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Introduction to PIC Programming 

Mid-Range Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 1: Basic Digital Output 

 

 

The Baseline PIC Assembler tutorial series introduced the baseline (12-bit) PIC architecture, using devices 

including the 8-pin digital-only PIC12F509 and 14-pin analog-capable PIC16F506.  The series culminated 

in the development of a simple light meter with smoothed 2-digit decimal output on 7-segment LED 

displays.  However, it was apparent that the limitations of the baseline architecture, such as the lack of 

interrupts, a maximum of 16 contiguous bytes of banked data memory, and the availability of only a single 

8-bit timer, make it difficult to develop applications significantly more complex than this.  The baseline 

architecture’s limitations became especially evident when implementing the same examples in C, in the 

Baseline PIC C Programming tutorial series. 

The mid-range (14-bit) PIC architecture overcomes many of these limitations, offering more memory, 

larger contiguous blocks of data memory, with simpler and less restricted memory access, more timers, 

greater flexibility in many areas, additional assembler instructions, a much greater range of peripherals, 

and support for interrupts – significant, because interrupts allow a different (better) approach to many 

programming problems, as we will see in later lessons. 

This tutorial series introduces the mid-range architecture.  Assembly language is used, as that is the best 

way to gain a thorough understanding of the PIC core and peripherals (languages like C or BASIC hide 

many of the implementation details, which can make life much easier for the programmer – but the aim 

here is to gain a good understanding of the underlying hardware). 

These lessons assume some familiarity with the content covered in the Baseline PIC Assembler series.  

Although there is some repetition of material, wherever a topic has been covered in the baseline tutorials, 

it is described more briefly here, along with a reference to the baseline lesson where the topic was 

introduced.  This approach is practical because the mid-range architecture builds on the baseline 

architecture we are already familiar with; most of the concepts, and nearly all the assembler instructions, 

are the same. 

 

This lesson introduces one of the simplest of the mid-range PICs – the PIC12F629.  It then goes on to 

describe basic digital output by lighting and flashing LEDs, as covered in lessons 1 and 2 of the baseline 

assembler tutorial series.  

In summary, this lesson covers: 

 Introduction to the PIC12F629 

 Simple digital output to LEDs 

 Using loops to create delays 

 Using shadow registers to avoid the ‘read-modify-write’ problem 

../../Baseline
../../Baseline%20C
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
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Getting Started 

These tutorials assume that you are using a Microchip PICkit 2or PICkit 3 programmer and either the 

Gooligum Baseline and Mid-range PIC Training and Development Board or Microchip’s Low Pin Count 

Demo Board, with Microchip’s MPLAB 8 or MPLAB X integrated development environment.  But it is of 

course possible to adapt these instructions to a different programmers and/or development boards. 

See lesson 0 and baseline lesson 1 for more details 

As mentioned, we’re going to start with one of the simplest of the mid-range PICs – the 8-pin PIC12F629.  

It is roughly equivalent to the PIC12F509, introduced in baseline lesson 3, but in addition to simple digital 

I/O, it also includes an analog comparator, a 16-bit timer, and a 128-byte EEPROM.  However, it does not 

include an analog-to-digital converter, nor does it include any advanced peripherals or interfaces.  That 

makes it a good chip to start with; we’ll look at the additional features of more advanced mid-range PICs 

in later lessons. 

In summary, for this lesson you should ideally have: 

 A PC running Windows (XP, Vista or 7), with a spare USB port 

 Microchip’s MPLAB 8 IDE software 

 A Microchip PICkit 2 or PICkit 3 PIC programmer 

 The Gooligum mid-range training board 

 A PIC12F629-I/P microcontroller (supplied with the Gooligum training board) 

Introducing the PIC12F629 

When working with any microcontroller, you should always have on hand the latest version of the 

manufacturer’s data sheet, which, for the 12F629, can be downloaded from www.microchip.com. 

