
© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 1

Introduction to PIC Programming

Mid-Range Architecture and Assembly Language

by David Meiklejohn, Gooligum Electronics

Lesson 1: Basic Digital Output

The Baseline PIC Assembler tutorial series introduced the baseline (12-bit) PIC architecture, using devices

including the 8-pin digital-only PIC12F509 and 14-pin analog-capable PIC16F506. The series culminated

in the development of a simple light meter with smoothed 2-digit decimal output on 7-segment LED

displays. However, it was apparent that the limitations of the baseline architecture, such as the lack of

interrupts, a maximum of 16 contiguous bytes of banked data memory, and the availability of only a single

8-bit timer, make it difficult to develop applications significantly more complex than this. The baseline

architecture’s limitations became especially evident when implementing the same examples in C, in the

Baseline PIC C Programming tutorial series.

The mid-range (14-bit) PIC architecture overcomes many of these limitations, offering more memory,

larger contiguous blocks of data memory, with simpler and less restricted memory access, more timers,

greater flexibility in many areas, additional assembler instructions, a much greater range of peripherals,

and support for interrupts – significant, because interrupts allow a different (better) approach to many

programming problems, as we will see in later lessons.

This tutorial series introduces the mid-range architecture. Assembly language is used, as that is the best

way to gain a thorough understanding of the PIC core and peripherals (languages like C or BASIC hide

many of the implementation details, which can make life much easier for the programmer – but the aim

here is to gain a good understanding of the underlying hardware).

These lessons assume some familiarity with the content covered in the Baseline PIC Assembler series.

Although there is some repetition of material, wherever a topic has been covered in the baseline tutorials,

it is described more briefly here, along with a reference to the baseline lesson where the topic was

introduced. This approach is practical because the mid-range architecture builds on the baseline

architecture we are already familiar with; most of the concepts, and nearly all the assembler instructions,

are the same.

This lesson introduces one of the simplest of the mid-range PICs – the PIC12F629. It then goes on to

describe basic digital output by lighting and flashing LEDs, as covered in lessons 1 and 2 of the baseline

assembler tutorial series.

In summary, this lesson covers:

 Introduction to the PIC12F629

 Simple digital output to LEDs

 Using loops to create delays

 Using shadow registers to avoid the ‘read-modify-write’ problem

../../Baseline
../../Baseline%20C
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 2

Getting Started

These tutorials assume that you are using a Microchip PICkit 2or PICkit 3 programmer and either the

Gooligum Baseline and Mid-range PIC Training and Development Board or Microchip’s Low Pin Count

Demo Board, with Microchip’s MPLAB 8 or MPLAB X integrated development environment. But it is of

course possible to adapt these instructions to a different programmers and/or development boards.

See lesson 0 and baseline lesson 1 for more details

As mentioned, we’re going to start with one of the simplest of the mid-range PICs – the 8-pin PIC12F629.

It is roughly equivalent to the PIC12F509, introduced in baseline lesson 3, but in addition to simple digital

I/O, it also includes an analog comparator, a 16-bit timer, and a 128-byte EEPROM. However, it does not

include an analog-to-digital converter, nor does it include any advanced peripherals or interfaces. That

makes it a good chip to start with; we’ll look at the additional features of more advanced mid-range PICs

in later lessons.

In summary, for this lesson you should ideally have:

 A PC running Windows (XP, Vista or 7), with a spare USB port

 Microchip’s MPLAB 8 IDE software

 A Microchip PICkit 2 or PICkit 3 PIC programmer

 The Gooligum mid-range training board

 A PIC12F629-I/P microcontroller (supplied with the Gooligum training board)

Introducing the PIC12F629

When working with any microcontroller, you should always have on hand the latest version of the

manufacturer’s data sheet, which, for the 12F629, can be downloaded from www.microchip.com.

The data sheet for the 12F629 also covers the 12F675, which is essentially the same device, with the

addition of an analog-to-digital converter (ADC).

The features of various 8-pin PICs are summarised in the following table:

Device

Memory (words or bytes) Timers Analog
Clock rate

(max MHz)
Program Data EEPROM 8-bit 16-bit

Comp-

arators

ADC

inputs

12F508 512 25 0 1 0 0 0 4

12F509 1024 41 0 1 0 0 0 4

12F510 1024 38 0 1 0 1 3 8

12F519 1024 41 64 1 0 0 0 8

12F609 1024 64 0 1 1 1 0 20

12F615 1024 64 0 2 1 1 4 20

12F629 1024 64 128 1 1 1 0 20

12F675 1024 64 128 1 1 1 4 20

12F683 2048 128 256 2 1 1 4 20

12F1501 1024 64 0 2 1 1 4 20

12F1822 2048 128 256 2 1 1 4 32

12F1840 4096 256 256 2 1 1 4 32

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../PIC_Intro_0.pdf
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
http://www.microchip.com/

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 3

The 12F629 has only a little more data memory than the 12F509, but it is arranged differently, as shown in

the following register map:

The 12F509’s register map,

and the concept of banked

register access, was described

in baseline lesson 3.

A few differences are

immediately apparent:

In the mid-range PICs, each

bank consists of 128 registers,

compared with only 32

registers in the baseline

architecture.

The first 32 addresses in each

register bank are used for

special function registers

(SFRs); the remaining 96

addresses in each bank are

available for general-purpose

registers (GPRs), allowing

much larger contiguous

blocks of data memory to be

created.

This means that, although the

12F629 has less data memory

than the 16F506 (64 bytes

compared with 72 bytes), the

larger address space of the

mid-range architecture means

that the 12F629’s 64 bytes are

mapped into a single bank,

not spread across four banks,

as they would be in the

baseline architecture.

Note that the GPRs are

mapped into both banks,

meaning that all data memory

in the 12F629 is shared, not

banked.

Another significant difference

from the baseline architecture

is that most SFRs appear in

only in one bank or the other.

This means that, when

accessing SFRs on mid-range

PICs, it is very important to

ensure that the correct bank

is selected.

PIC12F629 Registers

Address Bank 0 Address Bank 1

00h INDF 80h INDF

01h TMR0 81h OPTION_REG

02h PCL 82h PCL

03h STATUS 83h STATUS

04h FSR 84h FSR

05h GPIO 85h TRISIO

06h

86h

09h 89h

0Ah PCLATH 8Ah PCLATH

0Bh INTCON 8Bh INTCON

0Ch PIR1 8Ch PIE1

0Dh 8Dh

0Eh TMR1L 8Eh PCON

0Fh TMR1H 8Fh

10h T1CON 90h OSCCAL

11h

91h

 94h

 95h WPU

 96h IOC

 97h

18h 98h

19h CMCON 99h VRCON

1Ah

9Ah EEDATA

 9Bh EEADR

 9Ch EECON1

 9Dh EECON2

 9Eh

1Fh 9Fh

20h

General

Purpose

Registers

A0h

Map to Bank 0
20h – 5Fh

5Fh DFh

60h

E0h

7Fh FFh

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 4

As described in baseline lesson 3, the banksel assembler directive will reliably set the bank selection bits

for the specified register address. Some SFRs are grouped, so that once the correct bank is selected for

one of them, you can be sure that the bank selection will not need to be changed before accessing other

registers in the group. But if you are ever in doubt, use banksel. And remember that just because two

registers happen to be in the same bank in the 12F629, it may not be guaranteed to be true in other mid-

range PICs.

