Operational Amplifier 

The circuit schematic of the typical 741 op-amp is shown below: 
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A component-level diagram of the common 741 op-amp. Dotted lines outline: 

· current mirrors (red) 

· differential amplifier (blue) 

· class A gain stage (magenta) 

· voltage level shifter (green); 

· output stage (cyan) 

Like all op-amps, the circuit basically consists of three stages: 
· Differential amplifier with high input impedance that generates a voltage signal, the amplified voltage difference [image: image2.png]


. 
· Voltage amplifier (class A amplification) with a high voltage gain to further amplify the voltage. 
· Output amplifier (class AB push-pull emitter follower) with low output impedance and high current driving capability. 

The op-amp requires two voltage supplies [image: image3.png]Ve



 of both polarities (typically [image: image4.png]Vee = 15



 V). 

Although the Op-amp circuit may look complicated, its operation can be simply modeled by a voltage amplifier with three parameters, as shown below: 

[image: image5.png]


 

· Input resistance [image: image6.png]Tin



, which is huge, typically in the range of [image: image7.png]109 ~ 10!



, depending on the specific components used (e.g., BJT or FET). 

· Output resistance [image: image8.png]Tout



, which is very small, typically a few tens of ohms, e.g., 75 [image: image9.png]


. 

· Open-circuit gain, based on both the inverting input [image: image10.png]


 and the non-inverting input [image: image11.png]


: 
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where [image: image13.png]A



 is the differential-mode gain and [image: image14.png]


 is the common-mode gain. It is desired that [image: image15.png]Ay — 00



 and [image: image16.png]


, i.e., the output is only proportional to the difference [image: image17.png]


 between the two inputs. The common-mode rejection ratio (CMRR) is defined as the ratio between differential-mode gain and common-mode gain: 
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As [image: image19.png]A



 is large, typically [image: image20.png]A=A;=10" ~ 10"



, the output is approximately 

[image: image21.png]


 

Also, as the output [image: image22.png]Vour = A(vT —v7)



 is in the range between [image: image23.png]


 and [image: image24.png]Vee



 and [image: image25.png]> 10°



 is large, [image: image26.png]v =07 = ot /A



 is small (in the micro-volt range), i.e., [image: image27.png]


. If, as in some Op-Amp circuits, [image: image28.png]


 is grounded, then [image: image29.png]


 is very close to zero, i.e., it is almost the same as ground, or virtual ground. The analysis of various op-amp circuits can be much simplified by this virtual ground assumption. 

The output of an op-amp is [image: image30.png]Vo = A(v™ = v7)



. As [image: image31.png]


 is large, [image: image32.png]out



 is usually saturated, equal to either [image: image33.png]Vee



 or [image: image34.png]


, depending on whether or not [image: image35.png]


 is greater than [image: image36.png]


. For [image: image37.png]Vout



 to be meaningful, some kind of feedback is introduced. In the following, we consider the following typical Op-Amp circuits to show how to carry out circuit analysis. 
· Voltage follower: The input is connected to the positive input [image: image38.png]


 while the output is directly connected to the negative input [image: image39.png]


 (100% negative feedback), as shown on the left of the figure below. Based on the model of the op-amp shown in the figure above, the follower circuit can be represented as the circuit shown in the middle diagram of the figure below. Our goal here is to build a model for the follower circuit, as shown on the right of the figure, in terms of the input resistance [image: image40.png]


, the output resistance [image: image41.png]


 as well as the voltage gain [image: image42.png]


. 
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· Open-circuit voltage gain [image: image44.png]


: Assume an ideal source voltage [image: image45.png]


 ([image: image46.png]


) is applied to the input of the circuit and the output port is open circuit [image: image47.png]


. Then applying KVL to the loop, we get 
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Note that the internal voltage source is [image: image49.png]A(vt —v7) = riniin



. The output voltage is: 
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and the open-circuit voltage gain is: 
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Since [image: image52.png]A>>1



, [image: image53.png]


 is approximately unity. 
· Input resistance [image: image54.png]


: We now connect a load [image: image55.png]Ry



 to the output port, while still keeping [image: image56.png]


 (as it is irrelevant to [image: image57.png]


). Applying KVL to the two loops we get: 
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Solving these two equations for the loop currents [image: image59.png]


 and [image: image60.png]out



 we get 
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The input resistance can be found as the ratio of the input voltage and current: 

	[image: image62.png]
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Note that [image: image67.png]


 is affected by the load [image: image68.png]Ry



. As usually [image: image69.png]Tout



 is very small in comparison with all other resistances in the expression, it can be dropped and the above becomes approximately 
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· Output resistance [image: image71.png]


: This is the ratio [image: image72.png]Rout = Voo lc



 between the open-circuit voltage [image: image73.png]


 and the short-circuit current [image: image74.png]


