when the next instruction is executed, and continue
long as program execution continues. For more information see Chapter 6, Motio
I/O principles.

When the program pointer is moved to the beginning of the program, or to a new
tine, all axes are set automatically to normal mode, without changing the measure
system (equivalent to executing the instruction IndReset\Old).

Limitations

The resolution of the axis position worsens, the further it is moved from its logical
position (usually the middle of the working area). To achieve high resolution again
logical working area can be set to zero with the instruction IndReset. For more infor-
mation see Chapter 6, Motion and I/O Principles.

Axes in independent mode cannot be jogged. If an attempt is made to execute th
manually, the axis will not move, and an error message will be displayed. Execu
IndReset instruction or move the program pointer to main, in order to leave indepen
mode.

If a loss of voltage occurs when the axis is in independent mode, the program ca
be restarted. An error message is displayed, and the program must be started fr
beginning.

Example

IndCMove Station_A,2,20;
WaitUntil IndSpeed(Station_A,2 \InSpeed) = TRUE;
WaitTime 0.2;
MoveL p10, v1000, fine, tool1;
IndCMove Station_A,2,-10\Ramp:=50;
MoveL p20, v1000, z50, tool1;
IndRMove Station_A,2 \ToRelPos:=p1 \Short,10;
MoveL p30, v1000, fine, tool1;
WaitUntil IndInpos(Station_A,2) = TRUE;
WaitTime 0.2;
IndReset Station_A,2 \RefPos:=p40\Short;
MoveL p40, v1000, fine, tool1;
8-IndCMove-2 RAPID Reference Manual

Instructions IndCMove

ees/
ove.

 accel-
e

n p30,
s axis
s as

T.
Axis 2 of Station_A starts to move in a positive direction at a speed of 20 degr
s. When this axis has reached the selected speed the robot axes start to m

When the robot reaches position p10, the external axis changes direction and
rotates at a speed of 10 degrees/s . The change of speed is performed with
eration/deceleration reduced to 50% of maximum performance. At the sam
time, the robot executes towards p20.

Axis 2 of Station_A is then stopped as quickly as possible in position p1 within
the current revolution.

When axis 2 has reached this position, and the robot has stopped in positio
axis 2 returns to normal mode again. The measurement system offset for thi
is changed a whole number of axis revolutions so that the actual position i
close as possible to p40.

When the robot is then moved to position p40, axis 2 of Station_A will be moved
via the shortest route to position p40 (max ±180 degrees).

Error handling

If the axis is not activated, the system variable ERRNO is set to ERR_AXIS_AC
This error can then be handled in the error handler.

Syntax

IndCMove
[MecUnit’:=’] < variable (VAR) of mecunit> ’,’
[Axis’:=’] < expression (IN) of num> ’,’
[Speed ’:=’] < expression (IN) of num>
[’\’ Ramp’:=’ < expression (IN) of num >] ’;’
RAPID Reference Manual 8-IndCMove-3

IndCMove Instructions
Related information

Described in:

Independent axes in general Motion and I/O Principles -
Program execution

Change back to normal mode Instructions - IndReset

Reset the measurement system Instructions - IndReset

Move an independent axis to a specific Instructions - IndAMove, IndRMove
position

Move an independent axis a specific Instructions - IndDMove
distance

Check the speed status for independent axes Functions - IndSpeed

Check the position status for independent axes Functions - IndInpos
8-IndCMove-4 RAPID Reference Manual

Instructions IndDMove

ecific

stem.
ruc-
ov-

f

(mm
IndDMove Independent Delta position Movement

IndDMove is used to change an axis to independent mode and move the axis a sp
distance.

An independent axis is an axis moving independently of other axes in the robot sy
As program execution continues immediately, it is possible to execute other inst
tions (including positioning instructions) during the time the independent axis is m
ing.

If the axis is to be moved to a specific position, the instruction IndAMove or IndRMove
must be used instead.

Example

IndDMove Station_A,2,-30,20;

Axis 2 of Station_A is moved 30 degrees in a negative direction at a speed o20
degrees/s.

Arguments

IndDMove MecUnit Axis Delta Speed [\Ramp]

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The number of the current axis for the mechanical unit (1-6).

Delta Data type: num

The distance which the current axis is to be moved, expressed in degrees
for linear axes). The sign specifies the direction of movement.

Speed Data type: num

Axis speed in degrees/s (mm/s for linear axis).

[\Ramp] Data type: num

Decrease acceleration and deceleration from maximum performance
(1 - 100%, 100% = maximum performance).
RAPID Reference Manual 8-IndDMove-1

IndDMove Instructions

peed
the

f the

e axis

olu-
 next

s and

 only.
s as

n and

 rou-
ment

e axis
te an
dent

nnot
om the
Program execution

When IndAMove is executed, the specified axis starts to move at the programmed s
for the specified distance. The direction of movement is specified as the sign of
Delta argument. If \Ramp is programmed there will be a reduction of acceleration/
deceleration.

If the axis is moving, the new position is calculated from the momentary position o
axis, when the instruction IndDMove is executed. If an IndDMove instruction with dis-
tance 0 is executed, the axis will stop and then move back to the position which th
had when the instruction was executed.

To change the axis back to normal mode, the IndReset instruction is used. The logical
position of the axis can be changed in connection with this - a number of full rev
tions can be erased from the position, for example, to avoid rotating back for the
movement.

The speed can be changed by running a further IndDMove instruction (or another
Ind_Move instruction). If a speed in the opposite direction is selected, the axis stop
then accelerates to the new speed and direction.

During stepwise execution of the instruction, the axis is set in independent mode
The axis starts its movement when the next instruction is executed, and continue
long as program execution continues. For more information see Chapter 6, Motio
I/O principles.

When the program pointer is moved to the beginning of the program, or to a new
tine, all axes are automatically set to normal mode, without changing the measure
system (equivalent to running the instruction IndReset \Old).

Limitations

Axes in independent mode cannot be jogged. If an attempt is made to execute th
manually, the axis will not move, and an error message will be displayed. Execu
IndReset instruction or move the program pointer to main, in order to leave indepen
mode.

If a loss of voltage occurs when the axis is in independent mode, the program ca
be restarted. An error message is displayed, and the program must be started fr
beginning.
8-IndDMove-2 RAPID Reference Manual

Instructions IndDMove

T.
Example

IndAMove Robot,6\ToAbsNum:=90,20;
WaitUntil IndInpos(Station_A,1) = TRUE;
WaitTime 0.2;
IndDMove Station_A,2,-30,20;
WaitUntil IndInpos(Station_A,1) = TRUE;
WaitTime 0.2;
IndDMove Station_A,2,400,20;

Axis 6 of the robot is moved to the following positions:
 90 degrees
 60 degrees
 460 degrees (1 revolution + 100 degrees).

Error handling

If the axis is not activated, the system variable ERRNO is set to ERR_AXIS_AC
This error can then be handled in the error handler.

Syntax

IndDMove
[MecUnit’:=’] < variable (VAR) of mecunit> ’,’
[Axis’:=’] < expression (IN) of num> ’,’
[Delta’:=’] < expression (IN) of num>’,’
[Speed ’:=’] < expression (IN) of num>
[’\’ Ramp’:=’ < expression (IN) of num >] ’;’

Related information

Described in:

Independent axes in general Motion and I/O Principles -
Program execution

Change back to normal mode Instructions - IndReset

Reset the measurement system Instructions - IndReset

Move an independent axis to a specific Instructions - IndAMove, IndRMove
position

Check the speed status for independent axes Functions - IndSpeed

Check the position status for independent axes Functions - IndInpos
RAPID Reference Manual 8-IndDMove-3

IndDMove Instructions
8-IndDMove-4 RAPID Reference Manual

Instructions IndReset

 time,

ack

ove
ion

tus has

s
IndReset Independent Reset

IndReset is used to change an independent axis back to normal mode. At the same
the measurement system for rotational axes can be moved a number of axis
revolutions.

Example

IndCMove Station_A,2,5;
MoveL *,v1000,fine,tool1;
IndCMove Station_A,2,0;
WaitUntil IndSpeed(Station_A,2\ZeroSpeed);
WaitTime 0.2
IndReset Station_A,2;

Axis 2 of Station _A is first moved in independent mode and then changed b
to normal mode. The axis will keep its position.

Note that the current independent axis, and the normal axes, should not m
when the instruction IndReset is executed. This is because the previous posit
is a stop point, and an IndCMove instruction is executed at zero speed.
Furthermore, a pause of 0.2 seconds is used to ensure that the correct sta
been achieved.

Arguments

IndReset MecUnit Axis [\RefPos] | [\RefNum] [\Short] | [\Fwd] |
[\Bwd] | [\Old]

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The number of the current axis for the mechanical unit (1-6).

[\RefPos] (Reference Position) Data type: robtarget

Axis position specified as a robtarget. Only the component for this specific axi
is used. The position must be inside the normal working range.

For robot axes, the argument \RefNum is to be used instead.

The argument is only to be defined together with the argument \Short, \Fwd or
\Bwd. It is not allowed together with the argument \Old.
RAPID Reference Manual 8-IndReset-1

IndReset Instructions

side

ke

 axis

ted

 axis
d
n
0

 axis
ied
n
0

ay

e. At
umber

ement
[\RefNum] (Reference Numeric value)Data type: num

Axis position defined in degrees (mm for linear axis). The position must be in
the normal working range.

The argument is only to be defined together with the argument \Short, \Fwd or
\Bwd. It is not allowed together with the argument \Old.

Same function as \RefPos but the position is defined as a numeric value to ma
it easy to change the position manually.

[\Short] Data type: switch

The measurement system will change a whole number of revolutions on the
side so that the axis will be as close as possible to the specified \RefPos or
\RefNum position. If a positioning instruction with the same position is execu
after IndReset, the axis will travel the shortest route, less than ±180 degrees, in
order to reach the position.

[\Fwd] (Forward) Data type: switch

The measurement system will change a whole number of revolutions on the
side so that the reference position will be on the positive side of the specifie
\RefPos or \RefNum position. If a positioning instruction with the same positio
is executed after IndReset, the axis will turn in a positive direction less than 36
degrees in order to reach the position.

[\Bwd] (Backward) Data type: switch

The measurement system will change a whole number of revolutions on the
side so that the reference position will be on the negative side of the specif
\RefPos or \RefNum position. If a positioning instruction with the same positio
is executed after IndReset, the axis will turn in a negative direction less than 36
degrees in order to reach the position.

[\Old] Data type: switch

Keeps the old position. Note that resolution is decreased in positions far aw
from zero.

If no argument \Short, \Fwd, \Bwd or \Old is specified - \Old is used as default
value.

Program execution

When IndReset is executed, it changes the independent axis back to normal mod
the same time, the measurement system for the axis can be moved by a whole n
of axis revolutions.

The instruction may also be used in normal mode in order to change the measur
system.
8-IndReset-2 RAPID Reference Manual

Instructions IndReset

ill not

e are
al
cuting

n 0.
 thus

ent
added

n also

logical

ions
ition is
Note that the position is used only to adjust the measurement system - the axis w
move to the position.

Limitations

The instruction may only be executed when all active axes running in normal mod
standing still. The independent mode axis which is going to be changed to norm
mode must also be stationary. For axes in normal mode this is achieved by exe
a move instruction with the argument fine. The independent axis is stopped by an
IndCMove with Speed:=0 (followed by a wait period of 0.2 seconds), IndRMove,
IndAMove or IndDMove instruction.

The resolution of positions is decreased when moving away from logical positio
An axis which progressively rotates further and further from the position 0 should
be set to zero using the instruction IndReset with an argument other than \Old.

The measurement system cannot be changed for linear axes.

To ensure a proper start after IndReset of an axis with a relative measured measurem
system (synchronization switches), an extra time delay of 0.12 seconds must be
after the IndReset instruction.

Only robot axis 6 can be used as independent axis. The IndReset instruction ca
be used for axis 4 on models IRB2400 and IRB 4400. If IndReset is used on robot axis
4, then axis 6 must not be in the independent mode.

Example

IndAMove Station_A,1\ToAbsNum:=750,50;
WaitUntil IndInpos(Station_A,1);
WaitTime 0.2;
IndReset Station_A,1 \RefNum:=0 \Short;
.
IndAMove Station_A,1\ToAbsNum:=750,50;
WaitUntil IndInpos(Station_A,1);
WaitTime 0.2;
IndReset Station_A,1 \RefNum:=300 \Short;

Axis 1 in Station_A is first moved independently to the 750 degrees position (2
revolutions and 30 degrees). At the same time as it changes to normal mode, the
position is set to 30 degrees.

Axis 1 in Station_A is subsequently moved to the 750 degrees position (2 revolut
and 30 degrees). At the same time as it changes to normal mode, the logical pos
set to 390 degrees (1 revolution and 30 degrees).
RAPID Reference Manual 8-IndReset-3

IndReset Instructions

.

This
Error handling

If the axis is moving, the system variable ERRNO is set to ERR_AXIS_MOVING

If the axis is not activated, the system variable ERRNO is set to ERR_AXIS_ACT.
error can then be handled in the error handler.

Syntax

IndReset
[MecUnit’:=’] < variable (VAR) of mecunit> ’,’
[Axis’:=’] < expression (IN) of num>
[’\’ RefPos’:=’ < expression (IN) of robtarget>]
| [’\’ RefNum’:=’ < expression (IN) of num>]
[’\’ Short] | [’\’ Fwd] | [’\’ Bwd] | [’\’ Old]’;’

Related information

Described in:

Independent axes in general Motion and I/O Principles -
Program execution

Change an axis to independent mode Instructions - IndAMove, IndCMove,
IndDMove, IndRMove

Check the speed status for independent axes Functions - IndSpeed

Check the position status for independent axes Functions - IndInpos
8-IndReset-4 RAPID Reference Manual

Instructions IndRMove

 axis

stem.
ruc-
ov-

xis is

s
volu-

n
IndRMove Independent Relative position Movement

IndRMove is used to change a rotational axis to independent mode and move the
to a specific position within one revolution.

An independent axis is an axis moving independently of other axes in the robot sy
As program execution continues immediately, it is possible to execute other inst
tions (including positioning instructions) during the time the independent axis is m
ing.

If the axis is to be moved to an absolute position (several revolutions) or if the a
linear, the instruction IndAMove is used instead. If the movement is to take place a
certain distance from the current position, the instruction IndDMove must be used.

Example

IndRMove Station_A,2\ToRelPos:=p5 \Short,20;

Axis 2 of Station_A is moved the shortest route to position p5 within one revo-
lution (maximum rotation ± 180 degrees) at a speed of 20 degrees/s.

Arguments

IndRMove MecUnit Axis [\ToRelPos] | [\ToRelNum] [\Short] | [
\Fwd] | [\Bwd] Speed [\Ramp]

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The number of the current axis for the mechanical unit (1-6).

[\ToRelPos] (To Relative Position) Data type: robtarget

Axis position specified as a robtarget. Only the component for this specific axi
is used. The value is used as a position value in degrees within one axis re
tion. This means that the axis moves less than one revolution.

The axis position will be affected if the axis is displaced using the instructio
EOffsSet or EOffsOn.

For robot axes, the argument \ToRelNum is to be used instead.
RAPID Reference Manual 8-IndRMove-1

IndRMove Instructions

 e.g.

 max-
ent

t the

t the

peed

olu-
 next

s and
[\ToRelNum] (To Relative Numeric value) Data type: num

Axis position defined in degrees.

Using this argument, the position will NOT be affected by any displacement,
EOffsSet or PDispOn.

Same function as \ToRelPos but the position is defined as a numeric value to
make it easy to change the position manually.

[\Short] Data type: switch

The axis is moved the shortest route to the new position. This means that the
imum rotation will be 180 degrees in any direction. The direction of movem
therefore depends on the current location of the axis.

[\Fwd] (Forward) Data type: switch

The axis is moved in a positive direction to the new position. This means tha
maximum rotation will be 360 degrees and always in a positive direction
(increased position value).

[\Bwd] (Backward) Data type: switch

The axis is moved in a negative direction to the new position. This means tha
maximum rotation will be 360 degrees and always in a negative direction
(decreased position value).

If \Short, \Fwd or \Bwd argument is omitted, \Short is used as default value.

Speed Data type: num

Axis speed in degrees/s.

[\Ramp] Data type: num

Decrease acceleration and deceleration from maximum performance
(1 - 100%, 100% = maximum performance).

Program execution

When IndRMove is executed, the specified axis starts to move at the programmed s
to the specified axis position, but only a maximum of one revolution. If \Ramp is pro-
grammed, there will be a reduction of acceleration/deceleration.

To change the axis back to normal mode, the IndReset instruction is used. The logical
position of the axis can be changed in connection with this - a number of full rev
tions can be erased from the position, for example, to avoid rotating back for the
movement.

The speed can be changed by running a further IndRMove instruction (or another
Ind_Move instruction). If a speed in the opposite direction is selected, the axis stop
then accelerates to the new speed and direction.
8-IndRMove-2 RAPID Reference Manual

Instructions IndRMove

 only.
es as
n and

 rou-
ment

e axis
te an

annot
om the

um
During stepwise execution of the instruction, the axis is set in independent mode
The axis starts its movement when the next instruction is executed, and continu
long as program execution continues. For more information see Chapter 6, Motio
I/O principles.

When the program pointer is moved to the beginning of the program, or to a new
tine, all axes are automatically set to normal mode, without changing the measure
system (equivalent to running the instruction IndReset \Old).

Limitations

Axes in independent mode cannot be jogged. If an attempt is made to execute th
manually, the axis will not move, and an error message will be displayed. Execu
IndReset instruction or move the program pointer to main, in order to leave
independent mode.

If a loss of voltage occurs when the axis is in independent mode, the program c
be restarted. An error message is displayed, and the program must be started fr
beginning.

Examples

IndRMove Station_A,1\ToRelPos:=p5 \Fwd,20\Ramp:=50;

Axis 1of Station_A starts to move in a positive direction to the position p5 within
one revolution (maximum rotation 360 degrees) at a speed of 20 degrees/s. The
speed is changed with acceleration/deceleration reduced to 50% of maxim
performance.

IndAMove Station_A,1\ToAbsNum:=90,20;
WaitUntil IndInpos(Station_A,1) = TRUE;
IndRMove Station_A,1\ToRelNum:=80 \Fwd,20;
WaitTime 0.2;
WaitUntil IndInpos(Station_A,1) = TRUE;
WaitTime 0.2;
IndRMove Station_A,1\ToRelNum:=50 \Bwd,20;
WaitUntil IndInpos(Station_A,1) = TRUE;
WaitTime 0.2;
IndRMove Station_A,1\ToRelNum:=150 \Short,20;
WaitUntil IndInpos(Station_A,1) = TRUE;
WaitTime 0.2;
IndAMove Station_A,1\ToAbsNum:=10,20;

Axis 1 of Station_A is moved to the following positions:
 90 degrees
 440 degrees (1 revolution + 80 degrees)
 410 degrees (1 revolution + 50 degrees)
 510 degrees (1 revolution + 150 degrees)
 10 degrees
RAPID Reference Manual 8-IndRMove-3

IndRMove Instructions

This
Error handling

If the axis is not activated, the system variable ERRNO is set to ERR_AXIS_ACT.
error can then be handled in the error handler.

Syntax

IndRMove
[MecUnit’:=’] < variable (VAR) of mecunit> ’,’
[Axis’:=’] < expression (IN) of num>
[’\’ToRelPos’:=’ < expression (IN) of robtargets>]
| [’\’ToRelNum’:=’ < expression (IN) of num>]
[’\’Short] | [’\’ Fwd] | [’\’ Bwd] ’,’
[Speed ’:=’] < expression (IN) of num>
[’\’Ramp’:=’ < expression (IN) of num >] ’;’

Related information

Described in:

Independent axes in general Motion and I/O Principles -
Program execution

Change back to normal mode Instructions - IndReset

Reset the measurement system Instructions - IndReset

Move an independent axis to an absolute Instructions - IndAMove
position

Move an independent axis a specific Instructions - IndDMove
distance

More examples Instructions - IndCMove

Check the speed status for independent axes Functions - IndSpeed

Check the position status for independent axes Functions - IndInpos
8-IndRMove-4 RAPID Reference Manual

Instructions InvertDO

d
InvertDO Inverts the value of a digital output signal

InvertDO (Invert Digital Output) inverts the value of a digital output signal (0 -> 1 an
1 -> 0).

Example

InvertDO do15;

The current value of the signal do15 is inverted.

Arguments

InvertDO Signal

Signal Data type: signaldo

The name of the signal to be inverted.

Program execution

The current value of the signal is inverted (see Figure 1).

:

Figure 1 Inversion of a digital output signal.

Syntax

InvertDO
[Signal ’:=’] < variable (VAR) of signaldo > ’;’

1

0

0

1

Execution of the instruction InvertDO

Execution of the instruction InvertDO

Signal level

Signal level
RAPID Reference Manual 8-InvertDO-1

InvertDO Instructions
Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O System Parameters
8-InvertDO-2 RAPID Reference Manual

Instructions IODisable

C

ed

is
ndler
 is

isable
le

r.
IODisable Disable I/O unit

IODisable is used to disable an I/O unit during program execution (only in the S4
system).

I/O units are automatically enabled after start-up if they are defined in the system
parameters. When required for some reason, I/O units can be disabled or enabl
during program execution.

Examples

IODisable “cell1”, 5;

Disable I/O unit with name cell1.Wait max. 5 s.

Arguments

IODisable UnitName MaxTime

UnitName Data type: string

The name of the I/O unit to be disabled (with same name as configured).

MaxTime Data type: num

The maximum period of waiting time permitted, expressed in seconds. If th
time runs out before the I/O unit has finished the disable steps, the error ha
will be called, if there is one, with the error code ERR_IODISABLE. If there
no error handler, the execution will be stopped.

To disable an I/O unit takes about 2-5 s.

Program execution

The specified I/O unit starts the disable steps. The instruction is ready when the d
steps are finished. If the MaxTime runs out before the I/O unit has finished the disab
steps, a recoverable error will be generated.

After disabling an I/O unit, any setting of outputs in this unit will result in an erro
RAPID Reference Manual 8-IODisable-1

IODisable Instructions

s
ge.
Example

PROC go_home()
VAR num recover_flag :=0;
...
! Start to disable I/O unit cell1
recover_flag := 1;
IODisable “cell1”, 0;
! Move to home position
MoveJ home, v1000,fine,tool1;
! Wait until disable of I/O unit cell1 is ready
recover_flag := 2;
IODisable “cell1”, 5;
...
ERROR

IF ERRNO = ERR_IODISABLE THEN
IF recover_flag = 1 THEN

TRYNEXT;
ELSEIF recover_flag = 2 THEN

RETRY;
ENDIF

ELSEIF ERRNO = ERR_EXCRTYMAX THEN
ErrWrite “IODisable error”, “Not possible to disable I/O unit cell1”;
Stop;

ENDIF
ENDPROC

To save cycle time, the I/O unit cell1 is disabled during robot movement to the
home position. With the robot at the home position, a test is done to establish
whether or not the I/O unit cell1 is fully disabled. After the max. number of retrie
(5 with a waiting time of 5 s), the robot execution will stop with an error messa

The same principle can be used with IOEnable (this will save more cycle time
compared with IODisable).

Syntax

IODisable
[UnitName ’:=’] < expression (IN) of string> ’,’
[MaxTime ’:=’] < expression (IN) of num > ’;’
8-IODisable-2 RAPID Reference Manual

Instructions IODisable
Related information

Described in:

Enabling an I/O unit Instructions - IOEnable

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
RAPID Reference Manual 8-IODisable-3

IODisable Instructions
8-IODisable-4 RAPID Reference Manual

Instructions IOEnable

ed

is
ndler
 is

nable
le

IOEnable Enable I/O unit

IOEnable is used to enable an I/O unit during program execution (only in the S4C
system).

I/O units are automatically enabled after start-up if they are defined in the system
parameters. When required for some reason, I/O units can be disabled or enabl
during program execution.

Examples

IOEnable “cell1”, 5;

Enable I/O unit with name cell1. Wait max. 5 s.

Arguments

IOEnable UnitName MaxTime

UnitName Data type: string

The name of the I/O unit to be enabled (with same name as configured).

MaxTime Data type: num

The maximum period of waiting time permitted, expressed in seconds. If th
time runs out before the I/O unit has finished the enable steps, the error ha
will be called, if there is one, with the error code ERR_IOENABLE. If there
no error handler, the execution will be stopped.

To enable an I/O unit takes about 2-5 s.

Program execution

The specified I/O unit starts the enable steps. The instruction is ready when the e
steps are finished. If the MaxTime runs out before the I/O unit has finished the enab
steps, a recoverable error will be generated.

After a sequence of IODisable - IOEnable, all outputs for the current I/O unit will be
set to the old values (before IODisable).
RAPID Reference Manual 8-IOEnable-1

IOEnable Instructions

ome

 I/

 to
Example

IOEnable can also be used to check whether some I/O unit is disconnected for s
reason.

VAR num max_retry:=0;
...
IOEnable “cell1”, 0;
SetDO cell1_sig3, 1;
...
ERROR

IF ERRNO = ERR_IOENABLE THEN
IF max_retry < 5 THEN

WaitTime 1;
max_retry := max_retry + 1;
RETRY;

ELSE
RAISE;

ENDIF
ENDIF

Before using signals on the I/O unit cell1, a test is done by trying to enable the
O unit with timeout after 0 sec. If the test fails, a jump is made to the error
handler. In the error handler, the program execution waits for 1 sec. and a new
retry is made. After 5 retry attempts the error ERR_IOENABLE is propagated
the caller of this routine.

Syntax

IOEnable
[UnitName ’:=’] < expression (IN) of string> ’,’
[MaxTime ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

More examples Instructions - IODisable

Disabling an I/O unit Instructions - IODisable

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
8-IOEnable-2 RAPID Reference Manual

Instructions ISignalDI

al

u-
ISignalDI Orders interrupts from a digital input signal

ISignalDI (Interrupt Signal Digital In) is used to order and enable interrupts from a
digital input signal.

System signals can also generate interrupts.

Examples

VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDI di1,1,sig1int;

Orders an interrupt which is to occur each time the digital input signal di1 is set
to 1. A call is then made to the iroutine1 trap routine.

ISignalDI di1,0,sig1int;

Orders an interrupt which is to occur each time the digital input signal di1 is set
to 0.

ISignalDI \Single, di1,1,sig1int;

Orders an interrupt which is to occur only the first time the digital input sign
di1 is set to 1.

Arguments

ISignalDI [\Single] Signal TriggValue Interrupt

[\Single] Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs once at the most. If the arg
ment is omitted, an interrupt will occur each time its condition is satisfied.

Signal Data type: signaldi

The name of the signal that is to generate interrupts.

TriggValue Data type: dionum

The value to which the signal must change for an interrupt to occur.

The value is specified as 0 or 1 or as a symbolic value (e.g. open/close). The sig-
nal is edge-triggered upon changeover to 0 or 1.
RAPID Reference Manual 8-ISignalDI-1

ISignalDI Instructions

 rou-

g trap
 the

rrupt

first
tives

truc-
Interrupt Data type: intnum

The interrupt identity. This should have previously been connected to a trap
tine by means of the instruction CONNECT.

Program execution

When the signal assumes the specified value, a call is made to the correspondin
routine. When this has been executed, program execution continues from where
interrupt occurred.

If the signal changes to the specified value before the interrupt is ordered, no inte
occurs (see Figure 1).

:

Figure 1 Interrupts from a digital input signal at signal level 1.

Limitations

The same variable for interrupt identity cannot be used more than once, without
deleting it. Interrupts should therefore be handled as shown in one of the alterna
below.

PROC main ()
VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDI di1, 1, sig1int;
WHILE TRUE DO
:
:
ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These ins
tions are then kept outside the main flow of the program.

0

1
Signal level

Interrupt ordered

1

0
Signal level

Interrupt ordered

Interrupt occurs

Interrupt occurs
8-ISignalDI-2 RAPID Reference Manual

Instructions ISignalDI

 It
.

PROC main ()
VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDI di1, 1, sig1int;
:
:
IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program, and is then reactivated.
should be noted, in this case, that the interrupt is inactive for a short period

Syntax

ISignalDI
[’\’ Single’,’]
[Signal ’:=’] < variable (VAR) of signaldi > ’,’
[TriggValue ’:=’] < expression (IN) of dionum >’,’
[Interrupt ’:=’] < variable (VAR) of intnum > ’;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Interrupt from an output signal Instructions - ISignalDO

More information on interrupt management Basic Characteristics - Interrupts

More examples Data Types - intnum
RAPID Reference Manual 8-ISignalDI-3

ISignalDI Instructions
8-ISignalDI-4 RAPID Reference Manual

Instructions ISignalDO

 a

nal

u-
ISignalDO Interrupts from a digital output signal

ISignalDO (Interrupt Signal Digital Out) is used to order and enable interrupts from
digital output signal.

System signals can also generate interrupts.

Examples

VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDO do1,1,sig1int;

Orders an interrupt which is to occur each time the digital output signal do1 is
set to 1. A call is then made to the iroutine1 trap routine.

ISignalDO do1,0,sig1int;

Orders an interrupt which is to occur each time the digital output signal do1 is
set to 0.

ISignalDO\Single, do1,1,sig1int;

Orders an interrupt which is to occur only the first time the digital output sig
do1 is set to 1.

Arguments

ISignalDO [\Single] Signal TriggValue Interrupt

[\Single] Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs once at the most. If the arg
ment is omitted, an interrupt will occur each time its condition is satisfied.

Signal Data type: signaldo

The name of the signal that is to generate interrupts.

TriggValue Data type: dionum

The value to which the signal must change for an interrupt to occur.

The value is specified as 0 or 1 or as a symbolic value (e.g. open/close). The sig-
nal is edge-triggered upon changeover to 0 or 1.
RAPID Reference Manual 8-ISignalDO-1

ISignalDO Instructions

 rou-

g trap
 the

rrupt

first
tives

truc-
Interrupt Data type: intnum

The interrupt identity. This should have previously been connected to a trap
tine by means of the instruction CONNECT.

Program execution

When the signal assumes the specified value, a call is made to the correspondin
routine. When this has been executed, program execution continues from where
interrupt occurred.

If the signal changes to the specified value before the interrupt is ordered, no inte
occurs (see Figure 1).

:

Figure 1 Interrupts from a digital output signal at signal level 1.

Limitations

The same variable for interrupt identity cannot be used more than once, without
deleting it. Interrupts should therefore be handled as shown in one of the alterna
below.

PROC main ()
VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDO do1, 1, sig1int;
WHILE TRUE DO
:
:
ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These ins
tions are then kept outside the main flow of the program.

0

1
Signal level

Interrupt ordered

1

0
Signal level

Interrupt ordered

Interrupt occurs

Interrupt occurs
8-ISignalDO-2 RAPID Reference Manual

Instructions ISignalDO

 It
.

PROC main ()
VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDO do1, 1, sig1int;
:
:
IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program, and is then reactivated.
should be noted, in this case, that the interrupt is inactive for a short period

Syntax

ISignalDO
[’\’ Single’,’]
[Signal ’:=’] < variable (VAR) of signaldo > ’,’
[TriggValue ’:=’] < expression (IN) of dionum >’,’
[Interrupt ’:=’] < variable (VAR) of intnum > ’;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Interrupt from an input signal Instructions - ISignalDI

More information on interrupt management Basic Characteristics- Interrupts

More examples Data Types - intnum
RAPID Reference Manual 8-ISignalDO-3

ISignalDO Instructions
8-ISignalDO-4 RAPID Reference Manual

Instructions ISleep

errupt

ter-
he
ISleep Deactivates an interrupt

ISleep (Interrupt Sleep) is used to deactivate an individual interrupt temporarily.

Example

ISleep sig1int;

The interrupt sig1int is deactivated.

Arguments

ISleep Interrupt

Interrupt Data type: intnum

The variable (interrupt identity) of the interrupt.

Program execution

The event connected to this interrupt does not generate any interrupts until the int
has been re-activated by means of the instruction IWatch. Interrupts which are gener-
ated whilst ISleep is in effect are ignored.

Example

VAR intnum timeint;
CONNECT timeint WITH check_serialch;
ITimer 60, timeint;
.
ISleep timeint;
WriteBin ch1, buffer, 30;
IWatch timeint;
.
TRAP check_serialch

WriteBin ch1, buffer, 1;
IF ReadBin(ch1\Time:=5) < 0 THEN

TPWrite “The serial communication is broken”;
EXIT;

ENDIF
ENDTRAP

Communication across the ch1 serial channel is monitored by means of in
rupts which are generated every 60 seconds. The trap routine checks whether t
RAPID Reference Manual 8-ISleep-1

ISleep Instructions

ese

 inter-
O
communication is working. When, however, communication is in progress, th
interrupts are not permitted.

Error handling

Interrupts which have neither been ordered nor enabled are not permitted. If the
rupt number is unknown, the system variable ERRNO will be set to ERR_UNKIN
(see “Data types - errnum”). The error can be handled in the error handler.

Syntax

ISleep
[Interrupt ‘:=’] < variable (VAR) of intnum > ‘;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Enabling an interrupt Instructions - IWatch

Disabling all interrupts Instructions - IDisable

Cancelling an interrupt Instructions - IDelete
8-ISleep-2 RAPID Reference Manual

Instructions ITimer

ment

is

ds.

y

he
where
ITimer Orders a timed interrupt

ITimer (Interrupt Timer) is used to order and enable a timed interrupt.

This instruction can be used, for example, to check the status of peripheral equip
once every minute.

Examples

VAR intnum timeint;
CONNECT timeint WITH iroutine1;
ITimer 60, timeint;

Orders an interrupt that is to occur cyclically every 60 seconds. A call is then
made to the trap routine iroutine1.

ITimer \Single, 60, timeint;

Orders an interrupt that is to occur once, after 60 seconds.

Arguments

ITimer [\Single] Time Interrupt

[\Single] Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs only once. If the argument
omitted, an interrupt will occur each time at the specified time.

Time Data type: num

The amount of time that must lapse before the interrupt occurs.

The value is specified in second if Single is set, this time may not be less than
0.05 seconds. The corresponding time for cyclical interrupts is 0.25 secon

Interrupt Data type: intnum

The variable (interrupt identity) of the interrupt. This should have previousl
been connected to a trap routine by means of the instruction CONNECT.

Program execution

The corresponding trap routine is automatically called at a given time following t
interrupt order. When this has been executed, program execution continues from
the interrupt occurred.
RAPID Reference Manual 8-ITimer-1

ITimer Instructions

the

rupts
m-

rror

being
If the interrupt occurs cyclically, a new computation of time is started from when
interrupt occurs.

Example

VAR intnum timeint;
CONNECT timeint WITH check_serialch;
ITimer 60, timeint;
.
TRAP check_serialch

WriteBin ch1, buffer, 1;
IF ReadBin(ch1\Time:=5) < 0 THEN

TPWrite “The serial communication is broken”;
EXIT;

ENDIF
ENDTRAP

Communication across the ch1 serial channel is monitored by means of inter
which are generated every 60 seconds. The trap routine checks whether the co
munication is working. If it is not, program execution is interrupted and an e
message appears.

Limitations

The same variable for interrupt identity cannot be used more than once, without
first deleted. See Instructions - ISignalDI.

Syntax

ITimer
[’\’Single ’,’]
[Time ’:=’] < expression (IN) of num >’,’
[Interrupt ’:=’] < variable (VAR) of intnum > ’;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

More information on interrupt management Basic Characteristics- Interrupts
8-ITimer-2 RAPID Reference Manual

Instructions IVarValue

e

m a

rrays.
IVarValue Orders a variable value interrupt

IVarVal(Interrupt Variable Value) is used to order and enable an interrupt when th
value of a variable accessed via the serial sensor interface has been changed.

This instruction can be used, for example, to get seam volume or gap values fro
seam tracker.

Examples

LOCAL PERS num adtVlt{25}:=[1,1.2,1.4,1.6,1.8,2,2.16667,2.33333,2.5,...];
LOCAL PERS num adptWfd{25}:=[2,2.2,2.4,2.6,2.8,3,3.16667,3.33333,3.5,...];
LOCAL PERS num adptSpd{25}:=10,12,14,16,18,20,21.6667,23.3333,25[,...];
LOCAL CONST num GAP_VARIABLE_NO:=11;
PERS num gap_value;
VAR intnum IntAdap;

PROC main()
! Setup the interrupt. The trap routine AdapTrp will be called
! when the gap variable with number ‘GAP_VARIABLE_NO’ in
! the sensor interface has been changed. The new value will be available
! in the PERS gp_value variable.

CONNECT IntAdap WITH AdapTrp;
IVarValue GAP_VARIABLE_NO, gap_value, IntAdap;

! Start welding
ArcL\On,*,v100,adaptSm,adaptWd,adaptWv,z10,tool\j\Track:=track;
ArcL\On,*,v100,adaptSm,adaptWd,adaptWv,z10,tool\j\Track:=track;

ENDPROC

TRAP AdapTrap
VAR num ArrInd;

!Scale the raw gap value received
ArrInd:=ArrIndx(gap_value);

! Update active welddata PERS variable ‘adaptWd’ with
! new data from the arrays of predefined parameter arrays.
! The scaled gap value is used as index in the voltage, wirefeed and speed a
adaptWd.weld_voltage:=adptVlt{ArrInd};
adaptWd.weld_wirefeed:=adptWfd{ArrInd};
adaptWd.weld_speed:=adptSpd{ArrInd};

!Request a refresh of AW parameters using the new data i adaptWd
ArcRefresh;

ENDTRAP
RAPID Reference Manual 8-IVarValue-1

IVarValue Instructions

e
where

hout
Arguments

IVarValue VarNo Value, Interrupt

VarNo Data type: num

The number of the variable to be supervised.

Value Data type: num

A PERS variable which will hold the new value of Varno.

Interrupt Data type: intnum

The variable (interrupt identity) of the interrupt. This should have previously
been connected to a trap routine by means of the instruction CONNECT.

Program execution

The corresponding trap routine is automatically called at a given time following th
interrupt order. When this has been executed, program execution continues from
the interrupt occurred.

Limitations

The same variable for interrupt identity cannot be used more than five times, wit
first being deleted.

Syntax

IVarValue
[VarNo ’:=’] < expression (IN) of num >’,’
[Value ’:=’] < persistent(PERS) of num >’,’
[Interrupt ’:=’] < variable (VAR) of intnum > ’;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

More information on interrupt management Basic Characteristics- Interrupts
8-IVarValue-2 RAPID Reference Manual

Instructions IWatch

red

 gener-

e

r is
- err-
IWatch Activates an interrupt

IWatch (Interrupt Watch) is used to activate an interrupt which was previously orde
but was deactivated with ISleep.

Example

IWatch sig1int;

The interrupt sig1int that was previously deactivated is activated.

Arguments

IWatch Interrupt

Interrupt Data type: intnum

Variable (interrupt identity) of the interrupt.

Program execution

The event connected to this interrupt generates interrupts once again. Interrupts
ated during the time the ISleep instruction is in effect, however, are ignored.

Example

VAR intnum sig1int;
CONNECT sig1int WITH iroutine1;
ISignalDI di1,1,sig1int;
.
ISleep sig1int;
weldpart1;
IWatch sig1int;

During execution of the weldpart1 routine, no interrupts are permitted from th
signal di1.

Error handling

Interrupts which have not been ordered are not permitted. If the interrupt numbe
unknown, the system variable ERRNO is set to ERR_UNKINO (see “Date types
num”). The error can be handled in the error handler.
RAPID Reference Manual 8-IWatch-1

IWatch Instructions
Syntax

IWatch
[Interrupt ‘:=’] < variable (VAR) of intnum > ‘;’

Related information

Described in:

Summary of interrupts RAPID Summary - Interrupts

Deactivating an interrupt Instructions - ISleep
8-IWatch-2 RAPID Reference Manual

Instructions label

s
label Line name

Label is used to name a line in the program. Using the GOTO instruction, this name
can then be used to move program execution.

Example

GOTO next;
.

next:

Program execution continues with the instruction following next.

Arguments

Label:

Label Identifier

The name you wish to give the line.

Program execution

Nothing happens when you execute this instruction.

Limitations

The label must not be the same as

- any other label within the same routine,

- any data name within the same routine.

A label hides global data and routines with the same name within the routine it i
located in.

Syntax

(EBNF)
<identifier>’:’
RAPID Reference Manual 8-label-1

label Instructions
Related information

Described in:

Identifiers Basic Characteristics-
Basic Elements

Moving program execution to a label Instructions - GOTO
8-label-2 RAPID Reference Manual

Instructions Load

on.

 pro-

m

ding

ading
 is

ion
olved

heck
Load Load a program module during execution

Load is used to load a program module into the program memory during executi

The loaded program module will be added to the already existing modules in the
gram memory.

Example

Load ram1disk \File:="PART_A.MOD";

Load the program module PART_A.MOD from the ram1disk into the program
memory. (ram1disk is a predefined string constant "ram1disk:").

Arguments

Load FilePath [\File]

FilePath Data type: string

The file path and the file name to the file that will be loaded into the progra
memory. The file name shall be excluded when the argument \File is used.

[\File] Data type: string

When the file name is excluded in the argument FilePath then it must be defined
with this argument.

Program execution

Program execution waits for the program module to finish loading before procee
with the next instruction.

To obtain a good program structure, that is easy to understand and maintain, all lo
and unloading of program modules should be done from the main module which
always present in the program memory during execution.

After the program module is loaded it will be linked and initialised. The initialisat
of the loaded module sets all variables at module level to their init values. Unres
references will be accepted if the system parameter for Load is set (BindRef = NO).
However, when the program is started, the teach pendant function Program/File/C
program will not check for unresolved references if the parameter BindRef = NO.
There will be a run time error on execution of an unresolved reference.
RAPID Reference Manual 8-Load-1

Load Instructions

g the

me

n the

O
ory
m").
Examples

Load "ram1disk:DOORDIR/DOOR1.MOD";

Load the program module DOOR1.MOD from the ram1disk at the directory
DOORDIR into the program memory.

Load "ram1disk:DOORDIR" \File:="DOOR1.MOD";

Same as above but another syntax.

Limitations

It is not allowed to load a program module that contains a main routine.

TRAP routines, system I/O events and other program tasks cannot execute durin
loading.

Avoid ongoing robot movements during the loading.

Avoid using the floppy disk for loading since reading from the floppy drive is very ti
consuming.

A program stop during execution of the Load instruction results in a guard stop with
motors off and the error message "20025 Stop order timeout" will be displayed o
Teach Pendant.

Error handling

If the file in the Load instructions cannot be found, then the system variable ERRN
is set to ERR_FILNOTFND. If the module already is loaded into the program mem
then the system variable ERRNO is set to ERR_LOADED (see "Data types - errnu
The errors above can be handled in an error handler.

Syntax

Load
[FilePath’:=’]<expression (IN) of string>
[’ \’File’:=’ <expression (IN) of string>]’;’
8-Load-2 RAPID Reference Manual

Instructions Load
Related information

Described in:

Unload a program module Instructions - UnLoad

Accept unresolved references System Parameters - Controller
System Parameters - Tasks
System Parameters - BindRef
RAPID Reference Manual 8-Load-3

Load Instructions
8-Load-4 RAPID Reference Manual

Instructions MoveAbsJ

,

ool

, the
 The

 path.

t
n *).

d to
uip-

sion
ve-

ent
med
RAPID Reference Manual 8-MoveAbsJ-1

MoveAbsJMoves the robot to an absolute joint position

MoveAbsJ (Move Absolute Joint) is used to move the robot to an absolute position
defined in axes positions.

This instruction need only be used when:

- the end point is a singular point

- for ambiguous positions on the IRB 6400C, e.g. for movements with the t
over the robot.

The final position of the robot, during a movement with MoveAbsJ, is neither affected
by the given tool and work object, nor by active program displacement. However
robot uses these data to calculating the load, TCP velocity, and the corner path.
same tools can be used as in adjacent movement instructions.

The robot and external axes move to the destination position along a non-linear
All axes reach the destination position at the same time.

Examples

MoveAbsJ p50, v1000, z50, tool2;

The robot with the tool tool2 is moved along a non-linear path to the absolute
axis position, p50, with velocity data v1000 and zone data z50.

MoveAbsJ *, v1000\T:=5, fine, grip3;

The robot with the tool grip3, is moved along a non-linear path to a stop poin
which is stored as an absolute axis position in the instruction (marked with a
The entire movement takes 5 s.

Arguments

MoveAbsJ [\Conc] ToJointPos Speed [\V] | [\T] Zone [\Z]
Tool [\WObj]

[\Conc] (Concurrent) Data type: switch

Subsequent logical instructions are executed at once. The argument is use
shorten the cycle time when, for example, communicating with external eq
ment, if synchronisation is not required.

Using the argument \Conc, the number of movement instructions in succes
is limited to 5. In a program section that includes StorePath-RestoPath, mo
ment instructions with the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point, the subsequ
instruction is executed some time before the robot has reached the program
zone.

MoveAbsJ Instructions

fined
 the

 of the

 the
the

obot

 corner

ctly
sti-

. The
ment.

e
xter-

by the
ed in
ToJointPos (To Joint Position) Data type: jointtarget

The destination absolute joint position of the robot and external axes. It is de
as a named position or stored directly in the instruction (marked with an * in
instruction).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the tool reorientation and external axes.

[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in
instruction. It is then substituted for the corresponding velocity specified in
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

[\Z] (Zone) Data type: num

This argument is used to specify the position accuracy of the robot TCP dire
in the instruction. The length of the corner path is given in mm, which is sub
tuted for the corresponding zone specified in the zone data.

Tool Data type: tooldata

The tool in use during the movement.

The position of the TCP and the load on the tool are defined in the tool data
TCP position is used to decide the velocity and the corner path for the move

[\WObj] (Work Object) Data type: wobjdata

The work object used during the movement.

This argument can be omitted if the tool is held by the robot. However, if th
robot holds the work object, i.e. the tool is stationary, or with coordinated e
nal axes, then the argument must be specified.

In the case of a stationary tool or coordinated external axes, the data used
system to decide the velocity and the corner path for the movement, is defin
the work object.
8-MoveAbsJ-2 RAPID Reference Manual

Instructions MoveAbsJ

he
hat all
linear

 tool
ves. If
ined,

tion of
inues

e the

o not
ely.

s
Program execution

The tool is moved to the destination absolute joint position with interpolation of t
axis angles. This means that each axis is moved with constant axis velocity and t
axes reach the destination joint position at the same time, which results in a non-
path.

Generally speaking, the TCP is moved at approximate programmed velocity. The
is reoriented and the external axes are moved at the same time as the TCP mo
the programmed velocity for reorientation, or for the external axes, cannot be atta
the velocity of the TCP will be reduced.

A corner path is usually generated when movement is transferred to the next sec
the path. If a stop point is specified in the zone data, program execution only cont
when the robot and external axes have reached the appropriate joint position.

Examples

MoveAbsJ *, v2000\V:=2200, z40 \Z:=45, grip3;

The tool, grip3, is moved along a non-linear path to a absolute joint position
stored in the instruction. The movement is carried out with data set to v2000 and
z40, the velocity and zone size of the TCP are 2200 mm/s and 45 mm respec-
tively.

MoveAbsJ \Conc, *, v2000, z40, grip3;

The tool, grip3, is moved along a non-linear path to a absolute joint position
stored in the instruction. Subsequent logical instructions are executed whil
robot moves.

GripLoad obj_mass;
MoveAbsJ start, v2000, z40, grip3 \WObj:= obj;

The robot moves the work object obj in relation to the fixed tool grip3 along a
non-linear path to an absolute axis position start.

Error handling

When running the program, a check is made that the arguments Tool and \WObj d
contain contradictory data with regard to a movable or a stationary tool respectiv

Limitations

A movement with MoveAbsJ is not affected by active program displacement, but i
affected by active offset for external axes.

In order to be able to run backwards with the instruction MoveAbsJ involved, and
RAPID Reference Manual 8-MoveAbsJ-3

MoveAbsJ Instructions

e sub-
avoiding problems with singular points or ambiguous areas, it is essential that th
sequent instructions fulfil certain requirements, as follows (see Figure 1).

Figure 1 Limitation for backward execution with MoveAbsJ.

Syntax

MoveAbsJ
[’\’ Conc ’,’]
[ToJointPos ’:=’] < expression (IN) of jointtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >
[’\’ Z ‘:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’

MoveAbsJ
MoveJ

Singular point

MoveAbsJ

MoveAbsJ Any Move instr.

Ambiguous area
8-MoveAbsJ-4 RAPID Reference Manual

Instructions MoveAbsJ
Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of jointtarget Data Types - jointtarget

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Concurrent program execution Motion and I/O Principles -
Synchronisation Using Logical Instructions
RAPID Reference Manual 8-MoveAbsJ-5

MoveAbsJ Instructions
8-MoveAbsJ-6 RAPID Reference Manual

Instructions MoveC

circle.

e

n in

ed to
MoveC Moves the robot circularly

MoveC is used to move the tool centre point (TCP) circularly to a given destination.
During the movement, the orientation normally remains unchanged relative to the

Examples

MoveC p1, p2, v500, z30, tool2;

The TCP of the tool, tool2, is moved circularly to the position p2, with speed data
v500 and zone data z30. The circle is defined from the start position, the circl
point p1 and the destination point p2.

MoveC *, *, v500 \T:=5, fine, grip3;

The TCP of the tool, grip3, is moved circularly to a fine point stored in the
instruction (marked by the second *). The circle point is also stored in the
instruction (marked by the first *). The complete movement takes 5 seconds.

MoveL p1, v500, fine, tool1;
MoveC p2, p3, v500, z20, tool1;
MoveC p4, p1, v500, fine, tool1;

A complete circle is performed if the positions are the same as those show
Figure 1.

Figure 1 A complete circle is performed by two MoveC instructions.

Arguments

MoveC [\Conc] CirPoint ToPoint Speed [\V] | [\T] Zone [\Z]
Tool [\WObj] [\Corr]

[\Conc] (Concurrent) Data type: switch

Subsequent logical instructions are executed at once. This argument is us
shorten the cycle time when, for example, communicating with external
equipment, if synchronisation is not required.

p1

p3

p2p4
RAPID Reference Manual 8-MoveC-1

MoveC Instructions

ion is
ment

ent
med

een
ld be

d too
cle
rked

ed
n).

 of the

 the
the

obot
data.

 corner

ctly

t is
Using the argument \Conc, the number of movement instructions in success
limited to 5. In a program section that includes StorePath-RestoPath, move
instructions with the argument \Conc are not permitted.

If this argument is omitted, and the ToPoint is not a Stop point the subsequ
instruction is executed some time before the robot has reached the program
zone.

CirPoint Data type: robtarget

The circle point of the robot. The circle point is a position on the circle betw
the start point and the destination point. To obtain the best accuracy, it shou
placed about halfway between the start and destination points. If it is place
close to the start or destination point, the robot may give a warning. The cir
point is defined as a named position or stored directly in the instruction (ma
with an * in the instruction). The position of the external axes are not used.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
TCP, the tool reorientation and external axes.

[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in
instruction. It is then substituted for the corresponding velocity specified in
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
and external axes move. It is then substituted for the corresponding speed

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

[\Z] (Zone) Data type: num

This argument is used to specify the position accuracy of the robot TCP dire
in the instruction. The length of the corner path is given in mm, which is
substituted for the corresponding zone specified in the zone data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point tha
moved to the specified destination point.
8-MoveC-2 RAPID Reference Manual

Instructions MoveC

e

ld

e

start

oints,
re 2).

h

nd

 them
sition

he
[\WObj] (Work Object) Data type: wobjdata

The work object (object coordinate system) to which the robot position in th
instruction is related.

This argument can be omitted, and if it is, the position is related to the wor
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified in order for a circl
relative to the work object to be executed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

Program execution

The robot and external units are moved to the destination point as follows:

- The TCP of the tool is moved circularly at constant programmed velocity.

- The tool is reorientated at a constant velocity, from the orientation at the
position to the orientation at the destination point.

- The reorientation is performed relative to the circular path. Thus, if the
orientation relative to the path is the same at the start and the destination p
the relative orientation remains unchanged during the movement (see Figu

.

Figure 2 Tool orientation during circular movement.

- The orientation at the circle point is not critical; it is only used to distinguis
between two possible directions of reorientation. The accuracy of the
reorientation along the path depends only on the orientation at the start a
destination points.

- Uncoordinated external axes are executed at constant velocity in order for
to arrive at the destination point at the same time as the robot axes. The po
in the circle position is not used.

If it is not possible to attain the programmed velocity for the reorientation or for t
external axes, the velocity of the TCP will be reduced.

Start point

CirPoint

Tool orientation

ToPoint
RAPID Reference Manual 8-MoveC-3

MoveC Instructions

tion of
nues

ical

obot
.

ld
nd
 the

ivide
A corner path is usually generated when movement is transferred to the next sec
a path. If a stop point is specified in the zone data, program execution only conti
when the robot and external axes have reached the appropriate position.

Examples

MoveC *, *, v500 \V:=550, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved circularly to a position stored in the
instruction. The movement is carried out with data set to v500 and z40; the
velocity and zone size of the TCP are 550 mm/s and 45 mm respectively.

MoveC \Conc, *, *, v500, z40, grip3;

The TCP of the tool, grip3, is moved circularly to a position stored in the
instruction. The circle point is also stored in the instruction. Subsequent log
instructions are executed while the robot moves.

MoveC cir1, p15, v500, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved circularly to a position, p15, via the circle
point cir1. These positions are specified in the object coordinate system for
fixture.

Limitations

A change of execution mode from forward to backward or vice versa, while the r
is stopped on a circular path, is not permitted and will result in an error message

The instruction MoveC (or any other instruction including circular movement) shou
never be started from the beginning, with TCP between the circle point and the e
point. Otherwise the robot will not take the programmed path (positioning around
circular path in another direction compared with that programmed).

Make sure that the robot can reach the circle point during program execution and d
the circle segment if necessary.
8-MoveC-4 RAPID Reference Manual

Instructions MoveC
Syntax

MoveC
[’\’ Conc ’,’]
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >
[’\’ Z ’:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Writes to a corrections entry Instructions - CorrWrite

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Concurrent program execution Motion and I/O Principles -
Synchronisation Using Logical
Instructions
RAPID Reference Manual 8-MoveC-5

MoveC Instructions
8-MoveC-6 RAPID Reference Manual

Instructions MoveJ

ve-

 path.

d to
uip-

sion
ve-

e

ed
n).

 of the
MoveJ Moves the robot by joint movement

MoveJ is used to move the robot quickly from one point to another when that mo
ment does not have to be in a straight line.

The robot and external axes move to the destination position along a non-linear
All axes reach the destination position at the same time.

Examples

MoveJ p1, vmax, z30, tool2;

The tool centre point (TCP) of the tool, tool2, is moved along a non-linear path
to the position, p1, with speed data vmax and zone data z30.

MoveJ *, vmax \T:=5, fine, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a stop point
stored in the instruction (marked with an *). The entire movement takes 5 sec-
onds.

Arguments

MoveJ [\Conc] ToPoint Speed [\V] | [\T] Zone [\Z] Tool
[\WObj]

[\Conc] (Concurrent) Data type: switch

Subsequent logical instructions are executed at once. The argument is use
shorten the cycle time when, for example, communicating with external eq
ment, if synchronisation is not required.

Using the argument \Conc, the number of movement instructions in succes
is limited to 5. In a program section that includes StorePath-RestoPath, mo
ment instructions with the argument \Conc are not permitted.

If this argument is omitted the subsequent instruction is executed some tim
before the robot has reached the programmed zone.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the tool reorientation and external axes.
RAPID Reference Manual 8-MoveJ-1

MoveJ Instructions

 the
the

obot

 corner

ctly
sti-

ved

tion

oor-
nal

is
ll axes

iented
ammed
y of

tion of
inues
[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in
instruction. It is then substituted for the corresponding velocity specified in
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

[\Z] (Zone) Data type: num

This argument is used to specify the position accuracy of the robot TCP dire
in the instruction. The length of the corner path is given in mm, which is sub
tuted for the corresponding zone specified in the zone data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point mo
to the specified destination point.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruc
is related.

This argument can be omitted, and if it is, the position is related to the world c
dinate system. If, on the other hand, a stationary TCP or coordinated exter
axes are used, this argument must be specified.

Program execution

The tool centre point is moved to the destination point with interpolation of the ax
angles. This means that each axis is moved with constant axis velocity and that a
reach the destination point at the same time, which results in a non-linear path.

Generally speaking, the TCP is moved at the approximate programmed velocity
(regardless of whether or not the external axes are coordinated). The tool is reor
and the external axes are moved at the same time as the TCP moves. If the progr
velocity for reorientation, or for the external axes, cannot be attained, the velocit
the TCP will be reduced.

A corner path is usually generated when movement is transferred to the next sec
the path. If a stop point is specified in the zone data, program execution only cont
when the robot and external axes have reached the appropriate position.
8-MoveJ-2 RAPID Reference Manual

Instructions MoveJ

ed

ed
bot
RAPID Reference Manual 8-MoveJ-3

Examples

MoveJ *, v2000\V:=2200, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a position stor
in the instruction. The movement is carried out with data set to v2000 and z40;
the velocity and zone size of the TCP are 2200 mm/s and 45 mm respectively.

MoveJ \Conc, *, v2000, z40, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a position stor
in the instruction. Subsequent logical instructions are executed while the ro
moves.

MoveJ start, v2000, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved along a non-linear path to a position, start.
This position is specified in the object coordinate system for fixture.