Bank selection is controlled by the RP0 bit in the STATUS register:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

STATUS IRP RP1 RP0 TO PD Z DC C

If RP0 = 0, bank 0 is selected; if RP0 = 1, bank 1 is selected.

The RP1 and IRP bits are unused on the 12F629; they are used in mid-range devices, such as the 16F690,

which have four register banks. In devices with four banks, RP0 and RP1 are used in combination to

select the bank for direct register access, while IRP is used select the bank for indirect register access (see

lesson 14) – necessary because FSR, being 8-bits wide, can only point to one of 256 registers, but a four-

bank device has 512 register addresses (128 addresses in each bank).

This is much more convenient than the bank selection scheme used in the baseline architecture, where bits

in the FSR register were used, which meant that indirect register access could not be done separately from

direct register access – a limitation which makes it very difficult for C compilers to implement banked

array access on baseline devices, as we saw in baseline C lesson 7. The mid-range architecture has no

such limitation.

The remaining bits in the STATUS register, TO , PD , Z, DC and C, are equivalent to their counterparts

in the baseline architecture.

The TRIS (called TRISIO on the 12F629) and OPTION registers are no longer accessed through special

instructions, but appear in the register map and are directly accessible, in the same way as any other

register. Importantly, this means that these registers are now readable, as well as writable, making it

possible to update individual bits.

Note that the OPTION register is called OPTION_REG on mid-range PICs, because “option” is a

reserved word in MPASM.

The working register, ‘W’ (equivalent to the ‘accumulator’ in some other microprocessors), is not mapped

into memory, and so does not appear in the register map.

PIC12F629 Input/Output

Like the 12F509, the 12F629 provides six I/O pins in an eight-pin package:

VDD is the positive

power supply.

VSS is the

“negative” supply,

or ground. All of

the input and

output levels are

measured relative

to VSS.

1

2

3

4

8

7

6

5

P
IC

1
2

F
6

2
9

VDD VSS

GP5/T1CKI/OSC1/CLKI

N

GP4/ T1G /OSC2/CLKOUT

GP3/ MCLR

GP0/C1IN+

GP1/C1IN-

GP2/T0CKI/INT/COUT

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
../14%20-%20Int%20arithmetic%20+%20arrays/PIC_Mid_A_14.pdf
../../Baseline%20C/7%20-%20ADC%20+%20arrays/PIC_Base_C_7.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 5

In most circuits, there is only a single ground reference, at 0 V, and VSS will be connected to ground.

The power supply voltage (VDD, relative to VSS) can range from 2.0 V to 5.5 V, although at least 3.0 V is

needed if the clock rate is greater than 4 MHz, and at least 4.5 V is needed to run the PIC at more than 10

MHz.

A bypass capacitor, typically 100 nF and preferably ceramic, should be placed between VDD and VSS, as

close to the chip as practical, to provide transient power as the current drawn by the PIC changes, and to

limit the effect of noise on the power rails. You may find that you can “get away” without using a bypass

capacitor, particularly in a small battery-powered circuit. But figuring out why your PIC keeps randomly

resetting itself is hard, while 100 nF capacitors are cheap, so include them in your designs!

The remaining pins, GP0 to GP5, are the I/O pins. They are used for digital input and output, except for

GP3, which can only be an input. The other pins – GP0, GP1, GP2, GP4 and GP5 – can be

individually set to be inputs or outputs.

Note however that each I/O pin has one or more functions that can be assigned to it, such as a comparator

output, or a counter input. As we will see later, in some cases these alternate functions need to be disabled

before a pin can be used for digital I/O.

Taken together, the six I/O pins comprise the general-purpose I/O port, or GPIO port.

If a pin is configured as an output, the output level is set by the corresponding bit in the GPIO register:

Setting a bit to ‘1’ outputs a ‘high’ on the corresponding pin; setting it to ‘0’ outputs a ‘low’.

If a pin is configured as an input, the input level is represented by the corresponding bit in the GPIO

register. If the input on a pin is high, the corresponding bit reads as ‘1’; if the input pin is low, the

corresponding bit reads as ‘0’.

The TRISIO register controls whether a pin is set as an input or output:

To configure a pin as an input, set the corresponding bit in the TRISIO register to ‘1’. In the input state,

the PIC’s output drivers are effectively disconnected from the pin.

To configure a pin as an output, clear the corresponding TRISIO bit to ‘0’.

By default, each pin is an ‘input’; the TRISIO register is set to all ‘1’s when the PIC is powered on.

Note that TRISIO<3> is greyed-out. Clearing this bit will have no effect because, as mentioned above,

the GP3 pin is always an input.

When configured as an output, each I/O pin on the 12F629 can source or sink up to 25 mA – enough to

directly drive an LED, without needing an external transistor.

In total, the GPIO port can source or sink up to 125 mA.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

GPIO GP5 GP4 GP3 GP2 GP1 GP0

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRISIO TRISIO5 TRISIO4 TRISIO2 TRISIO1 TRISIO0

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 6

Example 1: Turning on an LED

We’ll start the same way that we did in baseline lesson 1, by simply lighting a single LED, connected to

one of the 12F629’s digital I/O pins.

This might appear to be a trivial task, but if you can do something as simple as lighting an LED, you will

have proven that you have a functioning circuit, that your PIC code is correct, that you have properly set

up an appropriate development environment, and that you can use it effectively to assemble your code and

load it into the PIC. When you have achieved all that, you have a firm base to build on.

The complete circuit looks like this:

As you can see, besides the PIC, there isn’t

very much needed at all.

The power supply should be at least 3 V to

properly light the LED. A 5 V supply is

assumed in these lessons, reflecting the default

voltage provided by the PICkit 2 and PICkit 3

programmers.

A 330 Ω resistor, in series with the LED, is

shown here, because that is the value used on

the Gooligum training board. But you can

choose any value for this resistor, as long as it

limits the LED current to no more than 25 mA

– the maximum rated current for each pin.

The pushbutton acts as a reset switch.

Pin 4 can be configured as either a digital input (GP3) or as an external reset (“master clear”, MCLR),

which, if pulled low, will reset the processor.