. We first apply KVL to the loop to find open-circuit voltage [image: image75.png]


 (with [image: image76.png]


 and [image: image77.png]lout = 0



): 
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The voltage across the output port is 
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We next find short-circuit current [image: image80.png]out




 ([image: image81.png]


) by applying KVL to the two loops: 
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Solving these two equation for the two loop currents we get: 
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Now the output resistance can be found: 
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Note that [image: image85.png]


 is affected by the internal resistance [image: image86.png]


 of the source. As [image: image87.png]Ry +rou << (A+ Driy



 and [image: image88.png]R, <<y



, we have 
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In summary, we see that the voltage follower has a unit voltage gain, but much increased input resistance [image: image90.png]Rin = Ariy



 (e.g., [image: image91.png]1090



) and much reduced output resistance [image: image92.png]Rout & Tout/ A



 (e.g., [image: image93.png]


). In practice we could simply assume [image: image94.png]


 and [image: image95.png]Rouwr =0



. 
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The figure on the left shows a circuit represented by an ideal voltage source [image: image97.png]


 in series with an internal resistance [image: image98.png]


 (Thevenin's theorem), with a load [image: image99.png]Ry



. The voltage delivered to the load by this non-ideal source is 
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The output voltage across the load is only a fraction of the voltage due to the voltage drop across the internal resistance [image: image101.png]


. If it is desired for the output voltage to be as close to the source as possible, the internal resistance [image: image102.png]


 has to be small while the load resistance [image: image103.png]Ry



 has to be large (lighter load). However, given [image: image104.png]


 and [image: image105.png]Ry



, it is still possible for the output voltage to be very close to the source if a voltage follower is used as a buffer between the source and the load, as shown in the figure on the right. The voltage follower is modeled by its input and output resistances [image: image106.png]


 and [image: image107.png]


, as well as its voltage gain [image: image108.png]


, and the output voltage can be obtained after two levels of voltage dividers: 
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As [image: image110.png]


 is huge, [image: image111.png]Ri./(R.+ R;,) = 1



, also, as [image: image112.png]


 is very small, [image: image113.png]Rp/(Row + Br) ~ 1



, and [image: image114.png]


, therefore [image: image115.png]Vout & Vs



, i.e., one hundred percent of the source voltage is delivered to the load. 
· Inverting Amplifier 
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As the analysis of the circuit using full model of the op-amp is very involved, certain approximation is made the simplify the analysis. 
· Open-circuit voltage gain: We assume [image: image117.png]Tin — 00



. We assume an ideal voltage source [image: image118.png]


 ([image: image119.png]


) applied to node [image: image120.png]vy



 ([image: image121.png]


), and find the input current to be: 
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where [image: image123.png]Vin =0T — v =0 =0~ = —(vs — Ruiin)



. Solving the equation above for [image: image124.png]


, we get: 
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The output voltage can be found to be: 
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i.e., 
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The approximation is due to the fact that [image: image128.png]Tout



 is very small and [image: image129.png]


 is very large. The same result can also be obtained under the virtual ground assumption [image: image130.png]


, we can easily find [image: image131.png]Vout



 by applying KCL at the node of [image: image132.png]


: 
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we get the same [image: image134.png]G = Vour/vs = =Ry /Ry



. 
· Input resistance: We assume an ideal voltage source [image: image135.png]


 ([image: image136.png]


) applied to the circuit, and find the input resistance [image: image137.png]


 as the ratio of [image: image138.png]


 and the input current [image: image139.png]


. We first apply KCL to the node of [image: image140.png]


 to get 
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Solving for [image: image142.png]


 to get 
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The input current is 
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Therefore 
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As [image: image150.png]Tout



 is much smaller than all other resistances in the equation, it can be dropped: 
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Moreover, as [image: image152.png]A>>1



, we have 
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· Output resistance: Here we assume [image: image154.png]Tin — 00



 to simplify the analysis. We first find short-circuit output current by applying KCL to the output node to get: 
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but as [image: image156.png]vT =v.Rp/(R. + R + Ry)



, we have 
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Next we find the open-circuit output voltage. Applying KCL to the node of [image: image158.png]


 we get 

[image: image159.png]


 

which can be solved for [image: image160.png]
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The open-circuit output voltage can be found to be (voltage dividor) 
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Now we get 
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The approximation is due to the assumption that [image: image164.png]A>>1



. In particular, if [image: image165.png]R, << Ry



 and [image: image166.png]Rs << Ry



, we have 
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· Non-Inverting Amplifier (Homework) 
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Find the three parameters of this non-inverting amplifier: 

· input resistance [image: image169.png]


, 

· output resistance [image: image170.png]


, 

· open-circuit voltage gain [image: image171.png]


. 