Syntax

MoveJ
[’\’ Conc ’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >
[’\’ Z ‘:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Concurrent program execution Motion and I/O Principles -
Synchronisation Using Logical Instructions

MoveJ Instructions
8-MoveJ-4 RAPID Reference Manual

Instructions Open

g

d for

e

rom a

le
itten
Open Opens a file or serial channel

Open is used to open a file or serial channel for reading or writing.

Example

VAR iodev logfile;
.
Open "flp1:LOGDIR" \File:= "LOGFILE1.DOC",logfile;

The file LOGFILE1.DOC in unit flp1: (diskette), directory LOGDIR, is opened
for writing. The reference name logfile is used later in the program when writin
to the file.

Arguments

Open Object [\File] IODevice [\Read] | [\Write] | [\Append] | [\Bin]

Object Data type: string

The I/O object that is to be opened, e.g. "flp1:", "ram1disk:".

[\File] Data type: string

The name of the file. This name can also be specified in the argument Object,
e.g. "flp1:LOGDIR/LOGFILE.DOC".

IODevice Data type: iodev

A reference to the file or serial channel to open. This reference is then use
reading from and writing to the file/channel.

The arguments \Read, \Write, \Append and \Bin are mutually exclusive. If none of thes
are specified, the instruction acts in the same way as the \Write argument.

[\Read] Data type: switch

Opens a character-based file or serial channel for reading. When reading f
file, the reading is started from the beginning of the file.

[\Write] Data type: switch

Opens a character-based file or serial channel for writing. If the selected fi
already exists, its contents are deleted. Anything subsequently written is wr
at the start of the file.
RAPID Reference Manual 8-Open-1

Open Instructions

e
.

ce

 to.

 This
[\Append] Data type: switch

Opens a character-based file or serial channel for writing. If the selected fil
already exists, anything subsequently written is written at the end of the file

[\Bin] Data type: switch

Opens a binary serial channel for reading and writing.
Works as append, i.e. file pointer at end of file.

Example

VAR iodev printer;
.
Open "sio1:", printer \Bin;
Write printer, "This is a message to the printer";
Close printer;

The serial channel sio1: is opened for binary reading and writing. The referen
name printer is used later when writing to and closing the serial channel.

Program execution

The specified serial channel/file is activated so that it can be read from or written
Several files can be open on the same unit at the same time.

Error handling

If a file cannot be opened, the system variable ERRNO is set to ERR_FILEOPEN.
error can then be handled in the error handler.

Syntax

Open
[Object ’:=’] <expression (IN) of string>
[’\’File’:=’ <expression (IN) of string>’]’ ’,’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Read] | [’\’Write] | [’\’Append] | [’\’Bin] ’;’

Related information

Described in:

Writing to and reading from RAPID Summary - Communication
serial channels and files
8-Open-2 RAPID Reference Manual

Instructions MoveL

ntate

ed to

sion

ent
med

ed
n).

 for the
MoveL Moves the robot linearly

MoveL is used to move the tool centre point (TCP) linearly to a given destination.
When the TCP is to remain stationary, this instruction can also be used to reorie
the tool.

Example

MoveL p1, v1000, z30, tool2;

The TCP of the tool, tool2, is moved linearly to the position p1, with speed data
v1000 and zone data z30.

MoveL *, v1000\T:=5, fine, grip3;

The TCP of the tool, grip3, is moved linearly to a fine point stored in the
instruction (marked with an *). The complete movement takes 5 seconds.

Arguments

MoveL [\Conc] ToPoint Speed [\V] | [\T] Zone [\Z] Tool
[\WObj] [\Corr]

[\Conc] (Concurrent) Data type: switch

Subsequent logical instructions are executed at once. This argument is us
shorten the cycle time when, for example, communicating with external
equipment, if synchronisation is not required.

Using the argument \Conc, the number of movement instructions in succes
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point, the subsequ
instruction is executed some time before the robot has reached the program
zone.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the tool reorientation and external axes.
RAPID Reference Manual 8-MoveL-1

MoveL Instructions

 the
the

obot

 corner

ctly

ved

tion

d
ernal

for
[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in
instruction. It is then substituted for the corresponding velocity specified in
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
moves. It is then substituted for the corresponding speed data.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

[\Z] (Zone) Data type: num

This argument is used to specify the position accuracy of the robot TCP dire
in the instruction. The length of the corner path is given in mm, which is
substituted for the corresponding zone specified in the zone data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point mo
to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruc
is related.

This argument can be omitted, and if it is, the position is related to the worl
coordinate system. If, on the other hand, a stationary tool or coordinated ext
axes are used, this argument must be specified in order to perform a linear
movement relative to the work object.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will be
added to the path and destination position, if this argument is present.

Program execution

The robot and external units are moved to the destination position as follows:

- The TCP of the tool is moved linearly at constant programmed velocity.

- The tool is reorientated at equal intervals along the path.

- Uncoordinated external axes are executed at a constant velocity in order
them to arrive at the destination point at the same time as the robot axes.
8-MoveL-2 RAPID Reference Manual

Instructions MoveL

he

tion of
inues

oves.
If it is not possible to attain the programmed velocity for the reorientation or for t
external axes, the velocity of the TCP will be reduced.

A corner path is usually generated when movement is transferred to the next sec
a path. If a stop point is specified in the zone data, program execution only cont
when the robot and external axes have reached the appropriate position.

Examples

MoveL *, v2000 \V:=2200, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved linearly to a position stored in the
instruction. The movement is carried out with data set to v2000 and z40; the
velocity and zone size of the TCP are 2200 mm/s and 45 mm respectively.

MoveL \Conc, *, v2000, z40, grip3;

The TCP of the tool, grip3, is moved linearly to a position stored in the
instruction. Subsequent logical instructions are executed while the robot m

MoveL start, v2000, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved linearly to a position, start. This position is
specified in the object coordinate system for fixture.

Syntax

MoveL
[’\’ Conc ’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Zone ’:=’] < expression (IN) of zonedata >
[’\’ Z ’:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’
RAPID Reference Manual 8-MoveL-3

MoveL Instructions
Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Writes to a corrections entry Instructions - CorrWrite

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate Systems

Concurrent program execution Motion and I/O Principles -
Synchronisation Using Logical
Instructions
8-MoveL-4 RAPID Reference Manual

Instructions PathResol

lu-
tor.

 cycle
 argu-

 stand-

ns
e argu-

tion.

rpo-

e the
f

ions.
PathResol Override path resolution

PathResol (Path Resolution) is used to override the configured geometric path reso
tion (geometric sample time) defined in the system parameters for the manipula

Description

The path resolution affects the accuracy of the interpolated path and the program
time. The path accuracy is improved and the cycle time is often reduced when the
ment of PathResol is decreased. Too low a value for PathResol argument may however
cause CPU load problems in some demanding applications. However, use of the
ard configured path resolution (PathResol 100%) will avoid CPU load problems and
provide sufficient path accuracy in most situations.

Example of PathResol usage:

Dynamically critical movements (max payload, high speed, combined joint motio
close to the border of the work area) may cause CPU load problems. Increase th
ment of PathResol.

Low performance external axes may cause CPU load problems during coordina
Increase the argument of PathResol.

Arc-welding with high frequency weaving may require high resolution of the inte
lated path. Decrease the argument of PathResol.

Small circles or combined small movements with direction changes can decreas
path performance quality and increase the cycle time. Decrease the argument oPath-
Resol.

Gluing with large reorientations and small corner zones can cause speed variat
Decrease the argument of PathResol.

Example

MoveJ p1,v1000,fine,tool1;
PathResol 150;

With the robot at a stop point, the path resolution is decreased to 150% of that
configured.

Arguments

PathResol Value

Value Data type: num

Override as a percent of the configured path resolution
RAPID Reference Manual 8-PathResol-1

PathResol Instructions

 new
-

ally

ion.
 point
er
(a higher value decreases the path resolution).
100% corresponds to the configured path resolution.
Within the range 25-400%.

Program execution

The path resolutions of all subsequent positioning instructions are affected until a
PathResol instruction is executed. This will affect the path resolution during all pro
gram execution of movements (default path level and path level after StorePath) and
also during jogging.

The default value for override of path resolution is 100%. This value is automatic
set

- at a cold start-up

- when a new program is loaded

- when starting program execution from the beginning.

The current override of path resolution can be read from the variable C_MOTSET
(data type motsetdata) in component pathresol.

Limitations

The robot must be standing still at a stop point before overriding the path resolut
When there is a corner path in the program, the system will instead create a stop
(warning 50146) and it is not possible to restart in this instruction following a pow
failure.

Syntax

PathResol
[Value ’:=’] < expression (IN) of num> ’;’

Related information

Described in:

Positioning instructions Motion and I/O Principles- Movements

Motion settings RAPID Summary - Motion Settings

Current override of path resolution Data Types - System Data
8-PathResol-2 RAPID Reference Manual

Instructions PDispOff

nt.

gram

t coor-
med
PDispOff Deactivates program displacement

PDispOff (Program Displacement Off) is used to deactivate a program displaceme

Program displacement is activated by the instruction PDispSet or PDispOn and applies
to all movements until some other program displacement is activated or until pro
displacement is deactivated.

Examples

PDispOff;

Deactivation of a program displacement.

MoveL p10, v500, z10, tool1;
PDispOn \ExeP:=p10, p11, tool1;
MoveL p20, v500, z10, tool1;
MoveL p30, v500, z10, tool1;
PDispOff;
MoveL p40, v500, z10, tool1;

A program displacement is defined as the difference between the positionsp10
and p11. This displacement affects the movement to p20 and p30, but not to p40.

Program execution

Active program displacement is reset. This means that the program displacemen
dinate system is the same as the object coordinate system, and thus all program
positions will be related to the latter.

Syntax

PDispOff ‘;’

Related information

Described in:

Definition of program displacement Instructions - PDispOn
using two positions

Definition of program displacement using Instructions - PDispSet
values
RAPID Reference Manual 8-PDispOff-1

PDispOff Instructions
8-PDispOff-2 RAPID Reference Manual

Instructions PDispOn

t, or
ram.

ed

int
ve to
een

tion.

d

lves

ram
PDispOn Activates program displacement

PDispOn (Program Displacement On) is used to define and activate a program
displacement using two robot positions.

Program displacement is used, for example, after a search has been carried ou
when similar motion patterns are repeated at several different places in the prog

Examples

MoveL p10, v500, z10, tool1;
PDispOn \ExeP:=p10, p20, tool1;

Activation of a program displacement (parallel movement). This is calculat
based on the difference between positions p10 and p20.

MoveL p10, v500, fine, tool1;
PDispOn *, tool1;

Activation of a program displacement (parallel movement). Since a stop po
has been used in the previous instruction, the argument \ExeP does not ha
be used. The displacement is calculated on the basis of the difference betw
the robot’s actual position and the programmed point (*) stored in the instruc

PDispOn \Rot \ExeP:=p10, p20, tool1;

Activation of a program displacement including a rotation. This is calculate
based on the difference between positions p10 and p20.

Arguments

PDispOn [\Rot] [\ExeP] ProgPoint Tool [\WObj]

[\Rot] (Rotation) Data type: switch

The difference in the tool orientation is taken into consideration and this invo
a rotation of the program.

[\ExeP] (Executed Point) Data type: robtarget

The robot’s new position at the time of the program execution.
If this argument is omitted, the robot’s current position at the time of the prog
execution is used.

ProgPoint (Programmed Point) Data type: robtarget

The robot’s original position at the time of programming.
RAPID Reference Manual 8-PDispOn-1

PDispOn Instructions

d
s are

n if

 in
gDisp
1.

n
n

s case,

gram
 the

tion
Tool Data type: tooldata

The tool used during programming, i.e. the TCP to which the ProgPoint position
is related.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the ProgPoint position is related.

This argument can be omitted and, if it is, the position is related to the worl
coordinate system. However, if a stationary TCP or coordinated external axe
used, this argument must be specified.

The arguments Tool and \WObj are used both to calculate the ProgPoint during
programming and to calculate the current position during program executio
no ExeP argument is programmed.

Program execution

Program displacement means that the ProgDisp coordinate system is translated
relation to the object coordinate system. Since all positions are related to the Pro
coordinate system, all programmed positions will also be displaced. See Figure

Figure 1 Displacement of a programmed position using program displacement.

Program displacement is activated when the instruction PDispOn is executed and
remains active until some other program displacement is activated (the instructio
PDispSet or PDispOn) or until program displacement is deactivated (the instructio
PDispOff).

Only one program displacement can be active at any one time. Several PDispOn
instructions, on the other hand, can be programmed one after the other and, in thi
the different program displacements will be added.

Program displacement is calculated as the difference between ExeP and ProgPoint. If
ExeP has not been specified, the current position of the robot at the time of the pro
execution is used instead. Since it is the actual position of the robot that is used,
robot should not move when PDispOn is executed.

If the argument \Rot is used, the rotation is also calculated based on the tool orienta

Object Coordinate System

Program Displacement Coordinate SystemProgram displacement

Original
position, ProgPoint

New
position, ExeP

x

y

x

y

(ProgDisp)
8-PDispOn-2 RAPID Reference Manual

Instructions PDispOn

new
ced

e
at the two positions. The displacement will be calculated in such a way that the
position (ExeP) will have the same position and orientation in relation to the displa
coordinate system, ProgDisp, as the old position (ProgPoint) had in relation to the
original coordinate system (see Figure 2).

Figure 2 Translation and rotation of a programmed position.

The program displacement is automatically reset

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Example

PROC draw_square()
PDispOn *, tool1;
MoveL *, v500, z10, tool1;
MoveL *, v500, z10, tool1;
MoveL *, v500, z10, tool1;
MoveL *, v500, z10, tool1;
PDispOff;

ENDPROC
.
MoveL p10, v500, fine, tool1;
draw_square;
MoveL p20, v500, fine, tool1;
draw_square;
MoveL p30, v500, fine, tool1;
draw_square;

The routine draw_square is used to execute the same motion pattern at thre
different positions, based on the positions p10, p20 and p30. See Figure 3.

Object Coordinate System

Program Displacement Coordinate SystemProgram displacement

Original
position, ProgPoint

New
position, ExeP

x

y
x

y

Original
orientation

New
orientation

(ProgDisp)
RAPID Reference Manual 8-PDispOn-3

PDispOn Instructions

e
n
ased
t (*)
Figure 3 Using program displacement, motion patterns can be reused.

SearchL sen1, psearch, p10, v100, tool1\WObj:=fixture1;
PDispOn \ExeP:=psearch, *, tool1 \WObj:=fixture1;

A search is carried out in which the robot’s searched position is stored in th
position psearch. Any movement carried out after this starts from this positio
using a program displacement (parallel movement). The latter is calculated b
on the difference between the searched position and the programmed poin
stored in the instruction. All positions are based on the fixture1 object coordinate
system.

Syntax

PDispOn
[[’\’ Rot]
[’\’ ExeP ’:=’ < expression (IN) of robtarget >] ’,’]

[ProgPoint ’:=’] < expression (IN) of robtarget > ’,’
[Tool ’:=’] < persistent (PERS) of tooldata>
[‘\’WObj ’:=’ < persistent (PERS) of wobjdata>] ‘;’

Related information

Described in:

Deactivation of program displacement Instructions - PDispOff

Definition of program displacement using Instructions - PDispSet
values

Coordinate systems Motion Principles - Coordinate Systems

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

More examples Instructions - PDispOff

p10
p20

p30
8-PDispOn-4 RAPID Reference Manual

Instructions PDispSet

-

eated

ordi-

ced

ate
o the
e Fig-
PDispSet Activates program displacement using a value

PDispSet (Program Displacement Set) is used to define and activate a program dis
placement using values.

Program displacement is used, for example, when similar motion patterns are rep
at several different places in the program.

Example

VAR pose xp100 := [[100, 0, 0], [1, 0, 0, 0]];
.
PDispSet xp100;

Activation of the xp100 program displacement, meaning that:

- The ProgDisp coordinate system is displaced 100 mm from the object co
nate system, in the direction of the positive x-axis (see Figure 1).

- As long as this program displacement is active, all positions will be displa
100 mm in the direction of the x-axis.

Figure 1 A 100 mm-program displacement along the x-axis.

Arguments

PDispSet DispFrame

DispFrame (Displacement Frame) Datatyp: pose

The program displacement is defined as data of the type pose.

Program execution

Program displacement involves translating and/or rotating the ProgDisp coordin
system relative to the object coordinate system. Since all positions are related t
ProgDisp coordinate system, all programmed positions will also be displaced. Se
ure 2.

ProgDisp

X100

Object
RAPID Reference Manual 8-PDispSet-1

PDispSet Instructions

n
n

ents
.

Figure 2 Translation and rotation of a programmed position.

Program displacement is activated when the instruction PDispSet is executed and
remains active until some other program displacement is activated (the instructio
PDispSet or PDispOn) or until program displacement is deactivated (the instructio
PDispOff).

Only one program displacement can be active at any one time. Program displacem
cannot be added to one another using PDispSet.

The program displacement is automatically reset

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Syntax

PDispSet
[DispFrame ’:=’] < expression (IN) of pose> ’;’

Related information

Described in:

Deactivation of program displacement Instructions - PDispOff

Definition of program displacement Instructions - PDispOn
using two positions

Definition of data of the type pose Data Types - pose

Coordinate systems Motion Principles- Coordinate Sys-
tems

Examples of how program displacement Instructions - PDispOn
can be used

Object Coordinate System

Program Displacement Coordinate SystemProgram displacement

Original
position

New
position

x

y
x

y

Original
orientation

New
orientation

(ProgDisp)
8-PDispSet-2 RAPID Reference Manual

Instructions ProcCall

en the
ction

se
ure to

m

dure).
ProcCall Calls a new procedure

A procedure call is used to transfer program execution to another procedure. Wh
procedure has been fully executed, program execution continues with the instru
following the procedure call.

It is usually possible to send a number of arguments to the new procedure. The
control the behaviour of the procedure and make it possible for the same proced
be used for different things.

Examples

weldpipe1;

Calls the weldpipe1 procedure.

errormessage;
Set do1;

.

PROC errormessage()
TPWrite "ERROR";

ENDPROC

The errormessage procedure is called. When this procedure is ready, progra
execution returns to the instruction following the procedure call, Set do1.

Arguments

Procedure { Argument }

Procedure Identifier

The name of the procedure to be called.

Argument Data type: In accordance with
the procedure declaration

The procedure arguments (in accordance with the parameters of the proce

Example

weldpipe2 10, lowspeed;

Calls the weldpipe2 procedure, including two arguments.
RAPID Reference Manual 8-ProcCall-1

ProcCall Instructions

riable

 also
n the
weldpipe3 10 \speed:=20;

Calls the weldpipe3 procedure, including one mandatory and one optional
argument.

Limitations

The procedure’s arguments must agree with its parameters:

- All mandatory arguments must be included.

- They must be placed in the same order.

- They must be of the same data type.

- They must be of the correct type with respect to the access-mode (input, va
or persistent).

A routine can call a routine which, in turn, calls another routine, etc. A routine can
call itself, i.e. a recursive call. The number of routine levels permitted depends o
number of parameters, but more than 10 levels are usually permitted.

Syntax

(EBNF)
<procedure> [<argument list>] ’;’

<procedure> ::= <identifier>

Related information

Described in:

Arguments, parameters Basic Characteristics - Routines

More examples Program Examples
8-ProcCall-2 RAPID Reference Manual

Instructions PulseDO
PulseDO Generates a pulse on a digital output signal

PulseDO is used to generate a pulse on a digital output signal.

Examples

PulseDO do15;

A pulse with a pulse length of 0.2 s is generated on the output signal do15.

PulseDO \PLength:=1.0, ignition;

A pulse of length 1.0 s is generated on the signal ignition.

Arguments

PulseDO [\PLength] Signal

[\PLength] (Pulse Length) Data type: num

The length of the pulse in seconds (0.1 - 32s).
If the argument is omitted, a 0.2 second pulse is generated.

Signal Data type: signaldo

The name of the signal on which a pulse is to be generated.

Program execution

A pulse is generated with a specified pulse length (see Figure 1).

:

Figure 1 Generation of a pulse on a digital output signal.

1

0

0

1

Execution of the instruction PulseDO

Execution of the instruction PulseDO

Pulse length

Signal level

Signal level
RAPID Reference Manual 8-PulseDO-1

PulseDO Instructions

 be set/

t differ
The next instruction is executed directly after the pulse starts. The pulse can then
reset without affecting the rest of the program execution.

Limitations

The length of the pulse has a resolution of 0.01 seconds. Programmed values tha
from this are rounded off.

Syntax

PulseDO
[’\’ PLength ’:=’ < expression (IN) of num > ’,’]
[Signal ’:=’] < variable (VAR) of signaldo > ’;’

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
8-PulseDO-2 RAPID Reference Manual

Instructions RAISE

of the
or to

cture
lower

e

se to

hat

y not
alling

r has
RAISE Calls an error handler

RAISE is used to create an error in the program and then to call the error handler
routine. RAISE can also be used in the error handler to propagate the current err
the error handler of the calling routine.

This instruction can, for example, be used to jump back to a higher level in the stru
of the program, e.g. to the error handler in the main routine, if an error occurs at a
level.

Example

IF ...
IF ...

IF ...
RAISE escape1;

.
ERROR

IF ERRNO=escape1 RAISE;

The routine is interrupted to enable it to remove itself from a low level in th
program. A jump occurs to the error handler of the called routine.

Arguments

RAISE [Error no.]

Error no. Data type: errnum

Error number: Any number between 1 and 90 which the error handler can u
locate the error that has occurred (the ERRNO system variable).

It is also possible to book an error number outside the range 1-90 with the
instruction BookErrNo.

The error number must be specified outside the error handler in a RAISE
instruction in order to be able to transfer execution to the error handler of t
routine.

If the instruction is present in a routine’s error handler, the error number ma
be specified. In this case, the error is propagated to the error handler of the c
routine.

Program execution

Program execution continues in the routine’s error handler. After the error handle
RAPID Reference Manual 8-RAISE-1

RAISE Instructions

.

he

ror
been executed, program execution can continue with:

- the routine that called the routine in question (RETURN),

- the error handler of the routine that called the routine in question (RAISE)

If the RAISE instruction is present in a routine’s error handler, program execution
continues in the error handler of the routine that called the routine in question. T
same error number remains active.

If the RAISE instruction is present in a trap routine, the error is dealt with by the
system’s error handler.

Error handling

If the error number is out of range, the system variable ERRNO is set to
ERR_ILLRAISE (see "Data types - errnum"). This error can be handled in the er
handler.

Syntax

(EBNF)
RAISE [<error number>] ’;’

<error number> ::= <expression>

Related information

Described in:

Error handling Basic Characteristics -
Error Recovery

Booking error numbers Instructions - BookErrNo
8-RAISE-2 RAPID Reference Manual

Instructions Reset

d in
 1.
Reset Resets a digital output signal

Reset is used to reset the value of a digital output signal to zero.

Examples

Reset do15;

The signal do15 is set to 0.

Reset weld;

The signal weld is set to 0.

Arguments

Reset Signal

Signal Data type: signaldo

The name of the signal to be reset to zero.

Program execution

The true value depends on the configuration of the signal. If the signal is inverte
the system parameters, this instruction causes the physical channel to be set to

Syntax

Reset
[Signal ’:=’] < variable (VAR) of signaldo > ’;’
RAPID Reference Manual 8-Reset-1

Reset Instructions
Related information

Described in:

Setting a digital output signal Instructions - Set

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O System Parameters
8-Reset-2 RAPID Reference Manual

Instructions RestoPath

nstruc-

e path
c-

dler
-

ition
he
ong
e.
RestoPath Restores the path after an interrupt

RestoPath is used to restore a path that was stored at a previous stage using the i
tion StorePath.

Example

RestoPath;

Restores the path that was stored earlier using StorePath.

Program execution

The current movement path of the robot and the external axes is deleted and th
stored earlier using StorePath is restored. Nothing moves, however, until the instru
tion StartMove is executed or a return is made using RETRY from an error handler.

Example

ArcL p100, v100, seam1, weld5, weave1, z10, gun1;
...
ERROR

IF ERRNO=AW_WELD_ERR THEN
gun_cleaning;
RETRY;

ENDIF
...
PROC gun_cleaning()

VAR robtarget p1;
StorePath;
p1 := CRobT();
MoveL pclean, v100, fine, gun1;
...
MoveL p1, v100, fine, gun1;
RestoPath;

ENDPROC

In the event of a welding error, program execution continues in the error han
of the routine, which, in turn, calls gun_cleaning. The movement path being exe
cuted at the time is then stored and the robot moves to the position pclean where
the error is rectified. When this has been done, the robot returns to the pos
where the error occurred, p1, and stores the original movement once again. T
weld then automatically restarts, meaning that the robot is first reversed al
the path before welding starts and ordinary program execution can continu
RAPID Reference Manual 8-RestoPath-1

RestoPath Instructions

int for

ith a
e.
Limitations

The movement being executed at the time must first be stopped, using a stop po
example, before the instruction RestoPath is executed.

The movement instruction which precedes this instruction should be terminated w
stop point, in order to be able to restart in this instruction following a power failur

Syntax

RestoPath‘;’

Related information

Described in:

Storing paths Instructions - StorePath

More examples Instructions - StorePath
8-RestoPath-2 RAPID Reference Manual

Instructions RETRY

,

t is

error.

 stops
AX

using
RETRY Restarts following an error

RETRY is used to restart program execution after an error has occurred.

Example

reg2 := reg3/reg4;
.

ERROR
IF ERRNO = ERR_DIVZERO THEN

reg4 := 1;
RETRY;

ENDIF

An attempt is made to divide reg3 by reg4. If reg4 is equal to 0 (division by zero)
a jump is made to the error handler, which initialises reg4. The RETRY
instruction is then used to jump from the error handler and another attemp
made to complete the division.

Program execution

Program execution continues with (re-executes) the instruction that caused the

Error handling

If the maximum number of retries (4 retries) is exceeded, the program execution
with an error message and the system variable ERRNO is set to ERR_EXCRTYM
(see "Data types - errnum").

Limitations

The instruction can only exist in a routine’s error handler. If the error was created
a RAISE instruction, program execution cannot be restarted with a RETRY instruction,
then the instruction TRYNEXT should be used.

Syntax

RETRY ’;’
RAPID Reference Manual 8-RETRY-1

RETRY Instructions
Related information

Described in:

Error handlers Basic Characteristics-
Error Recovery

Continue with the next instruction Instructions - TRYNEXT
8-RETRY-2 RAPID Reference Manual

Instructions RETURN

he

the

-

nc-

y not
RETURN Finishes execution of a routine

RETURN is used to finish the execution of a routine. If the routine is a function, t
function value is also returned.

Examples

errormessage;
Set do1;

.

PROC errormessage()
TPWrite "ERROR";
RETURN;

ENDPROC

The errormessage procedure is called. When the procedure arrives at the
RETURN instruction, program execution returns to the instruction following
procedure call, Set do1.

FUNC num abs_value(num value)
IF value<0 THEN

RETURN -value;
ELSE

RETURN value;
ENDIF

ENDFUNC

The function returns the absolute value of a number.

Arguments

RETURN [Return value]

Return value Data type: According to the function decla
ration

The return value of a function.

The return value must be specified in a RETURN instruction present in a fu
tion.

If the instruction is present in a procedure or trap routine, a return value ma
be specified.
RAPID Reference Manual 8-RETURN-1

RETURN Instructions

 is

, the
ith

 the

e

Program execution

The result of the RETURN instruction may vary, depending on the type of routine it
used in:

- Main routine: If a program stop has been ordered at the end of the cycle
program stops. Otherwise, program execution continues w
the first instruction of the main routine.

- Procedure: Program execution continues with the instruction following
procedure call.

- Function: Returns the value of the function.

- Trap routine: Program execution continues from where the interrupt
occurred.

- Error handler: In a procedure:
Program execution continues with the routine that called th
routine with the error handler (with the instruction following
the procedure call).

In a function:
The function value is returned.

Syntax

(EBNF)
RETURN [<expression>]’;’

Related information

Described in:

Functions and Procedures Basic Characteristics - Routines

Trap routines Basic Characteristics - Interrupts

Error handlers Basic Characteristics - Error Recovery
8-RETURN-2 RAPID Reference Manual

Instructions Rewind

f
Rewind Rewind file position

Rewind sets the file position to the beginning of the file.

Example

Rewind iodev1;

The file referred to by iodev1 will have the file position set to the beginning o
the file.

Arguments

Rewind IODevice

IODevice Data type: iodev

Name (reference) of the file to be rewound.

Program execution

The specified file is rewound to the beginning.
RAPID Reference Manual 8-Rewind-1

Rewind Instructions

he
Example

! IO device and numeric variable for use together with a binary file
VAR iodev dev;
VAR num bindata;

! Open the binary file with \Write switch to erase old contents
Open "flp1:"\File := "bin_file",dev \Write;
Close dev;

! Open the binary file with \Bin switch for binary read and write access
Open "flp1:"\File := "bin_file",dev \Bin;
WriteStrBin dev,"Hello world";

! Rewind the file pointer to the beginning of the binary file
! Read contents of the file and write the binary result on TP
! (gives 72 101 108 108 111 32 119 111 114 108 100)
Rewind dev;
bindata := ReadBin(dev);
WHILE bindata <> EOF_BIN DO

TPWrite " " \Num:=bindata;
bindata := ReadBin(dev);

ENDWHILE

! Close the binary file
Close dev;

The instruction Rewind is used to rewind a binary file to the beginning so that t
contents of the file can be read back with ReadBin.

Syntax

Rewind
[IODevice ’:=’] <variable (VAR) of iodev>’;’

Related information

Described in:

Opening (etc.) of files RAPID Summary - Communication
8-Rewind-2 RAPID Reference Manual

Instructions SearchC

tre

e of
t

for

d

 TCP
tive.
ved
.

CP
ive.
ved
.

SearchC Searches circularly using the robot

SearchC (Search Circular) is used to search for a position when moving the tool cen
point (TCP) circularly.

During the movement, the robot supervises a digital input signal. When the valu
the signal changes to the requested one, the robot immediately reads the curren
position.

This instruction can typically be used when the tool held by the robot is a probe
surface detection. Using the SearchC instruction, the outline coordinates of a work
object can be obtained.

Examples

SearchC sen1, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10 at a speed of
v100. When the value of the signal sen1 changes to active, the position is store
in sp.

SearchC \Stop, sen1, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the
value of the signal sen1 changes to active, the position is stored in sp and the
robot stops immediately.

Arguments

SearchC [\Stop] | [\PStop] | [\Sup] Signal [\Flanks] SearcPoint
CirPoint ToPoint Speed [\V] | [\T] Tool [\WObj] [\Corr]

[\Stop] Data type: switch

The robot movement is stopped, as quickly as possible, without keeping the
on the path (hard stop), when the value of the search signal changes to ac
However, the robot is moved a small distance before it stops and is not mo
back to the searched position, i.e. to the position where the signal changed

[\PStop] (Path Stop) Data type: switch

The robot movement is stopped as quickly as possible, while keeping the T
on the path (soft stop), when the value of the search signal changes to act
However, the robot is moved a small distance before it stops and is not mo
back to the searched position, i.e. to the position where the signal changed
RAPID Reference Manual 8-SearchC-1

SearchC Instructions

n

t

or
earch
inning
 while
all

 with

n
g the
into

ition

ed
n).

 of the
[\Sup] (Supervision) Data type: switch

The search instruction is sensitive to signal activation during the complete
movement (flying search), i.e. even after the first signal change has been
reported. If more than one match occurs during a search, program executio
stops.

If the argument \Stop, \PStop or \Sup is omitted, the movement continues (flying
search) to the position specified in the ToPoint argument (same as with argumen
\Sup),

Signal Data type: signaldi

The name of the signal to supervise.

[\Flanks] Data type: switch

The positive and the negative edge of the signal is valid for a search hit.

If the argument \Flanks is omitted, only the positive edge of the signal is valid f
a search hit and a signal supervision will be activated at the beginning of a s
process. This means that if the signal has a positive value already at the beg
of a search process, the robot movement is stopped as quickly as possible,
keeping the TCP on the path (soft stop). However, the robot is moved a sm
distance before it stops and is not moved back to the start position. A user
recovery error (ERR_SIGSUPSEARCH) will be generated and can be dealt
by the error handler.

SearchPoint Data type: robtarget

The position of the TCP and external axes when the search signal has bee
triggered. The position is specified in the outermost coordinate system, takin
specified tool, work object and active ProgDisp/ExtOffs coordinate system
consideration.

CirPoint Data type: robtarget

The circle point of the robot. See the instruction MoveC for a more detailed
description of circular movement. The circle point is defined as a named pos
or stored directly in the instruction (marked with an * in the instruction).

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio
SearchC always uses a stop point as zone data for the destination.

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the external axes and of the tool reorientation.
8-SearchC-2 RAPID Reference Manual

Instructions SearchC

 the
 the

robot

t is

ld

ent

nt.

nt
using
ted.

ital
[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in
instruction. It is then substituted for the corresponding velocity specified in
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the
moves. It is then substituted for the corresponding speed data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point tha
moved to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot positions in the
instruction are related.

This argument can be omitted, and if it is, the position is related to the wor
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified for a linear movem
relative to the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, when this argument is prese

Program execution

See the instruction MoveC for information about circular movement.

The movement is always ended with a stop point, i.e. the robot is stopped at the
destination point.

When a flying search is used, i.e. the \Sup argument is specified, the robot moveme
always continues to the programmed destination point. When a search is made
the switch \Stop or \PStop, the robot movement stops when the first signal is detec

The SearchC instruction returns the position of the TCP when the value of the dig
signal changes to the requested one, as illustrated in Figure 1.
RAPID Reference Manual 8-SearchC-3

SearchC Instructions

d the

e, the
long
ng

d the

s used.
Figure 1 Flank-triggered signal detection (the position is stored when the signal is change
first time only).

Example

SearchC \Sup, sen1\Flanks, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the
value of the signal sen1 changes to active or passive, the position is stored insp.
If the value of the signal changes twice, program execution stops.

Limitations

Zone data for the positioning instruction that precedes SearchC must be used carefully.
The start of the search, i.e. when the I/O signal is ready to react, is not, in this cas
programmed destination point of the previous positioning instruction, but a point a
the real robot path. Figure 2 illustrates an example of something that may go wro
when zone data other than fine is used.

The instruction SearchC should never be restarted after the circle point has been
passed. Otherwise the robot will not take the programmed path (positioning aroun
circular path in another direction compared with that programmed).

Figure 2 A match is made on the wrong side of the object because the wrong zone data wa

time
1
0

= Instruction reaction when
the signal changes

time
1
0

With switch \FlanksWithout switch \Flanks

Start point with
zone data z10

Start point with
zone data fine

End point

Search object
8-SearchC-4 RAPID Reference Manual

Instructions SearchC

H.

cess -

e:

med
H

ble at

f the

med
Typical stop distance using a search velocity of 50 mm/s:

- without TCP on path (switch \Stop) 1-3 mm

- with TCP on path (switch \PStop) 12-16 mm

Error handling

An error is reported during a search when:

- no signal detection occurred - this generates the error ERR_WHLSEARC

- more than one signal detection occurred – this generates the error
ERR_WHLSEARCH only if the \Sup argument is used.

- the signal has already a positive value at the beginning of the search pro
this generates the error ERR_SIGSUPSEARCH only if the \Flanks argument
is omitted.

Errors can be handled in different ways depending on the selected running mod

Continuous forward / ERR_WHLSEARCH
No position is returned and the movement always continues to the program
destination point. The system variable ERRNO is set to ERR_WHLSEARC
and the error can be handled in the error handler of the routine.

Continuous forward / Instruction forward / ERR_SIGSUPSEARCH
No position is returned and the movement always stops as quickly as possi
the beginning of the search path. The system variable ERRNO is set to
ERR_SIGSUPSEARCH and the error can be handled in the error handler o
routine.

Instruction forward / ERR_WHLSEARCH
No position is returned and the movement always continues to the program
destination point. Program execution stops with an error message.

Instruction backward
During backward execution, the instruction just carries out the movement
without any signal supervision.
RAPID Reference Manual 8-SearchC-5

SearchC Instructions
Syntax

SearchC
[’\’ Stop’,’] | [’\’ PStop ’,’] | [’\’ Sup ’,’]
[Signal ’:=’] < variable (VAR) of signaldi >

[‘\’ Flanks]’,’
[SearchPoint ’:=’] < var or pers (INOUT) of robtarget > ’,’
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Linear searches Instructions - SearchL

Writes to a corrections entry Instructions - CorrWrite

Circular movement Motion and I/O Principles -
Positioning during Program Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Using error handlers RAPID Summary - Error Recovery

Motion in general Motion and I/O Principles

More searching examples Instructions - SearchL
8-SearchC-6 RAPID Reference Manual

Instructions SearchL

tre

e of
t

for

d

 TCP
tive.
ved
.

CP
ive.
ved
.

SearchL Searches linearly using the robot

SearchL (Search Linear) is used to search for a position when moving the tool cen
point (TCP) linearly.

During the movement, the robot supervises a digital input signal. When the valu
the signal changes to the requested one, the robot immediately reads the curren
position.

This instruction can typically be used when the tool held by the robot is a probe
surface detection. Using the SearchL instruction, the outline coordinates of a work
object can be obtained.

Examples

SearchL sen1, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10 at a speed of
v100. When the value of the signal sen1 changes to active, the position is store
in sp.

SearchL \Stop, sen1, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10. When the
value of the signal sen1 changes to active, the position is stored in sp and the
robot stops immediately.

Arguments

SearchL [\Stop] | [\PStop] |[\Sup] Signal [\Flanks] SearchPoint
ToPoint Speed [\V] | [\T] Tool [\WObj] [\Corr]

[\Stop] Data type: switch

The robot movement is stopped as quickly as possible, without keeping the
on the path (hard stop), when the value of the search signal changes to ac
However, the robot is moved a small distance before it stops and is not mo
back to the searched position, i.e. to the position where the signal changed

[\PStop] (Path Stop) Data type: switch

The robot movement is stopped as quickly as possible, while keeping the T
on the path (soft stop), when the value of the search signal changes to act
However, the robot is moved a small distance before it stops and is not mo
back to the searched position, i.e. to the position where the signal changed
RAPID Reference Manual 8-SearchL-1

SearchL Instructions

n

t

or
earch

s
ror
r

n
g the
into

ed
n).

 of the

 the
the

obot
[\Sup] (Supervision) Data type: switch

The search instruction is sensitive to signal activation during the complete
movement (flying search), i.e. even after the first signal change has been
reported. If more than one match occurs during a search, program executio
stops.

If the argument \Stop, \PStop or \Sup is omitted, the movement continues (flying
search) to the position specified in the ToPoint argument (same as with argumen
\Sup).

Signal Data type: signaldi

The name of the signal to supervise.

[\Flanks] Data type: switch

The positive and the negative edge of the signal is valid for a search hit.

If the argument \Flanks is omitted, only the positive edge of the signal is valid f
a search hit and a signal supervision will be activated at the beginning of a s
process. This means that if the signal has the positive value already at the
beginning of a search process, the robot movement is stopped as quickly a
possible, while keeping the TCP on the path (soft stop). A user recovery er
(ERR_SIGSUPSEARCH) will be generated and can be handled in the erro
handler.

SearchPoint Data type: robtarget

The position of the TCP and external axes when the search signal has bee
triggered. The position is specified in the outermost coordinate system, takin
specified tool, work object and active ProgDisp/ExtOffs coordinate system
consideration.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio
SearchL always uses a stop point as zone data for the destination.

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the external axes and of the tool reorientation.

[\V] (Velocity) Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in
instruction. It is then substituted for the corresponding velocity specified in
speed data.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
8-SearchL-2 RAPID Reference Manual

Instructions SearchL

t is

ld

ent

tion

g the
.

tal

d the
moves. It is then substituted for the corresponding speed data.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point tha
moved to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the
instruction is related.

This argument can be omitted, and if it is, the position is related to the wor
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified for a linear movem
relative to the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

Program execution

See the instruction MoveL for information about linear movement.

The movement always ends with a stop point, i.e. the robot stops at the destina
point.

If a flying search is used, i.e. the \Sup argument is specified, the robot movement
always continues to the programmed destination point. If a search is made usin
switch \Stop or \PStop, the robot movement stops when the first signal is detected

The SearchL instruction stores the position of the TCP when the value of the digi
signal changes to the requested one, as illustrated in Figure 1.

Figure 1 Flank-triggered signal detection (the position is stored when the signal is change
first time only).

time
1
0

= Instruction reaction when
the signal changes

time
1
0

With switch \FlanksWithout switch \Flanks
RAPID Reference Manual 8-SearchL-3

SearchL Instructions

h

en

e, the
long
rong

s used.
In order to get a fast response, use the interrupt-driven sensor signals sen1, sen2 or sen3
on the system board.

Examples

SearchL \Sup, sen1\Flanks, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10. When the value
of the signal sen1 changes to active or passive, the position is stored in sp. If the
value of the signal changes twice, program execution stops after the searc
process is finished.

SearchL \Stop, sen1, sp, p10, v100, tool1;
MoveL sp, v100, fine, tool1;
PDispOn *, tool1;
MoveL p100, v100, z10, tool1;
MoveL p110, v100, z10, tool1;
MoveL p120, v100, z10, tool1;
PDispOff;

At the beginning of the search process, a check on the signal sen1 will be done
and if the signal already has a positive value, the program execution stops.
Otherwise the TCP of tool1 is moved linearly towards the position p10. When the
value of the signal sen1 changes to active, the position is stored in sp and the
robot is moved back to this point. Using program displacement, the robot th
moves relative to the searched position, sp.

Limitations

Zone data for the positioning instruction that precedes SearchL must be used carefully.
The start of the search, i.e. when the I/O signal is ready to react, is not, in this cas
programmed destination point of the previous positioning instruction, but a point a
the real robot path. Figure 2 to Figure 4 illustrate examples of things that may go w
when zone data other than fine is used.

Figure 2 A match is made on the wrong side of the object because the wrong zone data wa

Search object
End point

Start point with
zone data fine

Start point with
zone data z10
8-SearchL-4 RAPID Reference Manual

Instructions SearchL

H.

cess -

e:

med
H

ble at

f the
Figure 3 No match detected because the wrong zone data was used.

Figure 4 No match detected because the wrong zone data was used.

Typical stop distance using a search velocity of 50 mm/s:

- without TCP on path (switch \Stop) 1-3 mm

- with TCP on path (switch \PStop) 12-16 mm

Error handling

An error is reported during a search when:

- no signal detection occurred - this generates the error ERR_WHLSEARC

- more than one signal detection occurred – this generates the error
ERR_WHLSEARCH only if the \Sup argument is used.

- the signal already has a positive value at the beginning of the search pro
this generates the error ERR_SIGSUPSEARCH only if the \Flanks argument
is omitted.

Errors can be handled in different ways depending on the selected running mod

Continuous forward / ERR_WHLSEARCH
No position is returned and the movement always continues to the program
destination point. The system variable ERRNO is set to ERR_WHLSEARC
and the error can be handled in the error handler of the routine.

Continuous forward / Instruction forward / ERR_SIGSUPSEARCH
No position is returned and the movement always stops as quickly as possi
the beginning of the search path.The system variable ERRNO is set to
ERR_SIGSUPSEARCH and the error can be handled in the error handler o
routine.

Search object
End point

Start point with
zone data fine

Start point with
zone data z10

Search object

End point

Start point with
zone data fine

Start point with
zone data z10
RAPID Reference Manual 8-SearchL-5

SearchL Instructions

dialog
er
gram

rches
 to
Instruction forward / ERR_WHLSEARCH
No position is returned and the movement continues to the programmed
destination point. Program execution stops with an error message.

Instruction backward
During backward execution, the instruction just carries out the movement
without any signal supervision.

Example

VAR num fk;
.
MoveL p10, v100, fine, tool1;
SearchL \Stop, sen1, sp, p20, v100, tool1;
.
ERROR

IF ERRNO=ERR_WHLSEARCH THEN
MoveL p10, v100, fine, tool1;
RETRY;

ELSEIF ERRNO=ERR_SIGSUPSEARCH THEN
TPWrite “The signal of the SearchL instruction is already high!”;
TPReadFK fk,”Try again after manual reset of signal ?”,”YES”,””,””,””,”NO”;
IF fk = 1 THEN

MoveL p10, v100, fine, tool1;
RETRY;

ELSE
Stop;

ENDIF
ENDIF

If the signal is already active at the beginning of the search process, a user
will be activated (TPReadFK ...;). Reset the signal and push YES on the us
dialog and the robot moves back to p10 and tries once more. Otherwise pro
execution will stop.

If the signal is passive at the beginning of the search process, the robot sea
from position p10 to p20. If no signal detection occurs, the robot moves back
p10 and tries once more.
8-SearchL-6 RAPID Reference Manual

Instructions SearchL
Syntax

SearchL
[’\’ Stop ’,’] | [’\’ PStop ’,’] | [’\’ Sup ’,’]
[Signal ’:=’] < variable (VAR) of signaldi >

[‘\’ Flanks] ’,’
[SearchPoint ’:=’] < var or pers (INOUT) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ V ’:=’ < expression (IN) of num >]
| [’\’ T ’:=’ < expression (IN) of num >] ’,’

[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Circular searches Instructions - SearchC

Writes to a corrections entry Instructions - CorrWrite

Linear movement Motion and I/O Principles -
Positioning during Program
Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Using error handlers RAPID Summary - Error Recovery

Motion in general Motion and I/O Principles
RAPID Reference Manual 8-SearchL-7

SearchL Instructions
8-SearchL-8 RAPID Reference Manual

Instructions Set

d in
 zero.
Set Sets a digital output signal

Set is used to set the value of a digital output signal to one.

Examples

Set do15;

The signal do15 is set to 1.

Set weldon;

The signal weldon is set to 1.

Arguments

Set Signal

Signal Data type: signaldo

The name of the signal to be set to one.

Program execution

The true value depends on the configuration of the signal. If the signal is inverte
the system parameters, this instruction causes the physical channel to be set to

Syntax

Set
[Signal ’:=’] < variable (VAR) of signaldo > ’;’
RAPID Reference Manual 8-Set-1

Set Instructions
Related information

Described in:

Setting a digital output signal to zero Instructions - Reset

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O System Parameters
8-Set-2 RAPID Reference Manual

Instructions SetAO

fore it
SetAO Changes the value of an analog output signal

SetAO is used to change the value of an analog output signal.

Example

SetAO ao2, 5.5;

The signal ao2 is set to 5.5.

Arguments

SetAO Signal Value

Signal Data type: signalao

The name of the analog output signal to be changed.

Value Data type: num

The desired value of the signal.

Program execution

The programmed value is scaled (in accordance with the system parameters) be
is sent on the physical channel. See Figure 1.

Figure 1 Diagram of how analog signal values are scaled.

Logical value in the
program

Physical value of the
output signal (V, mA, etc.)

MAX SIGNAL

MIN SIGNAL

MAX PROGRAM

MIN PROGRAM
RAPID Reference Manual 8-SetAO-1

SetAO Instructions

ble
Example

SetAO weldcurr, curr_outp;

The signal weldcurr is set to the same value as the current value of the varia
curr_outp.

Syntax

SetAO
[Signal ’:=’] < variable (VAR) of signalao > ’,’
[Value ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O System Parameters
8-SetAO-2 RAPID Reference Manual

Instructions SetDO

e-

,

en
eing
SetDO Changes the value of a digital output signal

SetDO is used to change the value of a digital output signal, with or without a tim
delay.

Examples

SetDO do15, 1;

The signal do15 is set to 1.

SetDO weld, off;

The signal weld is set to off.

SetDO \SDelay := 0.2, weld, high;

The signal weld is set to high with a delay of 0.2 s. Program execution, however
continues with the next instruction.

Arguments

SetDO [\SDelay] Signal Value

[\SDelay] (Signal Delay) Data type: num

Delays the change for the amount of time given in seconds (0.1 - 32s).
Program execution continues directly with the next instruction. After the giv
time-delay, the signal is changed without the rest of the program execution b
affected.

If the argument is omitted, the value of the signal is changed directly.

Signal Data type: signaldo

The name of the signal to be changed.

Value Data type: dionum

The desired value of the signal.

The value is specified as 0 or 1.
RAPID Reference Manual 8-SetDO-1

SetDO Instructions

in the
Program execution

The true value depends on the configuration of the signal. If the signal is inverted
system parameters, the value of the physical channel is the opposite.

Syntax

SetDO
[’\’ SDelay ’:=’ < expression (IN) of num > ’,’]
[Signal ’:=’] < variable (VAR) of signaldo > ’,’
[Value ’:=’] < expression (IN) of dionum > ’;’

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
8-SetDO-2 RAPID Reference Manual

Instructions SetGO

out

ts

ts

 the
SetGO Changes the value of a group
of digital output signals

SetGO is used to change the value of a group of digital output signals, with or with
a time delay.

Example

SetGO go2, 12;

The signal go2 is set to 12. If go2 comprises 4 signals, e.g. outputs 6-9, outpu
6 and 7 are set to zero, while outputs 8 and 9 are set to one.

SetGO \SDelay := 0.4, go2, 10;

The signal go2 is set to 10. If go2 comprises 4 signals, e.g. outputs 6-9, outpu
6 and 8 are set to zero, while outputs 7 and 9 are set to one, with a delay of 0.4 s.
Program execution, however, continues with the next instruction.

Arguments

SetGO [\SDelay] Signal Value

[\SDelay] (Signal Delay) Data type: num

Delays the change for the period of time stated in seconds (0.1 - 32s).
Program execution continues directly with the next instruction. After the
specified time delay, the value of the signals is changed without the rest of
program execution being affected.

If the argument is omitted, the value is changed directly.

Signal Data type: signalgo

The name of the signal group to be changed.

Value Data type: num

The desired value of the signal group (a positive integer).

The permitted value is dependent on the number of signals in the group:
RAPID Reference Manual 8-SetGO-1

SetGO Instructions

mber
set to
rt
No. of signals Permitted value No. of signals Permitted value

1 0 - 1 9 0 - 511

2 0 - 3 10 0 - 1023

3 0 - 7 11 0 - 2047

4 0 - 15 12 0 - 4095

5 0 - 31 13 0 - 8191

6 0 - 63 14 0 - 16383

7 0 - 127 15 0 - 32767

8 0 - 255 16 0 - 65535

Program execution

The programmed value is converted to an unsigned binary number. This binary nu
is sent on the signal group, with the result that individual signals in the group are
0 or 1. Due to internal delays, the value of the signal may be undefined for a sho
period of time.

Syntax

SetDO
[’\’ SDelay ’:=’ < expression (IN) of num > ’,’]
[Signal ’:=’] < variable (VAR) of signalgo > ’,’
[Value ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Other input/output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O (system parameters) System Parameters
8-SetGO-2 RAPID Reference Manual

Instructions SingArea

ints.

lar

. If
ment,

gu-

re
oints.

u-
 tool
SingArea Defines interpolation around singular points

SingArea is used to define how the robot is to move in the proximity of singular po

Examples

SingArea \Wrist;

The orientation of the tool may be changed slightly in order to pass a singu
point (axes 4 and 6 in line).

SingArea \Off;

The tool orientation is not allowed to differ from the programmed orientation
a singular point is passed, one or more axes may perform a sweeping move
resulting in a reduction in velocity.

Arguments

SingArea [\Wrist] | [\Off]

[\Wrist] Data type: switch

The tool orientation is allowed to differ somewhat in order to avoid wrist sin
larity. Used when axes 4 and 6 are parallel (axis 5 at 0 degrees).

[\Off] Data type: switch

The tool orientation is not allowed to differ. Used when no singular points a
passed, or when the orientation is not permitted to be changed in singular p

Program execution

If the arguments \Wrist is specified, the orientation is joint-interpolated to avoid sing
lar points. In this way, the TCP follows the correct path, but the orientation of the
deviates somewhat. This will also happen when a singular point is not passed.

The specified interpolation applies to all subsequent movements until a new SingArea
instruction is executed.

The movement is only affected on execution of linear or circular interpolation.
RAPID Reference Manual 8-SingArea-1

SingArea Instructions

ically
By default, or if none of the arguments are specified, program execution automat
uses the /Off argument. This is automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Limitations

Only one of the arguments can be specified.

Syntax

SingArea
[’\’ Wrist] | [’\’ Off] ’;’

Related information

Described in:

Singularity Motion Principles- Singularity

Interpolation Motion Principles - Positioning during
Program Execution

-
8-SingArea-2 RAPID Reference Manual

Instructions SoftAct

he

ess),

th
fault

lue is
 axis,
SoftAct Activating the soft servo

SoftAct (Soft Servo Activate) is used to activate the so called ”soft” servo on any of t
robot axes.

Example

SoftAct 3, 20;

Activation of soft servo on axis 3, with softness value 20%.

SoftAct 1, 90 \Ramp:=150;

Activation of the soft servo on axis 1, with softness value 90% and ramp
factor 150%.

Arguments

SoftAct Axis Softness [\Ramp]

Axis Data type: num

Number of current axis on the robot (1 - 6).

Softness Data type: num

Softness value in percent (0 - 100%). 0% denotes min. softness (max. stiffn
and 100% denotes max. softness.

Ramp Data type: num

Ramp factor in percent (>= 100%). The ramp factor is used to control the
engagement of the soft servo. A factor 100% denotes the normal value; wi
greater values the soft servo is engaged more slowly (longer ramp). The de
value for ramp factor is 100 %.

Program execution

Softness is activated at the value specified for the current axis. The softness va
valid for all movements, until a new softness value is programmed for the current
or until the soft servo is deactivated by an instruction.
RAPID Reference Manual 8-SoftAct-1

SoftAct Instructions

in
ere
Limitations

The same axis must not be activated twice, unless there is a moving instruction
between. Thus, the following program sequence should be avoided, otherwise th
will be a jerk in the robot movement:

SoftAct n , x ;
SoftAct n , y ;

(n = robot axis n, x and y softness values)

Syntax

SoftAct
[Axis ’:=’] < expression (IN) of num> ’,’
[Softness ’:=’] < expression (IN) of num>
[’\’Ramp ’:=’ < expression (IN) of num>]’;’

Related information

Described in:

Behaviour with the soft servo engaged Motion and I/O Principles- Positioning
during program execution
8-SoftAct-2 RAPID Reference Manual

Instructions SoftDeact

all

eac-
ater
alue
SoftDeact Deactivating the soft servo

SoftDeact (Soft Servo Deactivate) is used to deactivate the so called ”soft” servo on
robot axes.

Example

SoftDeact;

Deactivating the soft servo on all axes.

SoftDeact \Ramp:=150;

Deactivating the soft servo on all axes, with ramp factor 150%.

Arguments

SoftDeact [\Ramp]

Ramp Data type: num

Ramp factor in percent (>= 100%). The ramp factor is used to control the d
tivating of the soft servo. A factor 100% denotes the normal value; with gre
values the soft servo is deactivated more slowly (longer ramp). The default v
for rampfactor is 100 %.

Program execution

The soft servo is deactivated on all axes.

Syntax

SoftDeact
[’\’Ramp ’:=’ < expression (IN) of num>]’;’

Related information

Described in:

Activating the soft servo Instructions - SoftAct
RAPID Reference Manual 8-SoftDeact-1

SoftDeact Instructions
8-SoftDeact-2 RAPID Reference Manual

Instructions StartMove

 time as

 start
StartMove Restarts robot motion

StartMove is used to resume robot and external axes motion when this has been
stopped by the instruction StopMove.

Example

StopMove;
WaitDI ready_input, 1;
StartMove;

The robot starts to move again when the input ready_input is set.

Program execution

Any processes associated with the stopped movement are restarted at the same
motion resumes.

Error handling

If the robot is too far from the path (more than 10 mm or 20 degrees) to perform a
of the interrupted movement, the system variable ERRNO is set to ERR_PATHDIST.
This error can then be handled in the error handler.

Syntax

StartMove’;’

Related information

Described in:

Stopping movements Instructions - StopMove

More examples Instructions - StorePath

-
RAPID Reference Manual 8-StartMove-1

StartMove Instructions
8-StartMove-2 RAPID Reference Manual

Instructions Stop

endant.

t and
t and

the

ed
dant.
op

 reach

m
Stop Stops program execution

Stop is used to temporarily stop program execution.

Program execution can also be stopped using the instruction EXIT. This, however,
should only be done if a task is complete, or if a fatal error occurs, since program
execution cannot be restarted with EXIT.

Example

TPWrite "The line to the host computer is broken";
Stop;

Program execution stops after a message has been written on the teach p

Arguments

Stop [\NoRegain]

[\NoRegain] Data type: switch

Specifies for the next program start in manual mode, whether or not the robo
external axes should regain to the stop position. In automatic mode the robo
external axes always regain to the stop position.

If the argument NoRegain is set, the robot and external axes will not regain to
stop position (if they have been jogged away from it).

If the argument is omitted and if the robot or external axes have been jogg
away from the stop position, the robot displays a question on the teach pen
The user can then answer, whether or not the robot should regain to the st
position.

Program execution

The instruction stops program execution as soon as the robot and external axes
the programmed destination point for the movement it is performing at the time.
Program execution can then be restarted from the next instruction.

If there is a Stop instruction in some event routine, the routine will be executed fro
the beginning in the next event.
RAPID Reference Manual 8-Stop-1

Stop Instructions

ith a
e.
Example

MoveL p1, v500, fine, tool1;
TPWrite “Jog the robot to the position for pallet corner 1”;
Stop \NoRegain;
p1_read := CRobT();
MoveL p2, v500, z50, tool1;

Program execution stops with the robot at p1. The operator jogs the robot to
p1_read. For the next program start, the robot does not regain to p1, so the
position p1_read can be stored in the program.