In this example, we’ll configure the PIC for external reset. When the pushbutton is pressed, pin 4 will be

pulled low, resetting the device. The PICkit 2 and PICkit 3 are also able to pull the reset line low,

allowing MPLAB to control MCLR – which is useful for starting and stopping your program.

Of course, when the pushbutton isn’t pressed, we want the PIC to run our program, and for that to happen,

if external reset is enabled, the MCLR input must be held high. This is what the 10 kΩ pull-up resistor is

for; it holds MCLR high while the switch is open
1
.

The pushbutton is connected to MCLR via a 1 kΩ resistor. As explained in baseline lesson 4, resistors

like this can be used to avoid damage in case an input pin is inadvertently programmed as an output. Such

damage is impossible in this case because, as mentioned above, GP3 can only ever be an input. The most

important reason for the resistor between pin 4 and the pushbutton is to allow the PIC to be safely and

successfully programmed by the PICkit 2 or PICkit 3, using the ICSP programming protocol, when pin 4

is used as the ‘VPP’ input. During ICSP programming, a high voltage (around 12 V) is applied to VPP, to

place the PIC into programming mode. The 1 kΩ resistor is necessary to protect the PICkit 2 or PICkit 3,

in case the pushbutton is pressed during programming, grounding the VPP (12 V) signal.

1
 This external pull-up resistor wasn’t needed in the baseline PIC examples, because the baseline PICs, and indeed

most mid-range PICs, include an internal weak pull-up (see lesson 3) on MCLR which is automatically enabled

whenever the device is configured for external reset.

../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 7

If you are using the Gooligum training board, plug your PIC12F629 into the top section of the 14-pin IC

socket – the section marked ‘12F’
2
. Close jumpers JP3 and JP12 to bring the 10 kΩ resistor into the

circuit and to connect the LED to GP1, and ensure that every other jumper is disconnected.

If you have the Microchip Low Pin Count Demo Board, refer back to baseline lesson 1 to see how to build

this circuit, either by adding an LED and resistor to the prototyping area or making a connection from

GP1 to one of the LEDs on the board via the 14-pin header.

Plug your PICkit 2 or PICkit 3 programmer into the ICSP connector on the training or demo board, with

the arrow on the board aligned with the arrow on the PICkit, and plug the PICkit into a USB port on your

PC. The PICkit 2 or PICkit 3 can supply enough power for this circuit, so there is no need to connect an

external power supply.

With this simple circuit in place, and connected to your PC via a PICkit 2 or PICkit 3 programmer, it’s

time to move on to programming!

The baseline tutorial series explained how to use the MPLAB 8 or MPLAB X environment to create a new

assembler project. If you are not familiar with either version of MPLAB, you should follow the

instructions in baseline lesson 1, but selecting the 12F629 in the project wizard, instead of the 12F509.

If you choose to use a Microchip-supplied code template, you should choose ‘12F629TMPO.ASM’ in the

‘…\MPASM Suite\Template\Object’ (for MPLAB 8) or ‘…\mpasmx\templates\Object’ (for MPLAB X)

directory. But since this template provides a framework for a number of features, including interrupts,

which are not covered in this lesson, it is probably best not to include a copy of the template code, but to

instead start with an empty file.

If you are using MPLAB 8, after finishing the project wizard, you can create a new (empty) file and add it

to your project by selecting the “Project → Add New File to Project…” menu item (also available under

the “File” menu, or by right-clicking in the project window), browsing to the project directory, typing a

name (ending in ‘.asm’) for the new file, and then clicking “Save”.

Or, if you are using MPLAB X, there are a number of ways to create a new source file and add it to your

project, but a simple way is to right-click “Source Files” in the project tree, and select “New → ASM

File...”. Enter a name for your new file, select ‘.asm’ as the extension, then click on “Finish”.

To begin writing your program, double-click the assembler source file in the project window. A text

editor window will open; it will either be blank, or showing the Microchip-supplied template code (if you

created your file from a copy of it), in which case you will need to edit the template code, deleting some

parts and changing others, to make it similar to the code presented below.

The MPLAB text editor is aware of PIC assembler (MPASM) syntax and will colour-code text, depending

on whether it’s a comment, assembler directive, PIC instruction, program label, etc.

As we did in the baseline tutorial series, we’ll begin each program with a block of comments, giving the

name of the program, modification date and version, who wrote it, and a general description of what it

does. The template code includes a “Files required” section. This is useful in larger projects, where your

code may rely on other modules; you can list any dependencies here. We’ll also document what processor

2
 Note that, although the PIC12F629 comes in an 8-pin package, it will not work in the 8-pin ‘10F’ socket. You

must install it in the ‘12F’ section of the 14-pin socket.

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 8

the code is written for, and how each pin is used – and anything else which will help anyone working on

this code that needs to understand what the program does, and how.

MPASM comments begin with a ‘;’. They can start anywhere on a line. Anything after a ‘;’ is ignored

by the assembler.

For example:

;**

; *

; Filename: MA_L1-Turn_on_LED.asm *

; Date: 1/5/12 *

; File Version: 1.2 *

; *

; Author: David Meiklejohn *

; Company: Gooligum Electronics *

; *

;**

; *

; Architecture: Mid-range PIC *

; Processor: 12F629 *

; *

;**

; *

; Files required: none *

; *

;**

; *

; Description: Lesson 1, example 1 *

; *

; Turns on LED. LED remains on until power is removed. *

; *

;**

; *

; Pin assignments: *

; GP1 = indicator LED *

; *

;**

Next we need to tell MPLAB what processor we’re using:

 list p=12F629

 #include <p12F629.inc>

The first line tells the assembler which processor to assemble for. It’s not strictly necessary, as it is set in

MPLAB (configured when you selected the device in the project wizard). MPLAB displays the processor

it’s configured for at the bottom of the IDE window; see the screen shot above. Nevertheless, you should

always use the list directive at the start of your assembler source file, in case you have accidentally

selected the wrong processor in MPLAB. If there is a mismatch between the list directive and

MPLAB’s setting, MPASM will warn you and you can correct the problem.

The next line uses the #include directive which causes an include file (p12F629.inc, located in the

‘…\MPASM Suite’ directory) to be read by the assembler. This file sets up aliases, or labels, for all the

features of the 12F629, so that we can refer to registers etc. by name (e.g. ‘GPIO’) instead of numbers, as

was explained in baseline lesson 6.

So, to correctly specify which processor (such as 12F629) is to be used, you need to select that processor

when you set up the project in MPLAB and include appropriate list and include directives in the

assembler source.

../../Baseline/6%20-%20Assembler%20directives/PIC_Base_A_6.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 9

Next the processor is configured:

 __CONFIG _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

 _PWRTE_ON & _INTRC_OSC_NOCLKOUT

[this directive must be written as a single line in the assembler source code]

Mid-range PICs have one or more “configuration words” (sometimes referred to as fuses), mapped outside

the user program memory space, which define a number of aspects of the processor’s configuration. Like

the baseline PICs, the 12F629 has a single configuration word.