Assume [image: image172.png]


 in all three cases. Moreover, assume [image: image173.png]


 for [image: image174.png]


 and [image: image175.png]


, and [image: image176.png]Tout = 0



 for [image: image177.png]


. Note that when [image: image178.png]


, this non-inverting amplifier will become a voltage follower, in terms of all three parameters. Verify your results by checking if this is the case. 

Answer 

Op-Amp Circuits 

To simplify the analysis of the Op-Amp circuits, we further make the following assumptions: 

· The huge input resistance [image: image179.png]Tin



 can be treated as infinity [image: image180.png]Tin — 00



. 

· The input current drawn by an op-amp is samll ( [image: image181.png]


), and could be approximated to be zero [image: image182.png]


. 

· The small output impedance [image: image183.png]Tout



 can be treated as zero [image: image184.png]Tout =0



, i.e., the output [image: image185.png]Vout



 is not affected by the load [image: image186.png]Ry



 (so long as it is much greater than [image: image187.png]Tout



). 

· Based on the fact that [image: image188.png]


, we could assume [image: image189.png]


, i.e., the virtual ground assumption. 

· The bandwidth is large ([image: image190.png]


). 

Based on these approximations, an Op-Amp can be further simplified as the modeled shown on the right of the figure below, based on which the analysis of op-amp circuits can be much simplified, as shown in the following examples. 
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· Voltage follower (buffer) 
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[image: image193.png]


 

As the output [image: image194.png]out = Vin



 is the same as the input, why can't we replace this op-amp circuit by a piece of wire? 
· Inverter 

[image: image195.png]Re



 

Current into the op-amp is negligible, and [image: image196.png]~Vt=0



. Applying KCL to the node of [image: image197.png]


, we have 

[image: image198.png]Vin
Ry

Vour

Ry

i.c.

ot = =5



 

In general, [image: image199.png]Ry



 and [image: image200.png]


 in the inverter can be replaced by two networks (with impedances [image: image201.png]Zy



 and [image: image202.png]


 respectively) containing resistors and capacitors and the analysis of the circuit can be carried out easily in frequency domain: 
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This is a convenient way to design filters of various frequency characteristics. 

[image: image204.png]Zy

Vo



 
· Non-Inverting Amplifier 
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[image: image206.png]Vin =




 

· Summer-inverter 
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Apply KCL to [image: image208.png]


: 
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· Differential amplifier 
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Define [image: image211.png]


, we get: 
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But as 
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therefore 
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Consider some special cases: 

· If [image: image215.png]Ry =Ry



 and [image: image216.png]


, we get 
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· If [image: image218.png]Ry =



 (open circuit, and [image: image219.png]


 can be any value), then [image: image220.png]V="



 and we get 
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This is a combination of inverter and a non-inverter amplifiers. 

· If [image: image222.png]Ry =Ry =00



, then [image: image223.png]Vour = V2



, this is the follower. 

· If [image: image224.png]Ry=0



 ([image: image225.png]


), then we get the inverter 
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· If [image: image227.png]


 ([image: image228.png]Ry =



) and [image: image229.png]Vi=0



, we get the non-inverter: 
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Note 1: It is likely that both inputs are subjected to some common noise [image: image231.png]


 (such as interference of 60Hz power supply): 

[image: image232.png]Vi = or(t) + n(t), Vs = vs(t) + n(t)



 

In this case the output is 

[image: image233.png]


 

not affected by the common noise at all, i.e., the differential amplifier can suppress common-mode signal (such as the noise signal [image: image234.png]


) while amplify the differential-mode signal (such as [image: image235.png]


 and [image: image236.png]


). 
Note 2: If one of the two inputs, e.g., [image: image237.png]


 is connected to a constant voltage treated as a reference [image: image238.png]Viey



, then the differential amplifier can also be used as a level shifter. As 
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we get 
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But 
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we have 
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where 
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In other words, the output is [image: image244.png]


 times the input [image: image245.png]


, shifted by a constant value [image: image246.png]Vanife



. This level-shifter circuit can be used to change the DC level of the signal (e.g., removal of DC component) as well as amplifying it. 
· Instrumentation Amplifier 

One drawback of the differential amplifier is that its input impedance ([image: image247.png]Ry + Ry



) may not be high enough if the output impedance of the previous stage is not low enough. To overcome this problem, two non-inverters with high input resistance can be used each for one of the two inputs to the differential amplifier. The resulting circuit is shown below: 
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The analysis of this circuit is very simple. As the output impedance of the non-inverter is low, the three op-amp circuit can be considered as three independent circuits. The outputs of the two non-inverters are: 

[image: image249.png]


 

The output voltage of the differential amplifier is: 