Limitations

The movement instruction which precedes this instruction should be terminated w
stop point, in order to be able to restart in this instruction following a power failur

Syntax

Stop
[’\’ NoRegain]’;’

Related information

Described in:

Stopping after a fatal error Instructions - EXIT

Terminating program execution Instructions - EXIT

Only stopping robot movements Instructions - StopMove
8-Stop-2 RAPID Reference Manual

Instructions StopMove

rarily

gaged.
e time

stop

the
StopMove Stops robot motion

StopMove is used to stop robot and external axes movements temporarily. If the
instruction StartMove is given, movement resumes.

This instruction can, for example, be used in a trap routine to stop the robot tempo
when an interrupt occurs.

Example

StopMove;
WaitDI ready_input, 1;
StartMove;

The robot movement is stopped until the input, ready_input, is set.

Program execution

The movements of the robot and external axes stop without the brakes being en
Any processes associated with the movement in progress are stopped at the sam
as the movement is stopped.

Program execution continues without waiting for the robot and external axes to
(standing still).

Examples

VAR intnum intno1;
...
CONNECT intno1 WITH go_to_home_pos;
ISignalDI di1,1,intno1;

TRAP go_to_home_pos
VAR robtarget p10;

StopMove;
StorePath;
p10:=CRobT();
MoveL home,v500,fine,tool1;
WaitDI di1,0;
Move L p10,v500,fine,tool1;
RestoPath;
StartMove;

ENDTRAP

When the input di1 is set to 1, an interrupt is activated which in turn activates
RAPID Reference Manual 8-StopMove-1

StopMove Instructions
interrupt routine go_to_home_pos. The current movement is stopped
immediately and the robot moves instead to the home position. When di1 is set
to 0, the robot returns to the position at which the interrupt occurred and
continues to move along the programmed path.

VAR intnum intno1;
...
CONNECT intno1 WITH go_to_home_pos;
ISignalDI di1,1,intno1;

TRAP go_to_home_pos ()
VAR robtarget p10;

StorePath;
p10:=CRobT();
MoveL home,v500,fine,tool1;
WaitDI di1,0;
Move L p10,v500,fine,tool1;
RestoPath;
StartMove;

ENDTRAP

Similar to the previous example, but the robot does not move to the home position
until the current movement instruction is finished.

Syntax

StopMove’;’

Related information

Described in:

Continuing a movement Instructions - StartMove

Interrupts RAPID Summary - Interrupts
Basic Characteristics- Interrupts
8-StopMove-2 RAPID Reference Manual

Instructions StorePath

errupt
owing

mple,

other
for the

nd of
rupt
t is
StorePath Stores the path when an interrupt occurs

StorePath is used to store the movement path being executed when an error or int
occurs. The error handler or trap routine can then start a new movement and, foll
this, restart the movement that was stored earlier.

This instruction can be used to go to a service position or to clean the gun, for exa
when an error occurs.

Example

StorePath;

The current movement path is stored for later use.

Program execution

The current movement path of the robot and external axes is saved. After this, an
movement can be started in a trap routine or an error handler. When the reason
error or interrupt has been rectified, the saved movement path can be restarted.

Example

TRAP machine_ready
VAR robtarget p1;
StorePath;
p1 := CRobT();
MoveL p100, v100, fine, tool1;
...
MoveL p1, v100, fine, tool1;
RestoPath;
StartMove;

ENDTRAP

When an interrupt occurs that activates the trap routine machine_ready, the
movement path which the robot is executing at the time is stopped at the e
the instruction (ToPoint) and stored. After this, the robot remedies the inter
by, for example, replacing a part in the machine and the normal movemen
restarted.

Limitations

Only one movement path can be stored at a time.
RAPID Reference Manual 8-StorePath-1

StorePath Instructions
Syntax

StorePath‘;’

Related information

Described in:

Restoring a path Instructions - RestoPath

More examples Instructions - RestoPath
8-StorePath-2 RAPID Reference Manual

Instructions TEST

lue of

e exe-

com-
cution

d so
ULT
TEST Depending on the value of an expression ...

TEST is used when different instructions are to be executed depending on the va
an expression or data.

If there are not too many alternatives, the IF..ELSE instruction can also be used.

Example

TEST reg1
CASE 1,2,3 :

routine1;
CASE 4 :

routine2;
DEFAULT :

TPWrite "Illegal choice";
Stop;

ENDTEST

Different instructions are executed depending on the value of reg1. If the value
is 1-3 routine1 is executed. If the value is 4, routine2 is executed. Otherwise, an
error message is printed and execution stops.

Arguments

TEST Test data {CASE Test value {, Test value} : ...}
[DEFAULT: ...] ENDTEST

Test data Data type: All

The data or expression with which the test value will be compared.

Test value Data type: Same as test data

The value which the test data must have for the associated instructions to b
cuted.

Program execution

The test data is compared with the test values in the first CASE condition. If the
parison is true, the associated instructions are executed. After that, program exe
continues with the instruction following ENDTEST.

If the first CASE condition is not satisfied, other CASE conditions are tested, an
on. If none of the conditions are satisfied, the instructions associated with DEFA
are executed (if this is present).
RAPID Reference Manual 8-TEST-1

TEST Instructions
Syntax

(EBNF)
TEST <expression>
{(CASE <test value> { ’,’ <test value> } ’:’

<instruction list>) | <CSE> }
[DEFAULT ’:’ <instruction list>]
ENDTEST

<test value> ::= <expression>

Related information

Described in:

Expressions Basic Characteristics - Expressions
8-TEST-2 RAPID Reference Manual

Instructions TPErase

RAPID Reference Manual 8-TPErase-1

TPErase Erases text printed on the teach pendant

TPErase (Teach Pendant Erase) is used to clear the display of the teach pendant.

Example

TPErase;
TPWrite "Execution started";

The teach pendant display is cleared before Execution started is written.

Program execution

The teach pendant display is completely cleared of all text. The next time text is writ-
ten, it will be entered on the uppermost line of the display.

Syntax

TPErase;

Related information

Described in:

Writing on the teach pendant RAPID Summary - Communication

TPErase Instructions

8-TPErase-2 RAPID Reference Manual

Instructions TPReadFK

s 4

e

lue

um
TPReadFK Reads function keys

TPReadFK (Teach Pendant Read Function Key) is used to write text above the
functions keys and to find out which key is depressed.

Example

TPReadFK reg1, "More ?", "", "", "", "Yes", "No";

The text More ? is written on the teach pendant display and the function key
and 5 are activated by means of the text strings Yes and No respectively (see
Figure 1). Program execution waits until one of the function keys 4 or 5 is
pressed. In other words, reg1 will be assigned 4 or 5 depending on which of th
keys is depressed.

Figure 1 The operator can input information via the function keys.

Arguments

TPReadFK Answer Text FK1 FK2 FK3 FK4 FK5 [\MaxTime]
[\DIBreak] [\BreakFlag]

Answer Data type: num

The variable for which, depending on which key is pressed, the numeric va
1..5 is returned. If the function key 1 is pressed, 1 is returned, and so on.

Text Data type: string

The information text to be written on the display (a maximum of 80
characters).

FKx (Function key text) Data type: string

The text to be written as a prompt for the appropriate function key (a maxim
of 7 characters). FK1 is the left-most key.

Function keys without prompts are specified by an empty string "".

 Yes No

More?
RAPID Reference Manual 8-TPReadFK-1

TPReadFK Instructions

key
ndler
 can

s to

urred.

s
son.

is
ndant

re

eue)
[\MaxTime] Data type: num

The maximum amount of time [s] that program execution waits. If no function
is depressed within this time, the program continues to execute in the error ha
unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIME
be used to test whether or not the maximum time has elapsed.

[\DIBreak] (Digital Input Break) Data type: signaldi

The digital signal that may interrupt the operator dialog. If no function key is
depressed when the signal is set to 1 (or is already 1), the program continue
execute in the error handler, unless the BreakFlag is used (see below). The
constant ERR_TP_DIBREAK can be used to test whether or not this has occ

[\BreakFlag] Data type: errnum

A variable that will hold the error code if maxtime or dibreak is used. If this
optional variable is omitted, the error handler will be executed. The constant
ERR_TP_MAXTIME and ERR_TP_ DIBREAK can be used to select the rea

Program execution

The information text is always written on a new line. If the display is full of text, th
body of text is moved up one line first. Strings longer than the width of the teach pe
(40 characters) are split into two lines.

Prompts are written above the appropriate function keys. Keys without prompts a
deactivated.

Program execution waits until one of the activated function keys is depressed.

Description of concurrent TPReadFK or TPReadNum request on Teach Pendant (TP
request) from same or other program tasks:

• New TP request from other program task will not take focus (new put in queue)

• New TP request from TRAP in the same program task will take focus (old put in qu

• Program stop take focus (old put in queue)

• New TP request in program stop state takes focus (old put in queue)

Example

VAR errnum errvar;
...
TPReadFK reg1, "Go to service position?", "", "", "", "Yes", "No" \MaxTime:= 600

\DIBreak:= di5\BreakFlag:= errvar;
IF reg1 = 4 or OR errvar = ERR_TP_DIBREAK THEN

MoveL service, v500, fine, tool1;
Stop;
8-TPReadFK-2 RAPID Reference Manual

Instructions TPReadFK

s
, the
END IF
IF errvar = ERR_TP_MAXTIME EXIT;

The robot is moved to the service position if the forth function key ("Yes") i
pressed, or if the input 5 is activated. If no answer is given within 10 minutes
execution is terminated.

Syntax

TPReadFK
[Answer’:=’] <var or pers (INOUT) of num>’,’
[Text’:=’] <expression (IN) of string>’,’
[FK1 ’:=’] <expression (IN) of string>’,’
[FK2 ’:=’] <expression (IN) of string>’,’
[FK3 ’:=’] <expression (IN) of string>’,’
[FK4 ’:=’] <expression (IN) of string>’,’
[FK5 ’:=’] <expression (IN) of string>
[’\’MaxTime ’:=’ <expression (IN) of num>]
[’\’DIBreak ’:=’ <variable (VAR) of signaldi>]
[’\’BreakFlag ’:=’ <var or pers (INOUT) of errnum>]’;’

Related information

Described in:

Writing to and reading from RAPID Summary - Communication
the teach pendant

Replying via the teach pendant Running Production
RAPID Reference Manual 8-TPReadFK-3

TPReadFK Instructions
8-TPReadFK-4 RAPID Reference Manual

Instructions TPReadNum

h

eric

is
r
E

ut
ute in

ts
TPReadNum Reads a number from the teach pendant

TPReadNum (Teach Pendant Read Numerical) is used to read a number from the teac
pendant.

Example

TPReadNum reg1, “How many units should be produced?“;

The text How many units should be produced? is written on the teach pendant
display. Program execution waits until a number has been input from the num
keyboard on the teach pendant. That number is stored in reg1.

Arguments

TPReadNum Answer String [\MaxTime] [\DIBreak]
[\BreakFlag]

Answer Data type: num

The variable for which the number input via the teach pendant is returned.

String Data type: string

The information text to be written on the teach pendant (a maximum of 80
characters).

[\MaxTime] Data type: num

The maximum amount of time that program execution waits. If no number
input within this time, the program continues to execute in the error handle
unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIM
can be used to test whether or not the maximum time has elapsed.

[\DIBreak] (Digital Input Break) Data type: signaldi

The digital signal that may interrupt the operator dialog. If no number is inp
when the signal is set to 1 (or is already 1), the program continues to exec
the error handler unless the BreakFlag is used (see below). The constant
ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\BreakFlag] Data type: errnum

A variable that will hold the error code if maxtime or dibreak is used. If this
optional variable is omitted, the error handler will be executed.The constan
ERR_TP_MAXTIME and ERR_TP_ DIBREAK can be used to select the
reason.
RAPID Reference Manual 8-TPReadNum-1

TPReadNum Instructions

is

d by

Program execution

The information text is always written on a new line. If the display is full of text, th
body of text is moved up one line first. Strings longer than the width of the teach
pendant (40 characters) are split into two lines.

Program execution waits until a number is typed on the numeric keyboard (followe
Enter or OK).

Reference to TPReadFK about description of concurrent TPReadFK or TPReadNum
request on Teach Pendant from same or other program tasks.

Example

TPReadNum reg1, “How many units should be produced?“;
FOR i FROM 1 TO reg1 DO

produce_part;
ENDFOR

The text How many units should be produced? is written on the teach pendant
display. The routine produce_part is then repeated the number of times that is
input via the teach pendant.

Syntax

TPReadNum
[Answer’:=’] <var or pers (INOUT) of num>’,’
[String’:=’] <expression (IN) of string>
[’\’MaxTime ’:=’ <expression (IN) of num>]
[’\’DIBreak ’:=’ <variable (VAR) of signaldi>]
[’\’BreakFlag ’:=’ <var or pers (INOUT) of errnum>] ’;’

Related information

Described in:

Writing to and reading from RAPID Summary - Communication
the teach pendant

Entering a number on the teach pendant Production Running

Examples of how to use the arguments Instructions - TPReadFK
MaxTime, DIBreak and BreakFlag
8-TPReadNum-2 RAPID Reference Manual

Instructions TPShow

ID.

TPShow Switch window on the teach pendant

TPShow (Teach Pendant Show) is used to select Teach Pendant Window from RAP

Examples

TPShow TP_PROGRAM;

The Production Window will be active if the system is in AUTO mode and the
Program Window will be active if the system is in MAN mode after execution of
this instruction.

TPShow TP_LATEST;

The latest used Teach Pendant Window used before the Operator Input&Output
Window will be active after execution of this instruction.

Arguments

TPShow Window

Window Data type: tpnum

The window to show:

TP_PROGRAM = Production Window if in AUTO mode. Program Window if
in MAN mode.

TP_LATEST = Latest used Teach Pendant Window before Operator
Input&Output Window

Predefined data

CONST tpnum TP_PROGRAM := 1;
CONST tpnum TP_LATEST := 2;

Program execution

The selected Teach Pendant Window will be activated.
RAPID Reference Manual 8-TPShow-1

TPShow Instructions
Syntax

TPShow
[Window’:=’] <expression (IN) of tpnum> ‘;’

Related information

Described in:

Communicating using RAPID Summary - Communication
the teach pendant

Teach Pendant Window number Data Types - tpnum

-
8-TPShow-2 RAPID Reference Manual

Instructions TPWrite

 of

 is full
f the

TPWrite Writes on the teach pendant

TPWrite (Teach Pendant Write) is used to write text on the teach pendant. The value
certain data can be written as well as text.

Examples

TPWrite "Execution started";

The text Execution started is written on the teach pendant.

TPWrite "No of produced parts="\Num:=reg1;

If, for example, the answer to No of produced parts=5, enter 5 instead of reg1 on
the teach pendant.

Arguments

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient]

String Data type: string

The text string to be written (a maximum of 80 characters).

[\Num] (Numeric) Data type: num

The data whose numeric value is to be written after the text string.

[\Bool] (Boolean) Data type: bool

The data whose logical value is to be written after the text string.

[\Pos] (Position) Data type: pos

The data whose position is to be written after the text string.

[\Orient] (Orientation) Data type: orient

The data whose orientation is to be written after the text string.

Program execution

Text written on the teach pendant always begins on a new line. When the display
of text, this text is moved up one line first. Strings that are longer than the width o
teach pendant (40 characters) are divided up into two lines.

If one of the arguments \Num, \Bool, \Pos or \Orient is used, its value is first converted
RAPID Reference Manual 8-TPWrite-1

TPWrite Instructions

text

ciple
995,

t
to a text string before it is added to the first string. The conversion from value to
string takes place as follows:

Argument Value Text string

 \Num 23 "23"

 \Num 1.141367 "1.14137"

 \Bool TRUE "TRUE"

 \Pos [1817.3,905.17,879.11] "[1817.3,905.17,879.11]"

 \Orient [0.96593,0,0.25882,0] "[0.96593,0,0.25882,0]"

The value is converted to a string with standard RAPID format. This means in prin
6 significant digits. If the decimal part is less than 0.000005 or greater than 0.999
the number is rounded to an integer.

Limitations

The arguments \Num, \Bool, \Pos and \Orient are mutually exclusive and thus canno
be used simultaneously in the same instruction.

Syntax

TPWrite
[String’:=’] <expression (IN) of string>
[’\’Num’:=’ <expression (IN) of num>]
| [’\’Bool’:=’ <expression (IN) of bool>]
| [’\’Pos’:=’ <expression (IN) of pos>]
| [’\’Orient’:=’ <expression (IN) of orient>]’;’

Related information

Described in:

Clearing and reading RAPID Summary - Communication
the teach pendant

-
8-TPWrite-2 RAPID Reference Manual

Instructions TriggC

at

 of

ed to

h

ted.
TriggC Circular robot movement with events

TriggC (Trigg Circular) is used to set output signals and/or run interrupt routines
fixed positions, at the same time as the robot is moving on a circular path.

One or more (max. 4) events can be defined using the instructions TriggIO,
TriggEquip or TriggInt and afterwards these definitions are referred to in the
instruction TriggC.

Examples

VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveL p1, v500, z50, gun1;
TriggC p2, p3, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint
the corner path of the point p1.

Figure 1 Example of fixed-position IO event.

Arguments

TriggC [\Conc] CirPoint ToPoint Speed [\T]
Trigg_1 [\T2] [\T3] [\T4] Zone Tool [\WObj] [\Corr]

[\Conc] (Concurrent) Data type: switch

Subsequent logical instructions are executed at once. This argument is us
shorten the cycle time when, for example, communicating with external
equipment, and synchronisation is not required. It can also be used
to tune the execution of the robot path, to avoid warning 50024 Corner pat
failure, or error 40082 Deceleration limit.

When using the argument \Conc, the number of movement instructions in
succession is limited to 5. In a program section that includes StorePath-
RestoPath, movement instructions with the argument \Conc are not permit

End point p3

Start point p1

The output signal gun is set to on
when the TCP of the robot is here

TriggC p2, p3, v500,gunon, fine, gun1;

Circle point p2
RAPID Reference Manual 8-TriggC-1

TriggC Instructions

ent
med

ition

ed
n).

 of the

obot

 the

 the

 the

 the

 corner

t is
If this argument is omitted and the ToPoint is not a stop point, the subsequ
instruction is executed some time before the robot has reached the program
stop point or 100 ms before the specified zone.

CirPoint Data type: robtarget

The circle point of the robot. See the instruction MoveC for a more detailed
description of circular movement. The circle point is defined as a named pos
or stored directly in the instruction (marked with an * in the instruction).

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the external axes and of the tool reorientation.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
moves. It is then substituted for the corresponding speed data.

Trigg_1 Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T2] (Trigg 2) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T3] (Trigg 3) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T4] (Trigg 4) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point tha
moved to the specified destination position.
8-TriggC-2 RAPID Reference Manual

Instructions TriggC

ld

ent

er to
 are

e

rrupt
at all

th of
[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the
instruction is related.

This argument can be omitted, and if it is, the position is related to the wor
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified for a linear movem
relative to the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

Program execution

See the instruction MoveC for information about circular movement.

As the trigger conditions are fulfilled when the robot is positioned closer and clos
the end point, the defined trigger activities are carried out. The trigger conditions
fulfilled either at a certain distance before the end point of the instruction, or at a
certain distance after the start point of the instruction, or at a certain point in tim
(limited to a short time) before the end point of the instruction.

During stepping execution forwards, the I/O activities are carried out but the inte
routines are not run. During stepping execution backwards, no trigger activities
are carried out.

Examples

VAR intnum intno1;
VAR triggdata trigg1;
...
CONNECT intno1 WITH trap1;
TriggInt trigg1, 0.1 \Time, intno1;
...
TriggC p1, p2, v500, trigg1, fine, gun1;
TriggC p3, p4, v500, trigg1, fine, gun1;
...
IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position
0.1 s before the point p2 or p4 respectively.

Limitations

If the current start point deviates from the usual, so that the total positioning leng
RAPID Reference Manual 8-TriggC-3

TriggC Instructions

s, the
ram

ivities

n
ath
the instruction TriggC is shorter than usual, it may happen that several or all of the
trigger conditions are fulfilled immediately and at the same position. In such case
sequence in which the trigger activities are carried out will be undefined. The prog
logic in the user program may not be based on a normal sequence of trigger act
for an “incomplete movement”.

The instruction TriggC should never be started from the beginning with the robot i
position after the circle point. Otherwise the robot will not take the programmed p
(positioning around the circular path in another direction compared with that
programmed).

Syntax

TriggC
[’\’ Conc ’,’]
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Trigg_1 ’:=’] < variable (VAR) of triggdata >
[’\’ T2 ’:=’ < variable (VAR) of triggdata >]
[’\’ T3 ’:=’ < variable (VAR) of triggdata >]
[’\’ T4 ’:=’ < variable (VAR) of triggdata >] ‘,’
[Zone ’:=’] < expression (IN) of zonedata > ‘,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Linear movement with triggers Instructions - TriggL

Joint movement with triggers Instructions - TriggJ

Definition of triggers Instructions - TriggIO, TriggEquip
TriggInt

Writes to a corrections entry Instructions - CorrWrite

Circular movement Motion Principles - Positioning during
Program Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion Principles
8-TriggC-4 RAPID Reference Manual

Instructions TriggEquip

a

r.
TriggEquip Defines a fixed position-time I/O event

TriggEquip (Trigg Equipment) is used to define conditions and actions for setting
digital, a group of digital, or an analog output signal at a fixed position along the
robot’s movement path with possibility to do time compensation for the lag in the
external equipment.

The data defined is used for implementation in one or more subsequent TriggL, TriggC
or TriggJ instructions.

Examples

VAR triggdata gunon;

TriggEquip gunon, 10, 0.1 \DOp:=gun, 1;

TriggL p1, v500, gunon, z50, gun1;

The tool gun1 opens in point p2, when the TCP is 10 mm before the point p1. To
reach this, the digital output signal gun is set to the value 1, when TCP is 0.1 s
before the point p2. The gun is full open when TCP reach point p2.

Figure 1 Example of fixed position-time I/O event.

Arguments

TriggEquip TriggData Distance [\Start] EquipLag
[\DOp] | [\GOp] | [\AOp] | [\ProcID] SetValue [\Inhib]

TriggData Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC or TriggJ instructions.

Distance Data type: num

Defines the position on the path where the I/O equipment event shall occu

Specified as the distance in mm (positive value) from the end point of the
movement path (applicable if the argument \ Start is not set).

TriggL p1, v500, gunon, z50, gun1; End point p1Start point

10 mm

Point p2 for open of the gun
RAPID Reference Manual 8-TriggEquip-1

TriggEquip Instructions

m at
on to

m at
e in

nged.

ed in
See the section entitled Program execution for further details.

[\Start] Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

EquipLag (Equipment Lag) Data type: num

Specify the lag for the external equipment in s.

For compensation of external equipment lag, use positive argument value.
Positive argument value means that the I/O signal is set by the robot syste
specified time before the TCP physical reach the specified distance in relati
the movement start or end point.

Negative argument value means that the I/O signal is set by the robot syste
specified time after that the TCP physical has passed the specified distanc
relation to the movement start or end point.

Figure 2 Use of argument EquipLag.

[\DOp] (Digital OutPut) Data type: signaldo

The name of the signal, when a digital output signal shall be changed.

[\GOp] (Group OutPut) Data type: signalgo

The name of the signal, when a group of digital output signals shall be cha

[\AOp] (Analog Output) Data type: signalao

The name of the signal, when a analog output signal shall be changed.

[\ProcID] (Process Identity) Data type: num

Not implemented for customer use.

(The identity of the IPM process to receive the event. The selector is specifi
the argument SetValue.)

End pointStart point

Distance
\Start

Distance

EquipLag

+ - + -
8-TriggEquip-2 RAPID Reference Manual

Instructions TriggEquip

al).

s

ld

t) is
ngth
SetValue Data type: num

Desired value of output signal (within the allowed range for the current sign

[\Inhib] (Inhibit) Data type: bool

The name of a persistent variable flag for inhibit the setting of the signal at
runtime.

If this optional argument is used and the actual value of the specified flag i
TRUE at the position-time for setting of the signal then the specified signal
(DOp, GOp or AOp) will be set to 0 in stead of specified value.

Program execution

When running the instruction TriggEquip, the trigger condition is stored in the
specified variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC or TriggJ is executed, the
following are applicable, with regard to the definitions in TriggEquip:

The distance specified in the argument Distance:

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path
(to obtain adequate accuracy, the distance shou
not exceed one half of the arc length).

Figure 3 Fixed position-time I/O on a corner path.

The position-time related event will be generated when the start point (end poin
passed, if the specified distance from the end point (start point) is not within the le
of movement of the current instruction (Trigg...). With use of argument EquipLag with
negative time (delay), the I/O signal can be set after the end point.

Examples

VAR triggdata glueflow;

End point with
corner path

If the Distance is 0, the output signal is

set when the robot’s TCP is here
RAPID Reference Manual 8-TriggEquip-3

TriggEquip Instructions

t

y than

he

eter

ate
 into
ble

s

his
0.5 s
). If
rated
 of

st

ls.
TriggEquip glueflow, 1 \Start, 0.05 \AOp:=glue, 5.3;

MoveJ p1, v1000, z50, tool1;
TriggL p2, v500, glueflow, z50, tool1;

The analog output signal glue is set to the value 5.3 when the TCP passes a poin
located 1 mm after the start point p1 with compensation for equipment lag 0.05 s.

...
TriggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the TCP
passes a point located 1 mm after the start point p2.

Limitations

I/O events with distance (without the argument \Time) is intended for flying points
(corner path). I/O events with distance, using stop points, results in worse accurac
specified below.

Regarding the accuracy for I/O events with distance and using flying points, the
following is applicable when setting a digital output at a specified distance from t
start point or end point in the instruction TriggL or TriggC:

- Accuracy specified below is valid for positive EquipLag parameter < 60 ms,
equivalent to the lag in the robot servo (without changing the system param
Event Preset Time).

- Accuracy specified below is valid for positive EquipLag parameter <
configured Event Preset Time (system parameter).

- Accuracy specified below is not valid for positive EquipLag parameter >
configured Event Preset Time (system parameter). In this case, an approxim
method is used in which the dynamic limitations of the robot are not taken
consideration. SingArea \Wrist must be used in order to achieve an accepta
accuracy.

- Accuracy specified below is valid for negative EquipLag.

I/O events with time (with the argument \Time) is intended for stop points. I/O event
with time, using flying points, results in worse accuracy than specified below.
I/O events with time can only be specified from the end point of the movement. T
time cannot exceed the current braking time of the robot, which is max. approx.
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms
the specified time is greater that the current braking time, the event will be gene
anyhow, but not until braking is started (later than specified). However, the whole
the movement time for the current movement can be utilised during small and fa
movements.

Typical absolute accuracy values for set of digital outputs +/- 5 ms.
Typical repeat accuracy values for set of digital outputs +/- 2 ms.

Used digital output signals (DOp or GOp) cannot be cross connected to other signa
8-TriggEquip-4 RAPID Reference Manual

Instructions TriggEquip

Syntax

TriggEquip
[TriggData ’:=’] < variable (VAR) of triggdata> ‘,’
[Distance ’:=’] < expression (IN) of num>
[’\’ Start] ‘,’
[EquipLag ’:=’] < expression (IN) of num>
[’\’ DOp ’:=’ < variable (VAR) of signaldo>]
| [’\’ GOp ’:=’ < variable (VAR) of signalgo>]
| [’\’ AOp ’:=’ < variable (VAR) of signalao>]
| [’\’ ProcID ’:=’ < expression (IN) of num>] ‘,’
[SetValue ’:=’] < expression (IN) of num>
[’\’ Inhibit ’:=’ < persistent (PERS) of bool>] ‘,’

Related information

Described in:

Use of triggers Instructions - TriggL, TriggC, TriggJ

Definition of other triggs Instruction - TriggIO, TriggInt

More examples Data Types - triggdata

Set of I/O Instructions - SetDO, SetGO, SetAO

Configuration of Event preset time User‘s guide System Parameters -
Manipulator
RAPID Reference Manual 8-TriggEquip-5

TriggEquip Instructions
8-TriggEquip-6 RAPID Reference Manual

Instructions TriggInt

at a
TriggInt Defines a position related interrupt

TriggInt is used to define conditions and actions for running an interrupt routine
position on the robot’s movement path.

The data defined is used for implementation in one or more subsequent TriggL, TriggC
or TriggJ instructions.

Examples

VAR intnum intno1;
VAR triggdata trigg1;
...
CONNECT intno1 WITH trap1;
TriggInt trigg1, 5, intno1;
...
TriggL p1, v500, trigg1, z50, gun1;
TriggL p2, v500, trigg1, z50, gun1;
...
IDelete intno1;

The interrupt routine trap1 is run when the TCP is at a position 5 mm
before the point p1 or p2 respectively.

Figure 1 Example position related interrupt.

Arguments

TriggInt TriggData Distance [\Start] | [\Time]
Interrupt

TriggData Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC or TriggJ instructions.

Distance Data type: num

Defines the position on the path where the interrupt shall be generated.

TriggL p1, v500, trigg1, z50, gun1; End point p1 or p2Start point

5 mm

The interrupt is generated
when the TCP is here
RAPID Reference Manual 8-TriggInt-1

TriggInt Instructions

efore

ent

ld
Specified as the distance in mm (positive value) from the end point of the
movement path (applicable if the argument \ Start or \Time is not set).

See the section entitled Program execution for further details.

[\Start] Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Time] Data type: switch

Used when the value specified for the argument Distance is in fact a time in
seconds (positive value) instead of a distance.

Position related interrupts in time can only be used for short times (< 0.5 s) b
the robot reaches the end point of the instruction. See the section entitled
Limitations for more details.

Interrupt Data type: intnum

Variable used to identify an interrupt.

Program execution

When running the instruction TriggInt, data is stored in a specified variable for the
argument TriggData and the interrupt that is specified in the variable for the argum
Interrupt is activated.

Afterwards, when one of the instructions TriggL, TriggC or TriggJ is executed, the
following are applicable, with regard to the definitions in TriggInt:

The distance specified in the argument Distance:

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path
(to obtain adequate accuracy, the distance shou
not exceed one half of the arc length).

Figure 2 Position related interrupt on a corner path.

End point with
corner path

If the Distance is 0, the interrupt will be

generated when the robot’s TCP is here
8-TriggInt-2 RAPID Reference Manual

Instructions TriggInt

s
ngth

e

pt

pt

orse
The position related interrupt will be generated when the start point (end point) i
passed, if the specified distance from the end point (start point) is not within the le
of movement of the current instruction (Trigg...).

Examples

This example describes programming of the instructions that interact to generat
position related interrupts:

VAR intnum intno2;
VAR triggdata trigg2;

- Declaration of the variables intno2 and trigg2 (shall not be initiated).

CONNECT intno2 WITH trap2;

- Allocation of interrupt numbers that are stored in the variable intno2

- The interrupt number is coupled to the interrupt routine trap2

TriggInt trigg2, 0, intno2;

- The interrupt number in the variable intno2 is flagged as used

- The interrupt is activated

- Defined trigger conditions and interrupt number are stored in the variable
trigg2

TriggL p1, v500, trigg2, z50, gun1;

- The robot is moved to the point p1.

- When the TCP reaches the point p1, an interrupt is generated and the interru
routine trap2 is run.

TriggL p2, v500, trigg2, z50, gun1;

- The robot is moved to the point p2

- When the TCP reaches the point p2, an interrupt is generated and the interru
routine trap2 is run once more.

IDelete intno2;

- The interrupt number in the variable intno2 is de-allocated.

Limitations

Interrupt events with distance (without the argument \Time) is intended for flying
points (corner path). Interrupt events with distance, using stop points, results in w
accuracy than specified below.
RAPID Reference Manual 8-TriggInt-3

TriggInt Instructions

ified

his
0.5 s
). If
rated
 of

st

nse,
.

bot’s
Interrupt events with time (with the argument \Time) is intended for stop points.
Interrupt events with time, using flying points, results in worse accuracy than spec
below.
I/O events with time can only be specified from the end point of the movement. T
time cannot exceed the current braking time of the robot, which is max. approx.
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms
the specified time is greater that the current braking time, the event will be gene
anyhow, but not until braking is started (later than specified). However, the whole
the movement time for the current movement can be utilised during small and fa
movements.

Typical absolute accuracy values for generation of interrupts +/- 5 ms.
Typical repeat accuracy values for generation of interrupts +/- 2 ms.

Normally there is a delay of 5 to 120 ms between interrupt generation and respo
depending on the type of movement being performed at the time of the interrupt
(Ref. to Basic Characteristics RAPID - Interrupts).

To obtain the best accuracy when setting an output at a fixed position along the ro
path, use the instructions TriggIO or TriggEquip in preference to the instructions
TriggInt with SetDO/SetGO/SetAO in an interrupt routine.

Syntax

TriggInt
[TriggData ’:=’] < variable (VAR) of triggdata> ‘,’
[Distance ’:=’] < expression (IN) of num>
[’\’ Start] | [’\’ Time] ’,’
[Interrupt ’:=’] < variable (VAR) of intnum> ’;’

Related information

Described in:

Use of triggers Instructions - TriggL, TriggC, TriggJ

Definition of position fix I/O Instruction - TriggIO, TriggEquip

More examples Data Types - triggdata

Interrupts Basic Characteristics - Interrupts
8-TriggInt-4 RAPID Reference Manual

Instructions TriggIO

ital,

t. For
TriggIO Defines a fixed position I/O event

TriggIO is used to define conditions and actions for setting a digital, a group of dig
or an analog output signal at a fixed position along the robot’s movement path.

To obtain a fixed position I/O event, TriggIO compensates for the lag in the control
system (lag between robot and servo) but not for any lag in the external equipmen
compensation of both lags use TriggEquip.

The data defined is used for implementation in one or more subsequent TriggL, TriggC
or TriggJ instructions.

Examples

VAR triggdata gunon;

TriggIO gunon, 10 \DOp:=gun, 1;

TriggL p1, v500, gunon, z50, gun1;

The digital output signal gun is set to the value 1 when the TCP is 10 mm before
the point p1.

Figure 1 Example of fixed-position IO event.

Arguments

TriggIO TriggData Distance [\Start] | [\Time]
[\DOp] | [\GOp] | [\AOp] | [\ProcID] SetValue
[\DODelay]

TriggData Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata
are then used in the subsequent TriggL, TriggC or TriggJ instructions.

Distance Data type: num

Defines the position on the path where the I/O event shall occur.

TriggL p1, v500, gunon, z50, gun1; End point p1Start point

10 mm

The output signal gun is set
when the TCP is here
RAPID Reference Manual 8-TriggIO-1

TriggIO Instructions

he
tions

nged.

ed in

al).

f

d the
Specified as the distance in mm (positive value) from the end point of the
movement path (applicable if the argument \ Start or \Time is not set).

See the section entitled Program execution for further details.

[\Start] Data type: switch

Used when the distance for the argument Distance starts at the movement start
point instead of the end point.

[\Time] Data type: switch

Used when the value specified for the argument Distance is in fact a time in
seconds (positive value) instead of a distance.

Fixed position I/O in time can only be used for short times (< 0.5 s) before t
robot reaches the end point of the instruction. See the section entitled Limita
for more details.

[\DOp] (Digital OutPut) Data type: signaldo

The name of the signal, when a digital output signal shall be changed.

[\GOp] (Group OutPut) Data type: signalgo

The name of the signal, when a group of digital output signals shall be cha

[\AOp] (Analog Output) Data type: signalao

The name of the signal, when a analog output signal shall be changed.

[\ProcID] (Process Identity) Data type: num

Not implemented for customer use.

(The identity of the IPM process to receive the event. The selector is specifi
the argument SetValue.)

SetValue Data type: num

Desired value of output signal (within the allowed range for the current sign

[\DODelay] (Digital Output Delay) Data type: num

Time delay in seconds (positive value) for a digital output signal or group o
digital output signals.

Only used to delay setting digital output signals, after the robot has reache
specified position. There will be no delay if the argument is omitted.

The delay is not synchronised with the movement.
8-TriggIO-2 RAPID Reference Manual

Instructions TriggIO

ld

d, if

Program execution

When running the instruction TriggIO, the trigger condition is stored in a specified
variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC or TriggJ is executed, the
following are applicable, with regard to the definitions in TriggIO:

The distance specified in the argument Distance:

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path
(to obtain adequate accuracy, the distance shou
not exceed one half of the arc length).

Figure 2 Fixed position I/O on a corner path.

The fixed position I/O will be generated when the start point (end point) is passe
the specified distance from the end point (start point) is not within the length of
movement of the current instruction (Trigg...).

Examples

VAR triggdata glueflow;

TriggIO glueflow, 1 \Start \AOp:=glue, 5.3;

MoveJ p1, v1000, z50, tool1;
TriggL p2, v500, glueflow, z50, tool1;

The analog output signal glue is set to the value 5.3 when the work point passes
a point located 1 mm after the start point p1.

...
TriggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the work
point passes a point located 1 mm after the start point p2.

End point with
corner path

If the Distance is 0, the output signal is

set when the robot’s work point is here
RAPID Reference Manual 8-TriggIO-3

TriggIO Instructions

y than

s

his
0.5 s
). If
rated
 of

st

ls.
Limitations

I/O events with distance (without the argument \Time) is intended for flying points
(corner path). I/O events with distance, using stop points, results in worse accurac
specified below.

I/O events with time (with the argument \Time) is intended for stop points. I/O event
with time, using flying points, results in worse accuracy than specified below.
I/O events with time can only be specified from the end point of the movement. T
time cannot exceed the current braking time of the robot, which is max. approx.
(typical values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms
the specified time is greater that the current braking time, the event will be gene
anyhow, but not until braking is started (later than specified). However, the whole
the movement time for the current movement can be utilised during small and fa
movements.

Typical absolute accuracy values for set of digital outputs +/- 5 ms.
Typical repeat accuracy values for set of digital outputs +/- 2 ms.

Used digital output signals (DOp or GOp) cannot be cross connected to other signa

Syntax

TriggIO
[TriggData ’:=’] < variable (VAR) of triggdata> ‘,’
[Distance ’:=’] < expression (IN) of num>
[’\’ Start] | [’\’ Time]
[’\’ DOp ’:=’ < variable (VAR) of signaldo>]
| [’\’ GOp ’:=’ < variable (VAR) of signalgo>]
| [’\’ AOp ’:=’ < variable (VAR) of signalao>]
| [’\’ ProcID ’:=’ < expression (IN) of num>] ‘,’
[SetValue ’:=’] < expression (IN) of num>
[’\’ DODelay ’:=’ < expression (IN) of num>] ‘;’

Related information

Described in:

Use of triggers Instructions - TriggL, TriggC, TriggJ

Definition of position-time I/O event Instruction - TriggEquip

Definition of position related interrupts Instruction - TriggInt

More examples Data Types - triggdata

Set of I/O Instructions - SetDO, SetGO, SetAO
8-TriggIO-4 RAPID Reference Manual

Instructions TriggJ

xed

 of

ed to
uip-

h

sion
ve-
TriggJ Axis-wise robot movements with events

TriggJ (Trigg Joint) is used to set output signals and/or run interrupt routines at fi
positions, at the same time as the robot is moving on a circular path.

One or more (max. 4) events can be defined using the instructions TriggIO, TriggEquip
or TriggInt and afterwards these definitions are referred to in the instruction TriggJ.

Examples

VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveL p1, v500, z50, gun1;
TriggJ p2, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint
the corner path of the point p1.

Figure 1 Example of fixed-position IO event.

Arguments

TriggJ [\Conc] ToPoint Speed [\T] Trigg_1 [\T2] [\T3] [\T4]
Zone Tool [\WObj]

[\Conc] (Concurrent) Data type: switch

Subsequent logical instructions are executed at once. This argument is us
shorten the cycle time when, for example, communicating with external eq
ment, if synchronisation is not required. It can also be used
to tune the execution of the robot path, to avoid warning 50024 Corner pat
failure or error 40082 Deceleration limit.

Using the argument \Conc, the number of movement instructions in succes
is limited to 5. In a program section that includes StorePath-RestoPath, mo
ment instructions with the argument \Conc are not permitted.

End point p2

Start point p1

The output signal gun is set to on
when the robot’s TCP is here

TriggJ p2, v500,gunon, fine, gun1;
RAPID Reference Manual 8-TriggJ-1

TriggJ Instructions

ent
med

ed
n).

 of the

obot

 the

 the

 the

 the

 corner

t is

tion

d
If this argument is omitted and the ToPoint is not a stop point, the subsequ
instruction is executed some time before the robot has reached the program
zone .

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the external axes and of the tool reorientation.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
moves. It is then substituted for the corresponding speed data.

Trigg_1 Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T2] (Trigg 2) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T3] (Trigg 3) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T4] (Trigg 4) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point tha
moved to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruc
is related.

This argument can be omitted, and if it is, the position is related to the worl
8-TriggJ-2 RAPID Reference Manual

Instructions TriggJ

xter-
lative

er to
 are
rtain
d to

rrupt
at all

th of

s are
ch the
ram
move-
coordinate system. If, on the other hand, a stationary TCP or coordinated e
nal axes are used, this argument must be specified for a linear movement re
to the work object to be performed.

Program execution

See the instruction MoveJ for information about joint movement.

As the trigger conditions are fulfilled when the robot is positioned closer and clos
the end point, the defined trigger activities are carried out. The trigger conditions
fulfilled either at a certain distance before the end point of the instruction, or at a ce
distance after the start point of the instruction, or at a certain point in time (limite
a short time) before the end point of the instruction.

During stepping execution forwards, the I/O activities are carried out but the inte
routines are not run. During stepping execution backwards, no trigger activities
are carried out.

Examples

VAR intnum intno1;
VAR triggdata trigg1;
...
CONNECT intno1 WITH trap1;
TriggInt trigg1, 0.1 \Time , intno1;
...
TriggJ p1, v500, trigg1, fine, gun1;
TriggJ p2, v500, trigg1, fine, gun1;
...
IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position
0.1 s before the point p1 or p2 respectively.

Limitations

If the current start point deviates from the usual, so that the total positioning leng
the instruction TriggJ is shorter than usual (e.g. at the start of TriggJ with the robot
position at the end point), it may happen that several or all of the trigger condition
fulfilled immediately and at the same position. In such cases, the sequence in whi
trigger activities are carried will be undefined. The program logic in the user prog
may not be based on a normal sequences of trigger activities for an ”incomplete
ment”.
RAPID Reference Manual 8-TriggJ-3

TriggJ Instructions
Syntax

TriggJ
[’\’ Conc ’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Trigg_1 ’:=’] < variable (VAR) of triggdata >
[’\’ T2 ’:=’ < variable (VAR) of triggdata >]
[’\’ T3 ’:=’ < variable (VAR) of triggdata >]
[’\’ T4 ’:=’ < variable (VAR) of triggdata >] ‘,’
[Zone ’:=’] < expression (IN) of zonedata > ‘,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’

Related information

Described in:

Linear movement with triggs Instructions - TriggL

Circular movement with triggers Instructions - TriggC

Definition of triggers Instructions - TriggIO, TriggEquip or
TriggInt

Joint movement Motion Principles - Positioning during
Program Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion Principles
8-TriggJ-4 RAPID Reference Manual

Instructions TriggL

xed

 of

ed to

h

sion
TriggL Linear robot movements with events

TriggL (Trigg Linear) is used to set output signals and/or run interrupt routines at fi
positions, at the same time as the robot is making a linear movement.

One or more (max. 4) events can be defined using the instructions TriggIO,
TriggEquip or TriggInt and afterwards these definitions are referred to in the
instruction TriggL.

Examples

VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, on;

MoveJ p1, v500, z50, gun1;
TriggL p2, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint
the corner path of the point p1.

Figure 1 Example of fixed-position IO event.

Arguments

TriggL [\Conc] ToPoint Speed [\T] Trigg_1 [\T2] [\T3] [\T4]
Zone Tool [\WObj] [\Corr]

[\Conc] (Concurrent) Data type: switch

Subsequent logical instructions are executed at once. This argument is us
shorten the cycle time when, for example, communicating with external
equipment, if synchronisation is not required. It can also be used
to tune the execution of the robot path, to avoid warning 50024 Corner pat
failure or error 40082 Deceleration limit.

Using the argument \Conc, the number of movement instructions in succes
is limited to 5. In a program section that includes StorePath-RestoPath,
movement instructions with the argument \Conc are not permitted.

TriggL p2, v500, gunon, fine, gun1; End point p2

Start point p1

The output signal gun is set to on
when the robot’s TCP is here
RAPID Reference Manual 8-TriggL-1

TriggL Instructions

ent
med

ed
n).

 of the

obot

 the

 the

 the

 the

 corner

t is

tion

d
If this argument is omitted and the ToPoint is not a stop point, the subsequ
instruction is executed some time before the robot has reached the program
stop point or 100 ms before the specified zone.

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the external axes and of the tool reorientation.

[\T] (Time) Data type: num

This argument is used to specify the total time in seconds during which the r
moves. It is then substituted for the corresponding speed data.

Trigg_1 Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T2] (Trigg 2) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T3] (Trigg 3) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

[\T4] (Trigg 4) Data type: triggdata

Variable that refers to trigger conditions and trigger activity, defined earlier in
program using the instructions TriggIO, TriggEquip or TriggInt.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point tha
moved to the specified destination position.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruc
is related.

This argument can be omitted, and if it is, the position is related to the worl
8-TriggL-2 RAPID Reference Manual

Instructions TriggL

ent

er to
 are

e

rrupt
at all

of the

illed
rigger
 may
ent”.
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified for a linear movem
relative to the work object to be performed.

[\Corr] (Correction) Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will
be added to the path and destination position, if this argument is present.

Program execution

See the instruction MoveL for information about linear movement.

As the trigger conditions are fulfilled when the robot is positioned closer and clos
the end point, the defined trigger activities are carried out. The trigger conditions
fulfilled either at a certain distance before the end point of the instruction, or at a
certain distance after the start point of the instruction, or at a certain point in tim
(limited to a short time) before the end point of the instruction.

During stepping execution forwards, the I/O activities are carried out but the inte
routines are not run. During stepping execution backwards, no trigger activities
are carried out.

Examples

VAR intnum intno1;
VAR triggdata trigg1;
...
CONNECT intno1 WITH trap1;
TriggInt trigg1, 0.1 \Time , intno1;
...
TriggL p1, v500, trigg1, fine, gun1;
TriggL p2, v500, trigg1, fine, gun1;
...
IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position
0.1 s before the point p1 or p2 respectively.

Limitations

If the current start point deviates from the usual, so that the total positioning length
instruction TriggL is shorter than usual (e.g. at the start of TriggL with the robot position
at the end point), it may happen that several or all of the trigger conditions are fulf
immediately and at the same position. In such cases, the sequence in which the t
activities are carried out will be undefined. The program logic in the user program
not be based on a normal sequence of trigger activities for an “incomplete movem
RAPID Reference Manual 8-TriggL-3

TriggL Instructions
Syntax

TriggL
[’\’ Conc ’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[’\’ T ’:=’ < expression (IN) of num >] ’,’
[Trigg_1 ’:=’] < variable (VAR) of triggdata >
[’\’ T2 ’:=’ < variable (VAR) of triggdata >]
[’\’ T3 ’:=’ < variable (VAR) of triggdata >]
[’\’ T4 ’:=’ < variable (VAR) of triggdata >] ‘,’
[Zone ’:=’] < expression (IN) of zonedata > ‘,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >]
[’\’ Corr]’;’

Related information

Described in:

Circular movement with triggers Instructions - TriggC

Joint movement with triggers Instructions - TriggJ

Definition of triggers Instructions - TriggIO, TriggEquip or
TriggInt

Writes to a corrections entry Instructions - CorrWrite

Linear movement Motion Principles - Positioning during
Program Execution

Definition of velocity Data Types - speeddata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Motion in general Motion Principles
8-TriggL-4 RAPID Reference Manual

Instructions TRYNEXT

, the

,

hat
TRYNEXT Jumps over an instruction
which has caused an error

TRYNEXT is used to jump over an instruction which has caused an error. Instead
next instruction is run.

Example

reg2 := reg3/reg4;
.

ERROR
IF ERRNO = ERR_DIVZERO THEN

reg2:=0;
TRYNEXT;

ENDIF

An attempt is made to divide reg3 by reg4. If reg4 is equal to 0 (division by zero)
a jump is made to the error handler, where reg2 is set to 0. The TRYNEXT
instruction is then used to continue with the next instruction.

Program execution

Program execution continues with the instruction subsequent to the instruction t
caused the error.

Limitations

The instruction can only exist in a routine’s error handler.

Syntax

TRYNEXT ’;’

Related information

Described in:

Error handlers Basic Characteristics-
Error Recovery
RAPID Reference Manual 8-TRYNEXT-1

TRYNEXT Instructions
8-TRYNEXT-2 RAPID Reference Manual

Instructions TuneReset
TuneReset Resetting servo tuning

TuneReset is used to reset the dynamic behaviour of all robot axes and external
mechanical units to their normal values.

Example

TuneReset;

Resetting tuning values for all axes to 100%.

Program execution

The tuning values for all axes are reset to 100%.

The default servo tuning values for all axes are automatically set by executing
instruction TuneReset

- at a cold start-up

- when a new program is loaded

- when starting program execution from the beginning.

Syntax

TuneReset ’;’

Related information

Described in:

Tuning servos Instructions - TuneServo
RAPID Reference Manual 8-TuneReset-1

TuneReset Instructions
8-TuneReset-2 RAPID Reference Manual

Instructions TuneServo

 is not
 be

r

nd
mall
ly the

from
an
e.

:
le. A
hed.

ing

ng

uning
ing

e
TuneServo Tuning servos

TuneServo is used to tune the dynamic behaviour of separate axes on the robot. It
necessary to use TuneServo under normal circumstances, but sometimes tuning can
optimised depending on the robot configuration and the load characteristics. Fo
external axes TuneServo can be used for load adaptation.

 Incorrect use of the TuneServo can cause oscillating movements or torques that
can damage the robot. You must bear this in mind and be careful when using the
TuneServo.

Note. To obtain optimal tuning it is essential that the correct load data is used.
Check on this before using TuneServo.

Description

Tune_df

Tune_df is used for reducing overshoots or oscillations along the path.

There is always an optimum tuning value that can vary depending on position a
movement length. This optimum value can be found by changing the tuning in s
steps (1 - 2%) on the axes that are involved in this unwanted behaviour. Normal
optimal tuning will be found in the range 70% - 130%. Too low or too high tuning
values have a negative effect and will impair movements considerably.

When the tuning value at the start point of a long movement differs considerably
the tuning value at the end point, it can be advantageous in some cases to use
intermediate point with a corner zone to define where the tuning value will chang

Some examples of the use of TuneServo to optimise tuning follow below:

IRB 6400, in a press service application (extended and flexible load), axes 4 - 6
Reduce the tuning value for the current wrist axis until the movement is acceptab
change in the movement will not be noticeable until the optimum value is approac
A low value will impair the movement considerably. Typical tuning value 25%.

IRB 6400, upper parts of working area. Axis 1 can often be optimised with a tun
value of 85% - 95%.

IRB 6400, short movement (< 80 mm). Axis 1 can often be optimised with a tuni
value of 94% - 98%.

IRB 2400, with track motion. In some cases axes 2 - 3 can be optimised with a t
value of 110% - 130%. The movement along the track can require a different tun
value compared with movement at right angles to the track.

Overshoots and oscillations can be reduced by decreasing the acceleration or th
acceleration ramp (AccSet), which will however increase the cycle time. This is an
RAPID Reference Manual 8-TuneServo-1

TuneServo Instructions

eed
l axes
sing

ducing

ot be
r

ulfilled.
alternative method to the use of TuneServo.

Tune_kp, tune_kv, tune_ti external axes

These tune types affect position control gain (kp), speed control gain (kv) and sp
control integration time (ti) for external axes. These are used for adapting externa
to different load inertias. Basic tuning of external axes can also be simplified by u
these tune types.

Tune_kp, tune_kv, tune_ti robot axes

For robot axes, these tune types have another significance and can be used for re
path errors at low speed (< 500 mm/s).

Recommended values: tune_kv 100 - 180%, tune_ti 50 - 100%. Tune_kp should n
used for robot axes. Too high or low values of tune_kv/tune_ti cause vibrations o
oscillations.

Never use these tune types at high speed or when the required path accuracy is f

Example

TuneServo IRB, 2, 90;

Activating of tuning type TUNE_DF with the tuning value 90% on axis 2 in the
mechanical unit IRB.

Arguments

TuneServo MecUnit Axis TuneValue [\Type]

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The number of the current axis for the mechanical unit (1 - 6).

TuneValue Data type: num

Tuning value in percent (1 - 500). 100% is the normal value.

[\Type] Data type: tunetype

Type of servo tuning. Available types are TUNE_DF, TUNE_KP, TUNE_KV and
TUNE_TI. These types are predefined in the system with constants.
8-TuneServo-2 RAPID Reference Manual

Instructions TuneServo

his
rrent
on
This argument can be omitted when using tuning type TUNE_DF.

Example

TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP;

Activating of tuning type TUNE_KP with the tuning value 110% on axis 1 in the
mechanical unit MHA160R1.

Program execution

The specified tuning type and tuning value are activated for the specified axis. T
value is applicable for all movements until a new value is programmed for the cu
axis, or until the tuning types and values for all axes are reset using the instructi
TuneReset.

The default servo tuning values for all axes are automatically set by executing
instruction TuneReset

- at a cold start-up

- when a new program is loaded

- when starting program execution from the beginning.

Syntax

TuneServo
[MecUnit ’:=’] < variable (VAR) of mecunit> ’,’
[Axis ’:=’] < expression (IN) of num> ’,’
[TuneValue ’:=’] < expression (IN) of num>
[’\’ Type ’:=’ <expression (IN) of tunetype>]’;’

Related information

Described in:

Other motion settings Summary Rapid - Motion Settings

Types of servo tuning Data Types - tunetype

Reset of all servo tunings Instructions - TuneReset

Tuning of external axes System parameters - Manipulator

-
RAPID Reference Manual 8-TuneServo-3

TuneServo Instructions
8-TuneServo-4 RAPID Reference Manual

Instructions UnLoad

ecu-

ry

ram
usly
ent

cuted

e the

 be
UnLoad UnLoad a program module during execution

UnLoad is used to unload a program module from the program memory during ex
tion.

The program module must previously have been loaded into the program memo
using the instruction Load.

Example

UnLoad ram1disk \File:="PART_A.MOD";

UnLoad the program module PART_A.MOD from the program memory, that
previously was loaded into the program memory with Load. (See instructions
Load). (ram1disk is a predefined string constant "ram1disk:").

Arguments

UnLoad FilePath [\File]

FilePath Data type: string

The file path and the file name to the file that will be unloaded from the prog
memory. The file path and the file name must be the same as in the previo
executed Load instruction. The file name shall be excluded when the argum
\File is used.

[\File] Data type: string

When the file name is excluded in the argument FilePath, then it must be defined
with this argument. The file name must be the same as in the previously exe
Load instruction.

Program execution

To be able to execute a UnLoad instruction in the program, a Load instruction with the
same file path and name must have been executed earlier in the program.

The program execution waits for the program module to be finish unloading befor
execution proceeds with the next instruction.

After that the program module is unloaded, the rest of the program modules will
linked.

For more information see the instruction called Load.
RAPID Reference Manual 8-UnLoad-1

UnLoad Instructions

-

g the

s

tion

then
Examples

UnLoad "ram1disk:DOORDIR/DOOR1.MOD";

UnLoad the program module DOOR1.MOD from the program memory, that pre
viously was loaded into the program memory with Load. (See instructions
Load).

UnLoad "ram1disk:DOORDIR" \File:="DOOR1.MOD";

Same as above but another syntax.

Limitations

It is not allowed to unload a program module that is executing.

TRAP routines, system I/O events and other program tasks cannot execute durin
unloading.

Avoid ongoing robot movements during the unloading.

Program stop during execution of UnLoad instruction results in guard stop with motor
off and error message "20025 Stop order timeout" on the Teach Pendant.

Error handling

If the file in the UnLoad instruction cannot be unloaded, because of ongoing execu
within the module or wrong path (module not loaded with Load), then the system var-
iable ERRNO is set to ERR_UNLOAD (see “Data types - errnum”). This error can
be handled in the error handler.

Syntax

UnLoad
[FilePath’:=’]<expression (IN) of string>
[’ \’File’:=’ <expression (IN) of string>]’;’
8-UnLoad-2 RAPID Reference Manual

Instructions UnLoad
Related information

Described in:

Load a program module Instructions - Load

Accept unresolved references System Parameters - Controller
System Parameters - Tasks
System Parameters - BindRef
RAPID Reference Manual 8-UnLoad-3

UnLoad Instructions
8-UnLoad-4 RAPID Reference Manual

Instructions VelSet

t posi-

truc-

ds to

ntil a

) in
VelSet Changes the programmed velocity

VelSet is used to increase or decrease the programmed velocity of all subsequen
tioning instructions. This instruction is also used to maximize the velocity.

Example

VelSet 50, 800;

All the programmed velocities are decreased to 50% of the value in the ins
tion. The TCP velocity is not, however, permitted to exceed 800 mm/s.

Arguments

VelSet Override Max

Override Data type: num

Desired velocity as a percentage of programmed velocity. 100% correspon
the programmed velocity.