The __CONFIG directive is used to define the value(s) to the loaded into the configuration word(s). It is

usually used with labels (defined in the processor’s include file) representing values which are intended to

be ANDed together to set or clear the configuration bits corresponding to the options being selected. We’ll

examine these in greater detail in later lessons, but briefly the options being selected here are:

 _MCLRE_ON

Enables the external reset, or “master clear” (MCLR) on pin 4.

As mentioned above, if external reset is enabled, pulling this pin low will reset the processor.

Or, if external reset is disabled, the pin can be used as an input: GP3.

Unless you need to use every pin for I/O, it’s a good idea to enable external reset by including

‘_MCLRE_ON’ in the __CONFIG directive.

 _CP_OFF

Turns off program memory code protection.

When your code is in production and you’re selling PIC-based products, you may want to prevent

others (such as competitors) from accessing your code. If you specify _CP_ON, the program

memory will be protected, meaning that if someone tries to use a PIC programmer to read it, all

they will see are zeros.

 _CPD_OFF

Turns off data memory code protection.

The 12F629 includes “EEPROM” (more correctly, “flash”) data memory, which is separate to the

register file address space, and is accessed indirectly through special function registers. This

memory is non-volatile; it retains its contents when the PIC is powered off. EEPROM data may

be considered to be an integral part of the program, and worthy of protection. If you specify

_CPD_ON, the EEPROM memory will be protected; its contents cannot be accessed by an external

PIC programmer. Or the EEPROM may be used to hold data, such as system configuration or

logged data, which the user should be able to access, even if the program code is protected.

To provide this flexibility, program and data (EEPROM) memory are protected independently.

 _BODEN_OFF

Disables brown-out detection.

The PIC’s operation can become unreliable if the supply voltage drops too low, which can happen

during a brown-out, when the supply voltage sags, but does not fall quickly to zero. The 12F629

has brown-out detect circuitry, which will reset the PIC in a brown-out situation, if _BODEN_ON is

selected. But if your power supply is not likely to suffer from brown-outs, you can leave this

feature disabled.

 _WDT_OFF

Disables the watchdog timer.

As we saw in baseline lesson 7, the watchdog timer provides a means of automatically restarting a

crashed program, or to regularly wake the device from sleep. Although the watchdog timer is

very useful in a production environment, it can be a nuisance when prototyping, so it is best left

disabled to begin with.

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 10

 _PWRTE_ON

Enables the power-up timer.

When a power supply is first turned on, it can take a while for the supply voltage to stabilise,

during which time the PIC’s operation may be unreliable. If the power-up timer is enabled, the

PIC is held in reset (it does not begin running the user program) for some time, nominally 72 ms,

after the supply voltage reaches a minimum level.

For reliable operation, you should leave this option enabled, unless you are using an external

supervisor circuit, which monitors system voltages and controls the PIC’s external reset.

 _INTRC_OSC_NOCLKOUT

Selects the internal RC oscillator as the clock source, with no clock output.

PICs can be clocked in a number of ways, as we saw for the 12F509 in baseline lesson 7 and the

16F506 in baseline lesson 8. The 12F629 supports the same clock options as the 16F506,

although without the ability to select the frequency of the internal ‘RC’ oscillator, which on the

12F629 always runs at a nominal 4 MHz. It is not as accurate or stable as an external crystal, but

has the advantage of not needing any external components and leaves all of the PIC’s pins free for

I/O, unless the instruction clock (one quarter of the processor clock rate, i.e. 1 MHz, or 1 µs per

instruction, given a 4 MHz processor clock) is output on CLKOUT.

To turn on an LED, we don’t need accurate timing. And there is no need to make the clock signal

available externally, so the _INTRC_OSC_NOCLKOUT option is appropriate for this application.

If you have based your project on the Microchip-supplied template code, you will see that the next

sections in the template relate to defining variables and initialising the EEPROM with data. Since we do

not need to use variables or the EEPROM in this example, you can safely delete these sections.

The next section of the template code refers to the oscillator calibration value:

;---

; OSCILLATOR CALIBRATION VALUE

;---

OSC CODE 0x03FF

The CODE directive is used to introduce a section of program code.

The 0x03FF after CODE is an address in hexadecimal (signified in MPASM by the ‘0x’ prefix). Program

memory on the 12F629 extends from 0000h to 03FFh. This CODE directive is telling the linker to place

the section of code that follows it at 0x3FF – the very top of the 12F629’s program memory.

However, in this case, there is no code following this first CODE directive. Instead, this is simply a marker

to remind us that the oscillator calibration value is held, as an instruction, at the top of program memory.

Like the 12F509, the speed of the internal RC oscillator in the 12F629 can be varied over a small range by

changing the value of the OSCCAL register, to compensate for variability in the manufacturing process.

Microchip tests every 12F629 in the factory, and calculates the value which, if loaded into OSCCAL, will

make the oscillator run as close as possible to 4 MHz. This calibration value is inserted into the

instruction placed at the top of the program memory (0x3FF), which is:

retlw k

where ‘k’ is the calibration value inserted in the factory.

A value like this, which is embedded in an instruction, is referred to as a literal.

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
../../Baseline/8%20-%207-segment%20displays/PIC_Base_A_8.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 11

As explained in baseline lesson 3, the ‘retlw’ instruction is used to exit a subroutine, returning a value in

the W register to the code which called the subroutine – “return with literal in W”.

This is different from the scheme used in the baseline architecture, where the instruction at the top of

program memory, which loads the calibration value into W, is the first instruction executed when the PIC

is reset, and program execution “wraps around” at the start of memory.

Instead, in the mid-range architecture, the reset vector, where program execution begins, is always at the

start of memory: address 0000h.

On a PIC12F629, the user program, beginning at 0000h, can choose to call the calibration “subroutine”

(consisting of a single ‘retlw’ instruction, as above) at the end of program memory, to “look up” the

correct oscillator calibration for this device. Or, if the internal RC oscillator is not being used, or if exact

timing is not important, the calibration instruction can simply be ignored.

In the baseline examples, we used the ‘res’ directive in a construct like this:

RESET CODE 0x3FF ; processor reset vector

 res 1 ; holds internal RC cal value, as a movlw k

to reserve the program memory used by the calibration instruction, ensuring that it could not be

overwritten by the user program. This is not necessary when using the default, Microchip-supplied linker

script for the 12F629, because that script (unlike the ones that Microchip supply for the baseline PICs)

declares the memory used by the calibration instruction to be “protected”, so that it will not be

overwritten.

Therefore, there is no need to include a CODE directive, like either of those above, in our program. It is

only useful for documentation, but that is not really necessary, since we can adequately comment the code

which loads OSCCAL – see below. But of course, how you choose to comment your code is very much a

matter of personal style.