The data sheet for the 12F629 also covers the 12F675, which is essentially the same device, with the 

addition of an analog-to-digital converter (ADC). 

The features of various 8-pin PICs are summarised in the following table: 

Device 

Memory (words or bytes) Timers Analog 
Clock rate 

(max MHz) 
Program Data EEPROM 8-bit 16-bit 

Comp-

arators 

ADC 

inputs 

12F508 512 25 0 1 0 0 0 4 

12F509 1024 41 0 1 0 0 0 4 

12F510 1024 38 0 1 0 1 3 8 

12F519 1024 41 64 1 0 0 0 8 

12F609 1024 64 0 1 1 1 0 20 

12F615 1024 64 0 2 1 1 4 20 

12F629 1024 64 128 1 1 1 0 20 

12F675 1024 64 128 1 1 1 4 20 

12F683 2048 128 256 2 1 1 4 20 

12F1501 1024 64 0 2 1 1 4 20 

12F1822 2048 128 256 2 1 1 4 32 

12F1840 4096 256 256 2 1 1 4 32 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../PIC_Intro_0.pdf
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
http://www.microchip.com/
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The 12F629 has only a little more data memory than the 12F509, but it is arranged differently, as shown in 

the following register map: 

 

The 12F509’s register map, 

and the concept of banked 

register access, was described 

in baseline lesson 3. 

A few differences are 

immediately apparent: 

In the mid-range PICs, each 

bank consists of 128 registers, 

compared with only 32 

registers in the baseline 

architecture. 

The first 32 addresses in each 

register bank are used for 

special function registers 

(SFRs); the remaining 96 

addresses in each bank are 

available for general-purpose 

registers (GPRs), allowing 

much larger contiguous 

blocks of data memory to be 

created. 

This means that, although the 

12F629 has less data memory 

than the 16F506 (64 bytes 

compared with 72 bytes), the 

larger address space of the 

mid-range architecture means 

that the 12F629’s 64 bytes are 

mapped into a single bank, 

not spread across four banks, 

as they would be in the 

baseline architecture. 

Note that the GPRs are 

mapped into both banks, 

meaning that all data memory 

in the 12F629 is shared, not 

banked. 

Another significant difference 

from the baseline architecture 

is that most SFRs appear in 

only in one bank or the other.  

This means that, when 

accessing SFRs on mid-range 

PICs, it is very important to 

ensure that the correct bank 

is selected. 

PIC12F629 Registers 

Address Bank 0 Address Bank 1 

00h INDF 80h INDF 

01h TMR0 81h OPTION_REG 

02h PCL 82h PCL 

03h STATUS 83h STATUS 

04h FSR 84h FSR 

05h GPIO 85h TRISIO 

06h 
 

86h 
 

09h 89h 

0Ah PCLATH 8Ah PCLATH 

0Bh INTCON 8Bh INTCON 

0Ch PIR1 8Ch PIE1 

0Dh  8Dh  

0Eh TMR1L 8Eh PCON 

0Fh TMR1H 8Fh  

10h T1CON 90h OSCCAL 

11h 

 

91h 
 

 94h 

 95h WPU 

 96h IOC 

 97h 
 

18h 98h 

19h CMCON 99h VRCON 

1Ah 

 

9Ah EEDATA 

 9Bh EEADR 

 9Ch EECON1 

 9Dh EECON2 

 9Eh 
 

1Fh 9Fh 

20h 

General 

Purpose 

Registers 

A0h 

Map to Bank 0 
20h – 5Fh 

  

5Fh DFh 

60h 
 

E0h 
 

7Fh FFh 

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
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As described in baseline lesson 3, the banksel assembler directive will reliably set the bank selection bits 

for the specified register address.  Some SFRs are grouped, so that once the correct bank is selected for 

one of them, you can be sure that the bank selection will not need to be changed before accessing other 

registers in the group.  But if you are ever in doubt, use banksel.  And remember that just because two 

registers happen to be in the same bank in the 12F629, it may not be guaranteed to be true in other mid-

range PICs. 