Max Data type: num

Maximum TCP velocity in mm/s.

Program execution

The programmed velocity of all subsequent positioning instructions is affected u
new VelSet instruction is executed.

The argument Override affects:

- All velocity components (TCP, orientation, rotating and linear external axes
speeddata.

- The programmed velocity override in the positioning instruction (the
argument \V).

- Timed movements.

The argument Override does not affect:

- The welding speed in welddata.

- The heating and filling speed in seamdata.

The argument Max only affects the velocity of the TCP.
RAPID Reference Manual 8-VelSet-1

VelSet Instructions

se

 the
The default values for Override and Max are 100% and 5000 mm/s respectively. The
values are automatically set

- at a cold start-up

- when a new program is loaded

- when starting program executing from the beginning.

Example

VelSet 50, 800;
MoveL p1, v1000, z10, tool1;
MoveL p2, v2000, z10, tool1;
MoveL p3, v1000\T:=5, z10, tool1;

The speed is 500 mm/s to point p1 and 800 mm/s to p2. It takes 10 seconds to
move from p2 to p3.

Limitations

The maximum speed is not taken into consideration when the time is specified in
positioning instruction.

Syntax

VelSet
[Override ’:=’] < expression (IN) of num > ’,’
[Max ’:=’] < expression (IN) of num > ’;’

Related information

Described in:

Definition of velocity Data Types - speeddata

Positioning instructions RAPID Summary - Motion
8-VelSet-2 RAPID Reference Manual

Instructions WaitDI

is
ere

er,

tted
d in

-

 sim-
WaitDI Waits until a digital input signal is set

WaitDI (Wait Digital Input) is used to wait until a digital input is set.

Example

WaitDI di4, 1;

Program execution continues only after the di4 input has been set.

WaitDI grip_status, 0;

Program execution continues only after the grip_status input has been reset.

Arguments

WaitDI Signal Value [\MaxTime] [\TimeFlag]

Signal Data type: signaldi

The name of the signal.

Value Data type: dionum

The desired value of the signal.

[\MaxTime] (Maximum Time) Data type: num

The maximum period of waiting time permitted, expressed in seconds. If th
time runs out before the condition is met, the error handler will be called, if th
is one, with the error code ERR_WAIT_MAXTIME. If there is no error handl
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permi
waiting time runs out before the condition is met. If this parameter is include
the instruction, it is not considered to be an error if the max. time runs out.
This argument is ignored if the MaxTime argument is not included in the instruc
tion.

Program Running

If the value of the signal is correct, when the instruction is executed, the program
ply continues with the following instruction.
RAPID Reference Manual 8-WaitDI-1

WaitDI Instructions

gnal
th an

alue,
 a
 will
If the signal value is not correct, the robot enters a waiting state and when the si
changes to the correct value, the program continues. The change is detected wi
interrupt, which gives a fast response (not polled).

When the robot is waiting, the time is supervised, and if it exceeds the max time v
the program will continue if a Time Flag is specified, or raise an error if it’s not. If
Time Flag is specified, this will be set to true if the time is exceeded, otherwise it
be set to false.

Syntax

WaitDI
[Signal ’:=’] < variable (VAR) of signaldi > ’,’
[Value ’:=’] < expression (IN) of dionum >
[’\’MaxTime ’:=’<expression (IN) of num>]
[’\’TimeFlag’:=’ <variable (VAR) of bool>] ’;’

Related information

Described in:

Waiting until a condition is satisfied Instructions - WaitUntil

Waiting for a specified period of time Instructions - WaitTime
8-WaitDI-2 RAPID Reference Manual

Instructions WaitDO

is
ere

er,

tted
d in

-

 sim-
WaitDO Waits until a digital output signal is set

WaitDO (Wait Digital Output) is used to wait until a digital output is set.

Example

WaitDO do4, 1;

Program execution continues only after the do4 output has been set.

WaitDO grip_status, 0;

Program execution continues only after the grip_status output has been reset.

Arguments

WaitDO Signal Value [\MaxTime] [\TimeFlag]

Signal Data type: signaldo

The name of the signal.

Value Data type: dionum

The desired value of the signal.

[\MaxTime] (Maximum Time) Data type: num

The maximum period of waiting time permitted, expressed in seconds. If th
time runs out before the condition is met, the error handler will be called, if th
is one, with the error code ERR_WAIT_MAXTIME. If there is no error handl
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permi
waiting time runs out before the condition is met. If this parameter is include
the instruction, it is not considered to be an error if the max. time runs out.
This argument is ignored if the MaxTime argument is not included in the instruc
tion.

Program Running

If the value of the signal is correct, when the instruction is executed, the program
ply continues with the following instruction.
RAPID Reference Manual 8-WaitDO-1

WaitDO Instructions

gnal
th an

alue,
a
 will
If the signal value is not correct, the robot enters a waiting state and when the si
changes to the correct value, the program continues. The change is detected wi
interrupt, which gives a fast response (not polled).

When the robot is waiting, the time is supervised, and if it exceeds the max time v
the program will continue if a Time Flag is specified, or raise an error if its not. If
Time Flag is specified, this will be set to true if the time is exceeded, otherwise it
be set to false.

Syntax

WaitDO
[Signal ’:=’] < variable (VAR) of signaldo > ’,’
[Value ’:=’] < expression (IN) of dionum >
[’\’MaxTime ’:=’<expression (IN) of num>]
[’\’TimeFlag’:=’ <variable (VAR) of bool>] ’;’

Related information

Described in:

Waiting until a condition is satisfied Instructions - WaitUntil

Waiting for a specified period of time Instructions - WaitTime
8-WaitDO-2 RAPID Reference Manual

Instructions WaitTime

d to

ling

o a

 this
WaitTime Waits a given amount of time

WaitTime is used to wait a given amount of time. This instruction can also be use
wait until the robot and external axes have come to a standstill.

Example

WaitTime 0.5;

Program execution waits 0.5 seconds.

Arguments

WaitTime [\InPos] Time

 [\InPos] Data type: switch

If this argument is used, the robot and external axes must have come to a
standstill before the waiting time starts to be counted.

Time Data type: num

The time, expressed in seconds, that program execution is to wait.

Program execution

Program execution temporarily stops for the given amount of time. Interrupt hand
and other similar functions, nevertheless, are still active.

Example

WaitTime \InPos,0;

Program execution waits until the robot and the external axes have come t
standstill.

Limitations

If the argument \Inpos is used, the movement instruction which precedes this
instruction should be terminated with a stop point, in order to be able to restart in
instruction following a power failure.

Argument \Inpos cannot be used together with SoftServo.
RAPID Reference Manual 8-WaitTime-1

WaitTime Instructions
Syntax

WaitTime
[’\’InPos’,’]
[Time ’:=’] <expression (IN) of num>’;’

Related information

Described in:

Waiting until a condition is met Instructions - WaitUntil

Waiting until an I/O is set/reset Instruction - WaitDI
8-WaitTime-2 RAPID Reference Manual

Instructions WaitUntil

ntil

oving

is
ere

er,

tted
d in
This
.

alue,

will
WaitUntil Waits until a condition is met

WaitUntil is used to wait until a logical condition is met; for example, it can wait u
one or several inputs have been set.

Example

WaitUntil di4 = 1;

Program execution continues only after the di4 input has been set.

Arguments

WaitUntil [\InPos] Cond [\MaxTime] [\TimeFlag]

 [\InPos] Data type: switch

If this argument is used, the robot and external axes must have stopped m
before the condition starts being evaluated.

Cond Data type: bool

The logical expression that is to be waited for.

[\MaxTime] Data type: num

The maximum period of waiting time permitted, expressed in seconds. If th
time runs out before the condition is set, the error handler will be called, if th
is one, with the error code ERR_WAIT_MAXTIME. If there is no error handl
the execution will be stopped.

[\TimeFlag] (Timeout Flag) Data type: bool

The output parameter that contains the value TRUE if the maximum permi
waiting time runs out before the condition is met. If this parameter is include
the instruction, it is not considered to be an error if the max. time runs out.
argument is ignored if the MaxTime argument is not included in the instruction

Program execution

If the programmed condition is not met on execution of a WaitUntil instruction, the
condition is checked again every 100 ms.

When the robot is waiting, the time is supervised, and if it exceeds the max time v
the program will continue if a TimeFlag is specified, or raise an error if it’s not. If a
TimeFlag is specified, this will be set to TRUE if the time is exceeded, otherwise it
be set to false.
RAPID Reference Manual 8-WaitUntil-1

WaitUntil Instructions

l

c-
struc-
Examples

VAR bool timeout;
WaitUntil start_input = 1 AND grip_status = 1\MaxTime := 60

\TimeFlag := timeout;
IF timeout THEN

TPWrite "No start order received within expected time";
ELSE

start_next_cycle;
ENDIF

If the two input conditions are not met within 60 seconds, an error message wil
be written on the display of the teach pendant.

WaitUntil \Inpos, di4 = 1;

Program execution waits until the robot has come to a standstill and the di4 input
has been set.

Limitation

If the argument \Inpos is used, the movement instruction which precedes this instru
tion should be terminated with a stop point, in order to be able to restart in this in
tion following a power failure.

Syntax

WaitUntil
[’\’InPos’,’]
[Cond ’:=’] <expression (IN) of bool>
[’\’MaxTime ’:=’<expression (IN) of num>]
[’\’TimeFlag’:=’ <variable (VAR) of bool>] ’;’

Related information

Described in:

Waiting until an input is set/reset Instructions - WaitDI

Waiting a given amount of time Instructions - WaitTime

Expressions Basic Characteristics - Expressions
8-WaitUntil-2 RAPID Reference Manual

Instructions WHILE

n con-

exe-

tes
WHILE Repeats as long as ...

WHILE is used when a number of instructions are to be repeated as long as a give
dition is met.

If it is possible to determine the number of repetitions in advance, the FOR instruction
can be used.

Example

WHILE reg1 < reg2 DO
...
reg1 := reg1 +1;

ENDWHILE

Repeats the instructions in the WHILE loop as long as reg1 < reg2.

Arguments

WHILE Condition DO ... ENDWHILE

Condition Data type: bool

The condition that must be met for the instructions in the WHILE loop to be
cuted.

Program execution

1. The condition is calculated. If the condition is not met, the WHILE loop termina
and program execution continues with the instruction following ENDWHILE.

2. The instructions in the WHILE loop are executed.

3. The WHILE loop is repeated, starting from point 1.

Syntax

(EBNF)
WHILE <conditional expression> DO

<instruction list>
ENDWHILE
RAPID Reference Manual 8-WHILE-1

WHILE Instructions
Related information

Described in:

Expressions Basic Characteristics - Expressions
8-WHILE-2 RAPID Reference Manual

Instructions Write

rtain
Write Writes to a character-based file or serial channel

Write is used to write to a character-based file or serial channel. The value of ce
data can be written as well as text.

Examples

Write logfile, "Execution started";

The text Execution started is written to the file with reference name logfile.

Write logfile, "No of produced parts="\Num:=reg1;

The text No of produced parts=5, for example, is written to the file with the
reference name logfile (assuming that the contents of reg1 is 5).

Arguments

Write IODevice String [\Num] | [\Bool] | [\Pos] | [\Orient]
[\NoNewLine]

IODevice Data type: iodev

The name (reference) of the current file or serial channel.

String Data type: string

The text to be written.

[\Num] (Numeric) Data type: num

The data whose numeric values are to be written after the text string.

[\Bool] (Boolean) Data type: bool

The data whose logical values are to be written after the text string.

[\Pos] (Position) Data type: pos

The data whose position is to be written after the text string.

[\Orient] (Orientation) Data type: orient

The data whose orientation is to be written after the text string.

[\NoNewLine] Data type: switch

Omits the line-feed character that normally indicates the end of the text.
RAPID Reference Manual 8-Write-1

Write Instructions

 text

ciple
995,

 a

t

ed for
Program execution

The text string is written to a specified file or serial channel. If the argument
\NoNewLine is not used, a line-feed character (LF) is also written.

If one of the arguments \Num, \Bool, \Pos or \Orient is used, its value is first converted
to a text string before being added to the first string. The conversion from value to
string takes place as follows:

Argument Value Text string

 \Num 23 "23"

 \Num 1.141367 "1.14137"

 \Bool TRUE "TRUE"

 \Pos [1817.3,905.17,879.11] "[1817.3,905.17,879.11]"

 \Orient [0.96593,0,0.25882,0] "[0.96593,0,0.25882,0]"

The value is converted to a string with standard RAPID format. This means in prin
6 significant digits. If the decimal part is less than 0.000005 or greater than 0.999
the number is rounded to an integer.

Example

VAR iodev printer;
.
Open "sio1:", printer\Write;
WHILE DInput(stopprod)=0 DO

produce_part;
Write printer, "Produced part="\Num:=reg1\NoNewLine;
Write printer, " "\NoNewLine;
Write printer, CTime();

ENDWHILE
Close printer;

A line, including the number of the produced part and the time, is output to
printer each cycle. The printer is connected to serial channel sio1:. The printed
message could look like this:

Produced part=473 09:47:15

Limitations

The arguments \Num, \Bool, \Pos and \Orient are mutually exclusive and thus canno
be used simultaneously in the same instruction.

This instruction can only be used for files or serial channels that have been open
writing.
8-Write-2 RAPID Reference Manual

Instructions Write
Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.

Syntax

Write
[IODevice’:=’] <variable (VAR) of iodev>’,’
[String’:=’] <expression (IN) of string>
[’\’Num’:=’ <expression (IN) of num>]
| [’\’Bool’:=’ <expression (IN) of bool>]
| [’\’Pos’:=’ <expression (IN) of pos>]
| [’\’Orient’:=’ <expression (IN) of orient>]
[’\’NoNewLine]’;’

Related information

Described in:

Opening a file or serial channel RAPID Summary - Communication
RAPID Reference Manual 8-Write-3

Write Instructions
8-Write-4 RAPID Reference Manual

Instructions WriteBin

annel.

binary
WriteBin Writes to a binary serial channel

WriteBin is used to write a number of bytes to a binary serial channel.

Example

WriteBin channel2, text_buffer, 10;

10 characters from the text_buffer list are written to the channel referred to by
channel2.

Arguments

WriteBin IODevice Buffer NChar

IODevice Data type: iodev

Name (reference) of the current serial channel.

Buffer Data type: array of num

The list (array) containing the numbers (characters) to be written.

NChar (Number of Characters) Data type: num

The number of characters to be written from the Buffer.

Program execution

The specified number of numbers (characters) in the list is written to the serial ch

Limitations

This instruction can only be used for serial channels that have been opened for
reading and writing.

Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.
RAPID Reference Manual 8-WriteBin-1

WriteBin Instructions

Example

VAR iodev channel;
VAR num out_buffer{20};
VAR num input;
VAR num nchar;
Open "sio1:", channel\Bin;

out_buffer{1} := 5; (enq)
WriteBin channel, out_buffer, 1;
input := ReadBin (channel \Time:= 0.1);

IF input = 6 THEN (ack)
out_buffer{1} := 2; (stx)
out_buffer{2} := 72; (’H’)
out_buffer{3} := 101; (’e’)
out_buffer{4} := 108; (’l’)
out_buffer{5} := 108; (’l’)
out_buffer{6} := 111; (’o’)
out_buffer{7} := 32; (’ ’)
out_buffer{8} := StrToByte("w"\Char); (’w’)
out_buffer{9} := StrToByte("o"\Char); (’o’)
out_buffer{10} := StrToByte("r"\Char); (’r’)
out_buffer{11} := StrToByte("l"\Char); (’l’)
out_buffer{12} := StrToByte("d"\Char); (’d’)
out_buffer{13} := 3; (etx)
WriteBin channel, out_buffer, 13;

ENDIF

The text string Hello world (with associated control characters) is written to a
serial channel. The function StrToByte is used in the same cases to convert a
string into a byte (num) data.

Syntax

WriteBin
[IODevice’:=’] <variable (VAR) of iodev>’,’
[Buffer’:=’] <array {*} (IN) of num>’,’
[NChar’:=’] <expression (IN) of num>’;’
8-WriteBin-2 RAPID Reference Manual

Instructions WriteBin
Related information

Described in:

Opening (etc.) of serial channels RAPID Summary - Communication

Convert a string to a byte data Functions - StrToByte

Byte data Data Types - byte
RAPID Reference Manual 8-WriteBin-3

WriteBin Instructions
8-WriteBin-4 RAPID Reference Manual

Instructions WriteStrBin

 or

eci-

ed for
WriteStrBin Writes a string to a binary serial channel

WriteStrBin (Write String Binary) is used to write a string to a binary serial channel
binary file.

Example

WriteStrBin channel2, "Hello World\0A";

The string "Hello World\0A" is written to the channel referred to by channel2.
The string is in this case ended with new line \0A. All characters and hexad
mal values written with WriteStrBin will be unchanged by the system.

Arguments

WriteStrBin IODevice Str

IODevice Data type: iodev

Name (reference) of the current serial channel.

Str (String) Data type: string

The text to be written.

Program execution

The text string is written to the specified serial channel or file.

Limitations

This instruction can only be used for serial channels or files that have been open
binary reading and writing.

Error handling

If an error occurs during writing, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.
RAPID Reference Manual 8-WriteStrBin-1

WriteStrBin Instructions

l)
Example

VAR iodev channel;
VAR num input;
Open "sio1:", channel\Bin;

! Send the control character enq
WriteStrBin channel, "\05";
! Wait for the control character ack
input := ReadBin (channel \Time:= 0.1);
IF input = 6 THEN

! Send a text starting with control character stx and ending with etx
WriteStrBin channel, "\02Hello world\03";

ENDIF

Close channel;

The text string Hello world (with associated control characters in hexadecima
is written to a binary serial channel.

Syntax

WriteStrBin
[IODevice’:=’] <variable (VAR) of iodev>’,’
[Str’:=’] <expression (IN) of string>’;’

Related information

Described in:

Opening (etc.) of serial channels RAPID Summary - Communication
8-WriteStrBin-2 RAPID Reference Manual

Instructions WZBoxDef

ate

nate
WZBoxDef Define a box-shaped world zone

WZBoxDef (World Zone Box Definition) is used to define a world zone that has the
shape of a straight box with all its sides parallel to the axes of the World Coordin
System.

Example

.

VAR shapedata volume;
CONST pos corner1:=[200,100,100];
CONST pos corner2:=[600,400,400];
...
WZBoxDef \Inside, volume, corner1, corner2;

Define a straight box with coordinates parallel to the axes of the world coordi
system and defined by the opposite corners corner1 and corner2.

Arguments

WZBoxDef [\Inside] | [\Outside] Shape LowPoint HighPoint

\Inside Data type: switch

Define the volume inside the box.

\Outside Data type: switch

Define the volume outside the box (inverse volume).

One of the arguments \Inside or \Outside must be specified.

Shape Data type: shapedata

Variable for storage of the defined volume (private data for the system).

World Coordinate System

Box

X

Y
Z

corner2

corner1
RAPID Reference Manual 8-WZBoxDef-1

WZBoxDef Instructions

s

nt
LowPoint Data type: pos

Position (x,y,x) in mm defining one lower corner of the box.

HighPoint Data type: pos

Position (x,y,z) in mm defining the corner diagonally opposite to the previou
one.

Program execution

The definition of the box is stored in the variable of type shapedata (argument Shape),
for future use in WZLimSup or WZDOSet instructions.

Limitations

The LowPoint and HighPoint positions must be valid opposite corners (with differe
x,y and z coordinate values).

If the robot is used to point out the LowPoint or HighPoint, work object wobj0 must be
active (use of component trans in robtarget e.g. p1.trans as argument).

Syntax

WZBoxDef
[’\’Inside] | [’\’Outside] ’,’
[Shape’:=’]<variable (VAR) of shapedata>’,’
[LowPoint’:=’]<expression (IN) of pos>’,’
[HighPoint’:=’]<expression (IN) of pos>’;’

Related information

Described in:

World zone shape Data Types - shapedata

Define sphere-shaped world zone Instructions - WZSphDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
8-WZBoxDef-2 RAPID Reference Manual

Instructions WZBoxDef
RAPID Reference Manual 8-WZBoxDef-3

WZBoxDef Instructions
8-WZBoxDef-4 RAPID Reference Manual

Instructions WZCylDef

e
nate
WZCylDef Define a cylinder-shaped world zone

WZCylDef (World Zone Cylinder Definition) is used to define a world zone that has th
shape of a cylinder with the cylinder axis parallel to the z-axis of the World Coordi
System.

Example

VAR shapedata volume;
CONST pos C2:=[300,200,200];
CONST num R2:=100;
CONST num H2:=200;
...
WZCylDef \Inside, volume, C2, R2, H2;

Define a cylinder with the centre of the bottom circle in C2, radius R2 and height
H2.

Arguments

WZCylDef [\Inside] | [\Outside] Shape CentrePoint Radius Height

\Inside Data type: switch

Define the volume inside the cylinder.

\Outside Data type: switch

Define the volume outside the cylinder (inverse volume).

One of the arguments \Inside or \Outside must be specified.

World Coordinate System X

Y
Z

R2

H2

C2
RAPID Reference Manual 8-WZCylDef-1

WZCylDef Instructions

.

r

r

Shape Data type: shapedata

Variable for storage of the defined volume (private data for the system).

CentrePoint Data type: pos

Position (x,y,z) in mm defining the centre of one circular end of the cylinder

Radius Data type: num

The radius of the cylinder in mm.

Height Data type: num

The height of the cylinder in mm.
If it is positive (+z direction), the CentrePoint argument is the centre of the lowe
end of the cylinder (as in the above example).
If it is negative (-z direction), the CentrePoint argument is the centre of the uppe
end of the cylinder.

Program execution

The definition of the cylinder is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

Limitations

If the robot is used to point out the CentrePoint, work object wobj0 must be active (use
of component trans in robtarget e.g. p1.trans as argument).

Syntax

WZCylDef
[’\’Inside] | [’\’Outside]’,’
[Shape’:=’]<variable (VAR) of shapedata>’,’
[CentrePoint’:=’]<expression (IN) of pos>’,’
[Radius’:=’]<expression (IN) of num>’,’
[Height’:=’]<expression (IN) of num>’;’
8-WZCylDef-2 RAPID Reference Manual

Instructions WZCylDef
Related information

Described in:

Define box-shaped world zone Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digita output set Instructions - WZDOSet
RAPID Reference Manual 8-WZCylDef-3

WZCylDef Instructions
8-WZCylDef-4 RAPID Reference Manual

Instructions WZDisable

ry

ill

be re-

ays
WZDisable Deactivate temporary world zone supervision

WZDisable (World Zone Disable) is used to deactivate the supervision of a tempora
world zone, previously defined either to stop the movement or to set an output.

Example

VAR wztemporary wzone;
...
PROC ...

WZLimSup \Temp, wzone, volume;
MoveL p_pick, v500, z40, tool1;
WZDisable wzone;
MoveL p_place, v200, z30, tool1;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it w
not go inside the specified volume wzone. This supervision is not performed
when going to p_place.

Arguments

WZDisable WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of type wztemporary, which contains the identity
of the world zone to be deactivated.

Program execution

The temporary world zone is deactivated. This means that the supervision of the
robot’s TCP, relative to the corresponding volume, is temporarily stopped. It can
activated via the WZEnable instruction.

Limitations

Only a temporary world zone can be deactivated. A stationary world zone is alw
active.
RAPID Reference Manual 8-WZDisable-1

WZDisable Instructions
Syntax

WZDisable
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>’;’

Related information

Described in:

Temporary world zone data Data Types - wztemporary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone set digital output Instructions - WZDOSet

Activate world zone Instructions - WZEnable

Erase world zone Instructions - WZFree
8-WZDisable-2 RAPID Reference Manual

Instructions WZDOSet

te

rld
alue.

s
ing

ric
WZDOSet Activate world zone to set digital output

WZDOSet (World Zone Digital Output Set) is used to define the action and to activa
a world zone for supervision of the robot movements.

After this instruction is executed, when the robot’s TCP is inside the defined wo
zone or is approaching close to it, a digital output signal is set to the specified v

Example

VAR wztemporary service;

PROC zone_output()
VAR shapedata volume;
CONST pos p_service:=[500,500,700];
...
WZSphDef \Inside, volume, p_service, 50;
WZDOSet \Temp, service \Inside, volume, do_service, 1;

ENDPROC

Definition of temporary world zone service in the application program, that set
the signal do_service, when the robot’s TCP is inside the defined sphere dur
program execution or when jogging.

Arguments

WZDOSet [\Temp] | [\Stat] WorldZone [\Inside] | [\Before] Shape
Signal SetValue

\Temp (Temporary) Data type: switch

The world zone to define is a temporary world zone.

\Stat (Stationary) Data type: switch

The world zone to define is a stationary world zone.

One of the arguments \Temp or \Stat must be specified.

WorldZone Data type: wztemporary

Variable or persistent variable, that will be updated with the identity (nume
value) of the world zone.

If use of switch \Temp, the data type must be wztemporary.
If use of switch \Stat, the data type must be wzstationary.
RAPID Reference Manual 8-WZDOSet-1

WZDOSet Instructions

ed

ned

e or

alue.

 is

\Inside Data type: switch

The digital output signal will be set when the robot’s TCP is inside the defin
volume.

\Before Data type: switch

The digital output signal will be set before the robot’s TCP reaches the defi
volume (as soon as possible before the volume).

One of the arguments \Inside or \Outside must be specified.

Shape Data type: shapedata

The variable that defines the volume of the world zone.

Signal Data type: signaldo

The name of the digital output signal that will be changed.

SetValue Data type: dionum

Desired value of the signal (0 or 1) when the robot’s TCP is inside the volum
just before it enters the volume.

When outside or just outside the volume, the signal is set to the opposite v

Program execution

The defined world zone is activated. From this moment, the robot’s TCP position
supervised and the output will be set, when the robot’s TCP position is inside the
volume (\Inside) or comes close to the border of the volume (\Before).

Example

VAR wztemporary home;
VAR wztemporary service;
PERS wztemporary equip1:=[0];

PROC main()
...
! Definition of all temporary world zones
zone_output;
...
! equip1 in robot work area
WZEnable equip1;
...
! equip1 out of robot work area
WZDisable equip1;
...
8-WZDOSet-2 RAPID Reference Manual

Instructions WZDOSet

.

APID
! No use for equip1 any more
WZFree equip1;
...

ENDPROC

PROC zone_output()
VAR shapedata volume;
CONST pos p_home:=[800,0,800];
CONST pos p_service:=[800,800,800];
CONST pos p_equip1:=[-800,-800,0];
...
WZSphDef \Inside, volume, p_home, 50;
WZDOSet \Temp, home \Inside, volume, do_home, 1;
WZSphDef \Inside, volume, p_service, 50;
WZDOSet \Temp, service \Inside, volume, do_service, 1;
WZCylDef \Inside, volume, p_equip1, 300, 1000;
WZLimSup \Temp, equip1, volume;
! equip1 not in robot work area
WZDisable equip1;

ENDPROC

Definition of temporary world zones home and service in the application
program, that sets the signals do_home and do_service, when the robot is inside
the sphere home or service respectively during program execution or when
jogging.

Also, definition of a temporary world zone equip1, which is active only in the
part of the robot program when equip1 is inside the working area for the robot
At that time the robot stops before entering the equip1 volume, both during
program execution and manual jogging. equip1 can be disabled or enabled from
other program tasks by using the persistent variable equip1 value.

Limitations

A world zone cannot be redefined by using the same variable in the argument
WorldZone.

A stationary world zone cannot be deactivated, activated again or erased in the R
program.

A temporary world zone can be deactivated (WZDisable), activated again (WZEnable)
or erased (WZFree) in the RAPID program.
RAPID Reference Manual 8-WZDOSet-3

WZDOSet Instructions
Syntax

WZDOSet
(’\’Temp) | (’\’Stat) ’,’
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>
(’\’Inside) | (’\’Before) ’,’
[Shape’:=’]<variable (VAR) of shapedata>’,’
[Signal’:=’]<variable (VAR) of signaldo>’,’
[SetValue’:=’]<expression (IN) of dionum>’;’

Related information

Described in:

Temporary world zone Data Types - wztemporary

Stationary world zone Data Types - wzstationary

World zone shape Data Types - shapedata

Define straight box-shaped world zone Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone limit supervision Instructions - WZLimSup
8-WZDOSet-4 RAPID Reference Manual

Instructions WZEnable

ry

ill

d only

orld
WZEnable Activate temporary world zone supervision

WZEnable (World Zone Enable) is used to re-activate the supervision of a tempora
world zone, previously defined either to stop the movement or to set an output.

Example

VAR wztemporary wzone;
...
PROC ...

WZLimSup \Temp, wzone, volume;
MoveL p_pick, v500, z40, tool1;
WZDisable wzone;
MoveL p_place, v200, z30, tool1;
WZEnable wzone;
MoveL p_home, v200, z30, tool1;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it w
not go inside the specified volume wzone. This supervision is not performed
when going to p_place, but is reactivated before going to p_home

Arguments

WZEnable WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of the type wztemporary, which contains the
identity of the world zone to be activated.

Program execution

The temporary world zone is re-activated.
Please note that a world zone is automatically activated when it is created. It nee
be re-activated when it has previously been deactivated by WZDisable.

Limitations

Only a temporary world zone can be deactivated and reactivated. A stationary w
zone is always active.
RAPID Reference Manual 8-WZEnable-1

WZEnable Instructions
Syntax

WZEnable
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>’;’

Related information

Described in:

Temporary world zone data Data Types - wztemporary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone set digital output Instructions - WZDOSet

Deactivate world zone Instructions - WZDisable

Erase world zone Instructions - WZFree
8-WZEnable-2 RAPID Reference Manual

Instructions WZFree

e,

ill
n

ted.

nary
WZFree Erase temporary world zone supervision

WZFree (World Zone Free) is used to erase the definition of a temporary world zon
previously defined either to stop the movement or to set an output.

Example

VAR wztemporary wzone;
...
PROC ...

WZLimSup \Temp, wzone, volume;
MoveL p_pick, v500, z40, tool1;
WZDisable wzone;
MoveL p_place, v200, z30, tool1;
WZEnable wzone;
MoveL p_home, v200, z30, tool1;
WZFree wzone;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it w
not go inside a specified volume wzone. This supervision is not performed whe
going to p_place, but is reactivated before going to p_home. When this position
is reached, the world zone definition is erased.

Arguments

WZFree WorldZone

WorldZone Data type: wztemporary

Variable or persistent variable of the type wztemporary, which contains the
identity of the world zone to be erased.

Program execution

The temporary world zone is first deactivated and then its definition is erased.

Once erased, a temporary world zone cannot be either re-activated nor deactiva

Limitations

Only a temporary world zone can be deactivated, reactivated or erased. A statio
world zone is always active.
RAPID Reference Manual 8-WZFree-1

WZFree Instructions
Syntax

WZFree
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>’;’

Related information

Described in:

Temporary world zone data Data Types - wztemporary

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone set digital output Instructions - WZDOSet

Deactivate world zone Instructions - WZDisable

Activate world zone Instructions - WZEnable
8-WZFree-2 RAPID Reference Manual

Instructions WZLimSup

te

ld
g.

a

ic
WZLimSup Activate world zone limit supervision

WZLimSup (World Zone Limit Supervision) is used to define the action and to activa
a world zone for supervision of the working area of the robot.

After this instruction is executed, when the robot’s TCP reaches the defined wor
zone, the movement is stopped both during program execution and when joggin

Example

VAR wzstationary max_workarea;
...
PROC POWER_ON()

VAR shapedata volume;
...
WZBoxDef \Outside, volume, corner1, corner2;
WZLimSup \Stat, max_workarea, volume;

ENDPROC

Definition and activation of stationary world zone max_workarea, with the shape
of the area outside a box (temporarily stored in volume) and the action work-area
supervision. The robot stops with an error message before entering the are
outside the box.

Arguments

WZLimSup [\Temp] | [\Stat] WorldZone Shape

\Temp (Temporary) Data type: switch

The world zone to define is a temporary world zone.

\Stat (Stationary) Data type: switch

The world zone to define is a stationary world zone.

One of the arguments \Temp or \Stat must be specified.

WorldZone Data type: wztemporary

Variable or persistent variable that will be updated with the identity (numer
value) of the world zone.

If use of switch \Temp, the data type must be wztemporary.
If use of switch \Stat, the data type must be wzstationary.
RAPID Reference Manual 8-WZLimSup-1

WZLimSup Instructions

 is

s:

ones
al

APID
Shape Data type: shapedata

The variable that defines the volume of the world zone.

Program execution

The defined world zone is activated. From this moment the robot’s TCP position
supervised. If it reaches the defined area the movement is stopped.

Example

VAR wzstationary box1_invers;
VAR wzstationary box2;

PROC wzone_power_on()
VAR shapedata volume;
CONST pos box1_c1:=[500,-500,0];
CONST pos box1_c2:=[-500,500,500];
CONST pos box2_c1:=[500,-500,0];
CONST pos box2_c2:=[200,-200,300];
...
WZBoxDef \Outside, volume, box1_c1, box1_c2;
WZLimSup \Stat, box1_invers, volume;
WZBoxDef \Inside, volume, box2_c1, box2_c2;
WZLimSup \Stat, box2, volume;

ENDPROC

Limitation of work area for the robot with the following stationary world zone

- Outside working area when outside box1_invers

- Outside working area when inside box2

If this routine is connected to the system event POWER ON, these world z
will always be active in the system, both for program movements and manu
jogging.

Limitations

A world zone cannot be redefined using the same variable in argument WorldZone.

A stationary world zone cannot be deactivated, activated again or erased in the R
program.

A temporary world zone can be deactivated (WZDisable), activated again (WZEnable)
or erased (WZFree) in the RAPID program.
18-WZLimSup-2 RAPID Reference Manual

Instructions WZLimSup
Syntax

WZLimSup
[’\’Temp] | [’\Stat]’,’
[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>’,’
[Shape’:=’] <variable (VAR) of shapedata>’;’

Related information

Described in:

Temporary world zone Data Types - wztemporary

Stationary world zone Data Types - wzstationary

World zone shape Data Types - shapedata

Define straight box-shaped world zone Instructions - WZBoxDef

Define sphere-shaped world zone Instructions - WZSphDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone digital output set Instructions - WZDOSet
RAPID Reference Manual 8-WZLimSup-3

WZLimSup Instructions
18-WZLimSup-4 RAPID Reference Manual

Instructions WZSphDef

e
WZSphDef Define a sphere-shaped world zone

WZSphDef (World Zone Sphere Definition) is used to define a world zone that has th
shape of a sphere.

Example

VAR shapedata volume;
CONST pos C1:=[300,300,200];
CONST num R1:=200;
...
WZSphDef \Inside, volume, C1, R1;

Define a sphere named volume by its centre C1 and its radius R1.

Arguments

WZSphDef [\Inside] | [\Outside] Shape CentrePoint Radius

\Inside Data type: switch

Define the volume inside the sphere.

\Outside Data type: switch

Define the volume outside the sphere (inverse volume).

One of the arguments \Inside or \Outside must be specified.

Shape Data type: shapedata

Variable for storage of the defined volume (private data for the system).

World Coordinate System
X

Y

Z

C1

R1
RAPID Reference Manual 8-WZSphDef-1

WZSphDef Instructions

CentrePoint Data type: pos

Position (x,y,z) in mm defining the centre of the sphere.

Radius Data type: num

The radius of the sphere in mm.

Program execution

The definition of the sphere is stored in the variable of type shapedata (argument
Shape), for future use in WZLimSup or WZDOSet instructions.

Limitations

If the robot is used to point out the CentrePoint, work object wobj0 must be active (use
of component trans in robtarget e.g. p1.trans as argument).

Syntax

WZSphDef
[’\’Inside] | [’\’Outside]’,’
[Shape’:=’]<variable (VAR) of shapedata>’,’
[CentrePoint’:=’]<expression (IN) of pos>’,’
[Radius’:=’]<expression (IN) of num>’;’

Related information

Described in:

World zone shape Data Types - shapedata

Define box-shaped world zone Instructions - WZBoxDef

Define cylinder-shaped world zone Instructions - WZCylDef

Activate world zone limit supervision Instructions - WZLimSup

Activate world zone digital output set Instructions - WZDOSet
8-WZSphDef-2 RAPID Reference Manual

Functions

CONTENTS
Abs Gets the absolute value

ACos Calculates the arc cosine value

AOutput Reads the value of an analog output signal

ArgName Gets argument name

ASin Calculates the arc sine value

ATan Calculates the arc tangent value

ATan2 Calculates the arc tangent2 value

ByteToStr Converts a byte to a string data

CDate Reads the current date as a string

CJointT Reads the current joint angles

ClkRead Reads a clock used for timing

CorrRead Reads the current total offsets

Cos Calculates the cosine value

CPos Reads the current position (pos) data

CRobT Reads the current position (robtarget) data

CTime Reads the current time as a string

CTool Reads the current tool data

CWObj Reads the current work object data

DefDFrame Define a displacement frame

DefFrame Define a frame

Dim Obtains the size of an array

DOutput Reads the value of a digital output signal

EulerZYX Gets Euler angles from orient

Exp Calculates the exponential value

GOutput Reads the value of a group of digital output signals

GetTime Reads the current time as a numeric value

IndInpos Independent In position status

IndSpeed Independent Speed status

IsPers Is Persistent

IsVar Is Variable

MirPos Mirroring of a position

NumToStr Converts numeric value to string

Offs Displaces a robot position

OpMode Read the operating mode

OrientZYX Builds an orient from Euler angles

ORobT Removes a program displacement from a position
RAPID Reference Manual 9-1

Functions

PoseInv Inverts the pose

PoseMult Multiplies pose data

PoseVect Applies a transformation to a vector

Pow Calculates the power of a value

Present Tests if an optional parameter is used

ReadBin Reads from a binary serial channel or file

ReadMotor Reads the current motor angles

ReadNum Reads a number from a file or the serial channel

ReadStr Reads a string from a file or serial channel

RelTool Make a displacement relative to the tool

Round Round is a numeric value

RunMode Read the running mode

Sin Calculates the sine value

Sqrt Calculates the square root value

StrFind Searches for a character in a string

StrLen Gets the string length

StrMap Maps a string

StrMatch Search for pattern in string

StrMemb Checks if a character belongs to a set

StrOrder Checks if strings are ordered

StrPart Finds a part of a string

StrToByte Converts a string to a byte data

StrToVal Converts a string to a value

Tan Calculates the tangent value

TestDI Tests if a digital input is set

Trunc Truncates a numeric value

ValToStr Converts a value to a string
9-2 RAPID Reference Manual

Functions Abs

re that
itive.
Abs Gets the absolute value

Abs is used to get the absolute value, i.e. a positive value of numeric data.

Example

reg1 := Abs(reg2);

Reg1 is assigned the absolute value of reg2.

Return value Data type: num

The absolute value, i.e. a positive numeric value.

e.g. Input value Returned value

3 3

-3 3

-2.53 2.53

Arguments

Abs (Input)

Input Data type: num

The input value.

Example

TPReadNum no_of_parts, "How many parts should be produced? ";
no_of_parts := Abs(no_of_parts);

The operator is asked to input the number of parts to be produced. To ensu
the value is greater than zero, the value given by the operator is made pos

Syntax

Abs ’(’
[Input ’:=’] < expression (IN) of num > ’)’

A function with a return value of the data type num.
RAPID Reference Manual 9-Abs-1

Abs Functions
Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
9-Abs-2 RAPID Reference Manual

Functions ACos
ACos Calculates the arc cosine value

ACos (Arc Cosine) is used to calculate the arc cosine value.

Example

VAR num angle;
VAR num value;
.
.
angle := ACos(value);

Return value Data type: num

The arc cosine value, expressed in degrees, range [0, 180].

Arguments

ACos (Value)

Value Data type: num

The argument value, range [-1, 1].

Syntax

Acos’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
RAPID Reference Manual 9-ACos-1

ACos Functions
9-ACos-2 RAPID Reference Manual

Functions AOutput

is read
AOutput Reads the value of an analog output signal

AOutput is used to read the current value of an analog output signal.

Example

IF AOutput(ao4) > 5 THEN ...

If the current value of the signal ao4 is greater than 5, then ...

Return value Data type: num

The current value of the signal.

The current value is scaled (in accordance with the system parameters) before it
by the RAPID program. See Figure 1.

Figure 1 Diagram of how analog signal values are scaled.

Arguments

AOutput (Signal)

Signal Data type: signalao

The name of the analog output to be read.

Logical value in the
program

Physical value of the
output signal (V, mA, etc.)

MAX SIGNAL

MIN SIGNAL

MAX PROGRAM

MIN PROGRAM
RAPID Reference Manual 9-AOutput-1

AOutput Functions
Syntax

AOutput ’(’
[Signal ’:=’] < variable (VAR) of signalao > ’)’

A function with a return value of data type num.

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
9-AOutput-2 RAPID Reference Manual

Functions ArgName

he

 con-
gram
ArgName Gets argument name

ArgName (Argument Name) is used to get the name of the original data object for t
current argument or the current data.

Example

VAR num abc123 :=5;
...
proc1 abc123;

PROC proc1 (num par1)
VAR string parstring;
...
parstring:=ArgName(par1);
TPWrite "Argument name "+parstring+" with value "\Num:=par1;

ENDPROC

The variable parstring is assigned the string value "abc123". On TP the follow-
ing string is written: "Argument name abc123 with value 5".

Return value Data type: string

The original data object name.

Arguments

ArgName (Parameter)

Parameter Data type: anytype

The formal parameter identifier (for the routine in which ArgName is located) or
the data identity.

Program execution

The function returns the original data object name for an entire object of the type
stant, variable or persistent. The original data object can be global, local in the pro
module or local in a routine (normal RAPID scope rules).

If it is a part of a data object, the name of the whole data object is returned.
RAPID Reference Manual 9-ArgName-1

ArgName Functions

den-
Example

Convert from identifier to string

This function can also be used to convert from identifier to string, by stating the i
tifier in the argument Parameter for any data object with global, local in module or
local in routine scope:

VAR num chales :=5;
...
proc1;

PROC proc1 ()
VAR string name;
...
name:=ArgName(chales);
TPWrite "Global data object "+name+" has value "\Num:=chales;

ENDPROC

The variable name is assigned the string value "chales" and on TP the following
string is written: "Global data object chales has value 5".

Routine call in several steps

Note that the function returns the original data object name:

VAR num chales :=5;
...
proc1 chales;
...
PROC proc1 (num parameter1)

...
proc2 parameter1;
...

ENDPROC

PROC proc2 (num par1)
VAR string name;
...
name:=ArgName(par1);
TPWrite "Original data object name "+name+" with value "\Num:=par1;

ENDPROC

The variable name is assigned the string value "chales" and on TP the following
string is written: "Original data object name charles with value 5".
9-ArgName-2 RAPID Reference Manual

Functions ArgName
Error handling

If one of the following errors occurs, the system variable ERRNO is set to
ERR_ARGNAME:

- Argument is expression value

- Argument is not present

- Argument is of type switch

This error can then be handled in the error handler.

Syntax

ArgName ’(’
[Parameter’:=’] < reference (REF) of any type> ’)’

A function with a return value of the data type string.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
RAPID Reference Manual 9-ArgName-3

ArgName Functions
9-ArgName-4 RAPID Reference Manual

Functions ASin
ASin Calculates the arc sine value

ASin (Arc Sine) is used to calculate the arc sine value.

Example

VAR num angle;
VAR num value;
.
.
angle := ASin(value);

Return value Data type: num

The arc sine value, expressed in degrees, range [-90, 90].

Arguments

ASin (Value)

Value Data type: num

The argument value, range [-1, 1].

Syntax

ASin’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
RAPID Reference Manual 9-ASin-1

ASin Functions
9-ASin-2 RAPID Reference Manual

Functions ATan
ATan Calculates the arc tangent value

ATan (Arc Tangent) is used to calculate the arc tangent value.

Example

VAR num angle;
VAR num value;
.
.
angle := ATan(value);

Return value Data type: num

The arc tangent value, expressed in degrees, range [-90, 90].

Arguments

ATan (Value)

Value Data type: num

The argument value.

Syntax

ATan’(’
[Value ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Arc tangent with a return value in the Functions - ATan2
range [-180, 180]
RAPID Reference Manual 9-ATan-1

ATan Functions
9-ATan-2 RAPID Reference Manual

Functions ATan2

tion
ATan2 Calculates the arc tangent2 value

ATan2 (Arc Tangent2) is used to calculate the arc tangent2 value.

Example

VAR num angle;
VAR num x_value;
VAR num y_value;
.
.
angle := ATan2(y_value, x_value);

Return value Data type: num

The arc tangent value, expressed in degrees, range [-180, 180].

The value will be equal to ATan(y/x), but in the range [-180, 180], since the func
uses the sign of both arguments to determine the quadrant of the return value.

Arguments

ATan2 (Y X)

Y Data type: num

The numerator argument value.

X Data type: num

The denominator argument value.

Syntax

ATan2’(’
[Y ’:=’] <expression (IN) of num> ’,’
[X ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.
RAPID Reference Manual 9-ATan2-1

Atan2 Functions
Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Arc tangent with only one argument Functions - ATan
9-Atan2-2 RAPID Reference Manual

Functions ByteToStr
ByteToStr Converts a byte to a string data

ByteToStr (Byte To String) is used to convert a byte into a string data with a defined
byte data format.

Example

VAR string con_data_buffer{5};
VAR byte data1 := 122;

con_data_buffer{1} := ByteToStr(data1);

The content of the array component con_data_buffer{1} will be "122" after the
ByteToStr ... function.

con_data_buffer{2} := ByteToStr(data1\Hex);

The content of the array component con_data_buffer{2} will be "7A" after the
ByteToStr ... function.

con_data_buffer{3} := ByteToStr(data1\Okt);

The content of the array component con_data_buffer{3} will be "172" after the
ByteToStr ... function.

con_data_buffer{4} := ByteToStr(data1\Bin);

The content of the array component con_data_buffer{4} will be "01111010"after
the ByteToStr ... function.

con_data_buffer{5} := ByteToStr(data1\Char);

The content of the array component con_data_buffer{5} will be "z" after the
ByteToStr ... function.

Return value Data type: string

The result of the conversion operation with the following format:

Format: Characters: String length: Range:
Dec: ’0’ - ’9’ 1-3 "0" - "255"
Hex: ’0’ - ’9’, ’A’ -’F’ 2 "00" - "FF"
Okt: ’0’ - ’7’ 3 "000" - "377"
Bin: ’0’ - ’1’ 8 "00000000" -

"11111111"
Char: Writable ASCII char 1 ASCII table (*)
RAPID Reference Manual 9-ByteToStr-1

ByteToStr Functions

de
(*) If non-writable ASCII char, the return format will be RAPID character co
format (e.g. “\07” for BEL control character).

Arguments

ByteToStr (ByteData [\Hex] | [\Okt] | [\Bin] | [\Char])

ByteData Data type: byte

The byte data to be converted.

If the optional switch argument is omitted, the data will be converted in decimal (Dec)
format.

[\Hex] (Hexadecimal) Data type: switch

The data will be converted in hexadecimal format.

[\Okt] (Octal) Data type: switch

The data will be converted in octal format.

[\Bin] (Binary) Data type: switch

The data will be converted in binary format.

[\Char] (Character) Data type: switch

The data will be converted in ASCII character format.

Limitations

The range for a data type byte is 0 to 255 decimal.

Syntax

ByteToStr’(’
[ByteData ’:=’] <expression (IN) of byte>
[’\’ Hex] | [’\’ Okt] | [’\’ Bin] | [’\’ Char]
’)’ ’;’

A function with a return value of the data type string.
9-ByteToStr-2 RAPID Reference Manual

Functions ByteToStr
Related information

Described in:

Convert a string to a byte data Instructions - StrToByte

Other bit (byte) functions RAPID Summary - Bit Functions

Other string functions RAPID Summary - String Functions
RAPID Reference Manual 9-ByteToStr-3

ByteToStr Functions
9-ByteToStr-4 RAPID Reference Manual

Functions CDate

h pen-
.

CDate Reads the current date as a string

CDate (Current Date) is used to read the current system date.

This function can be used to present the current date to the operator on the teac
dant display or to paste the current date into a text file that the program writes to

Example

VAR string date;

date := CDate();

The current date is stored in the variable date.

Return value Data type: string

The current date in a string.

The standard date format is "year-month-day", e.g. "93-05-16".

Example

date := CDate();
TPWrite "The current date is: "+date;
Write logfile, date;

The current date is written to the teach pendant display and into a text file.

Syntax

CDate ’(’ ’)’

A function with a return value of the type string.

Related Information

Described in:

Time instructions RAPID Summary - System & Time

Setting the system clock User’s Guide - System Parameters
RAPID Reference Manual 9-CDate-1

CDate Functions
9-CDate-2 RAPID Reference Manual

Functions CJointT

and

tional
CJointT Reads the current joint angles

CJointT (Current Joint Target) is used to read the current angles of the robot axes
external axes.

Example

VAR jointtarget joints;

joints := CJointT();

The current angles of the axes for the robot and external axes are stored in joints.

Return value Data type: jointtarget

The current angles in degrees for the axes of the robot on the arm side.

The current values for the external axes, in mm for linear axes, in degrees for rota
axes.

The returned values are related to the calibration position.

Syntax

CJointT’(’’)’

A function with a return value of the data type jointtarget.

Related information

Described in:

Definition of joint Data Types - jointtarget

Reading the current motor angle Functions - ReadMotor
RAPID Reference Manual 9-CJointT-1

CJointT Functions
9-CJointT-2 RAPID Reference Manual

Functions ClkRead

e.
ClkRead Reads a clock used for timing

ClkRead is used to read a clock that functions as a stop-watch used for timing.

Example

reg1:=ClkRead(clock1);

The clock clock1 is read and the time in seconds is stored in the variable reg1.

Return value Data type: num

The time in seconds stored in the clock.

Argument

ClkRead (Clock)

Clock Data type: clock

The name of the clock to read.

Program execution

A clock can be read when it is stopped or running.

Once a clock is read it can be read again, started again, stopped or reset.

If the clock has overflowed, program execution is stopped with an error messag

Syntax

ClkRead ’(’
[Clock ’:=’] < variable (VAR) of clock > ’)’

A function with a return value of the type num.
RAPID Reference Manual 9-ClkRead-1

ClkRead Functions
Related Information

Described in:

Clock instructions RAPID Summary - System & Time

Clock overflow Data Types - clock

More examples Instructions - ClkStart
9-ClkRead-2 RAPID Reference Manual

Functions CorrRead

ion

 in the

 far.
CorrRead Reads the current total offsets

CorrRead is used to read the total corrections delivered by all connected correct
generators.

CorrRead can be used to:

- find out how much the current path differs from the original path.

- take actions to reduce the difference.

Example

VAR pos offset;
...
offset := CorrRead();

The current offsets delivered by all connected correction generators are available
variable offset.

Return value Data type: pos

The total absolute offsets delivered from all connected correction generators so

Example

See Instructions - CorrCon

Syntax

CorrRead ’(’ ’)’

A function with a return value of the data type pos.
RAPID Reference Manual 9-CorrRead-1

CorrRead Functions
Related information

Described in:

Connects to a correction generator Instructions - CorrCon

Disconnects from a correction generator Instructions - CorrDiscon

Writes to a correction generator Instructions - CorrWrite

Removes all correction generators Instructions - CorrClear

Correction descriptor Data types - corrdescr
9-CorrRead-2 RAPID Reference Manual

Functions Cos
Cos Calculates the cosine value

Cos (Cosine) is used to calculate the cosine value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Cos(angle);

Return value Data type: num

The cosine value, range = [-1, 1] .

Arguments

Cos (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Cos’(’
[Angle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
RAPID Reference Manual 9-Cos-1

Cos Functions
9-Cos-2 RAPID Reference Manual

Functions CPos

 sys-
 into

rned

Obj.
ol or
CPos Reads the current position (pos) data

CPos (Current Position) is used to read the current position of the robot.

This function returns the x, y, and z values of the robot TCP as data of type pos. If the
complete robot position (robtarget) is to be read, use the function CRobT instead.

Example

VAR pos pos1;

pos1 := CPos(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot TCP is stored in variable pos1. The tool tool1
and work object wobj0 are used for calculating the position.

Return value Data type: pos

The current position (pos) of the robot with x, y, and z in the outermost coordinate
tem, taking the specified tool, work object and active ProgDisp coordinate system
consideration.

Arguments

CPos ([\Tool] [\WObj])

[\Tool] Data type: tooldata

The tool used for calculation of the current robot position.

If this argument is omitted the current active tool is used.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the current robot position retu
by the function is related.

If this argument is omitted the current active work object is used.

When programming, it is very sensible to always specify arguments \Tool and \W
The function will always then return the wanted position, although some other to
work object has been activated manually.
RAPID Reference Manual 9-CPos-1

CPos Functions

 sys-

ram

itions
Program execution

The coordinates returned represent the TCP position in the ProgDisp coordinate
tem.

Example

VAR pos pos2;
VAR pos pos3;
VAR pos pos4;

pos2 := CPos(\Tool:=grip3 \WObj:=fixture);
.
.
pos3 := CPos(\Tool:=grip3 \WObj:=fixture);
pos4 := pos3-pos2;

The x, y, and z position of the robot is captured at two places within the prog
using the CPos function. The tool grip3 and work object fixture are used for cal-
culating the position. The x, y and z distances travelled between these pos
are then calculated and stored in the pos variable pos4.

Syntax

CPos ’(’
[’\’Tool ’:=’ <persistent (PERS) of tooldata>]
[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type pos.

Related information

Described in:

Definition of position Data Types - pos

Definition of tools Data Types- tooldata

Definition of work objects Data Types - wobjdata

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems

Reading the current robtarget Functions - CRobT
9-CPos-2 RAPID Reference Manual

Functions CRobT

of the

stem,
tem

rned

Obj.
ol or
CRobT Reads the current position (robtarget) data

CRobT (Current Robot Target) is used to read the current position of the robot and
external axes.

This function returns a robtarget value with position (x, y, z), orientation (q1 ... q4),
robot axes configuration and external axes position. If only the x, y, and z values
robot TCP (pos) are to be read, use the function CPos instead.

Example

VAR robtarget p1;

p1 := CRobT(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot and external axes is stored in p1. The tool tool1
and work object wobj0 are used for calculating the position.

Return value Data type: robtarget

The current position of the robot and external axes in the outermost coordinate sy
taking the specified tool, work object and active ProgDisp/ExtOffs coordinate sys
into consideration.

Arguments

CRobT ([\Tool] [\WObj])

[\Tool] Data type: tooldata

The tool used for calculation of the current robot position.

If this argument is omitted the current active tool is used.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the current robot position retu
by the function is related.

If this argument is omitted the current active work object is used.

When programming, it is very sensible to always specify arguments \Tool and \W
The function will always then return the wanted position, although some other to
work object has been activated manually.
RAPID Reference Manual 9-CRobT-1

CRobT Functions

 sys-

 or
Program execution

The coordinates returned represent the TCP position in the ProgDisp coordinate
tem. External axes are represented in the ExtOffs coordinate system.

Example

VAR robtarget p2;

p2 := ORobT(RobT(\Tool:=grip3 \WObj:=fixture));

The current position in the object coordinate system (without any ProgDisp
ExtOffs) of the robot and external axes is stored in p2. The tool grip3 and work
object fixture are used for calculating the position.

Syntax

CRobT’(’
[’\’Tool ’:=’ <persistent (PERS) of tooldata>]
[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Definition of position Data Types - robtarget

Definition of tools Data Types- tooldata

Definition of work objects Data Types - wobjdata

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems

ExtOffs coordinate system Instructions - EOffsOn

Reading the current pos (x, y, z only) Functions - CPos
9-CRobT-2 RAPID Reference Manual

Functions CTime

h pen-
.

ext
CTime Reads the current time as a string

CTime is used to read the current system time.

This function can be used to present the current time to the operator on the teac
dant display or to paste the current time into a text file that the program writes to

Example

VAR string time;

time := CTime();

The current time is stored in the variable time.

Return value Data type: string

The current time in a string.

The standard time format is "hours:minutes:seconds", e.g. "18:20:46".

Example

time := CTime();
TPWrite “The current time is: “+time;
Write logfile, time;

The current time is written to the teach pendant display and written into a t
file.

Syntax

CTime ’(’ ’)’

A function with a return value of the type string.
RAPID Reference Manual 9-CTime-1

CTime Functions
Related Information

Described in:

Time and date instructions RAPID Summary - System & Time

Setting the system clock User’s Guide - System Parameters
9-CTime-2 RAPID Reference Manual

Functions CTool

ol

 coor-
CTool Reads the current tool data

CTool (Current Tool) is used to read the data of the current tool.

Example

PERS tooldata temp_tool;

temp_tool := CTool();

The value of the current tool is stored in the variable temp_tool.

Return value Data type: tooldata

This function returns a tooldata value holding the value of the current tool, i.e. the to
last used in a movement instruction.

The value returned represents the TCP position and orientation in the wrist centre
dinate system, see tooldata.

Syntax

CTool’(’’)’

A function with a return value of the data type tooldata.

Related information

Described in:

Definition of tools Data Types- tooldata

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
RAPID Reference Manual 9-CTool-1

CTool Functions
9-CTool-2 RAPID Reference Manual

Functions CWObj

,

rld
CWObj Reads the current work object data

CWObj (Current Work Object) is used to read the data of the current work object.

Example

PERS wobjdata temp_wobj;

temp_wobj := CWObj();

The value of the current work object is stored in the variable temp_wobj.