The next sections in the Microchip-supplied template consist of code used to implement an interrupt

service routine (ISR) (to be introduced in lesson 6) and some code to jump around the ISR. Since we are

not using interrupts in this example, these sections can be deleted.

Since we are using the internal RC oscillator, we should start the program by calibrating it:

RESET CODE 0x0000 ; processor reset vector

 ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; (stored at 0x3FF as a retlw k)

 movwf OSCCAL ; then update OSCCAL

Because program execution begins at address 0x0000, this address is specified in the CODE directive,

placing this code section at the start of program memory, so that it will be executed whenever the PIC is

powered on or reset. Another way to say this is that the program counter, which points to the next

instruction to be executed, is initialised to 0x0000 when then PIC is reset.

This code section is labelled ‘RESET’ here, but you can use any label you want, as long as it’s not a

reserved word and is not the name of any other code section in your program.

Next the oscillator calibration value is retrieved, by using the ‘call’ instruction (“call subroutine”) to call

the calibration instruction at the end of program memory, which returns with the factory calibration value

in W, as described above. Note again that this scheme is different from that used in the baseline devices.

The calibration value can then be written to the OSCCAL register, but before doing so, the bank selection

bits must be configured to allow it to be accessed. As mentioned above, this is an important difference

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
../6%20-%20Interrupts/PIC_Mid_A_6.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 12

between the baseline and mid-range architectures. On mid-range devices, such as the 12F629, you must

ensure that the correct bank is selected when accessing special function registers. The best way to ensure

this, avoiding errors and making your code more portable, is to use the ‘banksel’ directive, as shown in

the code above, and as explained in baseline lesson 3.

Finally, the ‘movwf’ instruction – “move W to file register” – is used to copy (“move”, in Microchip-

speak) the factory calibration value, held in W, into the OSCCAL register.

At this point, all the preliminaries are out of the way. The processor has been specified, the configuration

set, and the oscillator calibration value updated.

Next it is usual to initialise special function registers, to configure the PIC’s ports and peripherals

appropriately.

In this case, we need to configure the GP1 pin as an output:

 ; configure port

 movlw ~(1<<GP1) ; configure GP1 (only) as an output

 banksel TRISIO

 movwf TRISIO

Recall that, to configure a pin as an output, the corresponding bit in the TRISIO register must be cleared;

by default the TRIS bits are set to ‘1’, meaning that all pins are configured as inputs at power-up.

The first instruction, ‘movlw’ – “move literal to W” – loads a value into W.

We could have written this instruction as:

 movlw b’111101’ ; configure GP1 (only) as an output

Note that to specify a binary number in MPASM, the syntax b’binary digits’ is used, as shown.

This binary value, when loaded into TRISIO, will configure GP1 as an output, leaving the remaining pins

configured as inputs.

However, it is often clearer to make use of expressions containing symbols defined in the processor

include file, such as ‘GP1’, instead of writing binary constants. For example, the expression ‘~(1<<GP1)’

is equivalent to the binary constant b’11111101’ (only six bits of this value need be specified in the

instruction above, because the top two bits of TRISIO are unused). Another advantage of using symbols

is that mistyping a symbol is likely to be picked up by the assembler, while mistyping a binary constant is

likely to be missed, making the use of symbols less error-prone.

Having loaded the correct value into W, the ‘movwf’ instruction is used to write it to TRISIO. And, of

course, banksel is used to select the bank containing TRISIO, before it is accessed.

To make GP1 output a ‘high’, we have to set bit 1 of GPIO to ‘1’.

This could be done by:

 banksel GPIO

 movlw 1<<GP1 ; set GP1 high

 movwf GPIO

using the ‘movlw’ and ‘movwf’ instructions we have already seen.

Note: The tris instruction is not used to write to the TRIS registers on mid-range devices.

The TRIS registers are accessed using general instructions, such as movwf.

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 13

The remaining bits in GPIO are cleared, but since the other pins are all inputs, it doesn’t matter, in this

example, what their corresponding GPIO bits are set to.

However, in many cases you will want to set or clear a single bit, while leaving the other bits in a register

unchanged. This can be done with the bit set and clear instructions:

‘bsf f,b’ sets bit ‘b’ in register ‘f’ to ‘1’ – “bit set file register”.

‘bcf f,b’ clears bit ‘b’ in register ‘f’ to ‘0’ – “bit clear file register”.

These instructions, and any like them, which operate by reading a register, modifying its contents, and

then writing the changed value back to the register, can create problems when used with port registers,

such as GPIO. This is referred to as the read-modify-write problem, and is explained in more detail in

baseline lesson 2. It can happen because, in the mid-range and baseline architectures, whenever an

instruction reads a port register, the external pins are read, not the internal “output latch” which had been

written to. This means that, if an output is slow to change because of a capacitive load, or is being held

low or high by an excessive external load, the value read may not match the value written to it. And that

can lead to unexpected results, when using instructions such as ‘bsf’ and ‘bcf’.

However, in this simple example, it is very unlikely that there will be any problem with simply turning on

a single output, since we are not making any fast changes (and hence capacitive loading is not an issue),

we are not changing multiple pins in the same port using sequential instructions (not giving a pin time to

change, before being read by the next instruction) and there is no significant load on the pin. So it is safe

to use:

 banksel GPIO

 bsf GPIO,GP1 ; set GP1 high

If we leave it there, when the program gets to the end of this code, it will continue executing whatever

instructions happen to be in the rest of the program memory; not what we want! So we need to get the

PIC to just sit doing nothing, with the LED still turned on, until it is powered off.

What we need is an “infinite loop”, where the program does nothing but loop back on itself, indefinitely.

Such a loop could be written as:

here goto here

‘here’ is a label representing the address of the goto instruction.

‘goto’ is an unconditional branch instruction. It tells the PIC to go to a specified program address.

This code will simply go back to itself, always. It’s an infinite, do-nothing, loop.

A shorthand way of writing the same thing, that doesn’t need a unique label, is:

 goto $; loop forever

‘$’ is an assembler symbol meaning the current program address.

So this line will always loop back on itself.

Finally, at the end of your program source, you must include an ‘END’ directive.

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 14

If you put together all the pieces of code presented above, and assemble it, the assembler will give you a

couple of messages like:

Message[302] C:\...\MA_L1-TURN_ON_LED.ASM 49 : Register in operand not in bank

0. Ensure that bank bits are correct.

These messages are generated whenever your code references a register which is not in bank 0, to remind

you that you should be taking care to set the bank selection bits correctly. Since we have been taking care

to ensure that the bank selection bits are correct, it can be annoying to see these messages – particularly in

a larger program, where there will be many more of them. And worse, having a large number of

unnecessary messages can make it easy to miss more important messages and warnings.