Bank selection is controlled by the RP0 bit in the STATUS register: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS IRP RP1 RP0 TO   PD   Z DC C 

 

If RP0 = 0, bank 0 is selected; if RP0 = 1, bank 1 is selected. 

The RP1 and IRP bits are unused on the 12F629; they are used in mid-range devices, such as the 16F690, 

which have four register banks.  In devices with four banks, RP0 and RP1 are used in combination to 

select the bank for direct register access, while IRP is used select the bank for indirect register access (see 

lesson 14) – necessary because FSR, being 8-bits wide, can only point to one of 256 registers, but a four-

bank device has 512 register addresses (128 addresses in each bank). 

This is much more convenient than the bank selection scheme used in the baseline architecture, where bits 

in the FSR register were used, which meant that indirect register access could not be done separately from 

direct register access – a limitation which makes it very difficult for C compilers to implement banked 

array access on baseline devices, as we saw in baseline C lesson 7.  The mid-range architecture has no 

such limitation. 

The remaining bits in the STATUS register, TO  , PD  , Z, DC and C, are equivalent to their counterparts 

in the baseline architecture. 

The TRIS (called TRISIO on the 12F629) and OPTION registers are no longer accessed through special 

instructions, but appear in the register map and are directly accessible, in the same way as any other 

register.  Importantly, this means that these registers are now readable, as well as writable, making it 

possible to update individual bits. 

Note that the OPTION register is called OPTION_REG on mid-range PICs, because “option” is a 

reserved word in MPASM. 

The working register, ‘W’ (equivalent to the ‘accumulator’ in some other microprocessors), is not mapped 

into memory, and so does not appear in the register map. 

PIC12F629 Input/Output 

Like the 12F509, the 12F629 provides six I/O pins in an eight-pin package: 

 

VDD is the positive 

power supply. 

VSS is the 

“negative” supply, 

or ground.  All of 

the input and 

output levels are 

measured relative 

to VSS. 

1 

2 

3 

4 

8 

7 

6 

5 

P
IC

1
2

F
6

2
9
 

VDD VSS 

GP5/T1CKI/OSC1/CLKI

N 

GP4/ T1G  /OSC2/CLKOUT 

GP3/ MCLR   

GP0/C1IN+ 

GP1/C1IN- 

GP2/T0CKI/INT/COUT 

../../Baseline/3%20-%20Modular%20code/PIC_Base_A_3.pdf
../14%20-%20Int%20arithmetic%20+%20arrays/PIC_Mid_A_14.pdf
../../Baseline%20C/7%20-%20ADC%20+%20arrays/PIC_Base_C_7.pdf
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In most circuits, there is only a single ground reference, at 0 V, and VSS will be connected to ground. 

The power supply voltage (VDD, relative to VSS) can range from 2.0 V to 5.5 V, although at least 3.0 V is 

needed if the clock rate is greater than 4 MHz, and at least 4.5 V is needed to run the PIC at more than 10 

MHz. 

A bypass capacitor, typically 100 nF and preferably ceramic, should be placed between VDD and VSS, as 

close to the chip as practical, to provide transient power as the current drawn by the PIC changes, and to 

limit the effect of noise on the power rails.  You may find that you can “get away” without using a bypass 

capacitor, particularly in a small battery-powered circuit.  But figuring out why your PIC keeps randomly 

resetting itself is hard, while 100 nF capacitors are cheap, so include them in your designs! 

 

The remaining pins, GP0 to GP5, are the I/O pins.  They are used for digital input and output, except for 

GP3, which can only be an input.  The other pins – GP0, GP1, GP2, GP4 and GP5 – can be 

individually set to be inputs or outputs. 

Note however that each I/O pin has one or more functions that can be assigned to it, such as a comparator 

output, or a counter input.  As we will see later, in some cases these alternate functions need to be disabled 

before a pin can be used for digital I/O. 