Return value Data type: wobjdata

This function returns a wobjdata value holding the value of the current work object
i.e. the work object last used in a movement instruction.

The value returned represents the work object position and orientation in the wo
coordinate system, see wobjdata.

Syntax

CWObj’(’’)’

A function with a return value of the data type wobjdata.

Related information

Described in:

Definition of work objects Data Types- wobjdata

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
RAPID Reference Manual 9-CWObj-1

CWObj Functions
9-CWObj-2 RAPID Reference Manual

Functions DefDFrame

e

ed.
d as
DefDFrame Define a displacement frame

DefDFrame (Define Displacement Frame) is used to calculate a displacement fram
from three original positions and three displaced positions.

Example

Three positions, p1- p3, related to an object in an original position, have been stor
After a displacement of the object the same positions are searched for and store
p4-p6. From these six positions the displacement frame is calculated. Then the
calculated frame is used to displace all the stored positions in the program.

CONST robtarget p1 := [...];
CONST robtarget p2 := [...];
CONST robtarget p3 := [...];
VAR robtarget p4;
VAR robtarget p5;
VAR robtarget p6;
VAR pose frame1;
.
!Search for the new positions
SearchL sen1, p4, *, v50, tool1;
.
SearchL sen1, p5, *, v50, tool1;
.
SearchL sen1, p6, *, v50, tool1;
frame1 := DefDframe (p1, p2, p3, p4, p5, p6);
.
!activation of the displacement defined by frame1
PDispSet frame1;

Return value Data type: pose

The displacement frame.

p1

p3

p2
p4

p6

p5
RAPID Reference Manual 9-DefDFrame-1

DefDFrame Functions

 with

ition

 with
g the
Arguments

DefDFrame (OldP1 OldP2 OldP3 NewP1 NewP2 NewP3)

OldP1 Data type: robtarget

The first original position.

OldP2 Data type: robtarget

The second original position.

OldP3 Data type: robtarget

The third original position.

NewP1 Data type: robtarget

The first displaced position. This position must be measured and determined
great accuracy.

NewP2 Data type: robtarget

The second displaced position. It should be noted that this position can be
measured and determined with less accuracy in one direction, e.g. this pos
must be placed on a line describing the new direction of p1 to p2.

NewP3 Data type: robtarget

The third displaced position. This position can be measured and determined
less accuracy in two directions, e.g. it has to be placed in a plane describin
new plane of p1, p2 and p3.

Syntax

DefDFrame’(’
[OldP1 ’:=’] <expression (IN) of robtarget> ’,’
[OldP2 ’:=’] <expression (IN) of robtarget> ’,’
[OldP3 ’:=’] <expression (IN) of robtarget> ’,’
[NewP1 ’:=’] <expression (IN) of robtarget> ’,’
[NewP2 ’:=’] <expression (IN) of robtarget> ’,’
[NewP3 ’:=’] <expression (IN) of robtarget> ’)’

A function with a return value of the data type pose.

Related information

Described in:

Activation of displacement frame Instructions - PDispSet

Manual definition of displacement frame User’s Guide - Calibration
9-DefDFrame-2 RAPID Reference Manual

Functions DefFrame

ng

 the

,
DefFrame Define a frame

DefFrame (Define Frame) is used to calculate a frame, from three positions defini
the frame.

Example

Three positions, p1- p3, related to the object coordinate system, are used to define
new coordinate system, frame1. The first position, p1, is defining the origin of frame1,
the second position, p2, is defining the direction of the x-axis and the third position
p3, is defining the location of the xy-plane. The defined frame1 may be used as a
displacement frame, as shown in the example below:

CONST robtarget p1 := [...];
CONST robtarget p2 := [...];
CONST robtarget p3 := [...];
VAR pose frame1;
.
.
frame1 := DefFrame (p1, p2, p3);
.
.
!activation of the displacement defined by frame1
PDispSet frame1;

Return value Data type: pose

The calculated frame.

The calculation is related to the active object coordinate system.

p1

p3

p2

x

z

y

object frame

x

y

z

frame1
RAPID Reference Manual 9-DefFrame-1

DefFrame Functions

ion

d.

e the

wP2
Arguments

DefFrame (NewP1 NewP2 NewP3 [\Origin])

NewP1 Data type: robtarget

The first position, which will define the origin of the new frame.

NewP2 Data type: robtarget

The second position, which will define the direction of the x-axis of the new
frame.

NewP3 Data type: robtarget

The third position, which will define the xy-plane of the new frame. The posit
of point 3 will be on the positive y side, see the figure above.

[\Origin] Data type: num

Optional argument, which will define how the origin of the frame will be place
Origin = 1, means that the origin is placed in NewP1, i.e. the same as if this
argument is omitted. Origin = 2 means that the origin is placed in NewP2, se
figure below.

Origin = 3 means that the origin is placed on the line going through NewP1 and Ne
and so that NewP3 will be placed on the y axis, see the figure below.

New P1

New P3

New P2

x

z

y

object frame

x

yz

frame1
9-DefFrame-2 RAPID Reference Manual

Functions DefFrame
Other values, or if Origin is omitted, will place the origin in NewP1.

Syntax

DefFrame’(’
[NewP1 ’:=’] <expression (IN) of robtarget> ’,’
[NewP2 ’:=’] <expression (IN) of robtarget> ’,’
[NewP3 ’:=’] <expression (IN) of robtarget>
[’\’ Origin ’:=’ <expression (IN) of num>]’)’

A function with a return value of the data type pose.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Activation of displacement frame Instructions - PDispSet

New P1

New P3

New P2

x

z

y

object frame

x

y

z

frame1
RAPID Reference Manual 9-DefFrame-3

DefFrame Functions
9-DefFrame-4 RAPID Reference Manual

Functions Dim
Dim Obtains the size of an array

Dim (Dimension) is used to obtain the number of elements in an array.

Example

PROC arrmul(VAR num array{*}, num factor)

FOR index FROM 1 TO Dim(array, 1) DO
array{index} := array{index} * factor;

ENDFOR

ENDPROC

All elements of a num array are multiplied by a factor.
This procedure can take any one-dimensional array of data type num as an input.

Return value Data type: num

The number of array elements of the specified dimension.

Arguments

Dim (ArrPar DimNo)

ArrPar (Array Parameter) Data type: Any type

The name of the array.

DimNo (Dimension Number) Data type: num

The desired array dimension: 1 = first dimension
2 = second dimension
3 = third dimension
RAPID Reference Manual 9-Dim-1

Dim Functions

s and

, a var-
R
Example

PROC add_matrix(VAR num array1{*,*,*}, num array2{*,*,*})

IF Dim(array1,1) <> Dim(array2,1) OR Dim(array1,2) <> Dim(array2,2) OR
Dim(array1,3) <> Dim(array2,3) THEN
TPWrite "The size of the matrices are not the same";
Stop;

ELSE
FOR i1 FROM 1 TO Dim(array1, 1) DO

FOR i2 FROM 1 TO Dim(array1, 2) DO
FOR i3 FROM 1 TO Dim(array1, 3) DO

array1{i1,i2,i3} := array1{i1,i2,i3} + array2{i1,i2,i3};
ENDFOR

ENDFOR
ENDFOR

ENDIF
RETURN;

ENDPROC

Two matrices are added. If the size of the matrices differs, the program stop
an error message appears.
This procedure can take any three-dimensional arrays of data type num as an
input.

Syntax

Dim ’(’
[ArrPar’:=’] <reference (REF) of any type> ’,’
[DimNo’:=’] <expression (IN) of num> ’)’

A REF parameter requires that the corresponding argument be either a constant
iable or an entire persistent. The argument could also be an IN parameter, a VA
parameter or an entire PERS parameter.

A function with a return value of the data type num.

Related information

Described in:

Array parameters Basic Characteristics - Routines

Array declaration Basic Characteristics - Data
9-Dim-2 RAPID Reference Manual

Functions DOutput

d in
 true

st be
DOutput Reads the value of a digital output signal

DOutput is used to read the current value of a digital output signal.

Example

IF DOutput(do2) = 1 THEN . . .

If the current value of the signal do2 is equal to 1, then . . .

Return value Data type: dionum

The current value of the signal (0 or 1).

Arguments

DOutput (Signal)

Signal Data type: signaldo

The name of the signal to be read.

Program execution

The value read depends on the configuration of the signal. If the signal is inverte
the system parameters, the value returned by this function is the opposite of the
value of the physical channel.

Example

IF DOutput(auto_on) <> active THEN . . .

If the current value of the system signal auto_on is not active, then ..., i.e. if the
robot is in the manual operating mode, then ... Note that the signal must fir
defined as a system output in the system parameters.

Syntax

DOutput ’(’
[Signal ’:=’] < variable (VAR) of signaldo > ’)’

A function with a return value of the data type dionum.
RAPID Reference Manual 9-DOutput-1

DOutput Functions
Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
9-DOutput-2 RAPID Reference Manual

Functions EulerZYX

ent

d, a
EulerZYX Gets Euler angles from orient

EulerZYX (Euler ZYX rotations) is used to get an Euler angle component from an ori
type variable.

Example

VAR num anglex;
VAR num angley;
VAR num anglez;
VAR pose object;
.
.
anglex := GetEuler(\X, object.rot);
angley := GetEuler(\Y, object.rot);
anglez := GetEuler(\Z, object.rot);

Return value Data type: num

The corresponding Euler angle, expressed in degrees, range [-180, 180].

Arguments

EulerZYX ([\X] | [\Y] | [\Z] Rotation)

The arguments \X, \Y and \Z are mutually exclusive. If none of these are specifie
run-time error is generated.

[\X] Data type: switch

Gets the rotation around the X axis.

[\Y] Data type: switch

Gets the rotation around the Y axis.

[\Z] Data type: switch

Gets the rotation around the Z axis.

Rotation Data type: orient

The rotation in its quaternion representation.
RAPID Reference Manual 9-EulerZYX-1

EulerZYX Functions
Syntax

EulerZYX’(’
['\'X ’,’] | ['\'Y ’,’] | ['\'Z ’,’]
[Rotation ’:=’] <expression (IN) of orient>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
9-EulerZYX-2 RAPID Reference Manual

Functions Exp
Exp Calculates the exponential value

Exp (Exponential) is used to calculate the exponential value, ex.

Example

VAR num x;
VAR num value;
.
.
value:= Exp(x);

Return value Data type: num

The exponential value ex .

Arguments

Exp (Exponent)

Exponent Data type: num

The exponent argument value.

Syntax

Exp’(’
[Exponent ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
RAPID Reference Manual 9-Exp-1

Exp Functions
9-Exp-2 RAPID Reference Manual

Functions GetTime

meric
GetTime Reads the current time as a numeric value

GetTime is used to read a specified component of the current system time as a nu
value.

GetTime can be used to :

- have the program perform an action at a certain time,

- perform certain activities on a weekday,

- abstain from performing certain activities on the weekend,

- respond to errors differently depending on the time of day.

Example

hour := GetTime(\Hour);

The current hour is stored in the variable hour.

Return value Data type: num

One of the four time components specified below.

Argument

GetTime ([\WDay] | [\Hour] | [\Min] | [\Sec])

[\WDay] Data type: switch

Return the current weekday.
Range: 1 to 7 (Monday to Sunday).

[\Hour] Data type: switch

Return the current hour.
Range: 0 to 23.

[\Min] Data type: switch

Return the current minute.
Range: 0 to 59.

[\Sec] Data type: switch

Return the current second.
Range: 0 to 59.
RAPID Reference Manual 9-GetTime-1

GetTime Functions

h an

 pro-
One of the arguments must be specified, otherwise program execution stops wit
error message.

Example

weekday := GetTime(\WDay);
hour := GetTime(\Hour);
IF weekday < 6 AND hour >6 AND hour < 16 THEN

production;
ELSE

maintenance;
ENDIF

If it is a weekday and the time is between 7:00 and 15:59 the robot performs
duction. At all other times, the robot is in the maintenance mode.

Syntax

GetTime ’(’
[’\’ WDay]
| [’\’ Hour]
| [’\’ Min]
| [’\’ Sec] ’)’

A function with a return value of the type num.

Related Information

Described in:

Time and date instructions RAPID Summary - System & Time

Setting the system clock User’s Guide - System Parameters
9-GetTime-2 RAPID Reference Manual

Functions GOutput

 binary

 in the
GOutput Reads the value of a group of digital output signals

GOutput is used to read the current value of a group of digital output signals.

Example

IF GOutput(go2) = 5 THEN ...

If the current value of the signal go2 is equal to 5, then ...

Return value Data type: num

The current value of the signal (a positive integer).

The values of each signal in the group are read and interpreted as an unsigned
number. This binary number is then converted to an integer.

The value returned lies within a range that is dependent on the number of signals
group.

No. of signals Return value No. of signals Return value

1 0 - 1 9 0 - 511

2 0 - 3 10 0 - 1023

3 0 - 7 11 0 - 2047

4 0 - 15 12 0 - 4095

5 0 - 31 13 0 - 8191

6 0 - 63 14 0 - 16383

7 0 - 127 15 0 - 32767

8 0 - 255 16 0 - 65535

Arguments

GOutput (Signal)

Signal Data type: signalgo

The name of the signal group to be read.
RAPID Reference Manual 9-GOutput-1

GOutput Functions
Syntax

GOutput ’(’
[Signal ’:=’] < variable (VAR) of signalgo > ’)’

A function with a return value of data type num.

Related information

Described in:

Input/Output instructions RAPID Summary -
Input and Output Signals

Input/Output functionality in general Motion and I/O Principles -
I/O Principles

Configuration of I/O User’s Guide - System Parameters
9-GOutput-2 RAPID Reference Manual

Functions IndInpos

osition.

d

t the
l axes
IndInpos Independent In position status

IndInpos is used to test whether an independent axis has reached the selected p

Example

IndAMove Station_A,1\ToAbsNum:=90,20;
WaitUntil IndInpos(Station_A,2) = TRUE;
WaitTime 0.2;

Wait until axis 1 of Station_A is in the 90 degrees position.

Return value Data type: bool

The return values from IndInpos are:

Return value Axis status

TRUE In position and has zero speed.
FALSE Not in position and/or has not zero spee

Arguments

IndInpos MecUnit Axis

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The number of the current axis for the mechanical unit (1-6).

Limitations

An independent axis executed with the instruction IndCMove always returns the value
FALSE, even when the speed is set to zero.

A wait period of 0.2 seconds should be added after the instruction, to ensure tha
correct status has been achieved. This time period should be longer for externa
with poor performance.
RAPID Reference Manual 9-IndInpos-1

IndInpos Functions

Error handling

If the axis is not in independent mode, the system variable ERRNO will be set to
ERR_AXIS_IND.

Syntax

IndInpos ’(’
[MecUnit’:=’] < variable (VAR) of mecunit> ’,’
[Axis’:=’] < expression (IN) of num>’)’

A function with a return value of the data type bool.

Related information

Described in:

Independent axes in general Motion and I/O Principles -
Program execution

Check the speed status for independent axes Functions - IndSpeed
9-IndInpos-2 RAPID Reference Manual

Functions IndSpeed

peed.

ther-
IndSpeed Independent Speed status

IndSpeed is used to test whether an independent axis has reached the selected s

Example

IndCMove Station_A, 2, 3.4;
WaitUntil IndSpeed(Station_A,2 \InSpeed) = TRUE;
WaitTime 0.2;

Wait until axis 2 of Station_A has reached the speed 3.4 degrees/s.

Return value Data type: bool

The return values from IndSpeed are:

Return value Axis status

option \InSpeed

TRUE Has reached the selected speed.

FALSE Has not reached the selected speed.

option \ZeroSpeed

TRUE Zero speed.

FALSE Not zero speed

Arguments

IndSpeed MecUnit Axis [\InSpeed] | [\ZeroSpeed]

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit.

Axis Data type: num

The number of the current axis for the mechanical unit (1-6).

[\InSpeed] Data type: switch

IndSpeed returns value TRUE if the axis has reached the selected speed o
wise FALSE.
RAPID Reference Manual 9-IndSpeed-1

IndSpeed Functions

t the
 poor

[\ZeroSpeed] Data type: switch

IndSpeed returns value TRUE if the axis has zero speed otherwise FALSE.

If both the arguments \InSpeed and \ZeroSpeed are omitted, an error message will be
displayed.

Limitation

The function IndSpeed\InSpeed will always return the value FALSE in the following
situations:

- The robot is in manual mode with reduced speed.

- The speed is reduced using the VelSet instruction.

- The speed is reduced from the production window.

A wait period of 0.2 seconds should be added after the instruction, to ensure tha
correct status is obtained. This time period should be longer for external axes with
performance.

Error handling

If the axis is not in independent mode, the system variable ERRNO will be set to
ERR_AXIS_IND.

Syntax

IndSpeed ’(’
[MecUnit’:=’] < variable (VAR) of mecunit> ’,’
[Axis’:=’] < expression (IN) of num>
[’\’ InSpeed] | [’\’ ZeroSpeed] ’)’

A function with a return value of the data type bool.

Related information

Described in:

Independent axes in general Motion and I/O Principles -
Program execution

More examples Instructions - IndCMove

Check the position status for independent axes Functions - IndInpos
9-IndSpeed-2 RAPID Reference Manual

Functions IsPers

e
IsPers Is Persistent

IsPers is used to test if a data object is a persistent variable or not.

Example

PROC procedure1 (INOUT num parameter1)
IF IsVar(parameter1) THEN

! For this call reference to a variable
...

ELSEIF IsPers(parameter1) THEN
! For this call reference to a persistent variable
...

ELSE
! Should not happen
EXIT;

ENDIF
ENDPROC

The procedure procedure1 will take different actions depending on whether th
actual parameter parameter1 is a variable or a persistent variable.

Return value Data type: bool

TRUE if the tested actual INOUT parameter is a persistent variable.
FALSE if the tested actual INOUT parameter is not a persistent variable.

Arguments

IsPers (DatObj)

DatObj (Data Object) Data type: any type

The name of the formal INOUT parameter.

Syntax

IsPers’(’
[DatObj ’:=’] < var or pers (INOUT) of any type > ’)’

A function with a return value of the data type bool.
RAPID Reference Manual 9-IsPers-1

IsPers Functions
Related information

Described in:

Test if variable Function - IsVar

Types of parameters (access modes) RAPID Characteristics - Routines
9-IsPers-2 RAPID Reference Manual

Functions IsVar

e
IsVar Is Variable

IsVar is used to test whether a data object is a variable or not.

Example

PROC procedure1 (INOUT num parameter1)
IF IsVAR(parameter1) THEN

! For this call reference to a variable
...

ELSEIF IsPers(parameter1) THEN
! For this call reference to a persistent variable
...

ELSE
! Should not happen
EXIT;

ENDIF
ENDPROC

The procedure procedure1 will take different actions, depending on whether th
actual parameter parameter1 is a variable or a persistent variable.

Return value Data type: bool

TRUE if the tested actual INOUT parameter is a variable.
FALSE if the tested actual INOUT parameter is not a variable.

Arguments

IsVar (DatObj)

DatObj (Data Object) Data type: any type

The name of the formal INOUT parameter.

Syntax

IsVar’(’
[DatObj ’:=’] < var or pers (INOUT) of any type > ’)’

A function with a return value of the data type bool.
RAPID Reference Manual 9-IsVar-1

IsVar Functions
Related information

Described in:

Test if persistent Function - IsPers

Types of parameters (access modes) RAPID Characteristics - Routines
9-IsVar-2 RAPID Reference Manual

Functions MirPos

osi-

 This

ed in

rent

ane

hich

ust
MirPos Mirroring of a position

MirPos (Mirror Position) is used to mirror the translation and rotation parts of a p
tion.

Example

CONST robtarget p1;
VAR robtarget p2;
PERS wobjdata mirror;
.
.
p2 := MirPos(p1, mirror);

p1 is a robtarget storing a position of the robot and an orientation of the tool.
position is mirrored in the xy-plane of the frame defined by mirror, relative to
the world coordinate system. The result is new robtarget data, which is stor
p2.

Return value Data type: robtarget

The new position which is the mirrored position of the input position.

Arguments

MirPos (Point MirPlane [\WObj] [\MirY])

Point Data type: robtarget

The input robot position. The orientation part of this position defines the cur
orientation of the tool coordinate system.

MirPlane (Mirror Plane) Data type: wobjdata

The work object data defining the mirror plane. The mirror plane is the xy-pl
of the object frame defined in MirPlane. The location of the object frame is
defined relative to the user frame, also defined in MirPlane, which in turn is
defined relative to the world frame.

[\WObj] (Work Object) Data type: wobjdata

The work object data defining the object frame, and user frame, relative to w
the input position, Point, is defined. If this argument is left out, the position is
defined relative to the World coordinate system.
Note. If the position is created with a work object active, this work object m
be referred to in the argument.
RAPID Reference Manual 9-MirPos-1

MirPos Functions

ed
 will

a.
[\MirY] (Mirror Y) Data type: switch

If this switch is left out, which is the default rule, the tool frame will be mirror
as regards the x-axis and the z-axis. If the switch is specified, the tool frame
be mirrored as regards the y-axis and the z-axis.

Limitations

No recalculation is done of the robot configuration part of the input robtarget dat

Syntax

MirPos’(’
[Point ’:=’] < expression (IN) of robtarget>’,’
[MirPlane ’:=’] <expression (IN) of wobjdata> ’,’
[’ \’WObj ’:=’ <expression (IN) of wobjdata>]
[’\’ MirY]’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
9-MirPos-2 RAPID Reference Manual

Functions NumToStr

with
l point

ater
NumToStr Converts numeric value to string

NumToStr (Numeric To String) is used to convert a numeric value to a string.

Example

VAR string str;

str := NumToStr(0.38521,3);

The variable str is given the value "0.385".

reg1 := 0.38521

str := NumToStr(reg1, 2\Exp);

The variable str is given the value "3.85E-01".

Return value Data type: string

The numeric value converted to a string with the specified number of decimals,
exponent if so requested. The numeric value is rounded if necessary. The decima
is suppressed if no decimals are included.

Arguments

NumToStr (Val Dec [\Exp])

Val (Value) Data type: num

The numeric value to be converted.

Dec (Decimals) Data type: num

Number of decimals. The number of decimals must not be negative or gre
than the available precision for numeric values.

[\Exp] (Exponent) Data type: switch

To use exponent.
RAPID Reference Manual 9-NumToStr-1

NumToStr Functions
Syntax

NumToStr’(’
[Val ’:=’] <expression (IN) of num> ’,’
[Dec ’:=’] <expression (IN) of num>
[\Exp]
’)’

A function with a return value of the data type string.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-NumToStr-2 RAPID Reference Manual

Functions Offs
Offs Displaces a robot position

Offs is used to add an offset to a robot position.

Examples

MoveL Offs(p2, 0, 0, 10), v1000, z50, tool1;

The robot is moved to a point 10 mm from the position p2 (in the z-direction).

p1 := Offs (p1, 5, 10, 15);

The robot position p1 is displaced 5 mm in the x-direction, 10 mm in the y-direc-
tion and 15 mm in the z-direction.

Return value Data type: robtarget

The displaced position data.

Arguments

Offs (Point XOffset YOffset ZOffset)

Point Data type: robtarget

The position data to be displaced.

XOffset Data type: num

The displacement in the x-direction.

YOffset Data type: num

The displacement in the y-direction.

ZOffset Data type: num

The displacement in the z-direction.
RAPID Reference Manual 9-Offs-1

Offs Functions

ork
nce

ject.
Example

PROC pallet (num row, num column, num distance, PERS tooldata tool,
PERS wobjdata wobj)

VAR robtarget palletpos:=[[0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0],
[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

palettpos := Offs (palettpos, (row-1)*distance, (column-1)*distance, 0);
MoveL palettpos, v100, fine, tool\WObj:=wobj;

ENDPROC

A routine for picking parts from a pallet is made. Each pallet is defined as a w
object (see Figure 1). The part to be picked (row and column) and the dista
between the parts are given as input parameters.
Incrementing the row and column index is performed outside the routine.

Figure 1 The position and orientation of the pallet is specified by defining a work ob

Syntax

Offs ’(’
[Point ’:=’] <expression (IN) of robtarget> ’,’
[XOffset ’:=’] <expression (IN) of num> ’,’
[YOffset ’:=’] <expression (IN) of num> ’,’
[ZOffset ’:=’] <expression (IN) of num> ’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Position data Data Types - robtarget

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Y-axis

X-axis

Columns

Rows
9-Offs-2 RAPID Reference Manual

Functions OpMode

em.

de.
RAPID Reference Manual 9-OpMode-1

OpMode Read the operating mode

OpMode (Operating Mode) is used to read the current operating mode of the syst

Example

TEST OpMode()
CASE OP_AUTO:

...
CASE OP_MAN_PROG:

...
CASE OP_MAN_TEST:

...
DEFAULT:

...
ENDTEST

Different program sections are executed depending on the current operating mo

Return value Data type: symnum

The current operating mode as defined in the table below.

Syntax

OpMode’(’ ’)’

A function with a return value of the data type symnum.

Related information
Described in:

Different operating modes User’s Guide - Starting up

Reading running mode Functions - RunMode

Return value Symbolic constant Comment

0 OP_UNDEF Undefined operating mode

1 OP_AUTO Automatic operating mode

2 OP_MAN_PROG Manual operating mode
max. 250 mm/s

3 OP_MAN_TEST Manual operating mode
full speed, 100 %

OpMode Functions
9-OpMode-2 RAPID Reference Manual

Functions OrientZYX

t
OrientZYX Builds an orient from Euler angles

OrientZYX (Orient from Euler ZYX angles) is used to build an orient type variable ou
of Euler angles.

Example

VAR num anglex;
VAR num angley;
VAR num anglez;
VAR pose object;
.
object.rot := OrientZYX(anglez, angley, anglex)

Return value Data type: orient

The orientation made from the Euler angles.

The rotations will be performed in the following order:
-rotation around the z axis,
-rotation around the new y axis
-rotation around the new x axis.

Arguments

OrientZYX (ZAngle YAngle XAngle)

ZAngle Data type: num

The rotation, in degrees, around the Z axis.

YAngle Data type: num

The rotation, in degrees, around the Y axis.

XAngle Data type: num

The rotation, in degrees, around the X axis.

The rotations will be performed in the following order:
-rotation around the z axis,
-rotation around the new y axis
-rotation around the new x axis.
RAPID Reference Manual 9-OrientZYX-1

OrientZYX Functions
Syntax

OrientZYX’(’
[ZAngle ’:=’] <expression (IN) of num> ’,’
[YAngle ’:=’] <expression (IN) of num> ’,’
[XAngle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type orient.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
9-OrientZYX-2 RAPID Reference Manual

Functions ORobT

m
ve an

m.
ny

exter-

gram
ORobT Removes a program displacement from a position

ORobT (Object Robot Target) is used to transform a robot position from the progra
displacement coordinate system to the object coordinate system and/or to remo
offset for the external axes.

Example

VAR robtarget p10;
VAR robtarget p11;

p10 := CRobT();
p11 := ORobT(p10);

The current positions of the robot and the external axes are stored in p10 and p11.
The values stored in p10 are related to the ProgDisp/ExtOffs coordinate syste
The values stored in p11 are related to the object coordinate system without a
offset on the external axes.

Return value Data type: robtarget

The transformed position data.

Arguments

ORobT (OrgPoint [\InPDisp] | [\InEOffs])

OrgPoint (Original Point) Data type: robtarget

The original point to be transformed.

[\InPDisp] (In Program Displacement) Data type: switch

Returns the TCP position in the ProgDisp coordinate system, i.e. removes
nal axes offset only.

[\InEOffs] (In External Offset) Data type: switch

Returns the external axes in the offset coordinate system, i.e. removes pro
displacement for the robot only.
RAPID Reference Manual 9-ORobT-1

ORobT Functions

eav-
axes

osi-
Examples

p10 := ORobT(p10 \InEOffs);

The ORobT function will remove any program displacement that is active, l
ing the TCP position relative to the object coordinate system. The external
will remain in the offset coordinate system.

p10 := ORobT(p10 \InPDisp);

The ORobT function will remove any offset of the external axes. The TCP p
tion will remain in the ProgDisp coordinate system.

Syntax

ORobT ’(’
[OrgPoint ’:=’] < expression (IN) of robtarget>
[’\’InPDisp] | [’\’InEOffs]’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Definition of program displacement for Instructions - PDispOn, PDispSet
the robot

Definition of offset for external axes Instructions - EOffsOn, EOffsSet

Coordinate systems Motion and I/O Principles - Coordi-
nate Systems
9-ORobT-2 RAPID Reference Manual

Functions PoseInv

ed by
PoseInv Inverts the pose

PoseInv (Pose Invert) calculates the reverse transformation of a pose.

Example

Pose1 represents the coordinates of Frame1 related to Frame0.
The transformation giving the coordinates of Frame0 related to Frame1 is obtain
the reverse transformation:

VAR pose pose1;
VAR pose pose2;
.
.
pose2 := PoseInv(pose1);

Return value Data type: pose

The value of the reverse pose.

Arguments

PoseInv (Pose)

Pose Data type: pose

The pose to invert.

x0

y0

z0

Frame0 x1
y1

z1

Frame1

Pose1

Pose2
RAPID Reference Manual 9-PoseInv-1

PoseInv Functions
Syntax

PoseInv’(’
[Pose ’:=’] <expression (IN) of pose>
’)’

A function with a return value of the data type pose.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
9-PoseInv-2 RAPID Reference Manual

Functions PoseMult

-
cting

 is
PoseMult Multiplies pose data

PoseMult (Pose Multiply) is used to calculate the product of two frame transforma
tions. A typical use is to calculate a new frame as the result of a displacement a
on an original frame.

Example

pose1 represents the coordinates of Frame1 related to Frame0.
pose2 represents the coordinates of Frame2 related to Frame1.

The transformation giving pose3, the coordinates of Frame2 related to Frame0,
obtained by the product of the two transformations:

VAR pose pose1;
VAR pose pose2;
VAR pose pose3;
.
.
pose3 := PoseMult(pose1, pose2);

Return value Data type: pose

The value of the product of the two poses.

x0

y0

z0

Frame0 x1

y1

z1

x2
y2

z2
Frame1

Frame2

pose1
pose2

pose3
RAPID Reference Manual 9-PoseMult-1

PoseMult Functions
Arguments

PoseMult (Pose1 Pose2)

Pose1 Data type: pose

The first pose.

Pose2 Data type: pose

The second pose.

Syntax

PoseMult’(’
[Pose1 ’:=’] <expression (IN) of pose> ’,’
[Pose2 ’:=’] <expression (IN) of pose>
’)’

A function with a return value of the data type pose.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
9-PoseMult-2 RAPID Reference Manual

Functions PoseVect

nt on
PoseVect Applies a transformation to a vector

PoseVect (Pose Vector) is used to calculate the product of a pose and a vector.
It is typically used to calculate a vector as the result of the effect of a displaceme
an original vector.

Example

pose1 represents the coordinates of Frame1 related to Frame0.
pos1 is a vector related to Frame1.

The corresponding vector related to Frame0 is obtained by the product:

VAR pose pose1;
VAR pos pos1;
VAR pos pos2;
.
.
pos2:= PoseVect(pose1, pos1);

Return value Data type: pos

The value of the product of the pose and the original pos.

x0

y0

z0

Frame0

x1

y1

z1

Frame1
pose1

pos1pos2
RAPID Reference Manual 9-PoseVect-1

PoseVect Functions
Arguments

PoseVect (Pose Pos)

Pose Data type: pose

The transformation to be applied.

Pos Data type: pos

The pos to be transformed.

Syntax

PoseVect’(’
[Pose ’:=’] <expression (IN) of pose> ’,’
[Pos ’:=’] <expression (IN) of pos>
’)’

A function with a return value of the data type pos.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
9-PoseVect-2 RAPID Reference Manual

Functions Pow
Pow Calculates the power of a value

Pow (Power) is used to calculate the exponential value in any base.

Example

VAR num x;
VAR num y
VAR num reg1;
.
reg1:= Pow(x, y);

reg1 is assigned the value xy.

Return value Data type: num

The value of the base x raised to the power of the exponent y (xy).

Arguments

Pow (Base Exponent)

Base Data type: num

The base argument value.

Exponent Data type: num

The exponent argument value.

Limitations

The execution of the function xy will give an error if:

. x < 0 and y is not an integer;

. x = 0 and y 0.

Syntax

Pow’(’
[Base ’:=’] <expression (IN) of num> ’,’
[Exponent ’:=’] <expression (IN) of num>
’)’

≤

RAPID Reference Manual 9-Pow-1

Pow Functions
A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
9-Pow-2 RAPID Reference Manual

Functions Present

tine.

tine.
revent

gu-

tine.
Present Tests if an optional parameter is used

Present is used to test if an optional argument has been used when calling a rou

An optional parameter may not be used if it was not specified when calling the rou
This function can be used to test if a parameter has been specified, in order to p
errors from occurring.

Example

PROC feeder (\switch on | \switch off)

IF Present (on) Set do1;
IF Present (off) Reset do1;

ENDPROC

The output do1, which controls a feeder, is set or reset depending on the ar
ment used when calling the routine.

Return value Data type: bool

TRUE = The parameter value or a switch has been defined when calling the rou

FALSE = The parameter value or a switch has not been defined.

Arguments

Present (OptPar)

OptPar (Optional Parameter) Data type: Any type

The name of the optional parameter to be tested.
RAPID Reference Manual 9-Present-1

Present Functions

,
t

he
g on
Example

PROC glue (\switch on, num glueflow, robtarget topoint, speeddata speed,
zonedata zone, PERS tooldata tool, \PERS wobjdata wobj)

IF Present (on) PulseDO glue_on;
SetAO gluesignal, glueflow;
IF Present (wobj) THEN

MoveL topoint, speed, zone, tool \WObj=wobj;
ELSE

MoveL topoint, speed, zone, tool;
ENDIF

ENDPROC

A glue routine is made. If the argument \on is specified when calling the routine
a pulse is generated on the signal glue_on. The robot then sets an analog outpu
gluesignal, which controls the glue gun, and moves to the end position. As t
wobj parameter is optional, different MoveL instructions are used dependin
whether this argument is used or not.

Syntax

Present ’(’
[OptPar’:=’] <reference (REF) of any type> ’)’

A REF parameter requires, in this case, the optional parameter name.

A function with a return value of the data type bool.

Related information

Described in:

Routine parameters Basic Characteristics - Routines
9-Present-2 RAPID Reference Manual

Functions ReadBin

 or

he
r -1

nt is

ler

 in

nnel.
ReadBin Reads from a binary serial channel or file

ReadBin (Read Binary) is used to read a byte (8 bits) from a binary serial channel
file.

Example

VAR iodev inchannel;
.
Open "sio1:", inchannel\Bin;
character := ReadBin(inchannel);

A byte is read from the binary channel inchannel.

Return value Data type: num

A byte (8 bits) is read from a specified serial channel. This byte is converted to t
corresponding positive numeric value. If the file is empty (end of file), the numbe
is returned.

Arguments

ReadBin (IODevice [\Time])

IODevice Data type: iodev

The name (reference) of the current serial channel or file.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argume
not specified, the max. time is set to 60 seconds.

If this time runs out before the reading operation is finished, the error hand
will be called with the error code ERR_DEV_MAXTIME. If there is no error
handler, the execution will be stopped.

The timeout function is in use also during program stop and will be noticed
RAPID program at program start.

Program execution

Program execution waits until a byte (8 bits) can be read from the binary serial cha
RAPID Reference Manual 9-ReadBin-1

ReadBin Functions

SCII

inary
Example

Open “flp1:myfile.bin”, file\Bin;
.
Rewind file;
bindata := ReadBin(file);
WHILE bindata <> EOF_BIN DO

TPWrite ByteToStr(bindata\Char);
bindata := ReadBin(file);

ENDWHILE

Read the contents of a binary file myfile.bin from the beginning to the end of the
file and display the binary data received on the teach pendant, converted to A
characters (one char on each line).

Limitations

The function can only be used for channels and files that have been opened for b
reading and writing.

Error handling

If an error occurs during reading, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.

Predefined data

The constant EOF_BIN can be used to stop reading at the end of the file.

CONST num EOF_BIN := -1;

Syntax

ReadBin’(’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type num.
9-ReadBin-2 RAPID Reference Manual

Functions ReadBin
Related information

Described in:

Opening (etc.) serial channels RAPID Summary - Communication

Convert a byte to a string data Functions - ByteToStr

Byte data Data Types - byte
RAPID Reference Manual 9-ReadBin-3

ReadBin Functions
9-ReadBin-4 RAPID Reference Manual

Functions ReadMotor

and
the

s.

ment
 per-

r and
f the
osi-
posi-
ents
ReadMotor Reads the current motor angles

ReadMotor is used to read the current angles of the different motors of the robot
external axes. The primary use of this function is in the calibration procedure of
robot.

Example

VAR num motor_angle2;

motor_angle2 := ReadMotor(2);

The current motor angle of the second axis of the robot is stored in
motor_angle2.

Return value Data type: num

The current motor angle in radians of the stated axis of the robot or external axe

Arguments

ReadMotor [\MecUnit] Axis

MecUnit (Mechanical Unit) Data type: mecunit

The name of the mechanical unit for which an axis is to be read. If this argu
is omitted, the axis for the robot is read. (Note, in this release only robot is
mitted for this argument).

Axis Data type: num

The number of the axis to be read (1 - 6).

Program execution

The motor angle returned represents the current position in radians for the moto
independently of any calibration offset. The value is not related to a fix position o
robot, only to the resolver internal zero position, i.e. normally the resolver zero p
tion closest to the calibration position (the difference between the resolver zero
tion and the calibration position is the calibration offset value). The value repres
the full movement of each axis, although this may be several turns.
RAPID Reference Manual 9-ReadMotor-1

ReadMotor Functions
Example

VAR num motor_angle3;

motor_angle3 := ReadMotor(\MecUnit:=robot, 3);

The current motor angle of the third axis of the robot is stored in motor_angle3.

Syntax

ReadMotor’(’
[’ \’MecUnit ’:=’ < variable (VAR) of mecunit>’,’]
[Axis ’:=’] < expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Reading the current joint angle Functions - CJointT
9-ReadMotor-2 RAPID Reference Manual

Functions ReadNum

l

 the

nt is

 will
-

 in

 next
 char-
ReadNum Reads a number from a file or the serial channe

ReadNum (Read Numeric) is used to read a number from a character-based file or
serial channel.

Example

VAR iodev infile;
.
Open "flp1:file.doc", infile\Read;
reg1 := ReadNum(infile);

Reg1 is assigned a number read from the file file.doc on the diskette.

Return value Data type: num

The numeric value read from a specified file. If the file is empty (end of file), the
number 9.999E36 is returned.

Arguments

ReadNum (IODevice [\Time])

IODevice Data type: iodev

The name (reference) of the file to be read.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argume
not specified, the max. time is set to 60 seconds.

If this time runs out before the read operation is finished, the error handler
be called with the error code ERR_DEV_MAXTIME. If there is no error han
dler, the execution will be stopped.

The timeout function is also in use during program stop and will be noticed
RAPID program at program start.

Program execution

The function reads a line from a file, i.e. reads everything up to and including the
line-feed character (LF), but not more than 80 characters. If the line exceeds 80
acters, the remainder of the characters will be read on the next reading.
RAPID Reference Manual 9-ReadNum-1

ReadNum Functions

l

rted
.

ure

able
ror
9-ReadNum-2 RAPID Reference Manua

The string that is read is then converted to a numeric value; e.g. “234.4” is conve
to the numeric value 234.4. If all the characters read are not digits, 0 is returned

Example

reg1 := ReadNum(infile);
IF reg1 > EOF_NUM THEN

TPWrite "The file is empty"
..

Before using the number read from the file, a check is performed to make s
that the file is not empty.

Limitations

The function can only be used for files that have been opened for reading.

Error handling

If an access error occurs during reading, the system variable ERRNO is set to
ERR_FILEACC. If there is an attempt to read non numeric data, the system vari
ERRNO is set to ERR_RCVDATA. These errors can then be dealt with by the er
handler.

Predefined data

The constant EOF_NUM can be used to stop reading, at the end of the file.

CONST num EOF_NUM := 9.998E36;

Syntax

ReadNum ’(’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type num.

Related information

Described in:

Opening (etc.) serial channels RAPID Summary - Communication

Functions ReadStr

rial

ing

nt is

 will
-

 next
 char-
ReadStr Reads a string from a file or serial channel

ReadStr (Read String) is used to read text from a character-based file or from the se
channel.

Example

VAR iodev infile;
.
Open "flp1:file.doc", infile\Read;
text := ReadStr(infile);

Text is assigned a text string read from the file file.doc on the diskette.

Return value Data type: string

The text string read from the specified file. If the file is empty (end of file), the str
"EOF" is returned.

Arguments

ReadStr (IODevice [\Time])

IODevice Data type: iodev

The name (reference) of the file to be read.

[\Time] Data type: num

The max. time for the reading operation (timeout) in seconds. If this argume
not specified, the max. time is set to 60 seconds.

If this time runs out before the read operation is finished, the error handler
be called with the error code ERR_DEV_MAXTIME. If there is no error han
dler, the execution will be stopped.

Program execution

The function reads a line from a file, i.e. reads everything up to and including the
line-feed character (LF), but not more than 80 characters. If the line exceeds 80
acters, the remainder of the characters will be read on the next reading.
RAPID Reference Manual 9-ReadStr-1

ReadStr Functions

 that

om
Example

text := ReadStr(infile);
IF text = EOF THEN

TPWrite "The file is empty";
.

Before using the string read from the file, a check is performed to make sure
the file is not empty.

Limitations

The function can only be used for files that have been opened for reading.

Error handling

If an error occurs during reading, the system variable ERRNO is set to
ERR_FILEACC. This error can then be handled in the error handler.

Predefined data

The constant EOF can be used to check if the file was empty when trying to read fr
the file or to stop reading at the end of the file.

CONST string EOF := "EOF";

Syntax

ReadStr ’(’
[IODevice ’:=’] <variable (VAR) of iodev>
[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type string.

Related information

Described in:

Opening (etc.) serial channels RAPID Summary - Communication
9-ReadStr-2 RAPID Reference Manual

Functions RelTool

d in

 the

tive

rent
RelTool Make a displacement relative to the tool

RelTool (Relative Tool) is used to add a displacement and/or a rotation, expresse
the tool coordinate system, to a robot position.

Example

MoveL RelTool (p1, 0, 0, 100), v100, fine, tool1;

The robot is moved to a position that is 100 mm from p1 in the direction of
tool.

MoveL RelTool (p1, 0, 0, 0 \Rz:= 25), v100, fine, tool1;

The tool is rotated 25o around its z-axis.

Return value Data type: robtarget

The new position with the addition of a displacement and/or a rotation, if any, rela
to the active tool.

Arguments

RelTool (Point Dx Dy Dz [\Rx] [\Ry] [\Rz])

Point Data type: robtarget

The input robot position. The orientation part of this position defines the cur
orientation of the tool coordinate system.

Dx Data type: num

The displacement in mm in the x direction of the tool coordinate system.

Dy Data type: num

The displacement in mm in the y direction of the tool coordinate system.

Dz Data type: num

The displacement in mm in the z direction of the tool coordinate system.

[\Rx] Data type: num

The rotation in degrees around the x axis of the tool coordinate system.
RAPID Reference Manual 9-RelTool-1

RelTool Functions

e per-
new
[\Ry] Data type: num

The rotation in degrees around the y axis of the tool coordinate system.

[\Rz] Data type: num

The rotation in degrees around the z axis of the tool coordinate system.

In the event that two or three rotations are specified at the same time, these will b
formed first around the x-axis, then around the new y-axis, and then around the
z-axis.

Syntax

RelTool’(’
[Point ’:=’] < expression (IN) of robtarget>’,’
[Dx ’:=’] <expression (IN) of num> ’,’
[Dy ’:=’] <expression (IN) of num> ’,’
[Dz ’:=’] <expression (IN) of num>
[’ \’Rx ’:=’ <expression (IN) of num>]
[’\’ Ry ’:=’ <expression (IN) of num>]
[’\’ Rz ’:=’ <expression (IN) of num>]’)’

A function with a return value of the data type robtarget.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Positioning instructions RAPID Summary - Motion
9-RelTool-2 RAPID Reference Manual

Functions Round

 inte-

alue

 pre-
Round Round is a numeric value

Round is used to round a numeric value to a specified number of decimals or to an
ger value.

Example

VAR num val;

val := Round(0.38521\Dec:=3);

The variable val is given the value 0.385.

val := Round(0.38521\Dec:=1);

The variable val is given the value 0.4.

val := Round(0.38521);

The variable val is given the value 0.

Return value Data type: num

The numeric value rounded to the specified number of decimals.

Arguments

Round (Val [\Dec])

Val (Value) Data type: num

The numeric value to be rounded.

[\Dec] (Decimals Data type: num

Number of decimals.

If the specified number of decimals is 0 or if the argument is omitted, the v
is rounded to an integer.

The number of decimals must not be negative or greater than the available
cision for numeric values.
RAPID Reference Manual 9-Round-1

Round Functions
Syntax

Round’(’
[Val ’:=’] <expression (IN) of num>
[\Dec ’:=’ <expression (IN) of num>]
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Truncating a value Functions - Trunc
9-Round-2 RAPID Reference Manual

Functions RunMode

.

RunMode Read the running mode

RunMode (Running Mode) is used to read the current running mode of the system

Example

IF RunMode() = RUN_CONT_CYCLE THEN
.
.
ENDIF

The program section is executed only for continuous or cycle running.

Return value Data type: symnum

The current running mode as defined in the table below.

Syntax

RunMode’(’ ’)’

A function with a return value of the data type symnum.

Related information

Described in:

Reading operating mode Functions - OpMode

Return value Symbolic constant Comment

0 RUN_UNDEF Undefined running mode

1 RUN_CONT_CYCLE Continuous or cycle running mode

2 RUN_INSTR_FWD Instruction forward running mode

3 RUN_INSTR_BWD Instruction backward running mode

4 RUN_SIM Simulated running mode
RAPID Reference Manual 9-RunMode-1

RunMode Functions
9-RunMode-2 RAPID Reference Manual

Functions Sin
Sin Calculates the sine value

Sin (Sine) is used to calculate the sine value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Sin(angle);

Return value Data type: num

The sine value, range [-1, 1] .

Arguments

Sin (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Sin’(’
[Angle’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
RAPID Reference Manual 9-Sin-1

Sin Functions
9-Sin-2 RAPID Reference Manual

Functions Sqrt
Sqrt Calculates the square root value

Sqrt (Square root) is used to calculate the square root value.

Example

VAR num x_value;
VAR num y_value;
.
.
y_value := Sqrt(x_value);

Return value Data type: num

The square root value.

Arguments

Sqrt (Value)

Value Data type: num

The argument value for square root (); it has to be .

Syntax

Sqrt’(’
[Value’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

0≥
RAPID Reference Manual 9-Sqrt-1

Sqrt Functions
9-Sqrt-2 RAPID Reference Manual

Functions StrFind

r a

t
urned.

e the
StrFind Searches for a character in a string

StrFind (String Find) is used to search in a string, starting at a specified position, fo
character that belongs to a specified set of characters.

Example

VAR num found;

found := StrFind("Robotics",1,"aeiou");

The variable found is given the value 2.

found := StrFind("Robotics",1,"aeiou"\NotInSet);

The variable found is given the value 1.

found := StrFind("IRB 6400",1,STR_DIGIT);

The variable found is given the value 5.

found := StrFind("IRB 6400",1,STR_WHITE);

The variable found is given the value 4.

Return value Data type: num

The character position of the first character, at or past the specified position, tha
belongs to the specified set. If no such character is found, String length +1 is ret

Arguments

StrFind (Str ChPos Set [\NotInSet])

Str (String) Data type: string

The string to search in.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outsid
string.

Set Data type: string

Set of characters to test against.
RAPID Reference Manual 9-StrFind-1

StrFind Functions
[\NotInSet] Data type: switch

Search for a character not in the set of characters.

Syntax

StrFind’(’
[Str ’:=’] <expression (IN) of string> ’,’
[ChPos ’:=’] <expression (IN) of num> ’,’
[Set’:=’] <expression (IN) of string>
[’\’NotInSet]
’)’

A function with a return value of the data type num.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-StrFind-2 RAPID Reference Manual

Functions StrLen
StrLen Gets the string length

StrLen (String Length) is used to find the current length of a string.

Example

VAR num len;

len := StrLen("Robotics");

The variable len is given the value 8.

Return value Data type: num

The number of characters in the string (>=0).

Arguments

StrLen (Str)

Str (String) Data type: string

The string in which the number of characters is to be counted.

Syntax

StrLen’(’
[Str ’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type num.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
RAPID Reference Manual 9-StrLen-1

StrLen Functions
9-StrLen-2 RAPID Reference Manual

Functions StrMap

 are

ied by
d in
 "to"
result-
StrMap Maps a string

StrMap (String Mapping) is used to create a copy of a string in which all characters
translated according to a specified mapping.

Example

VAR string str;

str := StrMap("Robotics","aeiou","AEIOU");

The variable str is given the value "RObOtIcs".

str := StrMap("Robotics",STR_LOWER, STR_UPPER);

The variable str is given the value "ROBOTICS".

Return value Data type: string

The string created by translating the characters in the specified string, as specif
the "from" and "to" strings. Each character, from the specified string, that is foun
the "from" string is replaced by the character at the corresponding position in the
string. Characters for which no mapping is defined are copied unchanged to the
ing string.

Arguments

StrMap (Str FromMap ToMap)

Str (String) Data type: string

The string to translate.

FromMap Data type: string

Index part of mapping.

ToMap Data type: string

Value part of mapping.
RAPID Reference Manual 9-StrMap-1

StrMap Functions
Syntax

StrMap’(’
[Str ’:=’] <expression (IN) of string> ’,’
[FromMap’:=’] <expression (IN) of string> ’,’
[ToMap’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type string.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-StrMap-2 RAPID Reference Manual

Functions StrMatch

n,

t is
1 is

e the
StrMatch Search for pattern in string

StrMatch (String Match) is used to search in a string, starting at a specified positio
for a specified pattern.

Example

VAR num found;

found := StrMatch("Robotics",1,"bo");

The variable found is given the value 3.

Return value Data type: num

The character position of the first substring, at or past the specified position, tha
equal to the specified pattern string. If no such substring is found, string length +
returned.

Arguments

StrMatch (Str ChPos Pattern)

Str (String) Data type: string

The string to search in.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outsid
string.

Pattern Data type: string

Pattern string to search for.

Syntax

StrMatch’(’
[Str ’:=’] <expression (IN) of string> ’,’
[ChPos ’:=’] <expression (IN) of num> ’,’
[Pattern’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type num.
RAPID Reference Manual 9-StrMatch-1

StrMatch Functions
Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-StrMatch-2 RAPID Reference Manual

Functions StrMemb

g

ou".

t

the

 is
StrMemb Checks if a character belongs to a set

StrMemb (String Member) is used to check whether a specified character in a strin
belongs to a specified set of characters.

Example

VAR bool memb;

memb := StrMemb("Robotics",2,"aeiou");

The variable memb is given the value TRUE, as o is a member of the set "aei

memb := StrMemb("Robotics",3,"aeiou");

The variable memb is given the value FALSE, as b is not a member of the se
"aeiou".

memb := StrMemb("S-721 68 VÄSTERÅS",3,STR_DIGIT);

The variable memb is given the value TRUE.

Return value Data type: bool

TRUE if the character at the specified position in the specified string belongs to
specified set of characters.

Arguments

StrMemb (Str ChPos Set)

Str (String) Data type: string

The string to check in.

ChPos (Character Position) Data type: num

The character position to check. A runtime error is generated if the position
outside the string.

Set Data type: string

Set of characters to test against.
RAPID Reference Manual 9-StrMemb-1

StrMemb Functions
Syntax

StrMemb’(’
[Str ’:=’] <expression (IN) of string> ’,’
[ChPos ’:=’] <expression (IN) of num> ’,’
[Set’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type bool.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-StrMemb-2 RAPID Reference Manual

Functions StrOrder

g to

cters

w the
StrOrder Checks if strings are ordered

StrOrder (String Order) is used to check whether two strings are in order, accordin
a specified character ordering sequence.

Example

VAR bool le;

le := StrOrder("FIRST","SECOND",STR_UPPER);

The variable le is given the value TRUE, because "FIRST" comes before
"SECOND" in the character ordering sequence STR_UPPER.

Return value Data type: bool

TRUE if the first string comes before the second string (Str1 <= Str2) when chara
are ordered as specified.

Characters that are not included in the defined ordering are all assumed to follo
present ones.

Arguments

StrOrder (Str1 Str2 Order)

Str1 (String 1) Data type: string

First string value.

Str2 (String 2) Data type: string

Second string value.

Order Data type: string

Sequence of characters that define the ordering.
RAPID Reference Manual 9-StrOrder-1

StrOrder Functions
Syntax

StrOrder’(’
[Str1 ’:=’] <expression (IN) of string> ’,’
[Str2 ’:=’] <expression (IN) of string> ’,’
[Order ’:=’] <expression (IN) of string>
’)’

A function with a return value of the data type bool.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-StrOrder-2 RAPID Reference Manual

Functions StrPart

t the

e the

or
 the
StrPart Finds a part of a string

StrPart (String Part) is used to find a part of a string, as a new string.

Example

VAR string part;

part := StrPart("Robotics",1,5);

The variable part is given the value "Robot".

Return value Data type: string

The substring of the specified string, which has the specified length and starts a
specified character position.

Arguments

StrPart (Str ChPos Len)

Str (String) Data type: string

The string in which a part is to be found.

ChPos (Character Position) Data type: num

Start character position. A runtime error is generated if the position is outsid
string.

Len (Length) Data type: num

Length of string part. A runtime error is generated if the length is negative
greater than the length of the string, or if the substring is (partially) outside
string.

Syntax

StrPart’(’
[Str ’:=’] <expression (IN) of string> ’,’
[ChPos ’:=’] <expression (IN) of num> ’,’
[Len’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type string.
RAPID Reference Manual 9-StrPart-1

StrPart Functions
Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-StrPart-2 RAPID Reference Manual

Functions StrToByte

StrToByte Converts a string to a byte data

StrToByte (String To Byte) is used to convert a string with a defined byte data format
into a byte data.

Example

VAR string con_data_buffer{5} := ["10", "AE", "176", "00001010", "A"];
VAR byte data_buffer{5};

data_buffer{1} := StrToByte(con_data_buffer{1});

The content of the array component data_buffer{1} will be 10 decimal after the
StrToByte ... function.

data_buffer{2} := StrToByte(con_data_buffer{2}\Hex);

The content of the array component data_buffer{2} will be 174 decimal after the
StrToByte ... function.

data_buffer{3} := StrToByte(con_data_buffer{3}\Okt);

The content of the array component data_buffer{3} will be 126 decimal after the
StrToByte ... function.

data_buffer{4} := StrToByte(con_data_buffer{4}\Bin);

The content of the array component data_buffer{4} will be 10 decimal after the
StrToByte ... function.

data_buffer{5} := StrToByte(con_data_buffer{5}\Char);

The content of the array component data_buffer{5} will be 65 decimal after the
StrToByte ... function.

Return value Data type: byte

The result of the conversion operation in decimal representation.
RAPID Reference Manual 9-StrToByte-1

StrToByte Functions

ata

d as
Arguments

StrToByte (ConStr [\Hex] | [\Okt] | [\Bin] | [\Char])

ConStr (Convert String) Data type: string

The string data to be converted.

If the optional switch argument is omitted, the string to be converted has decimal (Dec)
format.

[\Hex] (Hexadecimal) Data type: switch

The string to be converted has hexadecimal format.

[\Okt] (Octal) Data type: switch

The string to be converted has octal format.

[\Bin] (Binary) Data type: switch

The string to be converted has binary format.

[\Char] (Character) Data type: switch

The string to be converted has ASCII character format.

Limitations

Depending on the format of the string to be converted, the following string d
is valid:

Format: String length: Range:
Dec: ’0’ - ’9’ 3 "0" - "255"
Hex: ’0’ - ’9’, ’a’ -’f’, ’A’ - ’F’ 2 "0" - "FF"
Okt: ’0’ - ’7’ 3 "0" - "377"
Bin: ’0’ - ’1’ 8 "0" - "11111111"
Char: Any ASCII character 1 ASCII table

RAPID character codes (e.g. "\07" for BEL control character) cannot be use
arguments in ConStr.

Syntax

StrToByte’(’
[ConStr ’:=’] <expression (IN) of string>
[’\’ Hex] | [’\’ Okt] | [’\’ Bin] | [’\’ Char]
’)’ ’;’
9-StrToByte-2 RAPID Reference Manual

Functions StrToByte
A function with a return value of the data type byte.

Related information

Described in:

Convert a byte to a string data Instructions - ByteToStr

Other bit (byte) functions RAPID Summary - Bit Functions

Other string functions RAPID Summary - String Functions
RAPID Reference Manual 9-StrToByte-3

StrToByte Functions
9-StrToByte-4 RAPID Reference Manual

Functions StrToVal

ype

 from
StrToVal Converts a string to a value

StrToVal (String To Value) is used to convert a string to a value of any data type.

Example

VAR bool ok;
VAR num nval;

ok := StrToVal("3.85",nval);

The variable ok is given the value TRUE and nval is given the value 3.85.

Return value Data type: bool

TRUE if the requested conversion succeeded, FALSE otherwise.

Arguments

StrToVal (Str Val)

Str (String) Data type: string

A string value containing literal data with format corresponding to the data t
used in argument Val. Valid format as for RAPID literal aggregates.