Luckily, messages and warnings can be disabled, using the ‘errorlevel’ directive:

 errorlevel -302 ; no warnings about registers not in bank 0

This should be placed toward the beginning of your program.

Complete program

Putting together all the above, here’s our complete assembler source for turning on an LED:

;**

; *

; Description: Lesson 1, example 1 *

; *

; Turns on LED. LED remains on until power is removed. *

; *

;**

; *

; Pin assignments: *

; GP1 = indicator LED *

; *

;**

 list p=12F629

 #include <p12F629.inc>

 errorlevel -302 ; no warnings about registers not in bank 0

;***** CONFIGURATION

 ; ext reset, no code or data protect, no brownout detect,

 ; no watchdog, power-up timer, 4 Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

_PWRTE_ON & _INTRC_OSC_NOCLKOUT

;***** RESET VECTOR ***

RESET CODE 0x0000 ; processor reset vector

 ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; (stored at 0x3FF as a retlw k)

 movwf OSCCAL ; then update OSCCAL

;***** MAIN PROGRAM ***

;***** Initialisation

start

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 15

 ; configure port

 movlw ~(1<<GP1) ; configure GP1 (only) as an output

 banksel TRISIO

 movwf TRISIO

;***** Main code

 ; turn on LED

 banksel GPIO

 bsf GPIO,GP1 ; set GP1 high

 ; loop forever

 goto $

 END

Now that you have the complete assembler source, you can build the application, which involves

assembling the source files to create object files, and then linking the object files to build the executable

code. Normally this is transparent; MPLAB does both steps for you in a single operation. It is really only

important to know that assemble and link steps are separate operations when working with projects that

consist of multiple source files or libraries of pre-assembled routines.

The build process is shown in detail in baseline lesson 1, but, briefly, to build a project in MPLAB 8,

select the “Project Make” menu item, press F10, or click on the “Make” toolbar button:

“Make” will assemble any source files which need assembling (i.e. ones

which have changed since the last time the project was built), then link them

together.

If you are using MPLAB X, you should first ensure that your project is the “main” project – it should be

highlighted in bold in the Projects window. If not, right-click it and select “Set as Main Project”.

To build the project, right-click it in the Projects window and select “Build”, or select the “Run → Build

Main Project” menu item, or simply click on the “Build Main Project” button (looks like a hammer) in the

toolbar:

This will assemble any source files which have changed since the

project was last built, and link them.

The final step is to load (program) the final assembled and linked code into the PIC. This process is also

shown in more detail in baseline lesson 1.

If you are using a PICkit 2 or PICkit 3 programmer, the PIC12F629 can be programmed from within

MPLAB 8 or MPLAB X.

In MPLAB 8, select PICkit 2 or PICkit 3 from the “Programmer Select Programmer” submenu.

If you are using a PICkit 3, you may see messages telling you that new firmware must be downloaded, or

warning you that the voltage may be too high – just click ‘OK’ on these. You also need to tell your PICkit

3 to provide power. Open the PICkit 3 Settings window by selecting the “Programmer → Settings” menu

item and then in the “Power” tab, select “Power target circuit from PICkit 3”.

../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 16

After you select your programmer, an additional toolbar will appear.

For the PICkit 2, it looks like:

For the PICkit 3, we have:

The first icon (on the left) is used to initiate programming. When you click on it, you should see messages

telling you that the PIC is being programmed and verified.

Your PIC should now be programmed!

If you are using a PICkit 3, the LED on GP1 should immediately light.

If you have a PICkit 2, you won’t see anything yet. That is because, by default, the PICkit 2 holds the

MCLR line low after programming. Since we have used the _MCLRE_ON option, enabling external reset,

the PIC is held in reset and the program will not run. If the external reset was disabled, the LED would

have lit as soon as the PIC was programmed.

To allow the program to run, click on the icon.

The LED should now light up!

If you are using MPLAB X, you must first ensure that your PICkit 2 or PICkit 3 is selected as the

hardware (programmer) tool in the project properties window, which you can open by right-clicking your

project in the Projects window and selecting “Properties”, or simply click on the “Project Properties”

button on the left side of the Project Dashboard.

While in the project properties window, if you have a PICkit 3, you should ensure that the “Power target

circuit from PICkit3” option, under the PICkit 3’s “Power” category, is selected.

To program the PIC and run your program (in a single operation):

 Right-click your project in the Projects window, and select “Run”, or

 Select the “Run → Run Main Project” menu item, or

 Press ‘F6’, or

 Click on the “Make and Program Device” button in the toolbar:

Whichever of these you choose, you should see output messages ending in:

Running target...

The LED on GP1 should now light.

Being able to build, program and run in a single step, by simply pressing ‘F6’ or clicking on the “Make

and Program Device” button is very useful, but what if you don’t want to automatically run your code,

immediately after programming?

If you want to avoid running your code, click on the “Hold in Reset” toolbar button () before

programming. You can now program your PIC as above.

Your code won’t run until you click the reset toolbar button again, which now looks like and is now

tagged as “Release from Reset”.

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 17

Example 2: Flashing an LED (50% duty cycle)

Having lit a single LED, the next step is to make it flash.

Although it is often preferable to make use of timer-driven interrupt routines (as we will see in lesson 6) to

do something like flashing an LED in the “background”, the simplest approach is to simply light the LED,

wait for some time by using a fixed delay, toggle the LED, wait again, and then repeat.

Or, if the LED is going to be on half the time (on for the same period that it is off, for a 50% duty cycle),

we can simply continue to repeatedly toggle the LED, following a single fixed delay, as expressed in the

following pseudo-code:

start with LED off

repeat

 delay 500 ms

 toggle LED

done

Note that the 500 ms delay gives a total flash period of 1 s, meaning that the LED is flashing at 1 Hz.

But first, you’ll need to create a new project. It makes sense to base it on the project and code you created

in example 1; one method for doing this is given in baseline lesson 2.

The configuration sections of the code (specifying the device and its configuration) remain the same, but

of course you should update the comments to reflect this new project.

If you want really accurate timing, you’d use a crystal or external clock source, but the internal RC

oscillator is good enough for simple LED flashing. Nevertheless, to make the LED flash timing as

accurate as possible, it’s important to include the oscillator calibration code at the start of your program.

To generate the delay, we need to make the PIC “do nothing” for some amount of time, and, as explained

in more detail in baseline lesson 2, this is means implementing delay loops.

A loop needs a loop counter: a variable which is incremented or decremented on every pass through the

loop.

Variables are defined by reserving data memory (or general purpose registers), using the ‘UDATA’ and

‘res’ directives. For example:

;***** VARIABLE DEFINITIONS

 UDATA

dc1 res 1 ; delay loop counters

dc2 res 1

However, if you include these directives in your program for the PIC12F629, you will find that, although

the code compiles ok, the build fails in the link phase, with an error like:

Error - section '.udata' can not fit the section.