[image: image250.png]


 

Of course the two resistors [image: image251.png]Ry



 can be combined to become [image: image252.png]Ry = 2R,



, i.e., [image: image253.png]Ry = Ry/2



, then the output can be written as: 

[image: image254.png]


 

Alternatively, we consider the current going from [image: image255.png]


 to [image: image256.png]


: 
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From the equation of the first two terms we get: 
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From the equation of the second two terms we get: 
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Using the equation of the differential amplifier above, we get the same result as above: 
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· Algebraic summer (inputs of different signs) 
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Define [image: image262.png]Ve V-



. Apply KCL to [image: image263.png]


 and [image: image264.png]


 we get: 
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Solving the 2nd equation for [image: image266.png]


 we get: 
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and substitute it into the first equation to get 
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· A/D converter 

Without feedback, the output of an op-amp is [image: image270.png]Vour = A(V™ =)



. As [image: image271.png]


 is large, [image: image272.png]out



 is saturated, equal to either the positive or the negative voltage supply, depending on whether or not [image: image273.png]


 is greater than [image: image274.png]


. These two possible outputs, positive and negative, can be treated as ``1'' and ``0'' of the binary system. The figure shows an A/D converter built by three op-amps to measure voltage [image: image275.png]Vin



 from 0 to 3 volts with resolution 1 V. 
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Due to the voltage divider, the input voltages to the three op-amps are, respectively, 2.5V, 1.5V and 0.5V. The output of these op-amps are listed below for each of the input voltage levels. A digital logic circuit is then needed to convert the 3-bit output of the op-amps to the two-bit binary representation. 

	Voltage (volts)
	0
	1
	2
	3

	Op-amps Outputs
	000
	001
	011
	111

	Binary Representation
	00
	01
	10
	11


· First order system -- integrator and differentiator 
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Integrator 

In time domain, as [image: image278.png]


 and [image: image279.png]ip+ic =0



, we have (KCL) 
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where [image: image281.png]


. In frequency domain, we have: 
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Differentiator 

If we swap the resistor and the capacitor, we get in time domain: 
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In frequency domain, we have: 
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· First order systems - low-pass and high-pass filters 
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Low-pass filter: 
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where [image: image287.png]H(0) = Ry/ Ry



, [image: image288.png]


. Intuitively, when frequency is high, [image: image289.png]


 is small and the effect of negative feedback is strong, therefore the output is low. 

For example, when [image: image290.png]


, [image: image291.png]we =1/ =10



, the Bode plots are shown below: 
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High-pass filter: 
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where [image: image294.png]H(0) = Ry/ Ry



, [image: image295.png]


. Intuitively, when frequency is low [image: image296.png]


 is large and the signal is difficult to pass, therefore the output is low. 

For example, when [image: image297.png]


, [image: image298.png]we =1/ =10°



, the Bode plots are shown below: 
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Band-pass filter: 
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where [image: image302.png]=Ry
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For example, when [image: image305.png]n=10"°
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, the Bode plots are shown below: 
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· Higher order systems 

Higher than first order systems can be built with multiple integrators, as shown here for a third order system: 
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From the diagram, we can get 
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But we also have 

[image: image311.png]Yo(s) = X(s) — (kyYi(s) + ko Ya(s) + kyYs(s))



 

i.e., 
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we get the transfer function 
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· Second order system by 2 integrators 
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From the diagram, we can get 

[image: image315.png]= —sYi(s)/er = s2a(s) Jercs
Yi(s) = —e1Yi(s)/s = Yi(s) = =sVi(

{ Ya(s) = —aVi(s)/s = Yi(s) = —sYa(s)/ca
(s)

Yo(s) = koX (s) + ki Ya(s) + ks




 

substituting the first two equations into the last one, we get 
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from which we obtain the transfer function as 
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which is a second order system. In particular, if [image: image318.png]


, we have 
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Comparing this with the canonical 2nd order system transfer function 
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we see that we can let [image: image321.png]


 and [image: image322.png]ki =2
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, i.e., the feedback from the output should be negative. [image: image324.png]ko



 is a constant scalar which can take any value. 
· Sallen-Key Topology 

The Sallen-Key topology is an electronic filter topology used to implement second-order active filters that is particularly valued for its simplicity. 
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We represent the input and output in s-domain as [image: image326.png]
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, respectively, and the voltage at node a as [image: image328.png]


, and apply KCL to nodes a and b to get: 

[image: image329.png]


 

[image: image330.png]Y(s) =W(s)  Y(s) _
7 4



 

Solving the second equation for [image: image331.png]


 we get 
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Substituting this into the first equation we get 
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, then we get a second order low-pass filter: 
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where 
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, then we get a second order high-pass filter: 
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