Val (Value) Data type: ANYTYPE

Name of the variable or persistent of any data type for storage of the result
the conversion. The data is unchanged if the requested conversion failed.

Example

VAR string 15 := “[600, 500, 225.3]”;
VAR bool ok;
VAR pos pos15;

ok := StrToVal(str15,pos15);

The variable ok is given the value TRUE and the variable p15 is given the value
that are specified in the string str15.
RAPID Reference Manual 9-StrToVal-1

StrToVal Functions
Syntax

StrToVal’(’
[Str ’:=’] <expression (IN) of string> ’,’
[Val ’:=’] <var or pers (INOUT) of ANYTYPE>
’)’

A function with a return value of the data type bool.

Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-StrToVal-2 RAPID Reference Manual

Functions Tan
Tan Calculates the tangent value

Tan (Tangent) is used to calculate the tangent value from an angle value.

Example

VAR num angle;
VAR num value;
.
.
value := Tan(angle);

Return value Data type: num

The tangent value.

Arguments

Tan (Angle)

Angle Data type: num

The angle value, expressed in degrees.

Syntax

Tan’(’
[Angle ’:=’] <expression (IN) of num>
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics
Arc tangent with return value in the
range [-180, 180] Functions - ATan2
RAPID Reference Manual 9-Tan-1

Tan Functions
9-Tan-2 RAPID Reference Manual

Functions TestDI
TestDI Tests if a digital input is set

TestDI is used to test whether a digital input is set.

Examples

IF TestDI (di2) THEN . . .

If the current value of the signal di2 is equal to 1, then . . .

IF NOT TestDI (di2) THEN . . .

If the current value of the signal di2 is equal to 0, then . . .

WaitUntil TestDI(di1) AND TestDI(di2);

Program execution continues only after both the di1 input and the di2 input have
been set.

Return value Data type: bool

TRUE = The current value of the signal is equal to 1.

FALSE = The current value of the signal is equal to 0.

Arguments

TestDI (Signal)

Signal Data type: signaldi

The name of the signal to be tested.

Syntax

TestDI ’(’
[Signal ’:=’] < variable (VAR) of signaldi > ’)’

A function with a return value of the data type bool.
RAPID Reference Manual 9-TestDI-1

TestDI Functions
Related information

Described in:

Reading the value of a digital input signal Functions - DInput

Input/Output instructions RAPID Summary -
Input and Output Signals
9-TestDI-2 RAPID Reference Manual

Functions Trunc

als

alue

 pre-
Trunc Truncates a numeric value

Trunc (Truncate) is used to truncate a numeric value to a specified number of decim
or to an integer value.

Example

VAR num val;

val := Trunc(0.38521\Dec:=3);

The variable val is given the value 0.385.

reg1 := 0.38521

val := Trunc(reg1\Dec:=1);

The variable val is given the value 0.3.

val := Trunc(0.38521);

The variable val is given the value 0.

Return value Data type: num

The numeric value truncated to the specified number of decimals.

Arguments

Trunc (Val [\Dec])

Val (Value) Data type: num

The numeric value to be truncated.

[\Dec] (Decimals) Data type: num

Number of decimals.

If the specified number of decimals is 0 or if the argument is omitted, the v
is truncated to an integer.

The number of decimals must not be negative or greater than the available
cision for numeric values.
RAPID Reference Manual 9-Trunc-1

Trunc Functions
Syntax

Trunc’(’
[Val ’:=’] <expression (IN) of num>
[\Dec ’:=’ <expression (IN) of num>]
’)’

A function with a return value of the data type num.

Related information

Described in:

Mathematical instructions and functions RAPID Summary - Mathematics

Rounding a value Functions - Round
9-Trunc-2 RAPID Reference Manual

Functions ValToStr

ciple
995,
ValToStr Converts a value to a string

ValToStr (Value To String) is used to convert a value of any data type to a string.

Example

VAR string str;
VAR pos p := [100,200,300];

str := ValToStr(1.234567);

The variable str is given the value "1.23457".

str := ValToStr(TRUE);

The variable str is given the value "TRUE".

str := ValToStr(p);

The variable str is given the value "[100,200,300]".

Return value Data type: string

The value is converted to a string with standard RAPID format. This means in prin
6 significant digits. If the decimal part is less than 0.000005 or greater than 0.999
the number is rounded to an integer.

A runtime error is generated if the resulting string is too long.

Arguments

ValToStr (Val)

Val (Value) Data type: ANYTYPE

A value of any data type.

Syntax

ValToStr’(’
[Val ’:=’] <expression (IN) of ANYTYPE>
’)’

A function with a return value of the data type string.
RAPID Reference Manual 9-ValToStr-1

ValToStr Functions
Related information

Described in:

String functions RAPID Summary - String Functions

Definition of string Data Types - string

String values Basic Characteristics -
Basic Elements
9-ValToStr-2 RAPID Reference Manual

Predefined Data and Programs

 CONTENTS
Page

3

3

1 System Module User ...

 1.1 Contents.. 3

 1.2 Creating new data in this module...

 1.3 Deleting this data.. 4
RAPID Reference Manual 10-1

Predefined Data and Programs
10-2 RAPID Reference Manual

Predefined Data and Programs System Module User

 data

ter to
or you

and

f the

present
rvice
1 System Module User

In order to facilitate programming, predefined data is supplied with the robot. This
does not have to be created and, consequently, can be used directly.

If this data is used, initial programming is made easier. It is, however, usually bet
give your own names to the data you use, since this makes the program easier f
to read.

1.1 Contents

User comprises five numerical data (registers), one work object data, one clock
two symbolic values for digital signals.

Name Data type Declaration

reg1 num VAR num reg1:=0
reg2 . .
reg3 . .
reg4 . .
reg5 num VAR num reg5:=0

wobj1 wobjdata PERS wobjdata wobj1:=wobj0

clock1 clock VAR clock clock1

high dionum CONST dionum high:=1
low dionum CONST dionum low:=0

User is a system module, which means that it is always present in the memory o
robot regardless of which program is loaded.

1.2 Creating new data in this module

This module can be used to create such data and routines that must always be
in the program memory regardless of which program is loaded, e.g. tools and se
routines.

• Choose View: Modules from the Program window.

• Select the system module User and press Enter .

• Change, create data and routines in the normal way (see Programming and Testing).
RAPID Reference Manual 10-3

System Module User Predefined Data and Programs
1.3 Deleting this data

Warning: If the Module is deleted, the CallByVar instruction will not work.

To delete all data (i.e. the entire module)

• Choose View: Modules from the Program window.

• Select the module User.

• Press Delete .

To change or delete individual data

• Choose View: Data from the Program window.

• Choose Data: In All Modules.

• Select the desired data. If this is not shown, press the Types function key to select the
correct data type.

• Change or delete in the normal way (see Programming and Testing).
10-4 RAPID Reference Manual

Programming off-line

CONTENTS
Page

3

3

4

4

1 Programming Off-line .. 3

 1.1 File format ...

 1.2 Editing.. 3

 1.3 Syntax check..

 1.4 Examples..

 1.5 Making your own instructions ...
RAPID Reference Manual 11-1

Programming off-line
11-2 RAPID Reference Manual

Programming Off-line

fice
ditor.

dle
hese

be
 will

dant,

 use
sly on

this is
ne of

cal
d. To

 read

bot.
Programming Off-line

1 Programming Off-line

RAPID programs can easily be created, maintained and stored in an ordinary of
computer. All information can be read and changed directly using a normal text e
This chapter explains the working procedure for doing this. In addition to off-line
programming, you can use the computer tool, QuickTeach.

1.1 File format

The robot stores and reads RAPID programs in TXT format (ASCII) and can han
both DOS and UNIX text formats. If you use a word-processor to edit programs, t
must be saved in TXT format (ASCII) before they are used in the robot.

1.2 Editing

When a program is created or changed in a word-processor, all information will
handled in the form of text. This means that information about data and routines
differ somewhat from what is displayed on the teach pendant.

Note that the value of a stored position is only displayed as an *on the teach pen
whereas the text file will contain the actual position value (x, y, z, etc.).

In order to minimise the risk of errors in the syntax (faulty programs), you should
a template. A template can take the form of a program that was created previou
the robot or using QuickTeach. These programs can be read directly to a word-
processor without having to be converted.

1.3 Syntax check

Programs must be syntactically correct before they are loaded into the robot. By
meant that the text must follow the fundamental rules of the RAPID language. O
the following methods should be used to detect errors in the text:

• Save the file on diskette and try to open it in the robot. If there are any syntacti
errors, the program will not be accepted and an error message will be displaye
obtain information about the type of error, the robot stores a log called
PGMCPL1.LOG on the internal RAM disk. Copy this log to a diskette using the
robot’s File Manager. Open the log in a word-processor and you will be able to
which lines were incorrect and receive a description of the error.

• Open the file in QuickTeach or ProgramMaker.

• Use a RAPID syntax check program for the PC.

When the program is syntactically correct, it can be checked and edited in the ro
RAPID Reference Manual 11-3

Programming Off-line

d
n

hese
ing,

al
To make sure that all references to routines and data are correct, use the commanFile:
Check Program. If the program has been changed in the robot, it can be stored o
diskette again and processed or stored in a PC.

1.4 Examples

The following shows examples of what routines look like in text format.

%%%
VERSION: 1
 LANGUAGE: ENGLISH

%%%
MODULE main
VAR intnum process_int ;
! Demo of RAPID program
PROC main()

MoveL p1, v200, fine, gun1;
ENDPROC

TRAP InvertDo12
! Trap routine for TriggInt

TEST INTNO
CASE process_int:
InvertDO do12;
DEFAULT:
TPWrite “Unknown trap , number=”\Num:=INTNO;

ENDTEST
ENDTRAP

LOCAL FUNC num MaxNum(num t1, num t2)
IF t1 > t2 THEN

RETURN t1;
ELSE

RETURN t2;
ENDIF

ENDFUNC
ENDMODULE

1.5 Making your own instructions

In order to make programming easier, you can customize your own instructions. T
are created in the form of normal routines, but, when programming and test-runn
function as instructions:

- They can be taken from the instruction pick list and programmed as norm
instructions.

- The complete routine will be run during step-by-step execution.
11-4 RAPID Reference Manual

Programming Off-line

on as

 of
the
r will

tion,
it will
(see

 run
.

• Create a new system module where you can place your routines that will functi
instructions. Alternatively, you can place them in the USER system module.

• Create a routine in this system module with the name that you want your new
instruction to be called. The arguments of the instruction are defined in the form
routine parameters. Note that the name of the parameters will be displayed in
window during programming and should therefore be given names that the use
understand.

• Place the routine in one of the Most Common pick lists.

• If the instruction is to behave in a certain way during backward program execu
this can be done in the form of a backward handler. If there is no such handler,
not be possible to get past the instruction during backward program execution
Chapter 13 in this manual - Basic Characteristics). A backward handler can be
entered using the command Routine: Add Backward Handler from the Program
Routines window.

• Test the routine thoroughly so that it works with different types of input data
(arguments).

• Change the module attribute to NOSTEPIN. The complete routine will then be
during step-by-step execution. This attribute, however, must be entered off-line

Example: To make the gripper easier to handle, two new instructions are made,
GripOpen and GripClose. The output signal’s name is given to the instruction’s
argument, e.g. GripOpen gripper1.

MODULE My_instr (SYSMODULE, NOSTEPIN)
PROC GripOpen (VAR signaldo Gripper)

Set Gripper;
WaitTime 0.2;

ENDPROC
PROC GripClose (VAR signaldo Gripper)

Reset Gripper;
WaitTime 0.2;

ENDPROC
ENDMODULE
RAPID Reference Manual 11-5

Programming Off-line
11-6 RAPID Reference Manual

 ArcWare

INDICE
seamdata Seam data

weavedata Weave data

welddata Weld data

ArcC Arc welding with circular motion

ArcL Arc welding with linear motion

ArcKill Kill the AW process

ArcRefresh Refresh arcweld data
Guía de Referencia RAPID 13-1

ArcWare

13-2 Guía de Referencia RAPID

ArcWare seamdata

altered
 data

ating

nd

robot.
 data.
stem

nt):

nega-

f

he
seamdata Seam data

Seamdata is used to control the start and end of the weld. Seamdata is also used if the
process is restarted after a welding operation has been interrupted.

The actual weld phase is controlled using welddata.

Description

Seam data describes data, the values of which, as a rule, can be maintained un
when welding a complete run and often also when welding several seams. Seam
is used when preparing for the welding operation, when igniting the arc, when he
after the ignition and also when ending the weld.

Seam data is included in all arc welding instructions to facilitate controlled end a
start phases irrespective of where the interrupts or restarts occur.

Note. Some of the components of seam data depend on the configuration of the
If a given feature is omitted, the corresponding component is left out of the seam
The conditions that must be met for components to exist are described in the sy
parameters.

All voltages can be expressed in two ways (determined by the welding equipme

- As absolute values (only positive values are used in this case).

- As corrections of values set in the process equipment (both positive and
tive values are used in this case).

Feeding the weld electrode in this section refers to MIG/MAG welding. In the case o
TIG welding:

- A cold wire is supplied to the wire feed.

- The necessary welding current reference value can be connected to any of t
three analog outputs that are not used. (The Welding voltage reference is not
used.)
RAPID Reference Manual 13-seamdata-1

seamdata ArcWare
The welding sequence

T1: max. gas_purge/arc_preset time
T2: gas_preflow time
T3: ignition_movement_delay time
D/T4: heating distance/time

T5: burnback time
T6: max cooling/arc_preset time
T7: filling time
T8: max cooling/gas_postflow time

gas

sched-no

wf on

4x anal.

robotmove

T1 T2

t

t

t

t

t

power on

arc_OK

T
3 T

6

forward

T
8

(di SR)

scrape

t

next pos
to pos

D/T

ignition timeout

 signal supervision

ref.

t

HEAT ENDIGNITION WELD

ig
n_

sc
he

d

he
at

_s
ch

ed

w
el

d
_s

ch
ed

fil
l_

sc
he

d

4 T
7

T
5

T
5

13-seamdata-2 RAPID Reference Manual

ArcWare seamdata

tive

n is

s
rt

, so-

ing
f the

, in

, in
Components

Component group: Ignition

purge_time Data type: num

The time (in seconds) it takes to fill gas lines and the welding gun with protec
gas, so-called “gas purging”.

If the first weld instruction contains the argument \On (flying start), the gas flow
is activated at the specified gas purge time before the programmed positio
reached.

If the positioning time to the start position of the weld is shorter than the ga
purge time, or if the \On argument is not used, the robot waits in the weld sta
position until the gas purge time has expired.

preflow_time Data type: num

The time (in seconds) it takes to preflow the weld object with protective gas
called “gas preflowing”.

The robot is stationary in position during this time before the arc is ignited.

ign_sched (ignition schedule) Data type: num

The identity (expressed as a number) of a weld program in connected weld
equipment. It is sent to the welding equipment to be used during ignition o
arc.

See System Parameter Arc Welding - Equipment - schedport_type.

ign_voltage Data type: num

The welding voltage (in volts) during ignition of the arc.

The value specified is scaled and sent to the corresponding analog output
accordance with the setting in the system parameters for analog signals.

ign_wirefeed Data type: num

The feed speed of the weld electrode during ignition of the arc.

The unit is defined in the system parameter Arc Welding - Units - unit_feed and,
as a rule, is m/minute or inches per minute.

The value specified is scaled and sent to the corresponding analog output
accordance with the setting in the system parameters for analog signals.

ign_current Data type: num

The welding current during ignition of the arc.
RAPID Reference Manual 13-seamdata-3

seamdata ArcWare

, in

 in

 con-

 in

 con-

 until
 igni-

ill

int.
n
The value specified is scaled and send to the corresponding analog output
accordance with the setting in the system parameters for analog signals.

ign_volt_adj (ignition voltage adjustment)Data type: num

The welding voltage adjustment during ignition of the arc.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

This signal can be used for arbitrary purposes when something needs to be
trolled using an analog output signal.

ign_curr_adj (ignition current adjustment) Data type: num

The current adjustment during ignition of the arc.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

This signal can be used for arbitrary purposes when something needs to be
trolled using an analog output signal.

ign_move_delay (ignition movement delay) Data type: num

The delay (in seconds) from the time the arc is considered stable at ignition
the heating phase is started. The ignition references remain valid during the
tion movement delay.

scrape_start (scrape start type) Data type: num

Type of scrape at weld start. Scrape type at restart will not be affected (it w
always be Weaving scrape).

Scrape types:
0 No scrape. No scrape will occur at weld start.
1 Weaving scrape.
2 Fast scrape. The robot does not wait for the arc OK signal at the start po
However, the ignition is considered incorrect if the ignition timeout has bee
exceeded.

Component group: Heat

heat_speed Data type: num

The welding speed during heating at the start of the weld phase.

The unit is defined in the system parameter Arc Welding - Units- velocity_unit
and, as a rule, is mm/s or inches per minute.

heat_time Data type: num

The heating time (in seconds) at the start of the weld phase.
13-seamdata-4 RAPID Reference Manual

ArcWare seamdata

ing
d and

, in

, in

, in

, in

e con-
Heat_time is only used during timed positioning and when heat_distance or
heat_speed equal zero.

heat_distance Data type: num

The distance along which heat data must be active at the start of the weld.

The unit is defined in System Parameters - Arc Welding - Units - length_unit and
as a rule, is mm or inches.

heat_sched (heating schedule) Data type: num

The identity (expressed as a number) of a weld program in connected weld
equipment. It is sent to the welding equipment when the arc has been ignite
is used during heating.

See System Parameter Arc Welding - Equipment - schedport_type.

heat_voltage Data type: num

The welding voltage (in volts) during heating.

The value specified is scaled and sent to the corresponding analog output
accordance with the setting in the system parameters for analog signals.

heat_wirefeed Data type: num

The feed speed of the weld electrode during heating.

The unit is defined in the system parameter Arc Welding - Units - unit_feed and,
as a rule, is m/minute or inches per minute.

The value specified is scaled and sent to the corresponding analog output
accordance with the setting in the system parameters for analog signals.

heat_current Data type: num

The welding current during heating.

The value specified is scaled and sent to the corresponding analog output
accordance with the setting in the system parameters for analog output.

heat_volt_adj (heating voltage adjustment) Data type: num

The voltage adjustment for heating.

The value specified is scaled and sent to the corresponding analog output
accordance with the setting in the system parameters for analog signals.

This signal can be used for arbitrary purposes when something needs to b
trolled using an analog output signal.
RAPID Reference Manual 13-seamdata-5

seamdata ArcWare

 in

 con-
heat_curr_adj (heating current adjustment) Data type: num

The current adjustment during heating.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

This signal can be used for arbitrary purposes when something needs to be
trolled using an analog output signal.
13-seamdata-6 RAPID Reference Manual

ArcWare seamdata

inat-

elec-
 hard-

being

er
hard-

 of a
 the

ing
leted

ess.

 in
Component group: End

cool_time (cooling time) Data type: num

The time (in seconds) during which the process is closed before other term
ing activities (filling) take place.

fill_time Data type: num

The crater-filling time (in seconds) at the end phase of the weld.

bback_time (burnback time) Data type: num

The time (in seconds) during which the weld electrode is burnt back when
trode feeding has stopped. This to prevent the electrode getting stuck to the
ening weld when a MIG/MAG process is switched off.

Burnback time is used twice in the end phase; first when the weld phase is
finished, the second time after crater-filling.

rback_time (rollback time) Data type: num

The time (in seconds) during which a cold wire is rolled back after the pow
source has been switched off. This to prevent the wire getting stuck to the
ening weld when a TIG process is switched off.

The functions burnback and rollback are mutually exclusive.

postflow_time Data type: num

The time (in seconds) required for purging with protective gas after the end
process. The purpose of gas postflow is to prevent the weld electrode and
seam from oxidizing during cooling.

fill_sched (finish schedule) Data type: num

The identity (expressed as a number) of a weld program in connected weld
equipment. It is sent to the welding equipment when the weld phase is comp
and is used when crater-filling.

See System Parameter Arc Welding - Equipment - schedport_type.

fill_voltage (crater-filling voltage) Data type: num

The welding voltage (in volts) during crater-filling at the end phase of a proc

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

fill_wirefeed (crater-filling wirefeed) Data type: num

The feed speed of the weld electrode when crater-filling.
RAPID Reference Manual 13-seamdata-7

seamdata ArcWare

 in

 in

 in

 con-

 in

 con-
The unit is defined in the system parameter Arc Welding - Units - unit_feed and,
as a rule, is m/minute or inches per minute.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

fill_current (crater-filling current) Data type: num

The welding current during crater-filling at the end phase of a process.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

fill_volt_adj (filling voltage adjustment) Data type: num

The voltage adjustment during crater-filling.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

This signal can be used for arbitrary purposes when something needs to be
trolled using an analog output signal.

fill_curr_adj (filling current adjustment) Data type: num

The current adjustment during crater-filling.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

This signal can be used for arbitrary purposes when something needs to be
trolled using an analog output signal.

Structure

<data object of seamdata>
<gas_purge_time of num>
<gas_preflow_time of num>
<ign_sched of num>
<ign_voltage of num>
<ign_wirefeed of num>
<ign_current of num>
<ign_volt_adj of num>
<ign_curr_adj of num>
<ign_move_delay of num>
<heat_speed of num>
<heat_time of num>
<heat_distance of num>
<heat_sched of num>
<heat_voltage of num>
<heat_wirefeed of num>
13-seamdata-8 RAPID Reference Manual

ArcWare seamdata
heat_current of num>
<heat_volt_adj of num>
<heat_curr_adj of num>
<cool_time of num>
<fill_time of num>
<bback_time of num>
<rback_time of num>
<gas_postflow_time of num>
<fill_sched of num>
<fill_voltage of num>
<fill_wirefeed of num>
<fill_current of num>
<fill_volt_adj of num>
<fill_curr_adj of num>

Note that the structure changes depending on the configuration of the robot.

Related information

Described in:

Weld data Data Types - welddata

Installation parameters for weld- System Parameters - Arc Welding
ing equipment and functions

Process phases and time diagrams RAPID Summary- Arc Welding

Arc welding instructions Instructions - ArcL, ArcC
RAPID Reference Manual 13-seamdata-9

seamdata ArcWare
13-seamdata-10 RAPID Reference Manual

ArcWare weavedata

meter
nts

robot.
 data.
stem
weavedata Weave data

Weavedata is used to define any weaving carried out during arc welding.

Weaving can be used during the heat and weld phases of a seam.

Description

Weaving is a movement, superimposed on the basic path of the process.

There are three types of weaving pattern to choose from: zigzag, V-shaped and
triangular weaving. These are illustrated in Figure 1 to Figure 3.

All weave data components apply to both the heat phase and the weld phase.

The unit for weave data components that specify a distance is defined in the para
Arc Welding - Units - length_unit and, as a rule, is mm or inches. (These compone
are weave_length, _width, _height, _bias and dwell lengths.)

Note. Some of the components of weave data depend on the configuration of the
If a given feature is omitted, the corresponding component is left out of the weave
The conditions that must be met for components to exist are described in the sy
parameters.

Components

weave_shape (weld weave shape) Data type: num

The shape of the weaving pattern in the weld phase.

Specified value Weaving pattern

0 No weaving.

1 Zigzag weaving as illustrated in Figure 1.

Figure 1 Zig-zag weaving results in weaving horizontal to the seam.

Zw

Xw

Zw

YwXw

Yw
RAPID Reference Manual 13-weavedata-1

weavedata ArcWare

.

Specified value Weaving type

2 V-shaped weaving as illustrated in Figure 2.

Figure 2 V-shaped weaving results in weaving in the shape of a “V”, vertical to the seam.

3 Triangular weaving as illustrated in Figure 3.

Figure 3 Triangular weaving results in a triangular shape, vertical to the seam.

weave_type (weld weave interpolation type) Data type: num

The type of weaving in the weld phase.

Specified value Weaving type

0 Geometric weaving. All axes are used during weaving.

1 Wrist weaving.

weave_length Data type: num

The length of the weaving cycle in the weld phase (see Figure 4).

Figure 4 The length (L) of the weaving cycle for zig-zag, V-shaped and triangular weaving

weave_width Data type: num

The width of the weaving pattern in the weld phase (see Figure 5).

Yw

Xw

Zw

Xw

Zw

Yw

Yw

Xw

Zw

Xw

Zw

Yw

Yw

XwXw

Yw

L L
13-weavedata-2 RAPID Reference Manual

ArcWare weavedata

 (see

 of

 of

 of
Figure 5 The width (W) of the weaving pattern for all weaving patterns.

weave_height Data type: num

The height of the weaving pattern during V-shaped and triangular weaving
Figure 6).

Figure 6 The height (H) of the weaving pattern for V-shaped and triangular weaving.

dwell_left Data type: num

The length of the dwell used to force the TCP to move only in the direction
the seam at the left turning point of the weave (see Figure 7).

Figure 7 The length of the left dwell (DL) for different types of weaving patterns.

dwell_center Data type: num

The length of the dwell used to force the TCP to move only in the direction
the seam at the centre point of the weave (see Figure 8).

Figure 8 The length of the central dwell (DC) for different types of weaving patterns.

dwell_right Data type: num

The length of the dwell used to force the TCP to move only in the direction
the seam at the right turning point of the weave (see Figure 9).

Xw

Yw

W

Yw

Xw

Zw

Yw

Zw

Yw H

Yw

XwXw

Yw

DL DL

zigzag
V-shaped triangular

Yw

XwXw

Yw

DC DCDC

zigzag
V-shaped

triangular
RAPID Reference Manual 13-weavedata-3

weavedata ArcWare

ero

ngle.

grees

).
Figure 9 The length of the right dwell (DR) for different types of weaving patterns.

weave_dir (weave direction angle) Data type: num

The weave direction angle horizontal to the seam (see Figure 10). An angle of z
degrees results in a weave vertical to the seam.

Figure 10 The shape of the weaving pattern at 0 degrees and at a positive and negative a

weave_tilt (weave tilt angle) Data type: num

The weave tilt angle, vertical to the seam (see Figure 11). An angle of zero de
results in a weave which is vertical to the seam.

Figure 11 V-weaving at 0 degrees and at a positive and negative angle.

weave_ori (weave orientation angle) Data type: num

The weave orientation angle, horizontal-vertical to the seam (see Figure 12
An angle of zero degrees results in symmetrical weaving.

Figure 12 Triangular weaving at 0 degrees and at a positive and negative angle.

Yw

XwXw

Yw

DR DR

zigzag
V-shaped triangular

Xw

Yw

Xw

Yw

Xw

Yw

Zw

Xw

Zw

Xw

Zw

Xw

Yw

Zw

Yw

Zw

Yw

Zw
13-weavedata-4 RAPID Reference Manual

ArcWare weavedata

ly be
f the

s a

one,

as a
is
one,
weave_bias (weave centre bias) Data type: num

The bias horizontal to the weaving pattern (see Figure 13). The bias can on
specified for zig-zag weaving and may not be greater than half the width o
weave.

Figure 13 Zig-zag weaving with and without bias (B).

weave_sync_left Data type: num

The coordination position to the left of the weaving pattern. It is specified a
percentage of the width on the left of the weaving centre. When weaving is
carried out beyond this point, a digital output signal is automatically set to
as illustrated in Figure 14. This type of coordination is intended for seam
tracking using WeldGuide.

Figure 14 When WeldGuide is used, a sync. signal is required.

weave_sync_right Data type: num

The coordination position to the right of the weaving pattern. It is specified
percentage of the width on the right of the weaving centre. When weaving
carried out beyond this point, a digital output signal is automatically set to
as illustrated in Figure 15. This type of coordination is intended for seam
tracking using WeldGuide.

Figure 15 When WeldGuide is used, a sync. signal is required.

Xw

Yw

Xw

Yw

B

Xw

Yw The signal is set to zeroThe signal is set to one

Xw

Yw

The signal is set to zero
The signal is set to one
RAPID Reference Manual 13-weavedata-5

weavedata ArcWare

s).
wg_track_on Data type: num

Activate the weldguide seam tracker.

Limitations

The maximum weaving frequency is 2 Hz.

The inclination of the weaving pattern must not exceed the ratio 1:10 (84 degree
(See Figure 16).

Figure 16 The weaving pattern may not be inclined more than in the ratio 1:10.

Structure

<data object of weavedata>
<weave_shape of num>
<weave_type of num>
<weave_length of num>
<weave_width of num>
<weave_height of num>
<dwell_left of num>
<dwell_center of num>
<dwell_right of num>
<weave_dir of num>
<weave_tilt of num>
<weave_ori of num>
<weave_bias of num>
<weave_sync_left of num>
<weave_sync_right of num>
<wg_track_on of num>

Related information

Described in:

Installation parameters for weld- System Parameters - Arc Welding
ing equipment and functions

Process phases and timing RAPID Summary - Arc Welding
schedules

Arc-welding instructions Instructions - ArcL, ArcC

dx

dy
dy/dx < 10
13-weavedata-6 RAPID Reference Manual

ArcWare welddata

 arc

 a given
sing
l of

e start

e
ata

data

obot.
data.
stem

nt):

f

he
welddata Weld data

Welddata is used to control the weld during the weld phase, that is, from when the
is established until the weld is completed.

Other phases, such as the start and end phases, are controlled using seamdata.

Description

Weld data describes data that is often changed along a seam. Weld data used in
instruction along a path affects the weld until the specified position is reached. U
instructions with different weld data, it is thus possible to achieve optimum contro
the welding equipment along an entire seam.

Weld data affects the weld when fusion has been established (after heating) at th
of a process.

In the case of a flying start, the arc is not ignited until the destination position of th
arc welding instruction with the \On argument is reached, which means that weld d
does not have any effect on the weld in this instruction.

If one arc welding instruction is exchanged for another during a weld, new weld
will occur in the middle of the corner path.

Note. Some of the components of weld data depend on the configuration of the r
If a given feature is omitted, the corresponding component is left out of the weld
The conditions that must be met for components to exist are described in the sy
parameters.

All voltages can be expressed in two ways (determined by the welding equipme

- As absolute values (only positive values are used in this case).

- As corrections of values set in the process equipment (both positive and
negative values are used in this case).

Feeding the weld electrode in this section refers to MIG/MAG welding. In the case o
TIG welding:

- A cold wire is supplied to the wire feed.

- The necessary welding current reference value can be connected to any of t
three analog outputs that are not used. (The Welding voltage reference is not
used.)
RAPID Reference Manual 13-welddata-1

welddata ArcWare

.

Example

MoveJ p1, v100, z10, gun1;
MoveJ p2, v100, fine, gun1;
ArcL \On, p3, v100, seam1, weld1, weave1, fine, gun1;
ArcL p4, v100, seam1, weld2, weave1, z10, gun1;
ArcL \Off, p5, v100, seam1,weld3, weave3, fine, gun1;
MoveJ p6, v100, z10, gun1;

Figure 1 Weld data, such as speed and welding voltage, can be changed at each position

Weld data is changed in every instruction. As the argument \On is used in the first
instruction, the first weld data is never used.

p3

p5

Direction of welding

p2

p6

p4

p1

weld2 weld3

xxxxxx

Movement with no welding
Flying start
Welding

xxxxxxxxxxxxxx
13-welddata-2 RAPID Reference Manual

ArcWare welddata
The welding sequence

sched-no

4 x anal.

positions:

t

t

ref.

t

IGN/HEAT DATA WELD DATA 2

w
el

d_
sc

he
d

 1

w
el

d_
sc

he
d

2

w
el

d_
sc

he
d

3

END

delay_distance 1
(f

ill
_s

ch
ed

)

(h
ea

t_
sc

he
d)

WELD DATA 1 WELD DATA 3
DATA

INSTRUCTION 1 INSTRUCTION 2

INSTRUCTION 3

delay_distance 2

p1

p3

p2p0

welding
speed
RAPID Reference Manual 13-welddata-3

welddata ArcWare

ing

e

s the
tion’s
ach the

 in

 in

 in

Components

weld_sched (weld schedule) Data type: num

The identity (expressed as a number) of weld programs to send to the weld
equipment.

See System Parameter Arc Welding - Equipment- schedport_type.

weld_speed Data type: num

The desired welding speed.

The unit is defined in the system parameter Arc Welding - Units- velocity_unit
and, as a rule, is mm/s or inches per minute.

If the movements of external axes are coordinated, the welding speed is th
relative speed between the tool and the object.

If the movements of external axes are not coordinated, the welding speed i
TCP speed. The speed of the external axes is then described in the instruc
speed data. The slowest axis determines the speed to enable all axes to re
destination position at the same time.

weld_voltage Data type: num

The welding voltage (in volts) during the weld phase.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

weld_wirefeed Data type: num

The feed speed of the weld electrode during the weld phase.

The unit is defined in the system parameter Arc Welding - Units - unit_feed and,
as a rule, is metres per minute or inches per minute.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

weld_current Data type: num

The welding current during the weld phase.

The value specified is scaled and sent to the corresponding analog output,
accordance with the setting in the system parameters for analog signals.

delay_distance Data type: num

The delay distance (after the destination position) for a changeover to new weld
data in the next arc welding instruction.
13-welddata-4 RAPID Reference Manual

ArcWare welddata

y
path.
 later

d and

, in

e

e
The unit is defined in System Parameters - Arc Welding - Units - length_unit and
as a rule, is mm or inches.

Usually, when changing from one arc welding instruction to another, a fly-b
point is used. This results in a changeover point in the middle of the corner
By using delay distance, the new weld data starts to take effect somewhat
(see Figure 2).

In a weld end instruction the delay distance will have no effect.

Figure 2 In the above example, the weld data changeover from weld1 to weld2 is delaye
weld2 has a delay_distance=0. The delay_distance in weld3 will thus have no effect.

Delay_distance can, for example, be used in ArcC instructions to move the
changeover of weld data without reprogramming the circle positions.

weld_volt_adj (welding voltage adjustment) Data type: num

The voltage adjustment during the weld phase.

The value specified is scaled and sent to the corresponding analog output
accordance with the setting in the system parameters for analog signals.

This signal can be used for arbitrary purposes when something needs to b
controlled using an analog output signal.

weld_curr_adj (weld current adjustment) Data type: num

The current adjustment during the weld phase.

The specified value is scaled and sent in accordance with the setting in the
system parameters for analog signals.

This signal can be used for arbitrary purposes when something needs to b
controlled using an analog output signal.

ArcL weld1

ArcL\Off weld3

Welding

Movement with no welding

ArcL weld2

weld1

weld2
weld3

Delay distance

with different data
RAPID Reference Manual 13-welddata-5

welddata ArcWare

d a

ment
org_weld_speed (original weld speed) Data type: num

The original weld speed during the weld phase.

Note! Used internally by tuning functions.

org_weld_voltage (original weld voltage) Data type: num

The original weld voltage during the weld phase.

Note! Used internally by tuning functions.

org_weld_wfeed (original weld wirefeed speed) Data type: num

The original weld wirefeed speed during the weld phase.

Note! Used internally by tuning functions.

Examples

The type of weld shown in Figure 3 is desired, with a welding voltage of 30 V an
wire feed speed of 15 m/min. The welding speed is 20 mm/s.

Figure 3 Welding between two points.

PERS welddata weld1 := [20,30,15,0];

MoveJ p1, v100, z20, gun1;
ArcL \On, p2, v100, seam1, weld1, noweave, fine, gun1;
ArcL \Off, p3, v100, seam1, weld1, noweave, fine, gun1;
MoveJ p4, v100, z20, gun1;

The weld data values for a weld such as the one in Figure 3 are as follows:

Component weld1

weld_speed 20 mm/s Speed in relation to the seam

weld_voltage 30 V Sent to an analog output signal

weld_wirefeed 15 m/min. Sent to an analog output signal

delay_distance 0 mm No delay

The weld schedule identity, weld voltage adjustment and weld current adjust

xxxxxxxxx

p1

p2

p3
p4

Welding

Movement with no welding
xxxxxx Flying start
13-welddata-6 RAPID Reference Manual

ArcWare welddata

sing
n the
/s in

:

 not
components are not active in this example.

The weld data argument does not have any effect in the ArcL \On instruction.

The type of weld shown in Figure 4 is required. The first section is to be welded u
a voltage of 50 V and a wire feed speed of 20 m/min. After a specified distance o
circular arc, the voltage is to be increased to 55 V. The welding speed is 30 mm
each section.

Figure 4 The weld data is changed after a specified distance on the circular path.

PERS welddata weld1 := [10,30,50,20,0];
PERS welddata weld2 := [10,30,55,20,17];

MoveJ p1, v100, z20, gun1;
ArcL \On, p2, v100, seam1, weld1, noweave, fine, gun1;
ArcL p3, v100, seam1, weld1, noweave, z10, gun1;
ArcC p4, p5, v100, seam1, weld2, noweave, z10, gun1;
ArcL \Off, p6, v100, seam1, weld2, noweave, fine, gun1;
MoveJ p7, v100, z20, gun1;

The weld data values for a weld such as the one in Figure 4 are as follows

Component weld1 weld2

weld_sched 10 10 Identity sent to the
welding equipment

weld_speed 30 mm/s 30 mm/s

weld_voltage 50 V 55 V

weld_wirefeed 20 m/min. 20 m/min.

delay_distance 0 mm 17 mm weld2 is delayed 17 mm

The weld voltage adjustment and weld current adjustment components are
active in this example.

The weld data argument does not have any effect in the ArcL \On instruction.

xxxxxxxxx

p1

p2

p3
p4

p5

p6

p7

Welding

Movement with no welding
xxxxxx Flying start

50 V
55 V
RAPID Reference Manual 13-welddata-7

welddata ArcWare
Structure

<data object of welddata>
<weld_sched of num>
<weld_speed of num>
<weld_voltage of num>
<weld_wirefeed of num>
<weld_current of num>
<delay_distance of num>
<weld_volt_adj of num>
<weld_curr_adj of num>
<org_weld_speed of num>
<org_weld_voltage of num>
<org_weld_wfeed of num>

Note that the structure changes depending on the configuration of the robot.

Related information

Described in:

Seam data Data Types - seamdata

Installation parameters for weld- System Parameters - Arc Welding
ing equipment and functions

Process phases RAPID Summary- Arc Welding

Arc welding instructions Instructions - ArcL, ArcC
13-welddata-8 RAPID Reference Manual

ArcWare ArcC

nd

tion.

ontrol-

f-

rried
 at p3.
ArcC Arc welding with circular motion
ArcC1
ArcC2

ArcC (Arc Circular) is used to weld along a circular path. The instruction controls a
monitors the entire welding process as follows:

- The tool centre point is moved in a circle to the specified destination posi

- All phases, such as the start and end phases, of the welding process are c
led.

- The welding process is monitored continuously.

The only difference between ArcC, ArcC1 and ArcC2 is that they are connected to di
ferent process systems configured in the System Parameters. Although ArcC is used in
the examples, ArcC1 or ArcC2 could equally well be used.

Example

MoveL
ArcL \On, p1, v100, seam1, weld5, noweave, fine, gun1;
ArcC \Off, p2, p3, v100, seam1, weld5, noweave, fine, gun1;
MoveL

This welds a circular seam between points p1 and p3 (via point p2) as illustrated
in Figure 1.

Figure 1 Welding with flying start.

On the way to p1, preparations for the weld start, such as gas preflowing, are ca
out. The process and the actual weld movement then start at position p1 and end
The start and end processes are determined by seam1 and the welding process by
weld5. Weaving data is carried out according to noweave. (No weaving if the
weave_shape component value is zero.)

V100 specifies the speed attained during the flying start to p1.

xxxxxx

ArcL\On

ArcC\Off

Direction of welding

MoveL

MoveL

Movement with no welding
Flying start
Welding and weld end

xxxxxxxxxxxxxx

p1

p3

p2
RAPID Reference Manual 13-ArcC-1

ArcC ArcWare

 to

e way

ious

s be

 posi-

tion

ch
out
Arguments

ArcC [\On] | [\Off] CirPoint ToPoint Speed [\T] Seam Weld
Weave Zone [\Z] Tool [\WObj]

[\On] Data type: switch

The argument \On is used to get a flying start (see Figure 1) which, in turn, results
in shorter cycle times.

The argument \On may only be used in the first of the arc welding instructions
result in a seam. As the end instructions cannot include the argument \On, weld-
ing with a flying start must include at least two instructions.

The start preparations at a flying start, e.g. gas purging, are carried out on th
to the weld start position.

When the argument \On is not used, the weld starts at the position before the
ArcC instruction (see Figure 2) and the robot remains stationary at the prev
position whilst all weld start activities are in progress.

Whether or not a flying start is used, the start position for the weld will alway
a stop point – regardless of what is specified in the Zone argument for that posi-
tion.

Figure 2 If welding is started without the argument \On, the weld is begun at the previous
tion.

[\Off] Data type: switch

If the argument \Off is used, welding ends when the robot reaches the destina
position. Regardless of what is specified in the Zone argument, the destination
position will be a stop point.

If an ArcC instruction without the argument \Off is followed by MoveJ, for exam-
ple, welding will end, but in an uncontrolled fashion. Logical instructions, su
as Set do1, however, can be used between two arc welding instructions with
ending the welding process.

ArcC\On

ArcC\OffDirection of welding

MoveL

MoveL

Movement with no welding
Welding and weld end
13-ArcC-2 RAPID Reference Manual

ArcWare ArcC

een
ld be

d too
rcle
rked

d as
e

eed of

 the
CirPoint Data type: robtarget

The circle point of the robot. The circle point is a position on the circle betw
the start point and the destination point. To obtain the best accuracy, it shou
placed about halfway between the start and destination points. If it is place
close to the start or destination point, the robot may give a warning. The ci
point is defined as a named position or stored directly in the instruction (ma
with an * in the instruction).

ToPoint Data type: robtarget

The destination position of the robot and external axes. This is either define
a named position or stored directly in the instruction (indicated by an * in th
instruction).

Speed Data type: speeddata

The speed of the TCP is controlled by the argument Speed in the following cases:

- When the argument \On is used (weld start preparations at a flying start).

- When the program is run instruction-by-instruction (no welding).

The speed of the TCP during welding is the same as for the arguments Seam and
Weld (see Figure 3).

Speed data also describes the speed of the tool’s reorientation and the sp
any uncoordinated external axes.

Figure 3 The speed at different phases of the welding process.

[\T] (Time) Data type: num

The argument \T is used to specify the total time of movement in seconds,
directly in the instruction. Time is thus substituted for the speed specified in
arguments Speed, Seam and Weld.

xxxxxx

ArcL\On

ArcC\Off

MoveJ

MoveJ

Movement with no welding; speed in accordance with Speed
Flying start; speed in accordance with Speed
Welding; speed in accordance with the Seam and Weld arguments

xxxxxxxxxxx

(specified in the heat and weld speed components).
RAPID Reference Manual 13-ArcC-3

ArcC ArcWare

ould
ult to
g exe-

ss
d and

 weld
e

)

efore

n the
ed

d

int of

 sub-
This argument can be used when, for example, one or more uncoordinated
external axes participate in the movement. Uncoordinated external axes sh
be avoided because when they are used, the program becomes more diffic
adjust. Use coordinated external axes instead. Weaving is deactivated durin
cution of ArcX instructions with \T arguments.

Seam Data type: seamdata

Seam data describes the start and end phases of a welding process.

The argument Seam is included in all arc welding instructions so that, regardle
of the position of the robot when the process is interrupted, a proper weld en
restart are achieved.

Normally the same seam data is used in all instructions of a seam.

Weld Data type: welddata

Weld data describes the weld phase of the welding process.

Weld data is often changed from one instruction to the next, along a seam.

Weave Data type: weavedata

Weave data describes the weaving that is to take place during the heat and
phases. Welding without weaving is obtained by specifying, for example, th
weave data noweave. (No weaving if the weave_shape component value is zero.

Zone Data type: zonedata

Zone data defines how close the axes must be to the programmed position b
they can start moving towards the next position.

In the case of a fly-by point, a corner path is generated past that position. I
case of a stop point (fine), the movement is interrupted until all axes have reach
the programmed point.

A stop point is always generated automatically at the start position of a wel
(even in the case of a flying start) and at a controlled weld end position. Fly-by
points, such as z10, should be used for all other weld positions.

Weld data changes over to the next arc welding instruction at the centre po
the corner path (if not delayed by the delay_distance component in the Weld argu-
ment).

[\Z] (Zone) Data type: num

This argument is used to specify the positional accuracy of the robot’s TCP
directly in the instruction. The size of the zone is specified in mm and is thus
stituted in the corresponding zone specified in the zone data. The \Z argument is
also useful when trimming individual corner paths.
13-ArcC-4 RAPID Reference Manual

ArcWare ArcC

the
 the

n is

d
ordi-

ques-

ocess

hen
med

ns that

ese

r than
t
Tool Data type: tooldata

The tool used in the movement. The TCP of the tool is the point moved to
specified destination position. The z-axis of the tool should be parallel with
torch.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the instruction’s robot positio
referenced.

When this argument is omitted, the robot position is referenced to the worl
coordinate system. It must, however, be specified if a stationary TCP or co
nated external axes are used.

\WObj can be used if a coordinate system is defined for either the object in
tion or the weld seam.

Program execution

Controlling process equipment

The process equipment is controlled by the robot in such a way that the entire pr
and each of its phases are coordinated with the robot’s movements.

Motion

Robot and external axes are moved to the destination position as follows:

- The TCP of the tool is moved circularly at a constant programmed speed. W
coordinated axes are used, they are moved circularly at constant program
speed relative to the work object.

- The tool is reorientated at even intervals throughout the entire course.

- Uncoordinated external axes are executed at a constant speed which mea
they reach their destination at the same time as the robot axes.

If the programmed speed of reorientation or of the external axes is exceeded, th
speeds will be limited, thereby reducing the speed of the TCP.

The destination position is referenced to:

- the specified object coordinate system if the argument \WObj is used;

- the world coordinate system if the argument \WObj is not used.

Limitations

When weaving, the distance between the programmed positions should be longe
the periodic time of weaving. If the distance is shorter and if there is a significan
RAPID Reference Manual 13-ArcC-5

ArcC ArcWare

sed.
cular

d, the
ple in

on

as

ration.

al

ously:
change of angle in the path, the weaving pattern will be distorted.

The instruction ArcC should never be restarted after the circle point has been pas
Otherwise the robot will not take the programmed path (positioning around the cir
path in another direction compared with that programmed).

Error management

The process is supervised by a number of signal inputs. If anything abnormal is
detected, program execution will stop. If, however, an error handler is programme
errors defined below can be remedied without stopping production. See the exam
the RestoPath instruction.

Error constant (ERRNO value) Description

AW_START_ERR Start condition error; torch, gas or water supervisi

AW_IGNI_ERR Ignition error; arc supervision

AW_WELD_ERR Weld error; arc supervision

AW_EQIP_ERR Weld equipment error; voltage, current, water or g
supervision during welding

AW_WIRE_ERR Wire stick error; wire stick supervision

AW_STOP_ERR Welding interrupted with the stop process input

The process supervision is determined as a part of the process equipment configu

At the start of the process the robot checks that the following preconditions have been
met:

- stop_process

- water_OK

- gas_OK

- torch_OK

If, after the start command is given, no approved start profile is indicated on the digit
input, arc_OK, within a predetermined time period, the process start will be inter-
rupted.

When the process is started, all supervision inputs selected are monitored continu

- stop_process, water_OK, gas_OK, arc_OK, volt_OK, curr_OK, feed_OK.

The wirestick_err supervision is checked at the end of the weld.
13-ArcC-6 RAPID Reference Manual

ArcWare ArcC

re
hat

g

he
-

Example

MoveL ...
ArcL \On, *,v100, seam1, weld5, weave1, fine, gun1\Wobj:=wobj1;
ArcC *, *, v100, seam1,weld5, weave1, z10, gun1\Wobj:=wobj1;
ArcL *, v100, seam1,weld5, weave1, z10, gun1\Wobj:=wobj1;
ArcC \Off, *, *, v100, seam1,weld3, weave3, fine, gun1\Wobj:=wobj1;
MoveL...

In this example, a weld is performed in which weld data and weave data a
changed in the final part of the weld, which is illustrated in Figure 4. Note t
an arc welding instruction must be used to change the direction of the path
despite the fact that no weld data is changed.

Figure 4 The direction and weld data can be changed by programming several arc weldin
instructions.

It is assumed, in this example, that a coordinated external axis is used in t
movement. In this case, the wobj1 work object must be specified in the instruc
tion.

MoveL

ArcL

ArcC\Off

ArcC\On

MoveLArcC

weld5, weave1

weld3, weave3
xxxxxx

Movement with no welding
Flying start
Welding

xxxx
RAPID Reference Manual 13-ArcC-7

ArcC ArcWare
Syntax

ArcC
[’\’On’,’] | [’\’Off’,’]
[CirPoint ’:=’] < expression (IN) of robtarget > ’,’
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[(’\’ T ’:=’ < expression (IN) of num >)] ’,’
[Seam ’:=’] < persistent (PERS) of seamdata > ’,’
[Weld ’:=’] < persistent (PERS) of welddata > ’,’
[Weave ’:=’] < persistent (PERS) of weavedata > ’,’
[Zone ’:=’] < expression (IN) of zonedata >

[’\’ Z ’:=’ < expression (IN) of num >] ’,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’

Related information

Described in:

Performing a linear weld Instructions - ArcL

Other positioning instructions RAPID Summary - Motion

Definition of speed Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Definition of seam data Data Types - seamdata

Definition of weld data Data Types - welddata

Definition of weave data Data Types - weavedata

Installation parameters for welding System Parameters - Arc Welding
equipment and welding functions

Movements in general Motion Principles

Coordinate systems Motion Principles - Coordinate
Systems

Process phases and sub-activities RAPID Summary -
Arc Welding
13-ArcC-8 RAPID Reference Manual

ArcWare arcdata

atest

essed

ted in

nt. In

est
arcdata Arc process data

Arcdata (Arc Process Data) is used to define a number of arc welding process
parameters that are essential for the process:

- The latest used parameters (velocity, wirefeed speed and voltage).

- Statistical data (mean and min/max values for voltage and current in the l
seam).

This data type does not normally have to be used since these values can be acc
using the system variable ARC_DATA.

Description

The latest used parameters (stored in the system variable ARC_DATA) are affec
any circumstances.
The following requirements are applicable for affecting the statistical data:

- The system is an ARCITEC system.

- The system is configured so it uses the analog inputs for voltage and curre
this case external measuring equipment must be used.

Components

req_vel Data type: num

Latest requested velocity.

req_volt Data type: num

Latest requested weld voltage.

req_wfd_sp Data type: num

Latest requested weld wirefeed speed.

act_volt Data type: num

Current measured weld voltage.

min_volt Data type: num

Lowest measured value of the weld voltage during the current seam (or lat
seam).
RAPID Reference Manual 13-arcdata-9

arcdata ArcWare

est

t

st

est

t

olt;

ll be
max_volt Data type: num

Highest measured value of the weld voltage during the current seam (or lat
seam).

mean_volt Data type: num

Mean value of the measured weld voltage during the current seam (or lates
seam).

act_curr Data type: num

Measured weld current at this time.

min_curr Data type: num

Lowest measured value of the weld current during the current seam (or late
seam).

max_curr Data type: num

Highest measured value of the weld current during the current seam (or lat
seam).

mean_curr Data type: num

Mean value of the measured weld current during the current seam (or lates
seam).

Example

ArcL\On ...
ArcL\Off ...
TPWrite “Voltage mean value for the latest seam = ”\Num:=ARC_DATA.mean_v

When the seam is finished, the mean value of the process parameter voltage wi
displayed on the TeachPendant.

Structure

<data object of arcdata>
<req_vel of num>
<req_volt of num>
<req_wfd_sp of num>
<act_volt of num>
<min_volt of num>
<max_volt of num>
<mean_volt of num>
<act_curr of num>
<min_curr of num>
13-arcdata-10 RAPID Reference Manual

ArcWare arcdata
<max_curr of num>
<mean_curr of num>

Related information

Described in:

Installation parameters for welding System Parameters - Arc Welding
equipment and functions

Process phases and timing schedules RAPID Summary - Arc Welding

Arc welding instructions Instructions - ArcL, ArcC
RAPID Reference Manual 13-arcdata-11

arcdata ArcWare
13-arcdata-12 RAPID Reference Manual

ArcWare ArcL

and

n.

ontrol-

f-

rried
 at p2.
ArcL Arc welding with linear motion
ArcL1
ArcL2

ArcL (Arc Linear) is used to weld along a straight seam. The instruction controls
monitors the entire welding process as follows:

- The tool centre point is moved linearly to the specified destination positio

- All phases of the welding process, such as the start and end phases, are c
led.

- The welding process is monitored continuously.

The only difference between ArcL, ArcL1 and ArcL2 is that they are connected to di
ferent process systems configured in the System Parameters. Although ArcL is used in
the examples, ArcL1 or ArcL2 could equally well be used.

Example

MoveJ
ArcL \On, p1, v100, seam1, weld5, noweave, fine, gun1;
ArcL \Off, p2, v100, seam1, weld5, noweave, fine, gun1;
MoveJ

This welds a straight seam between points p1 and p2, as illustrated in Figure 1.

Figure 1 Welding with flying start.

On the way to p1, preparations for the weld start, such as gas preflowing, are ca
out. The process and the actual weld movement then start at position p1 and end
The start and end processes are determined by seam1 and the welding process by
weld5. Weaving data is carried out according to noweave. (No weaving if the
weave_shape component value is zero.)

V100 specifies the speed attained during the flying start to p1.

xxxxxx

ArcL\On

ArcL\Off

Direction of welding

MoveJ

MoveJ

Movement with no welding
Flying start
Welding and weld end

xxxxxxxxxxxxxx

p1

p2
RAPID Reference Manual 13-ArcL-1

ArcL ArcWare

 to

e way

osi-

s be

 posi-

tion

ch
out
Arguments

ArcL [\On] | [\Off] ToPoint Speed [\T] Seam Weld Weave Zone
[\Z] Tool [\WObj]

[\On] Data type: switch

The argument \On is used to obtain a flying start (see Figure 1) which, in turn,
results in shorter cycle times.

The argument \On may only be used in the first of the arc welding instructions
result in a seam. As the end instructions cannot include the argument \On, weld-
ing with a flying start must include at least two instructions.

The start preparations at a flying start, e.g. gas purging, are carried out on th
to the weld start position.

When the argument \On is not used, the weld starts at the position before the ArcL
instruction (see Figure 2) and the robot remains stationary at the previous p
tion whilst all weld start activities are in progress.

Whether or not a flying start is used, the start position for the weld will alway
a stop point – regardless of what is specified in the Zone argument for that posi-
tion.

Figure 2 If welding is started without the argument \On, the weld is begun at the previous
tion.

[\Off] Data type: switch

If the argument \Off is used, welding ends when the robot reaches the destina
position. Regardless of what is specified in the Zone argument, the destination
position will be a stop point.

If an ArcL instruction without the argument \Off is followed by MoveJ, for exam-
ple, welding will end, but in an uncontrolled fashion. Logical instructions, su
as Set do1, however, can be used between two arc welding instructions with
ending the welding process.

ArcL

ArcL\OffDirection of welding

MoveJ

MoveJ

Movement with no welding
Welding and weld end
13-ArcL-2 RAPID Reference Manual

ArcWare ArcL

d as
e

eed of

ectly
u-

 exter-
 how-
. Use
n of
ToPoint Data type: robtarget

The destination position of the robot and external axes. This is either define
a named position or stored directly in the instruction (indicated by an * in th
instruction).

Speed Data type: speeddata

The speed of the TCP is controlled by the argument Speed in the following cases:

- When the argument \On is used (weld start preparations at a flying start).

- When the program is run instruction-by-instruction (no welding).

The speed of the TCP during welding is the same as for the arguments Seam and
Weld. (See Figure 3)

Speed data also describes the speed of the tool’s reorientation and the sp
any uncoordinated external axes.

Figure 3 The speed at different phases of the welding process.

[\T] (Time) Data type: num

The argument \T is used to specify the total time of movement in seconds dir
in the instruction. Time is thus substituted for the speed specified in the arg
ments Speed, Seam and Weld.

This argument can be used when, for example, one or more uncoordinated
nal axes participate in the movement. Uncoordinated external axes should,
ever, be avoided since, if used, the program becomes more difficult to adjust
coordinated external axes instead. Weaving is deactivated during executio
ArcX instructions with \T arguments.

Seam Data type: seamdata

Seam data describes the start and end phases of a welding process.

xxxxxx

ArcL\On

ArcL\Off

MoveJ

MoveJ

Movement with no welding; speed in accordance with Speed
Flying start; speed in accordance with Speed
Welding; speed in accordance with the Seam and Weld arguments

xxxxxxxxxxx

specified in the heat and weld speed components).(
RAPID Reference Manual 13-ArcL-3

ArcL ArcWare

ss
d and

 weld
e

)

efore

n the
ed

d

int of

 sub-

he
the

n is
The argument Seam is included in all arc welding instructions so that, regardle
of the position of the robot when the process is interrupted, a proper weld en
restart is achieved.

Normally the same seam data is used in all instructions of a seam.

Weld Data type: welddata

Weld data describes the weld phase of the welding process.

Weld data is often changed from one instruction to the next along a seam.

Weave Data type: weavedata

Weave data describes the weaving that is to take place during the heat and
phases. Welding without weaving is obtained by specifying, for example, th
weave data noweave. (No weaving if the weave_shape component value is zero.

Zone Data type: zonedata

Zone data defines how close the axes must be to the programmed position b
they can start moving towards the next position.