What’s going on?

Baseline lesson 3 explained that, on many baseline PICs, some registers are banked, being mapped into

only one of the PIC’s banks of data memory, while another set of registers (usually much smaller) are

shared, or unbanked, being mapped into every bank. This is also true for mid-range PICs.

The ‘UDATA’ directive declares a section of banked data memory.

If you do not specify a label for a UDATA section, MPASM will name it ‘.udata’.

Recall that the 12F629 does not have any banked data memory; it is all shared. So this error message is

telling us that the linker cannot find space for our UDATA section, because there is no banked memory to

put it into.

../6%20-%20Interrupts/PIC_Mid_A_6.pdf
../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 18

Therefore, on the 12F629 (or any mid-range PIC without banked GPRs), all variables must be defined

using ‘UDATA_SHR’, which declares a section of shared data memory, instead of ‘UDATA’.

For example:

;***** VARIABLE DEFINITIONS

 UDATA_SHR

dc1 res 1 ; delay loop counters

dc2 res 1

This will declare two single-byte variables, ‘dc1’ and ‘dc2’, in shared memory.

And note that, since the variables are held in shared memory, there is no need to use banksel before

accessing them.

Here’s an example of a simple “do nothing” delay loop:

 movlw .N

 movwf dc1 ; dc1 = 10 = number of loop iterations

dly1 nop

 decfsz dc1,f

 goto dly1

The first two instructions initialise the loop counter variable ‘dc1’ to the decimal value “N”. Since the

mid-range PICs are 8-bit devices, “N” has to be between 0 and 255.

Note that numbers in MPASM are specified as being decimal constants by prefixing them with a ‘.’, or

using the syntax d‘decimal digits’. If you don’t do this, the assembler will use the default radix

(hexadecimal), and you may not be using the number you think you are! Although it’s possible to set the

default radix to decimal, you’ll run into problems if you rely on a particular default radix being set, and

then later copy and paste your code into another project, with a different default radix, giving different

results. It’s much safer to simply prefix all decimal numbers with ‘.’.

The ‘decfsz’ instruction performs the work of implementing the loop – “decrement file register, skip if

zero”. First, it decrements the contents of the specified register, and either writes the result back to the file

register (if ‘,f’ is specified as the destination) or to W, (if ‘,w’ is specified as the destination). If the

result is not yet zero, the next instruction is executed, which will normally be a ‘goto’ which jumps back

to the start of the loop. But if the result is zero, the next instruction is skipped, exiting the loop.

Mid-range PICs also have an ‘incfsz’ instruction, equivalent to ‘decfsz’, except that it increments a file

register instead of decrementing it. It’s used in loops where you want to count up from an initial value,

instead of down.

For a ‘decfsz’ loop, the number of loop iterations is equal to the initial value of the loop counter (“N” in

the example above), assuming it is greater than zero.

The ‘nop’ instruction – “no operation” – was included to pad out the example delay loop, to make the

delay longer. It does nothing but take some time to execute.

How much time depends on the clock rate. Instructions are executed at one quarter the rate of the

processor clock. In this case, the PIC is using the internal RC clock, running at a nominal 4 MHz. The

instructions are clocked at ¼ of this rate: 1 MHz. So in this example, each instruction cycle is 1 µs.

Most mid-range PIC instructions, including ‘nop’, execute in a single cycle. The exceptions are those

which jump to another location, such as ‘goto’, which take two cycles to execute.

This means that another useful “do nothing” instruction is ‘goto $+1’. Since ‘$’ stands for the current

address, ‘$+1’ is the address of the next instruction. Hence, ‘goto $+1’ jumps to the following

instruction – apparently useless behaviour. But like all ‘goto’ instructions, it executes in two cycles. So

‘goto $+1’ provides a two cycle delay in a single instruction – equivalent to two ‘nop’s, but using less

program memory.

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 19

The ‘decfsz’ instruction normally executes in a single cycle. But if the result is zero, and the next

instruction is skipped, an extra cycle is added, making it a two-cycle instruction.

To calculate the total time taken by the loop, add the execution time of each instruction in the loop:

 nop 1

 decfsz dc1,f 1 (except when result is zero)

 goto dly1 2

That’s a total of 4 cycles, except the last time through the loop, when the decfsz takes an extra cycle and

the goto is not executed (saving 2 cycles), meaning the last loop iteration is 1 cycle shorter. And there

are two instructions before the loop starts, adding 2 cycles.

Therefore the total delay time = (N × 4 1 + 2) cycles = (N × 4 + 1) µs

If there was no ‘nop’, the delay would be (N × 3 + 1) µs.

It may seem that, because 255 is the highest 8-bit number, the maximum number of iterations (N) should

be 255. But not quite. If the loop counter is initially 0, then the first time through the loop, the ‘decfsz’

instruction will decrement it to 255, which is non-zero, and the loop continues – another 255 times.

Therefore the maximum number of iterations is in fact 256, with the loop counter initially 0.

So for the longest possible single loop delay, we can do something like:

 clrf dc1 ; loop 256 times

dly1 nop

 decfsz dc1,f

 goto dly1

The two “move” instructions have been replaced with a single ‘clrf’ instruction , which clears (to 0) the

specified register – “clear file register”.

This uses 1 cycle less, so the total time taken is 256 × 4 = 1024 µs 1 ms.

That’s still well short of the 0.5 s needed, so we need to wrap (or nest) this loop inside another, using

separate counters for the inner and outer loops, as shown:

 movlw .N ; loop (outer) N times

 movwf dc2

 clrf dc1 ; loop (inner) 256 times

dly1 nop ; inner loop = 256 x 4 – 1 = 1023 cycles

 decfsz dc1,f

 goto dly1

 decfsz dc2,f

 goto dly1

The loop counter ‘dc2’ is being used to control how many times the inner loop is executed.

Note that there is no need to clear the inner loop counter (dc1) on each iteration of the outer loop, because

every time the inner loop completes, dc1 = 0.

The total time taken for each iteration of the outer loop is 1023 cycles for the inner loop, plus 1 cycle for

the ‘decfsz dc2,f’ and 2 cycles for the ‘goto’ at the end, except for the final iteration, which, as

we’ve seen, takes 1 cycle less. The three setup instructions at the start add 3 cycles, so the total delay

(assuming N > 0) is:

delay time = (N × (1023 + 3) 1 + 3) cycles = (N × 1026 + 2) µs.