In the case of a fly-by point, a corner path is generated past that position. I
case of a stop point (fine), the movement is interrupted until all axes have reach
the programmed point.

A stop point is always generated automatically at the start position of a wel
(even in the case of a flying start) and at a controlled weld end position. Fly-by
points, such as z10, should be used for all other weld positions.

Weld data changes over to the next arc welding instruction at the centre po
the corner path (if not delayed by the delay_distance component in the Weld
argument).

[\Z] (Zone) Data type: num

This argument is used to specify the positional accuracy of the robot’s TCP
directly in the instruction. The size of the zone is specified in mm and is thus
stituted in the corresponding zone specified in the zone data. The \Z argument is
also useful when trimming individual corner paths.

Tool Data type: tooldata

The tool used in the movement. The TCP of the tool is the point moved to t
specified destination position. The z-axis of the tool should be parallel with
torch.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the instruction’s robot positio
referenced.
13-ArcL-4 RAPID Reference Manual

ArcWare ArcL

d
ordi-

ques-

ocess

hen
ed

ns that

ese

r than
t

ed,

exam-
When this argument is omitted, the robot position is referenced to the worl
coordinate system. It must, however, be specified if a stationary TCP or co
nated external axes are used.

\WObj can be used if a coordinate system is defined for either the object in
tion or the weld seam.

Program execution

Controlling process equipment

The process equipment is controlled by the robot in such a way that the entire pr
and each of its phases are coordinated with the robot’s movements.

Motion

Robot and external axes are moved to the destination position as follows:

- The TCP of the tool is moved linearly at a constant programmed speed. W
coordinated axes are used, they are moved linearly at constant programm
speed relative to the work object.

- The tool is reorientated at even intervals throughout the entire course.

- Uncoordinated external axes are executed at a constant speed which mea
they reach their destination at the same time as the robot axes.

If the programmed speed of reorientation or of the external axes is exceeded, th
speeds will be limited, thereby reducing the speed of the TCP.

The destination position is referenced to:

- the specified object coordinate system if the argument \WObj is used;

- the world coordinate system if the argument \WObj is not used.

Limitations

When weaving, the distance between the programmed positions should be longe
the periodic time of weaving. If the distance is shorter and if there is a significan
change of angle in the path, the weaving pattern will be distorted.

Fault management

The process is supervised by a number of signal inputs. If anything abnormal is
detected, program execution will stop. If, however, an error handler is programm
the errors defined below can be remedied without stopping production. See the
RAPID Reference Manual 13-ArcL-5

ArcL ArcWare

on

as

ration.

al

ously:

e
t an
spite
ple in the RestoPath instruction.

Error constant (ERRNO value) Description

AW_START_ERR Start condition error; torch, gas or water supervisi

AW_IGNI_ERR Ignition error; arc supervision

AW_WELD_ERR Weld error; arc supervision

AW_EQIP_ERR Weld equipment error; voltage, current, water or g
supervision during welding

AW_WIRE_ERR Wire stick error; wire stick supervision

AW_STOP_ERR Welding interrupted using the stop process input

The process supervision is determined as a part of the process equipment configu

At the start of the process the robot checks that the following preconditions have been
met:

- stop_process

- water_OK

- gas_OK

- torch_OK

If, after the start command is given, no approved start profile is indicated on the digit
input, arc_OK, within a predetermined time period, the process start will be inter-
rupted.

When the process is started, all supervision inputs selected are monitored continu

- stop_process, water_OK, gas_OK, arc_OK, volt_OK, curr_OK, feed_OK

The wirestick_err supervision is checked at the end of the weld.

Example

MoveL ...
ArcL \On, *, v100, seam1, weld5, weave1, fine, gun1\Wobj:=wobj1;
ArcL *, v100, seam1,weld5, weave1, z10, gun1\Wobj:=wobj1;
ArcL *, v100, seam1,weld5, weave1, z10, gun1\Wobj:=wobj1;
ArcL \Off, *, v100, seam1,weld3, weave3, fine, gun1\Wobj:=wobj1;
MoveL ...

In this example, a weld is performed in which weld data and weave data ar
changed in the final part of the weld, which is illustrated in Figure 4. Note tha
arc welding instruction must be used to change the direction of the path de
the fact that no weld data is changed.
13-ArcL-6 RAPID Reference Manual

ArcWare ArcL

uc-

he
-

Figure 4 The direction and weld data can be changed by programming several ArcL instr
tions.

It is assumed, in this example, that a coordinated external axis is used in t
movement. In this case, the wobj1 work object must be specified in the instruc
tion.

Syntax

ArcL
[’\’On’,’] | [’\’Off’,’]
[ToPoint ’:=’] < expression (IN) of robtarget > ’,’
[Speed ’:=’] < expression (IN) of speeddata >

[(’\’ T ’:=’ < expression (IN) of num >)] ’,’
[Seam ’:=’] < persistent (PERS) of seamdata > ’,’
[Weld ’:=’] < persistent (PERS) of welddata > ’,’
[Weave ’:=’] < persistent (PERS) of weavedata > ’,’
[Zone ’:=’] < expression (IN) of zonedata >

[’\’ Z ’:=’ < expression (IN) of num >] ’,’
[Tool ’:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata > ’;’

MoveL

ArcL

ArcL\Off

ArcL\On

MoveLArcL

weld5, weave1

weld3, weave3

xxxxxx

Movement with no welding
Flying start
Welding

xxxxxx
RAPID Reference Manual 13-ArcL-7

ArcL ArcWare
Related information

Described in:

Performing a circular weld Instructions - ArcC

Other positioning instructions RAPID Summary - Motion

Definition of speed Data Types - speeddata

Definition of zone data Data Types - zonedata

Definition of tools Data Types - tooldata

Definition of work objects Data Types - wobjdata

Definition of seam data Data Types - seamdata

Definition of weld data Data Types - welddata

Definition of weave data Data Types - weavedata

Installation parameters for welding System Parameters - Arc Welding
equipment and welding functions

Movements in general Motion Principles

Coordinate systems Motion Principles - Coordinate
Systems

Process phases and sub-activities RAPID Summary -
Arc Welding
13-ArcL-8 RAPID Reference Manual

ArcWare ArcKill
ArcKill Kill the AW process

ArcKill is used in advanced error handlers to kill the AW process.

Example

PROC main()

WeldSeam1;
WeldSeam2;

ERROR
TPReadFk ans “The weld failed”, ““, ““, ““,”Service”,”OK”;

TEST ans
CASE 4:

service_routine;
TRYNEXT;

DEFAULT:
TRYNEXT

ENDTEST

ENDPROC

PROC WeldSeam1()

! Weld the seam
ArcL \On, p1, v100, seam1, weld5, noweave, fine, gun1;
ArcL \Off, p2, v100, seam1, weld5, noweave, fine, gun1;

ERROR
TEST ERRNO
CASE AW_IGNI_ERR:

! Try to restart the process if this was an ignition error.
RETRY;

DEFAULT:
! Kill the aw process and raise the error to the main routine

ArcKill;
RAISE

ENDTEST

ENDPROC
RAPID Reference Manual 13-ArcKill-1

ArcRefresh ArcWare
Syntax

ArcKill ‘ ;’

Related information

Described in:

Performing a circular weld Instructions - ArcC

Performing a linear weld Instructions - ArcL
13-ArcKill-2 RAPID Reference Manual

ArcWare ArcRefresh
ArcRefresh Refresh arcweld data

ArcRefresh is used to tune aw process parameters during program execution.

Example

PROC PulseWeld()

! Setup a two Hz timer interrupt
CONNECT intno1 WITH TuneTrp;
ITimer ,0.5 ,intno1;

! Weld the seam
ArcL \On, p1, v100, seam1, weld5, noweave, fine, gun1;
ArcL \Off, p2, v100, seam1, weld5, noweave, fine, gun1;

IDelete intno1;

ENDPROC

TRAP TuneTrp

! Modify the weld_voltage component of active welddata.

IF HighValueFlag =TRUE THEN
weld5.weld_voltage := 10;
HighValueFlag := FALSE;

ELSE
weld5.weld_voltage := 15;
HighValueFlag := TRUE;

ENDIF

! Order the process control to refresh process parameters
ArcRefresh;

ENDTRAP

The weld voltage will be switched between 10 and 15 volts
by the trap routine at a two Hz rate.

Syntax

ArcRefresh ‘ ;’
RAPID Reference Manual 13-ArcRefresh-1

ArcRefresh ArcWare
Related information

Described in:

Performing a circular weld Instructions - ArcC

Performing a linear weld Instructions - ArcL

Definition of weld data Data Types - welddata

Definition of weave data Data Types - weavedata

Installation parameters for welding System Parameters - Arc Welding
equipment and welding functions
13-ArcRefresh-2 RAPID Reference Manual

 SpotWare

CONTENTS
gundata Spot weld gun data

spotdata Spot weld data

SpotL Spot Welding with motion

System Module SWUSRC

System Module SWUSRF

System Module SWTOOL
RAPID Reference Manual 14-1

SpotWare

14-2 RAPID Reference Manual

SpotWare gundata

imal

e

 start.

gundata Spot weld gun data

Gundata is used to define spot weld gun specific data, to control the gun in an opt
way in the weld process.

Description

Gundata is used in spot weld instructions and has the following structure:

- Number of electrode pairs.

- Number of pressure levels.

- Flag to indicate if a signal is required to test accurate gun closure.

- Flag to indicate if a signal is required to test accurate gun opening.

- Counter for the number of welds done and maximum allowed number (on
counter and maximum value for each pair).

- Closing times.

- Opening times.

Components

nof_tips (number of tips) Data type: num

Number of electrode pairs (1 or 2)

nof_plevels (number of pressure levels)Data type: num

Number of pressure levels (1 - 4)

close_request (closure request) Data type: bool

If the flag is TRUE, the ordered pressure level is tested before the weld may

open_request (opening request) Data type: bool

If the flag is TRUE, the gun open signal is tested before the next motion is
released. The time out is defined by sw_go_timeout.
(See Predefined Data and Programs - System Module SWUSER)

Note. The open_time must elapse before the test is done (see below).

If the flag is FALSE, the next motion is always released after open_time (see
below).
RAPID Reference Manual 14-gundata-1

gundata SpotWare

he
g

 The
g

ore
g etc.

de

s just
ay be

s just
tip1_counter Data type: num

Counter for the number of welds done with the first pair of electrode tips. T
counter is automatically incremented. Use of counter is optional. The zeroin
shall be handled by the user program.

tip2_counter Data type: num

Counter for the number of welds done with the second pair of electrode tips.
counter is automatically incremented. Use of counter is optional. The zeroin
shall be handled by the user program.

tip1_max 1 Data type: num

Maximum number of welds to be made by the first pair of electrode tips bef
tip service is required. This parameter may be used for automatic tip dressin

tip2_max 1 Data type: num

Maximum value for number of welds allowed with the second pair of electro
tips before tip service shall be performed. To be used if desired by the user
program.

close_time1 Data type: num

Time [s] to close the gun if pressure p1 is activated.

close_time2 Data type: num

Time [s] to close the gun if pressure p2 is activated.

close_time3 Data type: num

Time [s] to close the gun if pressure p3 is activated.

close_time4 Data type: num

Time [s] to close the gun if pressure p4 is activated.

build_up_p11 Data type: num

Time [s] elapsed to build up the pressure from the moment when the gun ha
about closed. The pressure p1 has to be set in advance. This parameter m
used to measure the closing time automatically.

build_up_p21 Data type: num

Time [s] elapsed to build up the pressure from the moment when the gun ha
about closed. The pressure p2 has to be set in advance.

1. To be defined only if used by the user program.
14-gundata-2 RAPID Reference Manual

SpotWare gundata

s just

s just

lease
build_up_p31 Data type: num

Time [s] elapsed to build up the pressure from the moment when the gun ha
about closed. The pressure p3 has to be set in advance.

build_up_p41 Data type: num

Time [s] elapsed to build up the pressure from the moment when the gun ha
about closed. The pressure p4 has to be set in advance.

open_time Data type: num

The time [s] that always elapses between the gun opening order and the re
of the next motion or the test of gun open (see above).

Structure

< dataobject of gundata>
<nof_tips of num>
<nof_plevels of num>
<close_request of bool>
<open_request of bool>
<tip1_counter of num>
<tip2_counter of num>
<tip1_max of num>
<tip2_max of num>
<close_time1 of num>
<close_time2 of num>
<close_time3 of num>
<close_time4 of num>
<build_up_p1 of num>
<build_up_p2 of num>
<build_up_p3 of num>
<build_up_p4 of num>
<open_time of num>

.Related information

Described in:

Spot weld instruction Instructions - SpotL

Definition of tool TCP, weight etc. Data types - tooldata

1. To be defined only if used by the user program.
RAPID Reference Manual 14-gundata-3

gundata SpotWare
14-gundata-4 RAPID Reference Manual

SpotWare spotdata

 for

he

ime.
nd.

ime.
nd.
spotdata Spot weld data

Spotdata is used to define the parameters that control a weld timer and weld gun
welding a certain spot.

Description

Spotdata is referred to spot weld instructions and contains data which controls t
welding in the actual instruction.

Spotdata has the following structure:

- Program number for the program in the weld timer to be used.

- Electrode tip to be activated (in case of a double gun).

- Desired gun pressure (if connected).

- Weld timer number (if more than one).

Components

prog_no (program number) Data type: num

Defines the internal program in the weld timer to be used for the welding.

The allowed range is 0..sw_prog_max (defined in the system module
SWUSER).

tip_no (electrode pair number) Data type: num

Defines the electrode pair to be activated. The following alternatives are
available:

1: Electrode pair 1

2: Electrode pair 2

12: Electrode pairs 1 and 2. Both pairs are closing at the same t
The welding is done in sequence, pair 1 first and pair 2 seco
Then, both electrodes are opening together.

21: Electrode pairs 2 and 1. Both pairs are closing at the same t
The welding is done in sequence, pair 2 first and pair 1 seco
Then, both electrodes are opening together.

For guns with only one pair of electrodes the value shall be 1.
RAPID Reference Manual 14-spotdata-1

spotdata SpotWare

.

 gun
gun_pressure (gun pressure) Data type: num

Defines the gun pressure to use.

The following alternatives are available: Gun pressure 1-4

timer_no (weld timer number) Data type: num

Defines the weld timer to be used. Only used for certain type of weld timers

If only one timer is used (normal case) the value shall be 1.

Example

PERS spotdata spot1:= [16, 1,4,1];

The spotdata spot1 is programmed for an equipment containing one single
and one weld timer. When spot1 is used the following occurs:

- The program number 16 is controlling the welding.

- The gun pressure must reach level 4 before the weld is allowed to start.

Structure

<dataobject of spotdata>
<prog_no of num>
<tip_no of num>
<gun_pressure of num>
<timer_no of num>

Related information

Described in:

The Spot weld instruction Instructions - SpotL

Gundata Data Types - Gundata
14-spotdata-2 RAPID Reference Manual

SpotWare SpotL

tion.

 is
e on

 and

not
ited

ed
n).

 for the
SpotL Spot Welding with motion

SpotL (SpotLinear) is used in spotwelding to control the motion, gun closure/opening
and the welding process. SpotL moves the TCP linearly to the end position.

Example

SpotL p100, vmax, spot10, gun7, tool7;

This is the only instruction needed to implement a complete welding opera

The TCP for tool7 is moved on a linear path to the position p100 with the speed
given in vmax. The weld position is always a stop position since the welding
always performed while the robot is standing still. The gun closes in advanc
it’s way to the position. The welding is started and supervised until finished
the gun is reopening.

Note. The program continues to execute after the weld has started and is
blocked until the next order that contains a robot motion. This may be inhib
by the switch \NoConc (see below).

Spotdata spot10 contains parameters to the welding equipment.

Gundata gun7 contains gun specific weld data.

Arguments

SpotL ToPoint Speed Spot [\InPos] [\NoConc] [\Retract]
Gun Tool [\WObj]

ToPoint Data type: robtarget

The destination point of the robot and external axes. It is defined as a nam
position or stored directly in the instruction (marked with an * in the instructio

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the tool reorientation and external axes.

Spot Data type: spotdata

Spot data that is associated with the weld process equipment.
RAPID Reference Manual 14-SpotL-1

SpotL SpotWare

ll

ract)
rk).

ved
hen

tion

d
ternal

al
[\InPos] Data type: switch

The optional argument \InPos inhibits the preclosing of the gun. The gun is
closed first when the robot has reached the end position. This argument wi
increase the execution time but is useful in narrow situations.

[\NoConc] Data type: switch

The optional argument \NoConc prevents the program from continuing the
execution until the actual weld is finished. It should be used when the next
instruction is a logical instruction.

[\Retract] Data type: switch

The optional argument \Retract will make the gun open to its large gap (ret
after the weld. If the argument is omitted the gun opens to its small gap (wo

Gun Data type: gundata

Weld specific tool data for the gun in use.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point mo
to the specified destination position, and should be the position of the tips w
the gun is closed.

[\WObj] Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruc
is related.

This argument can be omitted, and if it is, the position is related to the worl
coordinate system. If, on the other hand, a stationary TCP or coordinated ex
axes are used, this argument must be specified in order to perform a linear
movement relative to the work object.

Customising

The SpotWare package gives the user plenty of scope for customising the SpotL
instruction:

- by user defined data which affects the internal behaviour in SpotL.
(See Predefined Data and Programs - System Module SWUSRF, SWUSRC).

- by user defined routines which are called at predefined spots in the intern
sequence. (See Predefined Data and Programs - System Module SWUSRF,
SWUSRC).

- by changing the I/O configuration. (See System Parameters - Spot Welding).

However, the main subject of this SpotL instruction description is the default setup.
14-SpotL-2 RAPID Reference Manual

SpotWare SpotL

nPos

ening
Program execution

Internal sequence in a SpotL instruction:

- The gun starts to move towards the position.

- The weld program number is set for the external weld timer.

- The gun pressure is set.

- The preweld supervision is done.

- The gun starts to close at a defined time before the position (if argument \I
is not used).

- The gun is closed when it reaches the position.

- The OK signal for pressure reached is expected.

- The weld counter is incremented.

- The movement to the next position is blocked.

- The start signal is sent to the weld timer.

- The program execution continues to the next movement instruction
(unless argument \NoConc is used).

- When the ready signal from the timer is reached, the gun is opened.

- The motion is released on a release signal or a certain time after the gun op
and after successful post weld supervision.
RAPID Reference Manual 14-SpotL-3

S
p

otL
S

p
o

tW
a
re

14-S
potL-4

R
A

P
ID

 R
eference M

a
nual

inpos

MoveL ...
F
igu

re
 1

 S
p

o
t w

e
ld

 se
q

u
e
n

ce
.

Fetch instruction and
prepare motion

Motion

Close gun

Gun closed

Set pressure

Pressure OK

Gun open

Set weld program no.

Start weld

Weld ready

Block motion

inpos

SpotL ... SpotL..

SpotWare SpotL

ive of
n. The
 the

de on
.

nd

sition.
dged.

ld

t with

ing on
 signal

e

 or a
Gun closure

The gun closure is activated at a defined time before the weld position, irrespect
the actual speed. Closure shall be finished when the gun arrives at the end positio
close time is defined in the gun data. It relates to the time for closing the gun from
work stroke and is dependent on the chosen gun pressure (in spot data).

A maximum of four discrete gun pressures can be chosen in spot data. The gun
pressure is set as soon as the motion towards the position starts. A check is ma
whether or not the gun pressure has been attained, if so demanded by gun data

When the gun is closing, the work_select is set to 1, if desired. See Predefined Data a
Programs.

Welding

The start signal is sent to the timer as soon as the robot has reached the end po
Before the start signal is sent, a number of supervisions must also be acknowle
These are user defined routines. See Predefined Data and Programs.

The start signal is high during the entire welding period. It is reset either after we
ready or weld timeout.

When the option for program triggered timers is used the program number is se
the start signal and reset to zero after a successful weld or timeout.

Gun opening

The gun opens to a small or large stroke, after the welding has finished, depend
the parameter \Retract. The opening is supervised in such a way that a gun open
is expected. This will release the next motion.

The gun is also opened after a weld error and other error situations.

Motion

To gain time the program pointer goes on to the next motion instruction while th
welding is still preforming. This makes it possible to perform the next motion
immediately on a release order.

This means that instructions after SpotL, other than motional, such as logical
instructions, will be performed concurrently with the welding. If this is not the
intention the parameter NoConc shall be used.

A move enable for the next motion can be configured to be a signal from the gun
certain time after weld ready.

The end position is related to the used object coordinate system in WObj.
RAPID Reference Manual 14-SpotL-5

SpotL SpotWare

re

weld

he gun

 again

 gun
ion
14-SpotL-6 RAPID Reference Manual

Customising

There is a wide range of tools for customising the SpotWare package by offering
RAPID user routines. These are straight forward routines hooked into the base
software. The following functions can be programmed freely by the user:

Preweld supervision - sw_preweld_sup

Postweld supervision - sw_postweld_sup

Gun closure - sw_close_gun

Gun opening - sw_open_gun

Pressure setting - sw_set_pressure

Preclose time calculation - sw_close_time

Error recovery - sw_error_recover

Note that the default code gives the same behaviour as described in the SpotWa
documentation.

See Predefined Data and Programs - System Modules SWUSRC.

Internal sequence: The start to the timer can be initiated immediately after the pre
supervision has been acknowledged, if so configured. See Predefined Data and
Programs - System Module SWUSRC.

Program stop and restart

Stop during the motion and restart

The robot stops on the path. If the signal to close the gun has already been sent t
reopens at the stop.

On restart, the robot continues towards the programmed position, closes the gun
and the sequence in SpotL carries on as normal.

Stop during welding and restart

The welding is finished. The validation of the weld is done after the stop and the
opens. If \NoConc was not used, the program pointer will leave the current instruct
and will point to the next instruction containing a robot motion.

Instruction by instruction execution

Forwards

The motion and the welding are done.

SpotWare SpotL

.
.

 error,

Backwards

The gun is set to work or retract stroke depending on \Retract.
The motion is performed backwards.

Simulated welding

Full simulation of a timer.

Activated by setting sw_sim_weld TRUE. This will inhibit the start signal to the timer
The simulation time is defined in sw_sim_time. No preweld supervision is performed

Simulation in the timer

Activated by setting sw_inhib_weld TRUE. This will set the current_enable signal low
at the next weld. No preweld supervisions performed.

Error handling

Events in an error situation

When SpotL is stopped by a supervision, the following take place:

- The signal process_error is set.

- An error message is displayed.

- The error message is logged.

Error situations

The following error situations can occur:

- Instruction parameter error.

- Supervision error before welding.

- Weld error.

- Supervision error after welding and before the next motion.

- Supervision error for gun pressure.

- Supervision error for gun closure (SpotWare Plus)

- Supervision error for gun opening.

All the supervision behaviour described above, except weld error and parameter
can be modified by the user.

To stop execution with an error message, simply put the desired message in the
RAPID Reference Manual 14-SpotL-7

SpotL SpotWare

rtain

r a
assigned error string and it will show on the teach pendant.

The behaviour below is programmed as default.

See also Predefined Data and Programs.

Instruction parameter error

The error occurs when SpotL is called with faulty parameters. The program stops.

The parameter must be changed and the current instruction restarted from the
beginning.

Supervision before welding

The supervisions in sw_preweld_sup are in progress. See Predefined Data and
Programs - System Module SWUSRC.

Weld error

A weld error occurs if the ready signal from the weld timer has not been set to a ce
time (sw_wr_timeout). SpotL can be configured to automatically reweld a certain
number of times before the error is displayed and the execution stops, waiting fo
manual action.

- The start signal is set low.

- The gun opens.

- The process error signal is set high.

- The following manual choices are available:

Automatic mode: Service / Reweld

Manual mode: Service / Skip / Reweld (see the dialog box in Figure 2).

Figure 2 Dialog box for weld error.

Program Waiting for Data!

Weld_ready timeout

Service Skip Reweld
14-SpotL-8 RAPID Reference Manual

SpotWare SpotL

signal
Restart by choice Service

This is not available in execution mode “stepwise forward”

- The process error signal is reset.

- The user defined routine sw_service_wf is executing, for instance moving to a
home position.

- The robot moves back to the spot welding point.

- Back to the dialog as shown in Figure 2.

Restart by choice Skip

- The reset_fault signal is pulsed.

- The process error signal is reset.

- The program execution is resumed but omitting the faulty weld.

Restart by manual action SwRunProc

- Same result as Reweld.

Restart by choice Reweld

- The reset_fault signal is pulsed.

- The process error signal is reset.

- The gun closes.

- The start signal is set with a time delay of sw_reset_time2 and the program
execution is resumed.

Supervision after the weld

Supervisions in the user defined routine sw_postweld_sup are executing. See
Predefined Data and Programs - System Module SWUSRC.

Gun closure error

The error occurs if the chosen pressure is not reached after a certain time. The
p1_ok is supervised if gun_pressure=1 i spotdata etc.

- The process error signal is set high.

- The following manual choice is available: Service / Retry.

- Choice Service: the user defined routine sw_service_cg is executing.

- Back to the manual choice: Service / Retry.

- Choice Retry: The gun is closing and the pressure is tested again.
RAPID Reference Manual 14-SpotL-9

SpotL SpotWare

eters

nt

n /

ss.

ram

. full
Gun opening error

The error occurs if the gun has not opened after a certain time. The signal tip1_open or
tip1_open and tip2_open if nof_tips=2 in gundata.

- The process error signal is set high.

- The following manual choice is available: Service / Retry

- Choice Service: the user defined routine sw_service_og is executing.

- Back to the dialog shown in Figure 2.

- Choice Retry: The gun is opening and the signals are tested again.

User defined error recovery

When user defined error recovery is switched on, the routine sw_user_recover is called
if any of the above error cases occur, except for parameter error. The input param
carry information about the error case and the chosen error text.

This routine allows customising the error handling response, i.e. the teach penda
layout and how to resume. See Predefined Data and Programs - System Module
SWUSRC.

Note: no standard error logging is done by SpotWare when this option is used.

Error recovery when program instance 0 is stopped

When the program task 0 is stopped (user program stopped / stepwise executio
manual action) the service action is not a possible choice since it contains robot
movements. Instead a “Break” choice is possible, which aborts the current proce

Manual actions

Manual actions allow the execution of spot weld functions without having to prog
a SpotL-instruction. It can be used as a tool to test user defined code before
programming the line program.

The manual actions execute the same process code as when running SpotL, i.e

Program Waiting for Data!

Weld_ready timeout

Break Reweld
14-SpotL-10 RAPID Reference Manual

SpotWare SpotL

in

still

ignals

pted

pot is
error recovery etc. is provided.

Manual actions execute in any system state except when a SpotL-instruction is
progress. Manual actions are activated by assigned virtual outputs.

See System Parameters - Spot Welding.

Communication

SpotL communicates with its equipment using parallel signals.

For a complete description of the I/O configuration, see System Parameters - Spot
Welding.

Some weld timers with serial interface are supported. In those cases the SpotL
faces a parallel interface and the serial communication messages are mapped
internally. See separate documentation.

Power failure handling

At system restart after power failure:

- All spotweld output signals are set to the old status, as well as gun close s
and weld start signals.

At program restart after power failure:

- The robot returns to the path and the program execution which was interru
is continued.

- If a power failure occurred when a weld process was active, the current s
automatically rewelded.

Syntax

SpotL
[ToPoint ‘:=’] < expression (IN) of robtarget > ‘,’
[Speed ‘:=’] < expression (IN) of speeddata > ‘,’
[Spot‘:=’] < persistent (PERS) of spotdata >
[‘\’ InPos]
[‘\’ NoConc]
[‘\’ Retract] ‘,’
[Gun‘:=’] < persistent (PERS) of gundata> ‘,’
[Tool ‘:=’] < persistent (PERS) of tooldata >
[’\’ WObj ’:=’ < persistent (PERS) of wobjdata >] ’;’
RAPID Reference Manual 14-SpotL-11

SpotL SpotWare
Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data types - speeddata

Definition of zone data Data types - zonedata

Definition of tool Data types - tooldata

Definition of work objects Data types - wobjdata

Definition of spot data Data types - spotdata

Definition of gun data Data types - gundata

Overview Spot welding RAPID Summary - Spot Welding

Customising tools Predefined data and programs -
System Module SwUsrF, SwUsrC

I/O configuration System parameters - Spot Welding

Motion in general Motion and I/O Principles

Coordinate systems Motion and I/O Principles -
Coordinate systems
14-SpotL-12 RAPID Reference Manual

SpotWare SWUSRC

 the
by all

System Module SWUSRC

The system module SWUSRC contains data and routines aimed at customising
behaviour of the SpotWare application. They are used and executed commonly
RAPID tasks of SpotWare.

NB. Any change of routines in SWUSRC requires the following three steps to
affect the application (see also System Parameters Multitasking):

- save to ramdisk

- touch the multitasking configuration

- WARM START to affect the application

The names are predefined and used internally when a SpotL instruction is used. They
must therefore not be changed.

Contents

Data

The following global data are predefined:

Name Declaration Description

sw_weld_counter PERS num
sw_weld_counter := 0

Counter for welded spots. The
counter is automatically incremented
in the SpotL instruction.

sw_gp_timeout PERS num
sw_gp_timeout := 2

Gun pressure timeout [s]

sw_wr_timeout PERS num
sw_wr_timeout := 2

Weld ready timeout [s]

sw_go_timeout PERS num
sw_go_timeout := 2

Gun open timeout [s]

sw_prog_max PERS num
sw_prog_max := 63

Max. value for prog_no in spotdata.

sw_inhib_weld PERS bool
sw_inhib_weld :=
FALSE

Flag to set the weld timer in
simulation mode.
If TRUE: The signal current_enable
is cleared when the next SpotL
instruction is executed.
If FALSE: The signal current_enable
is set when the next SpotL instruction
is executed.
RAPID Reference Manual 14-SWUSRC-1

SWUSRC SpotWare
sw_sim_weld PERS bool
sw_sim_weld :=
FALSE

Flag to internally simulate the weld
timer.
If TRUE: Weld start signal is not
activated.

sw_spot_id_req PERS bool
sw_spot_id_req :=
FALSE

Flag to request the spot identity of the
programmed spots.
If TRUE: It‘s possible to fetch the
current spot identity (the spot
parameter name of the current
spotdata) using the function
SwGetCurrSpotID.
If the serial link for Bosch PSS 5000
is in use, the weld programs will be
requested by the spotdata name
instead of using the program number.

sw_sim_time PERS num
sw_sim_time := 0.5

Simulated weld time if sw_sim_weld
= TRUE.

sw_aut_reweld PERS num
sw_aut_reweld := 0

Number of automatic tries to reweld
after weld_ready timeout.

sw_parity PERS num sw_parity:=
0

0 = none, 1 = odd, 2 = even

sw_reset_time1 PERS num
sw_reset_time1 := 0.5

Reset pulse [s]

sw_reset_time2 PERS num
sw_reset_time2 := 0.5

Wait time after the reset pulse and
after each time current_enable is
changed [s].

sw_async_weld PERS num
sw_async_weld :=
FALSE

TRUE means the start of the weld is
set independently of inpos, i.e.
immediately after closing the gun

sw_servo_corr PERS num
sw_servo_corr := 0.061

Correction time for internal delay.
This value affects the preclosing
time. The correct time which is
dependent on motion configuration is
automatically set at start up.

Name Declaration Description
14-SWUSRC-2 RAPID Reference Manual

SpotWare SWUSRC

sed

ally

The following predefined data is used by the manual actions to operate on:

Routines

The following predefined routines are installed with the application. They are all u
by the SpotL instruction.

These routines have a default functionality but can easily be changed.

User defined supervision routines for SpotL:

The following routines are called by the SpotL sequence.

PROC sw_preweld_sup ()
spotweld preweld supervision

The routine is executed before each start of the weld process.

If an error text is assigned to the text string errtext, then the system is automatic
stopped with the error text on the display and with a possibility to restart the

sw_start_type PERS num
sw_start_type:=0

Tells the system how to start the weld
process in the timer:
0: The weld process start is triggered
by a specific start signal (e.g. start1).
The program number is set in
advance.
1: The weld process is triggered by
the program number outputs. No
presetting of the program number

sw_user_recover PERS num
sw_user_recover :=
FALSE

TRUE means the user function
sw_error_recover is called in case of
a process error. No error logging is
performed by SpotWare.
FALSE means standard error
recovery is used.

Name Declaration

sw_man_gun PERS gundata gun1 := [1, 4, TRUE, TRUE, 0,
0, 20000, 20000, 0.050, 0.050, 0.050, 0.050, 0,
0, 0, 0, 0]

sw_man_spot PERS spotdata spot1 := [1, 1, 1, 1];

sw_man_retr PERS num sw_man_retr := 0;

Name Declaration Description
RAPID Reference Manual 14-SWUSRC-3

SWUSRC SpotWare

of the

ition.

ally

ction.
supervision routine and continue the program execution.

Default functionality:
If the simulate weld or inhibit weld functions are not activated, then the following
digital input signals are tested:

timer_ready
flow_ok
temp_ok
current_ok

In the event of an error, a suitable error text is assigned to the text string errtext.

If timer_ready = 0, then one attempt to reset the timer is made and a new check
input is made before an error is indicated.

PROC sw_postweld_sup ()
spotweld postweld supervision

The routine is executed after the weld process before movement to the next pos

If an error text is assigned to the text string errtext, then the system is automatic
stopped with the error text on the display and with a possibility to restart the
supervision routine and continue the program execution.

Default functionality:
The work_select signal is set or reset according to the Retract switch in the instru

User defined independent supervision routines:

The following routines are called independently of the SpotL-sequence.

PROC sw_sup_init ()
spotweld supervision init

The routine is executed at warm start. Here the user interrupt numbers used by
sw_sup_trap should be initialised.

Default functionality:
Connection and activation of signals and interrupts used by sw_sup_trap.

PROC sw_motor_on ()
spotweld motor on

Routine called by the trap sw_sup_trap.

Default functionality:
Connected to interrupt number imotor_on. Set weld_power and pulse water_on
outputs.
14-SWUSRC-4 RAPID Reference Manual

SpotWare SWUSRC

tputs.

r

le

n

le

ly of
PROC sw_motor_off ()
spotweld motor off

Routine called by the trap sw_sup_trap.

Default functionality:
Connected to interrupt number imotor_off. Reset weld_power output.

PROC sw_proc_ok ()
spotweld process ok

Routine called by the trap sw_sup_trap.

Default functionality:
Connected to interrupt number iproc_ok. Set weld_power and pulse water_on ou

PROC sw_proc_error ()
spotweld process erro

Routine called by the trap sw_sup_trap.

Default functionality:
Connected to interrupt number iproc_error. Reset weld_power output.

PROC sw_sup_curren ()
spotweld supervise current enab

Routine called by the trap sw_sup_trap.

Default functionality:
Connected to interrupt number icurr_enable. Set weld_power and pulse water_o
outputs.

PROC sw_sup_currdis ()
spotweld supervise current disab

Routine called by the trap sw_sup_trap.

Default functionality:
Connected to interrupt number icurr_disable. Reset weld_power output.

User defined trap routines:

The interrupts in these trap routines will always be alert to execute independent
the actual system state.

TRAP sw_sup_trap ()
spotweld supervision trap
RAPID Reference Manual 14-SWUSRC-5

SWUSRC SpotWare

em

anual

start

e

 tests
n.

start
Trap routine connected to the supervision.

Default functionality:
Control of the output signals water_start and weld_power depending on the syst
state. See System Parameters - Spotwelding.

User defined process routines and functions for SpotL:

The following routines are called by the SpotL sequence.

PROC sw_close_gun ()
spotweld close gun

The routine is executed each time a closing of the gun is ordered. N.B. also the m
action.

If an error text is assigned to the text string errtext_close, then the system is
automatically stopped with the error text on the display and with a possibility to re
the supervision routine and continue the program execution.

Default functionality:
See Instructions - SpotL.

PROC sw_open_gun (num context)
spotweld open gun

The routine is executed each time an opening of the gun is ordered. N.B. also th
manual action.

Parameters:

• context: reason for opening. A negative value is used to leave out the gun open
and to ignore the errtext_open when a quick open is needed in an error situatio

If an error text is assigned to the text string errtext_open, then the system is
automatically stopped with the error text on the display and with a possibility to re
the supervision routine and continue the program execution.

Default functionality:
See Instructions - SpotL.

PROC sw_set_pressure ()
spotweld set pressure

The routine is executed in the preparation phase of the spot weld process.

Default functionality:
Sets the pressure output group according to gun_pressure. See Instructions - SpotL.

FUNC num sw_error_recover (num error_type, string err_text)
spotweld error recover
14-SWUSRC-6 RAPID Reference Manual

SpotWare SWUSRC

case

is

up.

s
The function is called in an error situation if the variable sw_user_recover is set TRUE.

Parameters:

• error_type: type of error that occurred. Possible cases are:

- SW_WELD_ERR: weld error timeout

- SW_OG_ERR: open gun error. Error reported by sw_open_gun

- SW_CG_ERR: close gun error. Error reported by sw_close_gun

- SW_PRESUP_ERR: preweld supervision error. Error reported by
sw_preweld_sup.

- SW_POSUP_ERR: postweld supervision error. Error reported by
sw_postweld_sup.

• err_text: text string that was returned by the function that reported the error. In
of a weld error it is the standard “weld ready timeout” message.

The return value of this function defines how the SpotWare shall resume after th
error. There are three possible return values:

- SW_RETRY: the action that produced the error is re-executed.

- SW_CANCEL: the current spot weld process is abandoned and cleaned

- SW_SERVICE: the service routine corresponding to the error produced i
executing. Note that no service routines exist for preweld and postweld
supervision.
RAPID Reference Manual 14-SWUSRC-7

SWUSRC SpotWare
14-SWUSRC-8 RAPID Reference Manual

SpotWare SWUSRF

 the
ID

 are

te

System Module SWUSRF

The system module SWUSRF contains data and routines aimed at customising
behaviour of the SpotWare application. They are used and executed by the RAP
foreground task of SpotWare.

The routine names are predefined and used internally when a SpotL instruction is used.
They must therefore not be changed.

Contents

Data

The following global data are predefined:

Normally it is suitable to use the module SWUSRF to store variables of the type
spotdata, gundata and tooldata, used for the application. The following variables
predefined but their names and values can be changed freely.

Name Declaration Description

sw_inpos PERS bool sw_inpos :=
FALSE

If TRUE: Gun preclosing is
deactivated.

sw_close_corr VAR num
sw_close_corr := 100

Correction factor used when the next
gun preclose time is calculated [%].
Is automatically reset to 100 after
each preclose calculation. Preferably
this data can be changed in a separa
assignment instruction just before the
influenced SpotL instruction.

Name Declaration

gun1 PERS gundata gun1 := [1, 4, TRUE, TRUE, 0,
0, 20000, 20000, 0.050, 0.050, 0.050, 0.050, 0,
0, 0, 0, 0]

toolg1 PERS tooldata toolg1 := [TRUE, [[0, 0, 0], [1,
0, 0, 0]], [-1, [0, 0, 0],[1, 0, 0, 0], 0, 0, 0]]

spot1 PERS spotdata spot1 := [1, 1, 1, 1]
RAPID Reference Manual 14-SWUSRF-1

SWUSRF SpotWare

sed

ition
re

nd the

 made

ction

, and

ction

e and
Routines

The following predefined routines are installed with the application. They are all u
by the SpotL instruction.

These routines have a default functionality but can easily be changed.

User defined service routines:

After execution of a service routine, the robot moves to the interrupted weld pos
with reduced speed. The text “Service routine ready” and the old function keys a
shown.

PROC sw_service_cg ();
spotweld service close gun

The routine is executed when the gun error “Gun pressure not reached” occurs a
function key “Service” is pressed.

By pressing Retry back from the service routine, a new attempt to close the gun is
and then program execution continues.

Default functionality:
No functions, only an information text and a “Return” key are shown. The service
routine is ended when “Return” is pressed.

PROC sw_service_og ();
spotweld service open gun

The routine is executed when the gun error “Gun open timeout” occurs and the fun
key “Service” is pressed.

By pressing Retry back from the service, a new test will be made if the gun is open
then program execution continues.

Default functionality:
No functions, only an information text and a “Return” key are shown. The service
routine is ended when “Return” is pressed.

PROC sw_service_wf ();
spotweld service weld fault

The routine is executed when the error “Weld ready timeout” occurs and the fun
key “Service” is pressed.

By pressing Reweld back from the service, a new attempt to weld the spot is mad
then program execution is continued.
14-SWUSRF-2 RAPID Reference Manual

SpotWare SWUSRF

e

base

e for
Default functionality:
No functions, only an information text and a “Return” key are shown. The servic
routine is ended when “Return” is pressed.

General user routines and functions:

The following routines are connected to different entries in the SpotWare RAPID
software.

FUNC num sw_close_time (spotdata spot, gundata gun);
spotweld close time calculation

The function is executed during motion preparation. It returns the preclosing tim
the gun.

Input parameters:
spot of type spotdata: actual spot given in the SpotL-instruction in preparation
gun of type gundata: actual gun given in the SpotL-instruction in preparation

Default functionality:
The resulting time is dependent on the four pressure levels in gundata.
RAPID Reference Manual 14-SWUSRF-3

SWUSRF SpotWare
14-SWUSRF-4 RAPID Reference Manual

SpotWare SWTOOL

 is
ng
e.
System Module SWTOOL

The system module SWTOOL contains data functions and routines. The module
declared NOVIEW and contains utilities to be used as a toolbox when customisi
SpotWare. This module is accessible commonly by all RAPID tasks of SpotWar

Contents

Function return values

SW_OK

SW_RETRY

SW_SERVICE

SW_ERROR

SW_TIMOUT

SW_CANCEL

User error recovery types (see function sw_user_recover in SWUSRC)

SW_WELD_ERR

SW_CG_ERR

SW_OG_ERR

SW_PRESUP_ERR

SW_POSUP_ERR
RAPID Reference Manual 14-SWTOOL-1

SWTOOL SpotWare

d to

.

t

ess.

y

cess.
Routines

The following predefined routines are installed with the application. They are use
influence SpotL instruction.

PROC SwSetCurrSpot (spotdata spot)

SpotWeldSetCurrentSpot

The function changes the spotdata parameter of the running spotware process.

PROC SwSetCurrGun (gundata gun)

SpotWeldSetCurrentGun

The function changes the gundata parameter of the running spotware process.

PROC SwSetCurrRetr (num retr)

SpotWeldSetCurrentRetrac

The function changes the retract switch parameter of the running spotware proc

retr 0: work stroke

retr 1: retract stroke

PROC SwGetCurrNoConc (bool noconc)

SpotWeldSetCurrentNoConcurrenc

The function changes the NoConc switch parameter of the running spotware pro

noconc TRUE: NoConc is present

noconc FALSE: NoConc is not present

PROC SwSetCurrSpotID (string spot_id)

SpotWeldSetCurrentSpotIdentity

The function changes the spotdata parameter name of the running spotware process.
14-SWTOOL-2 RAPID Reference Manual

SpotWare SWTOOL

.

are

re

t

y

Functions

The following predefined functions are installed with the application.

FUNC spotdata SwGetCurrSpot

SpotWeldGetCurrentSpot

The function returns the content of the spotdata parameter of the running spotw
process.

FUNC gundata SwGetCurrGun

SpotWeldGetCurrentGun

The function returns the content of the gundata parameter of the running spotwa
process.

FUNC num SwGetCurrRetr

SpotWeldGetCurrentRetrac

The function returns the content of the retract switch parameter of the running
spotware process.

Return value 0: work stroke

Return value 1: retract stroke

FUNC bool SwGetCurrNoConc

SpotWeldGetCurrentNoConcurrenc

The function returns the content of the NoConc switch parameter of the running
spotware process.

Return value TRUE: NoConc is present

Return value FALSE: NoConc is not present

FUNC string SwGetCurrSpotID

SpotWeldGetCurrentSpotIdentity

The function returns the spotdata parameter name of the running spotware process.
RAPID Reference Manual 14-SWTOOL-3

SWTOOL SpotWare

ss, in

et the

.

nts to

weld
ion is

.

nts to

,

rnel.
is not
P. The
FUNC num SwWaitInput (VAR signaldi input, num value \num MaxWait)

SpotWeldWaitInput

Waits until the signal input has reached value. A max. time MaxWait can be added as
an optional parameter. When running a user routine called by the spot weld proce
which the process is supposed to wait for an input signal, this function is used to l
system abandon the current process.

Return value SW_OK: Signal was set to output value.

Return value SW_TIMEOUT: The time specified in MaxWait has been exceeded

Return value SW_CANCEL: The SpotWare process has received an abort and wa
cancel the current process. It shall cause a return from the current user routine.

FUNC num SwWaitOutput (VAR signaldo output, num value \num MaxWait)

SpotWeldWaitOutput

Waits until the signal output has reached value. A maximum time MaxWait can be
added as an optional parameter. When running a user routine called by the spot
process, in which the process is supposed to wait for an output signal, this funct
used to let the system abandon the current process.

Return value SW_OK: Signal was set to value.

Return value SW_TIMEOUT: The time specified in MaxWait has been exceeded

Return value SW_CANCEL: The SpotWare process has received an abort and wa
cancel the current process. It shall cause a return from the current user routine.

FUNC num SwErrorAck (VAR num input_key, string alert, string ktxt1, string ktxt2
string ktxt3, string ktxt4, string ktxt5)

SpotWeldErrorAcknowledge

This function is a modified TPReadFK which can be aborted by the SpotWare ke
The parameters are consistent with the standard TPReadFK. When this routine
used for teach pendant dialogs, the SpotWare is hung up until released from the T
function is used by sw_error_recover in the module SWUSRC.

Return value SW_OK: normal execution, the result of the pushing a function key
resides in input_key.

Return value SW_CANCEL: the spot weld process was aborted. Return from the
calling user routine.
14-SWTOOL-4 RAPID Reference Manual

GlueWare

CONTENTS
ggundata Gluing gun data

GlueC Gluing with circular motion

GlueL Gluing with linear motion

System Module GLUSER
RAPID Reference Manual 15-1

GlueWare

15-2 RAPID Reference Manual

GlueWare ggundata

ntrol

puts

= 0,
ggundata Gluing gun data

Ggundata is used to define gluing gun specific data, which is then to be used to co
the gun in an optimal way during the gluing process.

Note that the TCP and weight of the gluing gun are defined in tooldata.

Description

Ggundata is used in glue instructions and has the following structure:

- Which gun is to be used (1 or 2).

- Time for preopening and preclosing the gun.

- Type of flow1 and flow2.

- Times for presetting of flow1 and flow2 on.

- Times for presetting flow1 and flow2 changes.

- Times for presetting of flow1 and flow2 off.

- Times for lag in glue gun for speed dips

- Value for the speed, at which the logical maximum value for the analog out
shall be set.

Components

ggun_no (number of gun to use) Data type: num

Number to define if this ggundata is for gun 1 or gun 2.

gl_on_time (preopen time for the gun) Data type: num

Time in s needed for the gun to open.

gl_off_time (preclose time for the gun) Data type: num

Time in s needed for the gun to close.

fl1_type (type of flow1) Data type: num

Type of flow1 signal, set to none, fixed or speed proportional, where none
fixed = 1 and speed proportional = 2.

fl1_on_time (preset on time flow1) Data type: num

Time in s needed to set up the flow1 in the gun when the instruction is
programmed with the \On argument.
RAPID Reference Manual 15-ggundata-1

ggundata GlueWare

e

 gun.
lue

 0,

e

un.
lue
fl1_time (preset change time flow1)Data type: num

Time in s needed to set up the flow1 in the gun when the instruction is
programmed without the \On and \Off argument (i.e. time needed to change th
flow from one specific value to another).

fl1_off_time (preset off time flow1) Data type: num

Time in s needed to reset the flow1 in the gun when the instruction is
programmed with the \Off argument.

fl1_delay (lag delay flow1) Data type: num

Time in s to compensate for the lag in the gluegun for TCP speed dips.

fl1_refspeed (glue reference speed) Data type: num

Glue reference speed in mm/s. Normally the max. used glue speed for this
Used in calculation of the flow1 value for speed proportional signals. This va
must be > 0 also when flow type=fixed.

fl2_type (type of flow2) Data type: num

Type of flow2 signal, set to none, fixed or speed proportional, where none =
fixed = 1 and speed proportional = 2.

fl2_on_time (preset on time flow2) Data type: num

Time in s needed to set up the flow2 in the gun when the instruction is
programmed with the \On argument.

fl2_time (preset change time flow2)Data type: num

Time in s needed to set up the flow2 in the gun when the instruction is
programmed without the \On and \Off argument (i.e. time needed to change th
flow from one specific value to another).

fl2_off_time (preset off time flow2) Data type: num

Time in s needed to reset the flow2 in the gun when the instruction is
programmed with the \Off argument.

fl2_delay (lag delay flow2) Data type: num

Time in s to compensate for the lag in the gluegun for TCP speed dips.

fl2_refspeed (glue reference speed) Data type: num

Glue reference speed in mm/s. Normally the tax. used glue speed for this g
Used in calculation of the flow2 value for speed proportional signals. This va
must be > 0 also when flow type=fixed.
15-ggundata-2 RAPID Reference Manual

GlueWare ggundata

ll

onds.

he
Limitations

Max. number of guns: 2

Max. real lag compensation (fl1_delay and fl2_delay) is normally: 40 - 60ms

If the system parameter (EventPresetTime) is changed, the compensation for lag wi
increase to a corresponding degree.

The values for the different times within the dataset must be between 0 to 1 sec

The value for the reference speed has to be > 0.

Predefined data

The predefined data ggun1 defines the use of gun no 1, a flow1 and flow2 of type 2,
i.e. proportional flow values are used, all belonging times are set to zero and the
reference speed is 1000 mm/s for each flow.1

PERS ggun1 := [1,0,0,2,0,1,0,0,0,1000,2,0,1,0,0,0,1000];

Structure

< dataobject of ggundata>
<ggun_no of num>
<gl_on_time of num>
<gl_off_time of num>
<fl1_type of num>
<fl1_on_time of num>
<fl1_time of num>
<fl1_off_time of num>
<fl1_delay of num>
<fl1_refspeed of num>
<fl2_type of num>
<fl2_on_time of num>
<fl2_time of num>
<fl2_off_time of num>
<fl2_delay of num>
<fl2_refspeed of num>

1. The preset on time for flows 1 and 2 is set to 0.1s. (The flow signals will normally be activated before t
gun is opened).
RAPID Reference Manual 15-ggundata-3

ggundata GlueWare
Related information

Described in:

Glue instruction Instructions - GlueL / GlueC
15-ggundata-4 RAPID Reference Manual

GlueWare GlueC

ted

 to

 are

n are
GlueC Gluing with circular motion

GlueC (GlueCircular) is used in gluing to control the motion, gun opening and the
gluing process. GlueC moves the TCP on a circular path to the end position.

Example 1

GlueL \On, p1, v250, ggun1 \F1:=100 \F2:=80, z30, tool7;
GlueC p2, p3, v250, ggun1 \F1:=90 \F2:=70, z30, tool7;
GlueL \Off, p4, v250, ggun1, z30, tool7;

1. The TCP for tool7 is moved on a linear path to the position p1 with the speed
given in v250. Due to the \On argument the gun opens and the glue flow is star
according to the data given in ggundata ggun1 in advance on its way to p1. The
glue flow is started with the percentage values given by the \F1:=100 and
\F2:=80 parameters.

2. The TCP is then moved from p1 towards p3 with the flow values given by the
preceding glue instruction. Before p3 is reached, the flow values are changed
90% and 70% respectively. The time when that is performed is specified in
ggun1.

3. The TCP is then moved from p3 towards p4 with the flow values given by the
preceding glue instruction. Due to the \Off argument the outputs will be reset
according to the times given in ggun1 before p3 is reached.

Figure 1 Glue example 1

S1: Flow1=100, Flow2=80, i.e. the glue values given by the first instruction
active.
S2: Flow1=90, Flow2=70, i.e. the glue values given by the second instructio
active.

xxxxxx

GlueL\On

GlueC

Direction of movement

MoveJ

GlueL

Movement without gluing
Pre-actions
Gluing with pre-actions at

 xxxxxxxx

p1

p3

p2
S1

S2

Pre-actions

p4

end of gluing
RAPID Reference Manual 15-GlueC-1

GlueC GlueWare

see

ion,
.

the
g to

ent
struc-
ve

 is

r the

 the
be
d too
t is
ith
Arguments

GlueC [\On|]\[Off] [\Conc] CirPoint ToPoint Speed Gluegun [\F1]
[\F2] [\D] Zone Tool [\WObj]

[\On] Data type: switch

The argument \On is used in the first Glue instruction to start the glue process (
Figure 1).

The argument may only be used in the first glue instruction to perform the
necessary gun opening and setting of the flow in advance. Executing two
consecutive instructions with \On argument will result in an error message.

As the instruction cannot contain the arguments \On and \Off together, the gluing
path must have at least 2 instructions, one containing the \On and one containing
the \Off argument.

The pre-actions, which are performed on the path to the programmed posit
are setting of the gun opening output and setting of the analog glue outputs

[\Off] Data type: switch

The argument \Off is used in the last gluing instruction to terminate the gluing
when the programmed position is reached. On the way to the end position
output for opening the gun as well as the flow outputs will be reset accordin
the given time within the specified ggundata.

So it is not possible to terminate gluing without using the \Off argument during
movements.

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed while the robot is moving. This argum
is used in the same situations as corresponding argument in other Move in
tions but for gluing it is also useful to permit higher speeds when consecuti
glue instructions are close to each other.

Using the argument \Conc, the number of movement instructions in succession
limited to 5. In a program section that includes StorePath-RestoPath, movement
instructions with the argument \Conc are not permitted.

If this argument is omitted, the subsequent instruction is only executed afte
robot has reached the specified zone.

CirPoint Data type: robtarget

The circle point of the robot. The circle point is a point on the circle between
start point and the destination point. To obtain the best accuracy, it should
placed about halfway between the start and destination points. If it is place
close to the start or end point, the robot may give a warning. The circle poin
defined as a named position or stored directly in the instruction (if marked w
15-GlueC-2 RAPID Reference Manual

GlueWare GlueC

amed
ct-

 for the

 use.

t of

t of

g
ition.

 corner

ved
hen
an * in the instruction).

ToPoint Data type: robtarget

The destination point of the robot and the external axes. It is defined as a n
position or stored directly in the instruction (if marked with an * in the instru
ion).

Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the tool reorientation and external axes.

GlueGun Data type: ggundata

Gun specific data, e.g. the reaction time for setting a flow etc., for the gun in

[\F1] (Flow1) Data type: num

The argument \F1 gives a value in percent to adjust the flow1 for the next par
the path. If no value is programmed the same value as in previous glue
instruction is used. If no value is programmed in a glue instruction with \On
argument the value 0 is used.

[\F2] (Flow2) Data type: num

The argument \F2 gives a value in percent to adjust the flow2 for the next par
the path. If no value is programmed the same value as in previous glue
instruction is used. If no value is programmed in a glue instruction with \On
argument the value 0 is used.

[\D] (Distance) Data type: num

The optional argument \D gives the possibility to perform all pre-actions durin
the instruction the given distance (mm) in advance of the programmed pos

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point mo
to the specified destination position, and should be the position of the tip w
the gun is open.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the
instruction is related.
RAPID Reference Manual 15-GlueC-3

GlueC GlueWare

d
ternal

re the

re the

inues

nd an
ns in
ns.
This argument can be omitted, and if it is, the position is related to the worl
coordinate system. If, on the other hand, a stationary TCP or coordinated ex
axes are used, this argument must be specified in order to perform a linear
movement relative to the work object.

Customizing

The GlueWare package provides opportunities for the user to customize the GlueC
instruction:

- by user defined data which affects the internal behaviour in GlueC. (See Prede-
fined Data and Programs - System Module GLUSER).

- by changing the I/O configuration. (See System Parameters - Gluing).

However, the main subject of this GlueC instruction description is the default setup.

Program execution

Internal sequence in a GlueC instruction:

- The gun starts to move towards the position.

- If the argument \On is used the gun opening output DO_Ggun1 or DO_Ggun2
is set at the specified time before the position is reached. If the argument\D is
used the output is set at the specified distance plus the specified times befo
position is reached.

- The values for flow1 and flow2 are set at the analog outputs AO_G1Flow1 and
AO_G1Flow2, and AO_G2Flow1 and AO_G2Flow2 respectively at the
specified time before the position is reached. If the argument \D is used the
outputs are set at the specified distance plus the specified times befo
position is reached.

- When the programmed position is reached, the program execution cont
with the next instruction.

Calculation of the glue flow values

See corresponding description of GlueL

Program stop and restart

Stop during the glue process

If a stop occurs when the glue process is active, the gluing outputs are cleared a
error message is displayed. When the restart is ordered, the remaining instructio
the current set of glue instructions are performed as normal positioning instructio
The gluing is restarted with the next glue instruction with an \On argument.
15-GlueC-4 RAPID Reference Manual

GlueWare GlueC

started

pear.

ctions
Instruction by instruction execution

Forwards

The gun is closed and motion without gluing is done.

Backwards

The gun is closed and the motion is performed backwards without gluing.

Simulated gluing

Activated by setting the variable gl_sim_glue to TRUE. This will inhibit the gun
opening and the flow signals. (See Predefined Data and Programs - System Module
GLUSER)

Limitations

It is not possible to restart the current glue sequence after a stop. The gluing is re
with the next glue instruction with an \On argument.

The max. gluing speed is dependent on the distance between the programmed
positions. If the speed programmed is too high, the error message 50082 will ap
Avoid this error message by:

- changing the positions so that they are not so close to each other

- using the argument \Conc in the gluing instructions

- decreasing the speed.

Error handling

Error situations

The following error situations are handled:

- Instruction argument error.

- Wrong ggundata values.

- Start without \On argument.

- Start with two instructions with \On argument.

- End with \Off argument without having started with \On argument.

- Stop during execution of glue instructions.

The faulty instruction or data must be changed and the current set of glue instru
RAPID Reference Manual 15-GlueC-5

GlueC GlueWare

l
15-GlueC-6 RAPID Reference Manua

must be restarted from the beginning.

Syntax

GlueC
[[‘\’On]|[‘\’Off]
[’\’ Conc]’,’]
[CirPoint‘:=’]<expression (IN) of robtarget>‘,’
[ToPoint‘:=’]<expression (IN) of robtarget>‘,’
[Speed‘:=’]<expression (IN) of speeddata>’,’
[Gluegun‘:=’]<persistent (PERS) of ggundata>

[’\’F1’:=’<expression (IN) of num>]
[’\’F2’:=’<expression (IN) of num>]
[’\’D’:=’<expression (IN) of num>]’,’

[Zone‘:=’]<expression (IN) of zonedata>’,’
[Tool‘:=’]<persistent (PERS) of tooldata>
[’\’WObj’:=’<persistent (PERS) of wobjdata>]’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data types - speeddata

Definition of zone data Data types - zonedata

Definition of tool Data types - tooldata

Definition of work objects Data types - wobjdata

Definition of gluegun data Data types - ggundata

Overview Gluing RAPID Summary - GlueWare

Customizing tools Predefined data and programs -
System Module GLUSER

I/O configuration System parameters - GlueWare

Motion in general Motion and I/O Principles

GlueWare GlueL

g

ted

 to

 are

n are
GlueL Gluing with linear motion

GlueL (GlueLinear) is used in gluing to control the motion, gun opening and the gluin
process. GlueL moves the TCP linearly to the end position.

Example 1

GlueL \On, p1, v250, ggun1 \F1:=100 \F2:=80, z30, tool7;
GlueL p2, v250, ggun1 \F1:=90 \F2:=70, z30, tool7;
GlueL \Off, p3, v250, ggun1, z30, tool7;

1. The TCP for tool7 is moved on a linear path to the position p1 with the speed
given in v250. Due to the \On argument the gun opens and the glue flow is star
according to the data given in ggundata ggun1 in advance on its way to p1. The
glue flow is started with the percentage values given by the \F1:=100 and
\F2:=80 parameters.

2. The TCP then is moved from p1 towards p2 with the flow values given by the
preceding glue instruction. Before p2 is reached, the flow values are changed
90% and 70% respectively. The time when that is performed is specified in
ggun1.

3. The TCP then is moved from p2 towards p3 with the flow values given by the
preceding glue instruction. Due to the \Off argument the outputs will be reset
according to the times given in ggun1 before p3 is reached.

Figure 1 Glue example 1

S1: Flow1=100, Flow2=80, i.e. the glue values given by the first instruction
active.
S2: Flow1=90, Flow2=70, i.e. the glue values given by the second instructio
active.

xxxxxx

GlueL\On

GlueL\Off

Direction of movement

MoveJ

MoveX

Movement without gluing
Pre-actions
Gluing and pre-action at

 xxxxxxxx

p1

p3

p2

GlueL

S1 S2Pre-actions

end of gluing
RAPID Reference Manual 15-GlueL-1

GlueL GlueWare

see

ion,
.

the
g to

ent
struc-
ve

 is

r the

amed
ct-
Arguments

GlueL [\On]|[\Off] [\Conc] ToPoint Speed GlueGun [\F1] [\F2] [\D]
Zone Tool [\WObj]

[\On] Data type: switch

The argument \On is used in the first Glue instruction to start the glue process (
Figure 1).

The argument may only be used in the first glue instruction to perform the
necessary gun opening and setting of the flow in advance. Executing two
consecutive instructions with \On argument will result in an error message.

As the instruction cannot contain the arguments \On and \Off together, the gluing
path must have at least 2 instructions, one containing the \On and one containing
the \Off argument.

The pre-actions, which are performed on the path to the programmed posit
are setting of the gun opening output and setting of the analog glue outputs

[\Off] Data type: switch

The argument \Off is used in the last gluing instruction to terminate the gluing
when the programmed position is reached. On the way to the end position
output for opening the gun as well as the flow outputs will be reset accordin
the given time within the specified ggundata.

So it is not possible to terminate gluing without using the \Off argument during
movements.

[\Conc] (Concurrent) Data type: switch

Subsequent instructions are executed while the robot is moving. This argum
is used in the same situations as corresponding argument in other Move in
tions but for gluing it is also useful to permit higher speeds when consecuti
glue instructions are close to each other.

Using the argument \Conc, the number of movement instructions in succession
limited to 5. In a program section that includes StorePath-RestoPath, movement
instructions with the argument \Conc are not permitted.

If this argument is omitted, the subsequent instruction is only executed afte
robot has reached the specified zone.

ToPoint Data type: robtarget

The destination point of the robot and the external axes. It is defined as a n
position or stored directly in the instruction (if marked with an * in the instru
ion).
15-GlueL-2 RAPID Reference Manual

GlueWare GlueL

 for the

 use

t of

t of

n

 corner

ved
hen

ld

 a
Speed Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity
tool centre point, the tool reorientation and external axes.

GlueGun Data type: ggundata

Gun specific data, e.g. the reaction time for setting a flow etc., for the gun in
(see Datatypes - Ggundata).

[\F1] (Flow1) Data type: num

The argument \F1 gives a value in percent to adjust the flow1 for the next par
the path. If no value is programmed the same value as in previous glue
instruction is used. If no value is programmed in a glue instruction with \On
argument the value 0 is used.

[\F2] (Flow2) Data type: num

The argument \F2 gives a value in percent to adjust the flow2 for the next par
the path. If no value is programmed the same value as in previous glue
instruction is used. If no value is programmed in a glue instruction with \On
argument the value 0 is used.

[\D] (Distance) Data type: num

The optional argument \D gives the possibility to perform all pre-actions give
the distance (mm) in advance of the programmed position.

Zone Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated
path.

Tool Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point mo
to the specified destination position, and should be the position of the tip w
the gun is open.

[\WObj] (Work Object) Data type: wobjdata

The work object (coordinate system) to which the robot position in the
instruction is related.

This argument can be omitted, and if it is, the position is related to the wor
coordinate system. If, on the other hand, a stationary TCP or coordinated
external axes are used, this argument must be specified in order to perform
linear movement relative to the work object.
RAPID Reference Manual 15-GlueL-3

GlueL GlueWare

re the

re the

inues
Customizing

The GlueWare package provides opportunities for the user to customize the GlueL
instruction:

- by user defined data which affects the internal behaviour in GlueL. (See Prede-
fined Data and Programs - System Module GLUSER).

- by changing the I/O configuration. (See System Parameters - Gluing).

However, the main subject of this GlueL instruction description is the default setup.

Program execution

Internal sequence in a GlueL instruction:

- The gun starts to move towards the position.

- If the argument \On is used the gun opening output DO_Ggun1 or DO_Ggun2
is set at the specified time before the position is reached. If the argument\D is
used the output is set at the specified distance plus the specified times befo
position is reached.

- The values for flow1 and flow2 are set at the analog outputs AO_G1Flow1 and
AO_G1Flow2, and AO_G2Flow1 and AO_G2Flow2 respectively at the
specified time before the position is reached. If the argument \D is used the
outputs are set at the specified distance plus the specified times befo
position is reached.

- When the programmed position is reached, the program execution cont
with the next instruction.
15-GlueL-4 RAPID Reference Manual

GlueWare GlueL

l

nd

max.

 in
data.
Calculation of the glue flow values

The following data is used when the logical flow1 value is calculated (The logica
flow2 is calculated in a similar way):

F1 instruction parameter (0-100)

gl_fl1_ovr global override (Default: 100). (See Predefined Data and
Programs - System Module GLUSER)

gl_fl1_ref logical max. value (Default: 1000). (See Predefined Data a
Programs - System Module GLUSER)

current speed current robot speed (mm/s).

fl1_refspeed glue reference speed (mm/s). (See Data Types- ggundata)

Calculation of logical flow1 when fl1_type = 1 (fixed):

logical flow1 = F1 * gl_fl1_ovr * gl_fl1_ref/ 10000

Calculation of logical flow1 when fl1_type = 2 (proportional):

logical flow1 = (F1 * gl_fl1_ovr * gl_fl1_ref/ 10000) * current speed/fl1_refspeed

This means: With the default values above and with the default setup for logical
and min. for the analog glue outputs (See System Parameters - GlueWare) we get
following result:

If flow1_type = 1 (fixed): Physical max. value is activated if F1 = 100 (%) in the
instruction.

If flow1_type = 2 (proportional): Physical max. value is activated if F1 = 100 (%)
the instruction and the actual speed is the same as fl1_refspeed in current ggun
RAPID Reference Manual 15-GlueL-5

GlueL GlueWare

e=1
 10
is

 and
s the

ced
 how
tween

nd an
ns in
ns.
15-GlueL-6 RAPID Reference Manual

Example 2

GlueL \On, p1, v250, ggun1 \F1:=100 \F2:=80 \D:=50, z30, tool7;
GlueL p2, v250, ggun1 \F1:=90 \F2:=70 \D:=50, z30, tool7;
GlueL \Off, p3, v250, ggun1 \D:=50, z30, tool7;

Figure 2 Glue example 2

In this example everything is the same as in example 1 except that all glue
specific actions are executed an additional distance (50 mm) before the
programmed positions are reached.

Assume that the logical maximum value for the signals is 10. When fl1_typ
(fixed) and gl_fl1_our=100 (normal value for glue flow override), the values
on stretch S1 and 9 on stretch S2 are obtained for flow 1. When gl_fl1.our
changed to 50, the values 500 and 450 respectively will be obtained. When
fl2_type=2 (proportional) and gl_fl2_our=100, the values 800 on stretch S1
700 on stretch S2 are obtained for flow 2, if the current speed is the same a
reference speed (fl2_refspeed).

When the speed is reduced, e.g. in a corner path , the flow will also be redu
correspondingly. The physical values of the signals are also determined by
the analog signals are configured in the system parameters (relationship be
physical and logical values).

Program stop and restart

Stop during the glue process

If a stop occurs when the glue process is active, the gluing outputs are cleared a
error message is displayed. When the restart is ordered, the remaining instructio
the current set of glue instructions are performed as normal positioning instructio

End of gluing is performed
50 mm before the position is
reached.

xxxxxx

GlueL\On

GlueL\Off

Direction of movement

MoveJ

MoveX

Movement without gluing
Pre-actions
Gluing and pre-actions at

 xxxxxxxx p1
p3p2

GlueL

S1 S2

Pre-actions

Start of gluing is performed
50 mm before the position is
reached.

end of gluing

GlueWare GlueL

started

pear.
The gluing is restarted with the next glue instruction with an \On argument.

Instruction by instruction execution

Forwards

The gun is closed and motion without gluing is done.

Backwards

The gun is closed and the motion is performed backwards without gluing.

Simulated gluing

Activated by setting the variable gl_sim_glue to TRUE. This will inhibit the gun
opening and the flow signals. (See Predefined Data and Programs - System Module
GLUSER)

Limitations

It is not possible to restart the current glue sequence after a stop. The gluing is re
with the next glue instruction with an \On argument.

The max. gluing speed is dependent on the distance between the programmed
positions. If the speed is programmed too high, the error message 50082 will ap
Avoid this error message by:

- changing the positions so they are not so close to each other

- using the argument \Conc in the gluing instructions

- decreasing the speed.

Error handling

Error situations

The following error situations are handled:

- Instruction argument error.

- Wrong ggundata values.

- Start without \On argument.

- Start with two instructions with \On argument.
RAPID Reference Manual 15-GlueL-7

GlueL GlueWare

1

ctions
- End with \Off argument without having started with \On argument.

- Stop during execution of glue instructions.

The faulty instruction or data must be changed and the current set of glue instru
must be restarted from the beginning.

Syntax

GlueL
[[‘\’On]|[‘\’Off]
[’\’ Conc]’,’]
[ToPoint‘:=’]<expression (IN) of robtarget>‘,’
[Speed‘:=’]<expression (IN) of speeddata>’,’
[Gluegun‘:=’]<persistent (PERS) of ggundata>

[’\’F1’:=’<expression (IN) of num>]
[’\’F2’:=’<expression (IN) of num>]
[’\’D’:=’<expression (IN) of num >]’,’

[Zone‘:=’]<expression (IN) of zonedata>’,’
[Tool‘:=’]<persistent (PERS) of tooldata>
[’\’WObj’:=’<persistent (PERS) of wobjdata>]’;’

Related information

Described in:

Other positioning instructions RAPID Summary - Motion

Definition of velocity Data types - speeddata

Definition of zone data Data types - zonedata

Definition of tool Data types - tooldata

Definition of work objects Data types - wobjdata

Definition of gluegun data Data types - ggundata

Overview Gluing RAPID Summary - GlueWare

Customizing tools Predefined data and programs -
System Module GLUSER

I/O configuration System parameters - GlueWare

Motion in general Motion and I/O Principles
5-GlueL-8 RAPID Reference Manual

GlueWare GLUSER

the

ion

ion

 have
Ware.
System Module GLUSER

The system module GLUSER contains data and routines aimed to customising
behaviour of the GlueWare application.

The names are predefined and used internally when a GlueL or GlueC instruction is
used. The names must therefore not be changed.

Contents

Data

The following global data are predefined:

Name Declaration Description

gl_fl1_ovr CONST num gl_fl1_ovr := 100 Global override for flow1 signal
Range: 0-200%

gl_fl2_ovr CONST num gl_fl2_ovr := 100 Global override for flow2 signal
Range: 0-200%

gl_fl1_ref CONST num gl_fl1_ref := 1000 Reference value used in calculat
of glue flow1. Normally the same
value as Logical Max for the analog
output signal for flow 1.

gl_fl2_ref CONST num gl_fl2_ref := 1000 Reference value used in calculat
of glue flow2. Normally the same
value as Logical Max for the analog
output signal for flow 2.

gl_sim_glueCONST bool gl_sim_glue := FALSEFlag to simulate the gluing. If
TRUE: No glue signals are
activated.

ggun1 PERS ggundata ggun1 := Predefined ggundata with
[1,0,0,2,0,0,0,0,1000,2,0,0,0,0,1000] default values.

Routines

There are some predefined routines installed with the application. These routines
no default functionality, but can be changed to customise the behaviour of Glue

routine gl_err_actions

This routine is executed when an error detected by the GlueWare occurs.
RAPID Reference Manual 15-GLUSER-1

GLUSER GlueWare

1

n the

ed.

med.

re is
routine gl_preglue_actions1

This routine is executed when the motion to a Glue\On instruction is started (whe
signal DO_GL_Active is set to 1).

routine gl_postglue_actions1

This routine is executed when the glue phase is ended (when the signal DO_GL_Active
is set to 0).

routine gl_power_on

This routine is executed each time the system is switched on.

routine gl_start

The routine is executed each time the execution of a program is started from the
beginning. (From Main)

routine gl_restart

The routine is executed each time the execution of a stopped program is continu

routine gl_stop

This routine is executed when a normal stop during program execution is perfor

routine gl_qstop

This routine is executed when an emergency stop during program execution is
performed.

1. The routines gl_preglue_actions and gl_postglue_actions are executed during the motion phase. If the
too much time-consuming code in these routines, the maximum possible glue speed will be reduced.
5-GLUSER-2 RAPID Reference Manual

Quick Reference

CONTENTS
Page

3

3

3

4

4

5

5

6

7

7

8

9

0

1

2

2

3

3

4

5

5

6

6

7

7

8

8

8

9

0

1 The Jogging Window ..

1.1 Window: Jogging..

1.1.1 Menu: Special...

2 The Inputs/Outputs Window ... 4

2.1 Window: Inputs/Outputs...

2.1.1 Menu: File ..

2.1.2 Menu: Edit..

2.1.3 Menu: View..

3 The Program Window .. 6

3.1 Moving between different parts of the program...

3.2 General menus ..

3.2.1 Menu: File ..

3.2.2 Menu: Edit..

3.2.3 Menu: View..

3.3 Window: Program Instr .. 1

3.3.1 Menu: IPL1 (shows different instruction pick lists) 10

3.3.2 Menu: IPL2 (shows different instruction pick lists) 10

3.4 Window: Program Routines ... 1

3.4.1 Menu: Routine.. 1

3.4.2 Menu: Special .. 1

3.5 Window: Program Data.. 1

3.5.1 Menu: Data... 1

3.5.2 Menu: Special .. 1

3.6 Window: Program Data Types ... 1

3.6.1 Menu: Types .. 1

3.7 Window: Program Test... 1

3.7.1 Menu: Test ... 1

3.8 Window: Program Modules.. 1

3.8.1 Menu: Module.. 1

4 The Production Window... 18

4.1 Window: Production... 1

4.1.1 Menu: File .. 1

4.1.2 Menu: Edit.. 1

4.1.3 Menu: View.. 1

5 The FileManager ...20

5.1 Window: FileManager.. 2
RAPID Reference Manual 18-1

Quick Reference

0

1

1

2

22

2

2

4

4

5

5

6

6

7

7

7

8

8

9

0

5.1.1 Menu: File .. 2

5.1.2 Menu: Edit.. 2

5.1.3 Menu: View.. 21

5.1.4 Menu: Options.. 2

6 The Service Window ... 2

6.1 General menus..

6.1.1 Menu: File .. 2

6.1.2 Menu: Edit.. 2

6.1.3 Menu: View.. 23

6.2 Window Service Log.. 2

6.2.1 Menu: Special .. 2

6.3 Window Service Calibration .. 2

6.3.1 Menu: Calib ... 2

6.4 Window Service Commutation .. 2

6.4.1 Menu: Com .. 2

7 The System Parameters.. 2

7.1 Window: System Parameters.. 2

7.1.1 Menu: File .. 2

7.1.2 Menu: Edit.. 2

7.1.3 Menu: Topics ... 2

8 Special ArcWare windows ... 29

8.1 Window: Program Test .. 2

8.1.1 Window: Program Run .. 3
18-2 RAPID Reference Manual

Quick Reference The Jogging Window

RAPID Reference Manual

1 The Jogging Window

1.1 Window: Jogging

1.1.1 Menu: Special

Command Used to:

Align Align the tool

Increments Specify the sizes of the user defined increments

Current

Motion

position
Current
motion
parameters

different
joystick

resulting from

deflections

Jogging

Unit: Robot
Motion: Linear

Coord: Base
Tool: tool0 ...
Wobj: wobj0 ...

Joystick lock: None
Incremental: No

World Base Tool Wobj

Robot pos:

x: 1234.5
y: -244.9
z: 12.8

Q1: 0.7071
Q2: 0.0000
Q3: 0.0000
Q4: -0.7071

x y z

Special

1 Align ...
2 Increments ...

The Inputs/Outputs Window Quick Reference

2 The Inputs/Outputs Window

2.1 Window: Inputs/Outputs

2.1.1 Menu: File

Command Used to:

Print print the current I/O list

Preferences make preferences in the Inputs/Outputs window

Value

1
0
0
1
1
1
13
0

Name of
Inputs/Outputs
All signals

File

I/O list

Edit View

0 1

4(64)
Name

di1
di2
grip1
grip2
grip3
grip4
progno
welderror

the I/O list Type

DI
DI
DO
DO
DO
DO
GO
DO

File

1 Print ...
2 Preferences ...
18-4 RAPID Reference Manual

Quick Reference The Inputs/Outputs Window
2.1.2 Menu: Edit

Command: Used to:

Goto go to a specific line in the list

Goto Top go to the first line in the list

Goto Bottom go to the last line in the list

2.1.3 Menu: View

Command: Used to view:

Most Common the most common list

All Signals all user signals

Digital In all digital inputs

Digital Out all digital outputs

Analog all analog signals

Groups all groups of digital signals

Safety all safety signals

Units all I/O units

1 Goto ...
Edit

3 Goto Bottom
2 Goto Top

View

1 Most Common
2 All Signals
3 Digital In
4 Digital Out
5 Analog
6 Groups
7 Safety
8 Units
RAPID Reference Manual

The Program Window Quick Reference
3 The Program Window

3.1 Moving between different parts of the program

Program data

Main

Program

routine routines
Sub-

System modules

View: Main Routine

View: Modules

View: Instructions

View: Routines

Current routine View: Routine Data

View: Data

Program memory

Data

Instructions

Error Handler

View: Error Handler
18-6 RAPID Reference Manual

Quick Reference The Program Window

s

e

3.2 General menus

3.2.1 Menu: File

Command: Used to:

Open read programs from mass storage

New create new programs

Save Program save programs on mass storage

Save Program As save programs on mass storage with new name

Print print the program

Preferences make preferences in the Program window

Check Program check that the program is correct

Close Program erase the program from the program memory

Save Module save a module on mass storage

Save Module As save a module on mass storage with a new nam

1 Open ...
2 New ...
3 Save Program
4 Save Program As ...

5 Print ...
6 Preferences ...
7 Check Program
8 Close Program

9 Save Module
0 Save Module As ...

File

Only shown in
the module window
RAPID Reference Manual

The Program Window Quick Reference

1

nt)
3.2.2 Menu: Edit

Command Used to:

Undo perform an undo on the latest action possible to
undo in selected window

Cut cut selected lines to the clipboard buffer

Copy copy selected lines to the clipboard buffer

Paste paste the contents of the clipboard buffer into a
program

Goto Top go to the first line

Goto Bottom go to the last line

Mark select several lines

Change Selected change an instruction argument

Value show the current value (for the selected argume

ModPos modify a position

Search search for/replace a specific argument

Show/Hide IPL show/hide an instruction pick list

Undo “Latest action”
1 Cut
2 Copy
3 Paste
4 Goto Top
5 Goto Bottom
6 Mark
7 Change Selected
8 Value
9 ModPos
0 Search ...

Show/Hide IPL

Edit
8-8 RAPID Reference Manual

Quick Reference The Program Window
3.2.3 Menu: View

Command Used to view:

Instr. instructions for the current routine – Program
Instruction window –

Routines all routines – Program Routines window –

Data program data – Program Data window –

Data Types all data types – Program Data Types window –

Test the Program Test window

Modules all modules – Program Modules window –

Main Routine instructions for the main routine

Selected Routine instructions for the selected routine

Error Handler error handler of the current routine

1 Instr.”<latest routine>”
2 Routines
3 Data ”<latest type>”
4 Data Types
5 Test
6 Modules

7 Main Routine
8 Selected Routine

9 Error Handler

View
RAPID Reference Manual

The Program Window Quick Reference
18-10 RAPID Reference Manual

3.3 Window: Program Instr

3.3.1 Menu: IPL1 (shows different instruction pick lists)

3.3.2 Menu: IPL2 (shows different instruction pick lists)

Go to the window Program Test

!Init data
counter:=0;
!Go to start position
MoveL pstart,v500,fine,gripper;
WaitUntil di1=1;
!Start
Set startsignal;
open_gripper;
MoveJ *,v500,z10,gripper;

Program Instr

File

Instructions

Edit View IPL1 IPL2

Copy Paste (Modpos)OptArg Test

WELDPIPE/main

1(26)

1 Common
2 Prog. Flow
3 Various
4 Motion Settings
5 Motion&Process
6 IO
7 Communicate
8 Interrupts
9 Error Recovery
0 System&Time

Mathematics

IPL1

1 Most Common 1
2 Most Common 2
3 Most Common 3

4 Motion Set Adv
5 Motion Adv
6 Ext. Computer
7 Multi Tasking
8 RAPID Support
9 Service

IPL2

Quick Reference The Program Window
3.4 Window: Program Routines

Program Routines
Routines In Module

File

Type

num

Routines

Edit View Routine Special

New... Decl ... Dupl ...

Name

cleangun
errorout1
givedist
main
weldseq1
weldseq2

WELDPIPE/

Return value
of a function

4(6)

Create a new routine

Change the declaration

Duplicate
View routine data

Data > Test
RAPID Reference Manual

The Program Window Quick Reference

ed
18-12 RAPID Reference Manual

3.4.1 Menu: Routine

Command: Used to:

Routine Data create a new routine

Instructions view the instructions of the selected routine

Error Handler view the error handler of the selected routine

Backward Handler view the backward handler of the selected
routine

In Module view only the routines in the current module

In System view all routines in all modules

Add/Remove Error Handler add/remove an error handler to the selected
routine

Add/Remove Backward Handler add/remove a backward handler to the select
routine (see RAPID Reference Manual -
Programming off-line)

3.4.2 Menu: Special

Command: Used to:

Mirror mirror a routine or a module

1 Routine Data

2 Instructions
(Error Handler)
(Backward Handler)

5 In Module
6 In System

7 Add Error Handler
8 Add Backward Handler

Routine

Mirror ...

Special

Quick Reference The Program Window

ta
3.5 Window: Program Data

3.5.1 Menu: Data

Command: Used to:

Value read or change the current value of selected da

Types call up the list with all data types

In Module call up only the data in the current module

In System create new data

In Routine call up all routine data

New Array declare a new array data

Test

Program Data

tooldata In Module

File

Data type

Data

Edit View Data Special

New... Decl ... Dupl ... Types

Name

gripper
gun1
gun2

WELDPIPE/

3(3)

View all data types
Create new data

Change the declaration
Duplicate Go to the window Program Test

1 Value
2 Types

3 In Module
4 In System
5 In Routine “routine name”

6 New Array

Data
RAPID Reference Manual

The Program Window Quick Reference

1

nt
3.5.2 Menu: Special

Command: Used to:

Define Coord define a tool, work object or program displaceme

Go to selected position go to a selected position

1 Define Coord ...

2 Go to selected position

Special
8-14 RAPID Reference Manual

Quick Reference The Program Window
3.6 Window: Program Data Types

3.6.1 Menu: Types

Command: Used to:

Data call up all data of a selected type

Used Types call up only those data types that are used

All Types call up all data types

All data
bool
num
robtarget
tooldata
wobjdata

Program Data Types

File

Data types

Edit View Types

WELDPIPE/

5(6)

All Data

1 Data

2 Used Types
3 All Types

Types
RAPID Reference Manual

The Program Window Quick Reference

1

e

3.7 Window: Program Test

3.7.1 Menu: Test

Command: Used to:

Move Cursor to PP start from the latest stopped instruction

Move PP to Cursor start from the selected instruction

Move PP to Main start from the main routine

Move PP to Routine start from any routine

Go to selected position go to a selected position

Simulate allow program execution in MOTORS OFF mod

!Init data
counter:=0;
!Go to start position
MoveL pstart,v100,FINE,gripper;
WaitUntil DInput(ready)=1;
!Start
Set startsignal;
open_gripper;

Program Test
Speed:=
Running:=

File

Instructions

Edit View Special

Start FWD (Modpos)BWD Instr

WELDPIPE/main
50%
Continuous Test running

Go to the Program Instr window

parameters
Program pointer

1(26)

1 Move Cursor to PP
2 Move PP to Cursor
3 Move PP to Main
4 Move PP to Routine

5 Go to selected position ...

6 Simulate ...

Special
8-16 RAPID Reference Manual

Quick Reference The Program Window
3.8 Window: Program Modules

3.8.1 Menu: Module

Command: Used to:

Data view program data

Module List view the complete module in a list

Type

Program Module
Program Module
System Module
System Module

Program Modules

File

Modules

Edit View Module

New... Decl ... Data

Name

Cadpositions
Mainmodule
System1
System2

2(4)

Create a new module View program data
Change the declaration

WELDPIPE

1 Data
2 Module List ...

Module
RAPID Reference Manual

The Production Window Quick Reference

1

4 The Production Window

4.1 Window: Production

4.1.1 Menu: File

Command Used to:

Load Program load a program

4.1.2 Menu: Edit

Command Used to:

Goto go to a specific instruction

Start from Beginning go to the first instruction in the program

Program list

Program pointer

Speed:= 75 %

Production Info

File Edit View

Start FWD BWD

Status : Stopped

Routine : main :

CAR_LIN1

Running mode:= Continuous

MoveL p1, v500, z20, tool1;
MoveL p2, v500, z20, tool1;
MoveL p3, v500, z20, tool1;
Set do1;
Set do2;

2(39)

 File

1 Load Program ...

1 Goto ...
2 Start from Beginning

Edit
8-18 RAPID Reference Manual

Quick Reference The Production Window
4.1.3 Menu: View

Command Used to:

Info display the program in the lower part of the
window

Position tune a position

1 Info ...

View

2 Position
RAPID Reference Manual 18-19

The FileManager Quick Reference

s
5 The FileManager

5.1 Window: FileManager

5.1.1 Menu: File

Command: Used to:

New Directory create a new directory

Rename change the name of a selected file

Copy copy a selected file or directory to another mass
memory or directory

Move move a selected file or directory to another mas
memory or directory

Print File print a file on a printer

Date

..
1993-05-28
1993-05-09
1993-05-01
1993-05-01
1993-05-01
1993-06-01

FileManager
flp1:/WELDINGS/TEST

File Edit View Options

Up

Name

..
PROC1
PROC2
PROCFUNC
WDATA
WTOOLS
RESULTS

Type

Go Up One Level
Program
Program
Program Module
Program Module
Directory
Directory

2(12)

Current unit

Files

Current directory

Latest change

File
1 New Directory ...
2 Rename ...
3 Copy ...
4 Move ...
5 Print File ...
18-20 RAPID Reference Manual

Quick Reference The FileManager
5.1.2 Menu: Edit

Command: Used to:

Goto go to a specific line in a list

Goto Top go to the first file in a list

Goto Bottom go to the last file in a list

5.1.3 Menu: View

Command: Used to view:

ram1disk: the files on the RAM disk

flp1: the files on the diskette

5.1.4 Menu: Options

Command: Used to:

Format format a diskette

Rapid Converters convert old program versions

Edit
1 Goto ...
2 Goto Top
3 Goto Bottom

1 [ram1disk:]
View

2 [flp1:] Disc#12

1 Format ...

Options

2 Rapid Converters ...
RAPID Reference Manual 18-21

The Service Window Quick Reference

y
6 The Service Window

6.1 General menus

6.1.1 Menu: File

Command Used to:

Save logs as save logs on a diskette or other mass memory

Save all logs as save all logs on a diskette or other mass memor

Backup perform a backup

Restore perform a restore

Restart restart the robot

6.1.2 Menu: Edit

Command Used to:

Goto go to a specific line in a list

Goto Top go to the first line in a list

Goto Bottom go to the last line in a list

Info view information about selected log messages

File

1 Save logs as ...

Restart ...

2 Save all logs as ...
3 Backup ...
4 Restore ...

1 Goto ...
Edit

3 Goto Bottom
4 Info ...

2 Goto Top
18-22 RAPID Reference Manual

Quick Reference The Service Window

es
6.1.3 Menu: View

Command Used to:

Log display the different logs

Date & Time set the date and time

Calibration calibrate the robot

Commutation commutate the motors

BaseFrame calibrate the base coordinate system

Two Axes Definition calibrate the base coordinate system for a two ax
manipulator

System Info display system information

View

1 Log

2 Date & Time

3 Calibration

4 Commutation

5 BaseFrame

6 Two Axes Definition

7 System Info
RAPID Reference Manual

The Service Window Quick Reference

he

 is

g

6.2 Window Service Log

6.2.1 Menu: Special

Command: Used to:

Erase Log erase contents in selected log

Erase All Logs erase contents in all logs

Update log on Event update the log directly when a message is sent – t
command is changed to “Update log on Com-
mand” when selected, which means that the log
not updated until the function key Update is
pressed

Latest

0810 20:30.32
0810 20:25.14

0810 20:30.32

0810 19:15.12
0809 12:30.00

Log list

Service Log

File

10
20
0
1
0
3
4
0

Edit View Special

Msg->

Name

Common
Operational status
System
Hardware
Program
Motion
Operator
Process

Messages
#

4(9)

Displays the messages in selected lo

No. of messages
Time of most recent
message

1 Erase Log
2 Erase All Logs

3 Update log on Event

Special
18-24 RAPID Reference Manual

Quick Reference The Service Window
6.3 Window Service Calibration

6.3.1 Menu: Calib

Command: Used to:

Rev.Counter Update update the counter

Calibrate calibrate using the measurement system

Status

Synchronized
Synchronized
Synchronized
Synchronized

Calibration

Service Calibration

File Edit View Calib

Unit

Robot
Manip1
Manip2
Trackm

1(4)

status

Calib

1 Rev.Counter Update ...
2 Calibrate ...
RAPID Reference Manual

The Service Window Quick Reference
6.4 Window Service Commutation

6.4.1 Menu: Com

Command: Used to:

Commutate commutate using the measurement
system

Unit

Robot
Manip1
Manip2
Trackm

Status

Commutated
Commutated
Commutated
Commutated

Status

Service Commutation

File Edit View Com

1(4)

Com

1 Commutate ...
18-26 RAPID Reference Manual

Quick Reference The System Parameters
7 The System Parameters

7.1 Window: System Parameters

7.1.1 Menu: File

Command: Used to:

Load Saved Parameters load parameters from mass storage

Add New Parameters add parameters from mass storage

Save All As save all parameters on mass storage

Save As save parameters on mass storage

Check Parameters check parameters before restart

Restart restart the robot

do1
DSQC232_1
DO
1
0.000000
0.000000
0.000000
0.000000

Signal Name
Unit Name
Signal Type
Signal Number
Logical Max
Physical Max
Logical Min
Physical Min

Parameter topic
Parameter type

Parameters

System Parameters
User signals
Parameters

File Edit Topics Types

Cancel OK

IO

Info
1(10)

1 Load Saved Parameters ...
2 Add New Parameters ...
3 Save All As ...
4 Save As ...
5 Check Parameters

Restart ...

File
RAPID Reference Manual 18-27

The System Parameters Quick Reference
7.1.2 Menu: Edit

Command: Used to:

Goto Top go to the first line in a list

Goto Bottom go to the last line in a list

Goto go to a specific line in a list

Show Change Log view information about the latest modifications
made

Change Pass Codes change pass codes

7.1.3 Menu: Topics

Command: Used to view:

Controller the parameter of the Controller topic

Communication the parameter of the Communication topic

IO Signals the parameters of the IO topic

Manipulator the parameters of the Manipulator topic

Arc Weld the parameters of the Arc Weld topic

Teach Pendant the parameters of the Teach Pendant topic

All Topics all topics

2 Goto Top
3 Goto Bottom

Edit

4 Show Change Log ...

3 Goto ...

5 Change Pass Codes ...

Topics

1 Controller
2 Communication
3 IO Signals
4 Manipulator
5 Arc Weld
6 Teach Pendant

All Topics
18-28 RAPID Reference Manual

Quick Reference The System Parameters
RAPID Reference Manual 18-29

Special ArcWare windows Quick Reference
8 Special ArcWare windows

8.1 Window: Production

Menu: Arcweld

Command Used to:

Manual wirefeed feed the wire forwards or backwards

Gas on/off activate/deactivate the gas manually

Select AW system choose arcwelding system

Increments change the tuning increments

>> !Init data
counter:=0;
!Go to start position
MoveL pstart,vfast,fine,weldgun1;
WaitUntil DInput(ready)=1;

Speed:= 100 %

Production Info

File Edit View Arcweld

Start FWD BWD

Status : Stopped

Routine : main
WELDPIPE

Running mode:= Continuous

1(26)
Blocked: Weave Track

1 Manual wirefeed ...
2 Gas on/off ...
3 Select AW system ...
4 Increments ...

Arcweld
18-30 RAPID Reference Manual

Quick Reference Special ArcWare windows
8.2 Window: Program Test

Menu: Arcweld

Command Used to:

Weld Tuning tune weld data

Weave Tuning tune weave data

Sensor communicate with seamtracker sensor

Blocking block certain parts of the process

Manual wirefeed feed the wire forwards or backwards

Gas on/off activate/deactivate the gas manually

Select AW system choose arcwelding system

Increments change the tuning increments

Instr

>> !Init data
counter:=0;
!Go to start position
MoveL pstart,vfast,fine,weldgun1;
WaitUntil DInput(ready)=1;

Program Test
Speed:
Running:=

Blocked:

File Edit View Test Arcweld

Start (Modpos)

WELDPIPE/main
100%
Continuous

Weave Track

1(26)

1 Weld Tuning ...
2 Weave Tuning ...
3 Sensor ...
4 Blocking ...
5 Manual wirefeed ...
6 Gas on/off ...
7 Select AW system ...
8 Increments ...

Arcweld
RAPID Reference Manual

Special ArcWare windows Quick Reference
8.3 Window when executing

Menu: Arcweld

Command: Used to:

Weld Tuning tune current weld data

Weave Tuning tune current weave data

Meas. values read measurement values

Program Run
Speed:
Running:=

Test Arcweld

Tuning

WELDPIPE
100%
Continuous

Blocked:
Welddata:

Weave Track
welddata1

weld_speed
weld_wirefeed
weld_voltage

Tuning

+ 5.5
- 0.15
+ 3.50

Present

105.5
2.30
33.50

mm/s
m/min
Volts

1(3)

Arcweld

1 Weld Tuning ...
2 Weave Tuning ...
3 Meas. values ...
18-32 RAPID Reference Manual

INDEX
A

Abs 9-Abs-1
absolute value 9-Abs-1
acceleration reduction 8-AccSet-1
AccSet 8-AccSet-1
ACos 9-ACos-1
ActUnit 8-ActUnit-1
Add 8-Add-1
aggregate 5-18
alias data type 5-18
analog output

set 8-SetAO-1
AND 5-27
AOutput 9-AOutput-1
arc welding 13-ArcC-1, 13-ArcL-1
ArcC 13-ArcC-1
ArcL 13-ArcL-1
arcus cosine 9-ACos-1
arcus sine 9-ASin-1
arcus tangent 9-ATan-1, 9-ATan2-1
ArgName 9-ArgName-1
argument

conditional 5-29
argument name 9-ArgName-1
arithmetic 8-:=-1
arithmetic expression 5-26
array 5-21, 5-22

get size 9-Dim-1
ASin 9-ASin-1
assigning a value to data 3-8
assignment 8-:=-1
ATan 9-ATan-1
ATan2 9-ATan2-1
axis configuration 6-33

B

backward execution 5-37
Backward Handler 11-5
backward handler 5-13, 5-37, 5-39
base coordinate system 6-3
bool 7-bool-1
Break 8-Break-1
ByteToStr 9-ByteToStr-1

C

C_MOTSET 7-System data-1
C_PROGDISP 7-System data-1
call 8-ProcCall-1
CallByVar 8-CallByVar-1
calling a subroutine 3-6
CDate 9-CDate-1
circular movement 6-15, 8-MoveC-1
CJointT 9-CJointT-1
Clear 8-Clear-1
ClkRead 9-ClkRead-1
ClkReset 8-ClkReset-1
ClkStart 8-ClkStart-1
ClkStop 8-ClkStop-1
clock 7-clock-1

read 9-ClkRead-1
reset 8-ClkReset-1
start 8-ClkStart-1
stop 8-ClkStop-1

Close 8-Close-1
comment 3-8, 5-5, 8-comment-1
common drive unit 8-ActUnit-1, 8-DeActU-

nit-1
communication 3-37
communication instructions 3-21
Compact IF 8-Compact IF-1
component of a record 5-18
concurrent execution 6-28
condition 8-IF-1
conditional argument 5-29
confdata 7-confdata-1
configuration check instructions 3-11
ConfJ 8-ConfJ-1
ConfL 8-ConfL-1
CONNECT 8-CONNECT-1
CONST 5-22
constant 5-20
coordinate system 6-3
coordinated external axes 6-7
corner path 6-16, 7--zonedata-1
CorrClear 8-CorClear-1
CorrCon 8-CorrCon-1
corrdescr 7-corrdescr-1
CorrDiscon 8-CorrDiscon-1
CorrRead 9-CorrRead-1
CorrWrite 8-CorrWrite-1
RAPID Reference Manual 20-1

2

,

-

Cos 9--Cos-1
countinuously movement 8-IndCMove-1
CPos 9-CPos-1
crater-filling 13-seamdata-7
CRobT 9-CRobT-1
cross connections 6-45
CTime 9-CTime-1
CTool 9-CTool-1
CWobj 9-CWobj-1

D

data 5-20
used in expression 5-28

data type 5-18
date 9-CDate-1
DeactUnit 8-DeActUnit-1
declaration

constant 5-22
module 5-9
persistent 5-22
routine 5-13
variable 5-21

Decr 8-Decr-1
decrease velocity 8-VelSet-1
decrement 8-Decr-1
DefDFrame 9-DefDFrame-1
DefFrame 9-DefFrame-1
digital output 9-DOutput-1

pulse 8-PulseDO-1
reset 8-Reset-1
set 8-Set-1, 8-SetDO-1

Dim 9-Dim-1
dionum 7-dionum-1
displace

position 9-Offs-1
displacement

tool direction 9-RelTool-1
displacement frame 6-6, 9-DefDFrame-1, 9-

DefFrame-1
displacement instructions 3-12
DIV 5-26
DOutput 9-DOutput-1

E

end phase 13-seamdata-7
EOffsOff 8-EOffsOff-1
EOffsOn 8-EOffsOn-1
EOffsSet 8-EOffsSet-1

equal data type 5-18
erase teach pendant display 8-TPErase-1
ERRNO 5-33, 7-System data-1
errnum 7-errnum-1
error handler 5-33
error number 5-33
error recovery 5-33

retry 8-RETRY-1, 8-TRYNEXT-1
ErrWrite 8-ErrWrite-1
EulerZYX 9-EulerZYX-1
EXIT 8-EXIT-1
ExitCycle 8-ExitCycle-1
Exp 9-Exp-1
exponential value 9-ByteToStr-1, 9-Exp-1

9-Pow-1, 9-StrToByte-1
expression 5-26
external axes

activate 8-ActUnit-1
coordinated 6-7
deactivate 8-DeActUnit-1

extjoint 7-extjoint-1

F

file
close 8-Close-1, 8-Rewind-1
load 8-Load-1
open 8-Open-1
read 9-ReadBin-1, 9-ReadNum-1, 9

ReadStr-1
rewind 8-Rewind-1
unload 8-UnLoad-1
write 8-Write-1, 8-WriteBin-1, 8-Writ-

eStrBin-1
file header 5-5
file instructions 3-21
fine 7--zonedata-1
fly-by point 7--zonedata-1
FOR 8-FOR-1
frame 9-DefFrame-1
function 5-11
function call 5-29

G

GetTime 9-GetTime-1
ggundata 15-ggundata-1
global

data 5-20
routine 5-11
0-2 RAPID Reference Manual

GlueC 15-GlueC-1
GlueL 15-GlueL-1
GlueWare 3-35
gluing 15-GlueC-1, 15-GlueL-1
gluing gun data 15-ggundata-1
GLUSER 15-GLUSER-1
GOTO 8-GOTO-1
GOutput 9-AOutput-1, 9-GOutput-1
GripLoad 8-GripLoad-1
group of I/O 8-SetGO-1, 9-AOutput-1, 9-

GOutput-1
gundata 14-gundata-1

H

heat 13-seamdata-4

I

I/O principles 6-44
I/O synchronisation 6-27
IDelete 8-IDelete-1
identifier 5-3
IDisable 8-IDisable-1
IEnable 8-IEnable-1
IF 8-Compact IF-1, 8-IF-1
ignition 13-seamdata-3
Incr 8-Incr-1
increment 8-Incr-1
IndAMove 8-IndAMove-1
IndCMove 8-IndCMove-1
IndDMove 8-IndRMove-1
independent inpos 9-IndInpos-1, 9-Ind-

Speed-1
independent motion 8-IndAMove-1, 8-Ind-

CMove-1, 8-IndRMove-1
IndInpos 9-IndInpos-1, 9-IndSpeed-1
IndReset 8-IndReset-1
IndRMove 8-IndRMove-1
IndSpeed 9-IndSpeed-1
input instructions 3-19
interpolation 6-13
interrupt 3-23, 5-35

activate 8-IWatch-1
at a position 8-TriggInt-1
connect 8-CONNECT-1
deactivate 8-ISleep-1
delete 8-IDelete-1
disable 8-IDisable-1
enable 8-IEnable-1

from digital input 8-ISignalDI-1
identity 7-intnum-1
timed 8-ITimer-1

INTNO 7-System data-1
intnum 7-intnum-1
InvertDO 8-InvertDO-1
IO unit

disable 8-IODisable-1
enable 8-IOEnable-1

iodev 7-iodev-1
IODisable 8-IODisable-1
IOEnable 8-IOEnable-1
ISignalDI 8-ISignalDI-1
ISignalDO 8-ISignalDO-1
ISleep 8-ISleep-1
IsPers 9-IsPers-1
IsVar 9-IsVar-1
ITimer 8-ITimer-1
IVarValue 8-IVarVal-1
IWatch 8-IWatch-1

J

joint movement 6-13, 8-MoveJ-1
jump 8-GOTO-1

L

label 8-label-1
linear movement 6-14, 8-MoveL-1
Load 8-Load-1
load

activate payload 8-GripLoad-1
loaddata 7-loaddata-1
local

data 5-20
routine 5-11

logical expression 5-27
logical value 5-4, 7-bool-1

M

main routine 5-8
mathematical instructions 3-28, 3-39
maximum velocity 8-VelSet-1
mechanical unit 7-mecunit-1

activate 8-ActUnit-1
deactivate 8-DeActUnit-1

mecunit 7-mecunit-1
MirPos 9-MirPos-1
RAPID Reference Manual 20-3

2

mirroring 9-MirPos-1
MOD 5-26
modified linear interpolation 6-16
module 5-8

declaration 5-9
motion instructions 3-15
motion settings instructions 3-10
motsetdata 7-motsetdata-1
MoveAbsJ 8-MoveAbsJ-1
MoveC 8-MoveC-1
MoveJ 8-MoveJ-1
MoveL 8-MoveL-1
movement

circle 8-MoveC-1
joint 8-MoveJ-1
linear 8-MoveL-1

mulittasking 5-39

N

non value data type 5-18
NOT 5-27
num 7-num-1
numeric value 5-4, 7-num-1
NumToStr 9-NumToStr-1

O

o_jointtarget 7-o_jointtarget-1
object coordinate system 6-5, 7-wobjdata-1
offline programming 11-3
Offs 9-Offs-1
offset 9-Offs-1
Open

file 8-Open-1
serial channel 8-Open-1

operating mode
read 9-OpMode-1

operator
priority 5-30

OpMode 9-OpMode-1
optional parameter 5-12
OR 5-27
orient 7-orient-1
OrientZYX 9-OrientZYX-1
ORobT 9-ORobT-1
output

at a position 8-TriggIO-1
output instructions 3-19

P

parameter 5-12
path resolution

change 8-PathResol-1
path synchronization 6-31
PathResol 8-PathResol-1
payload 7-loaddata-1

activate 8-GripLoad-1
PDispOff 8-PDispOff-1
PDispOn 8-PDispOn-1
PERS 5-22
persistent 5-20
placeholder 5-5
pos 7-pos-1
pose 7-pose-1
PoseInv 9-PoseInv-1
PoseMult 9-PoseMult-1
position

instruction 3-15
position fix I/O 6-31, 8-TriggIO-1
Pow 9-Pow-1, 9-StrToByte-1
Present 9-Present-1
ProcCall 8-ProcCall-1
procedure 5-11
procedure call 8-CallByVar-1, 8-ProcCall-1
program 5-8
program data 5-20
program displacement 3-12

activate 8-PDispOn-1
deactivate 8-PDispOff-1
remove from position 9-ORobT-1

program flow instructions 3-6
program module 5-8
programming 11-3
PulseDO 8-PulseDO-1

Q

quaternion 7-orient-2

R

RAISE 8-RAISE-1
read

clock 9-ClkRead-1
current date 9-CDate-1
current joint angles 9-CJointT-1
current robot position 9-CRobT-1
current time 9-CTime-1, 9-GetTime-1
0-4 RAPID Reference Manual

-

-

-

-

-1

-

current tool data 9-CTool-1
current work object 9-CWobj-1
digital output 9-DOutput-1
file 9-ReadBin-1, 9-ReadNum-1, 9

ReadStr-1
function key 8-TPReadFK-1
group of outputs 9-AOutput-1, 9-GOut

put-1
serial channel 9-ReadBin-1, 9-Read

Num-1, 9-ReadStr-1
ReadBin 9-ReadBin-1
ReadMotor 9-ReadMotor-1
ReadNum 9-ReadNum-1
ReadStr 9-ReadStr-1
record 5-18
RelTool 9-ATan2-1, 9-DefFrame-1, 9-Op

Mode-1, 9-Pow-1, 9-RelTool-1, 9-
RunMode-1

repeat 8-FOR-1, 8-WHILE-1
reserved words 5-3
Reset 8-Reset-1
reset

measuring system 8-IndReset-1
RestoPath 8-RestoPath-1
RETRY 8-RETRY-1
RETURN 8-RETURN-1
Rewind 8-Rewind-1
robot configuration 6-33
robot position 7-o_robtarget-1, 7-robtarget
robtarget 7-o_robtarget-1, 7-robtarget-1
Round 9-Round-1
routine 5-11

declaration 5-13
routine call 8-ProcCall-1
routine data 5-20
RunMode 9-RunMode-1
running mode

read 9-RunMode-1

S

scope
data scope 5-20
routine scope 5-11

seamdata 13-seamdata-1
SearchC 8-SearchC-1
searching instructions 3-15
SearchL 8-SearchL-1
semi value data type 5-18
RAPID Reference Manual
serial channel
close 8-Close-1
file 8-WriteBin-1, 8-WriteStrBin-1
open 8-Open-1
read 9-ReadBin-1, 9-ReadNum-1, 9

ReadStr-1
rewind 8-Rewind-1
write 8-Write-1

Set 8-Set-1
SetAO 8-SetAO-1
SetDO 8-SetDO-1
SetGO 8-SetGO-1
shapedata 7-shape-1
signalai 7-signalxx-1
signalao 7-signalxx-1
signaldi 7-signalxx-1
signaldo 7-signalxx-1
signalgi 7-signalxx-1
signalgo 7-signalxx-1
simulated gluing 15-GlueC-5, 15-GlueL-7
simulated spot welding 14-SpotL-7
Sin 9-Sin-1
SingArea 8-SingArea-1
singularity 6-37
soft servo 3-12, 6-24

activating 8-SoftAct-1
deactivating 8-SoftDeAct-1

SoftAct 8-SoftAct-1
SoftDeact 8-SoftDeAct-1
speeddata 7-speeddata-1
spot weld gun data 14-gundata-1
spot welding 3-30, 14-SpotL-1
spotdata 14-spotdata-1
SpotL 14-SpotL-1
Sqrt 9-Sqrt-1
square root 9-Sqrt-1
StartMove 8-StartMove-1
stationary TCP 6-10
Stop 8-Stop-1
stop point 7--zonedata-1
StopMove 8-StopMove-1
stopping program execution 3-7
stopwatch 7-clock-1, 8-ClkStart-1
StorePath 8-StorePath-1
StrFind 9-StrFind-1
string 5-4, 7-string-1
string expression 5-27
StrLen 9-StrLen-1
StrMap 9-StrMap-1
StrMatch 9-StrMatch-1
20-5

2

P-
StrMemb 9-StrMemb-1
StrOrder 9-StrOrder-1
StrPart 9-StrPart-1
StrToByte 9-StrToByte-1
StrToVal 9-StrToVal-1
switch 5-12
symnum 7-symnum-1
syntax rules 2-4
system data 7-System data-1
system module 5-9

T

Tan 9-Tan-1
TCP 6-3

stationary 6-10
TEST 8-TEST-1
TestDI 9-TestDI-1
text string 7-string-1
time 9-CTime-1, 9-GetTime-1
time instructions 3-27
tool centre point 6-3
tool coordinate system 6-9
tooldata 7-tooldata-1
TPErase 8-TPErase-1
tpnum 7-tpnum-1
TPReadFK 8-TPReadFK-1
TPReadNum 8-TPReadNum-1
TPShow 8-TPShow-1
TPWrite 8-TPWrite-1
trap routine 5-11, 5-35
TriggC 8-TriggC-1
triggdata 7-triggdata-1
TriggEquip 8-TriggEquip-1
TriggInt 8-TriggInt-1
TriggIO 8-TriggIO-1
TriggJ 8-TriggJ-1
TriggL 8-TriggL-1
Trunc 9-Trunc-1
TRYNEXT 8-TRYNEXT-1
TuneReset 8-TuneServo-1
TuneServo 8-TuneServo-1
tunetype 7-tunetype-1
typographic conventions 2-4

U

UnLoad 8-UnLoad-1
User - system module 10-3
user coordinate system 6-5, 7-wobjdata-1

V

ValToStr 9-ValToStr-1
VAR 5-21
variable 5-20
velocity 7-speeddata-1

decrease 8-VelSet-1
max. 8-VelSet-1

VelSet 8-VelSet-1

W

wait
a specific time 8-WaitTime-1
any condition 8-WaitUntil-1
digital input 8-WaitDI-1
digital output 8-WaitDO-1
until the robot is in position 8-WaitTime-

1
wait instructions 3-8
WaitDI 8-WaitDI-1
WaitDO 8-WaitDO-1
WaitTime 8-WaitTime-1
WaitUntil 8-WaitUntil-1
weavedata 13-weavedata-1
welddata 13-welddata-1
WHILE 8-WHILE-1
wobjdata 7-wobjdata-1
work object 7-wobjdata-1
world coordinate system 6-4
wrist coordinate system 6-9
Write 8-Write-1
write

error message 8-ErrWrite-1
on the teach pendant 8-TPShow-1, 8-T

Write-1
WriteBin 8-WriteBin-1
WriteStrBin 8-WriteStrBin-1
WZBoxDef 8-WZBoxDef-1
WZCylDef 8-WZCylDef-1
WZDisable 8-WZDisable-1
WZDOSet 8-WZDOSet-1
WZEnable 8-WZEnable-1
WZFree 8-WZFree-1
WZLimSup 8-WZLimSup-1
WZSphDef 8-WZSphDef-1
wzstationary 7-wzstationary-5
wztemporary 7-wztemporary-7
0-6 RAPID Reference Manual

X

XOR 5-27

Z

zonedata 7--zonedata-1
RAPID Reference Manual 7

8 RAPID Reference Manual

Glossary

 is

en-

care
y.

the

d

nd

 set

ply

or-

n
Glossary

Argument The parts of an instruction that can be changed, i.e.
everything except the name of the instruction.

Automatic mode The applicable mode when the operating mode selector
set to .

Component One part of a record.

Configuration The position of the robot axes at a particular location.

Constant Data that can only be changed manually.

Corner path The path generated when passing a fly-by point.

Declaration The part of a routine or data that defines its properties.

Dialog/Dialog box Any dialog boxes appearing on the display of the teach p
dant must always be terminated (usually by pressing OK or
Cancel) before they can be exited.

Error handler A separate part of a routine where an error can be taken
of. Normal execution can then be restarted automaticall

Expression A sequence of data and associated operands; e.g. reg1+5 or
reg1>5.

Fly-by point A point which the robot only passes in the vicinity of –
without stopping. The distance to that point depends on
size of the programmed zone.

Function A routine that returns a value.

Group of signals A number of digital signals that are grouped together an
handled as one signal.

Interrupt An event that temporarily interrupts program execution a
executes a trap routine.

I/O Electrical inputs and outputs.

Main routine The routine that usually starts when the Start key is pressed.

Manual mode The applicable mode when the operating mode switch is
to .

Mechanical unit A group of external axes.

Module A group of routines and data, i.e. a part of the program.

Motors On/Off The state of the robot, i.e. whether or not the power sup
to the motors is switched on.

Operator’s panel The panel located on the front of the control system.

Orientation The direction of an end effector, for example.

Parameter The input data of a routine, sent with the routine call. It c
responds to the argument of an instruction.

Persistent A variable, the value of which is persistent.

Procedure A routine which, when called, can independently form a
instruction.
RAPID Reference Manual 20-7

Glossary

the
les.

e

ro-

he

.
n in

er-

he

ific

ich
 is

w
by

on
t
Program The set of instructions and data which define the task of
robot. Programs do not, however, contain system modu

Program data Data that can be accessed in a complete module or in th
complete program.

Program module A module included in the robot’s program and which is
transferred when copying the program to a diskette, for
example.

Record A compound data type.

Routine A subprogram.

Routine data Local data that can only be used in a routine.

Start point The instruction that will be executed first when starting p
gram execution.

Stop point A point at which the robot stops before it continues on to t
next point.

System module A module that is always present in the program memory
When a new program is read, the system modules remai
the program memory.

System parameters The settings which define the robot equipment and prop
ties; configuration data in other words.

Tool Centre Point (TCP)The point, generally at the tip of a tool, that moves along t
programmed path at the programmed velocity.

Trap routine The routine that defines what is to be done when a spec
interrupt occurs.

Variable Data that can be changed from within a program, but wh
loses its value (returns to its initial value) when a program
started from the beginning.

Window The robot is programmed and operated by means of a
number of different windows, such as the Program windo
and the Service window. A window can always be exited
choosing another window.

Zone The spherical space that surrounds a fly-by point. As so
as the robot enters this zone, it starts to move to the nex
position.
20-8 RAPID Reference Manual

	Return to Menu
	Table of Contents
	Main Menu
	Index