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 20

The maximum delay would be with 256 outer loop iterations, giving 262,658 µs. We need a bit less than

double that. We could duplicate all the delay code, but it takes fewer lines of code if we only duplicate the

inner loop, as shown:

 ; delay 500 ms

 movlw .244 ; outer loop: 244 x (1023 + 1023 + 3) + 2

 movwf dc2 ; = 499,958 cycles

 clrf dc1 ; inner loop: 256 x 4 - 1

dly1 nop ; inner loop 1 = 1023 cycles

 decfsz dc1,f

 goto dly1

dly2 nop ; inner loop 2 = 1023 cycles

 decfsz dc1,f

 goto dly2

 decfsz dc2,f

 goto dly1

The two inner loops of 1023 cycles each, plus the 3 cycles for the outer loop control instructions (decfsz

and goto) make a total of 2049 µs. Dividing this into the required 500,000 gives 244.02. This is very

close to a whole number, so an outer loop count of 244 will give a good result.

The total execution time for this delay code is 499.958 ms – within 0.01% of the desired result!

Since the internal RC oscillator has a precision of only around ±2%, there is no point trying to make this

delay any more accurate. But in some cases, to generate a given delay, you will need to add or remove

‘nop’ or ‘goto $+1’ instructions while adjusting the number of loop iterations. With a little

experimentation, it is generally possible to get quite close to the delay you need.

For delays longer than about 0.5 s, you’ll need to add more levels of nesting – with enough levels you

generate delays which last for years!

Next we need to be able to toggle, or flip the GP1 output from low to high and back again.

As we saw in baseline lesson 2, to flip a single bit, you can exclusive-or it with 1.

For example, to toggle GP1, we could write:

 movlw 1<<GP1 ; bit mask to flip only GP1

 xorwf GPIO,f ; flip bits in GPIO

The ‘xorwf’ instruction exclusive-ors the W register with the specified register – “exclusive-or W with

file register”, and writes the result either to the specified file register (GPIO in this case) or to W,

depending on whether ‘,f’ or ‘,w’ is given as the instruction destination.

However, as mentioned earlier, there is a danger in using instructions, such as ‘xorwf’, which read from a

register, modify the contents and then write the new value back to the register, to operate directly on port

registers, because the value read from a port pin will not always be the same as that written to it.

To avoid these potential read-modify-write problems, it is better to use a shadow register, which holds a

copy of the value the port register is supposed to have, operating on that shadow copy and then copying

the updated value to the port register in a single operation.

For example, if we define a variable to use as a shadow register:

 UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

we can use it in a loop to flash the LED, as follows:

 clrf sGPIO ; start with shadow GPIO zeroed

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 21

flash ; toggle LED

 movf sGPIO,w ; get shadow copy of GPIO

 xorlw 1<<GP1 ; flip bit corresponding to GP1

 movwf sGPIO ; in shadow register

 banksel GPIO ; and write to GPIO

 movwf GPIO

 ; delay 500 ms (delay code goes here)

 goto flash ; repeat forever

The ‘movf’ instruction – “move file register to destination” – is used to read a register.

With ‘,w’ as the destination, ‘movf’ copies the contents of the specified register to W.

With ‘,f’ as the destination, ‘movf’ copies the contents of the specified register to itself. That would

seem to be pointless; why copy a register back to itself? The answer is that the ‘movf’ instruction affects

the Z (zero) status flag, so copying a register to itself is a way to test whether the value in the register is

zero.

The ‘xorlw’ instruction exclusive-ors the given literal (constant) value with the W register, placing the

result in W – “exclusive-or literal to W”.

Complete program

Putting together all the above pieces, here’s the complete program for flashing an LED:

;**

; *

; Description: Lesson 1, example 2 *

; *

; Flashes an LED at approx 1 Hz. *

; LED continues to flash until power is removed. *

; *

; Uses inline 500 ms delay routine *

; *

;**

; *

; Pin assignments: *

; GP1 = indicator LED *

; *

;**

 list p=12F629

 #include <p12F629.inc>

 errorlevel -302 ; no warnings about registers not in bank 0

;***** CONFIGURATION

 ; ext reset, no code or data protect, no brownout detect,

 ; no watchdog, power-up timer, 4 Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF &

_PWRTE_ON & _INTRC_OSC_NOCLKOUT

;***** VARIABLE DEFINITIONS

 UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

dc1 res 1 ; delay loop counters

dc2 res 1

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 22

;***** RESET VECTOR ***

RESET CODE 0x0000 ; processor reset vector

 ; calibrate internal RC oscillator

 call 0x03FF ; retrieve factory calibration value

 banksel OSCCAL ; (stored at 0x3FF as a retlw k)

 movwf OSCCAL ; then update OSCCAL

;***** MAIN PROGRAM ***

;***** Initialisation

start

 ; configure port

 movlw ~(1<<GP1) ; configure GP1 (only) as an output

 banksel TRISIO

 movwf TRISIO

 clrf sGPIO ; start with shadow GPIO zeroed

;***** Main loop

main_loop

 ; toggle LED

 movf sGPIO,w ; get shadow copy of GPIO

 xorlw 1<<GP1 ; toggle bit corresponding to GP1

 movwf sGPIO ; in shadow register

 banksel GPIO ; and write to GPIO

 movwf GPIO

 ; delay 500 ms

 movlw .244 ; outer loop: 244 x (1023 + 1023 + 3) + 2

 movwf dc2 ; = 499,958 cycles

 clrf dc1 ; inner loop: 256 x 4 - 1

dly1 nop ; inner loop 1 = 1023 cycles

 decfsz dc1,f

 goto dly1

dly2 nop ; inner loop 2 = 1023 cycles

 decfsz dc1,f

 goto dly2

 decfsz dc2,f

 goto dly1

 ; repeat forever

 goto main_loop

 END

If you follow the programming procedure described earlier, you should now have an LED flashing at

something very close to 1 Hz.

Conclusion

There has been a lot of theory in this lesson, but we now have a solid base to build on.

By flashing an LED, you have shown that you have a working development environment and that you can

create projects, modify your code, load (program) your code into your PIC, and make it run.

© Gooligum Electronics 2012 www.gooligum.com.au

Mid-range PIC Assembler, Lesson 1: Basic Digital Output Page 23

We’ve seen how to toggle a pin, and how to use shadow registers can be used to avoid potentially

problematic “read-modify-write” operations on a port.

We also saw how to use decrement instructions with conditional tests to implement loops, and how to use

loops to create delays of any length.

In the next lesson we’ll see how to make the code more modular, so that useful code such as the 500 ms

delay developed here can be easily re-used within a program, or in other programs.

../2%20-%20Modular%20code/PIC_Mid_A_2.pdf

	Introduction to PIC Programming
	Mid-Range Architecture and Assembly Language
	Lesson 1: Basic Digital Output
	Getting Started
	Introducing the PIC12F629
	PIC12F629 Input/Output
	Example 1: Turning on an LED
	Complete program

	Example 2: Flashing an LED (50% duty cycle)
	Complete program

	Conclusion