Taken together, the six I/O pins comprise the general-purpose I/O port, or GPIO port. 

 

If a pin is configured as an output, the output level is set by the corresponding bit in the GPIO register: 

Setting a bit to ‘1’ outputs a ‘high’ on the corresponding pin; setting it to ‘0’ outputs a ‘low’. 

If a pin is configured as an input, the input level is represented by the corresponding bit in the GPIO 

register.  If the input on a pin is high, the corresponding bit reads as ‘1’; if the input pin is low, the 

corresponding bit reads as ‘0’. 

 

The TRISIO register controls whether a pin is set as an input or output: 

To configure a pin as an input, set the corresponding bit in the TRISIO register to ‘1’.  In the input state, 

the PIC’s output drivers are effectively disconnected from the pin.   

To configure a pin as an output, clear the corresponding TRISIO bit to ‘0’. 

By default, each pin is an ‘input’; the TRISIO register is set to all ‘1’s when the PIC is powered on. 

Note that TRISIO<3> is greyed-out.  Clearing this bit will have no effect because, as mentioned above, 

the GP3 pin is always an input. 

When configured as an output, each I/O pin on the 12F629 can source or sink up to 25 mA – enough to 

directly drive an LED, without needing an external transistor. 

In total, the GPIO port can source or sink up to 125 mA. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

GPIO   GP5 GP4 GP3 GP2 GP1 GP0 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

TRISIO   TRISIO5 TRISIO4  TRISIO2 TRISIO1 TRISIO0 
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Example 1: Turning on an LED 

We’ll start the same way that we did in baseline lesson 1, by simply lighting a single LED, connected to 

one of the 12F629’s digital I/O pins. 

This might appear to be a trivial task, but if you can do something as simple as lighting an LED, you will 

have proven that you have a functioning circuit, that your PIC code is correct, that you have properly set 

up an appropriate development environment, and that you can use it effectively to assemble your code and 

load it into the PIC.  When you have achieved all that, you have a firm base to build on. 

The complete circuit looks like this: 

As you can see, besides the PIC, there isn’t 

very much needed at all. 

 

The power supply should be at least 3 V to 

properly light the LED.  A 5 V supply is 

assumed in these lessons, reflecting the default 

voltage provided by the PICkit 2 and PICkit 3 

programmers. 

 

A 330 Ω resistor, in series with the LED, is 

shown here, because that is the value used on 

the Gooligum training board.  But you can 

choose any value for this resistor, as long as it 

limits the LED current to no more than 25 mA 

– the maximum rated current for each pin.  

 

The pushbutton acts as a reset switch. 

Pin 4 can be configured as either a digital input (GP3) or as an external reset (“master clear”, MCLR  ), 

which, if pulled low, will reset the processor. 

In this example, we’ll configure the PIC for external reset.  When the pushbutton is pressed, pin 4 will be 

pulled low, resetting the device.  The PICkit 2 and PICkit 3 are also able to pull the reset line low, 

allowing MPLAB to control MCLR   – which is useful for starting and stopping your program. 

Of course, when the pushbutton isn’t pressed, we want the PIC to run our program, and for that to happen, 

if external reset is enabled, the MCLR  input must be held high.  This is what the 10 kΩ pull-up resistor is 

for; it holds MCLR   high while the switch is open
1
. 

The pushbutton is connected to MCLR   via a 1 kΩ resistor.  As explained in baseline lesson 4, resistors 

like this can be used to avoid damage in case an input pin is inadvertently programmed as an output.  Such 

damage is impossible in this case because, as mentioned above, GP3 can only ever be an input.  The most 

important reason for the resistor between pin 4 and the pushbutton is to allow the PIC to be safely and 

successfully programmed by the PICkit 2 or PICkit 3, using the ICSP programming protocol, when pin 4 

is used as the ‘VPP’ input.  During ICSP programming, a high voltage (around 12 V) is applied to VPP, to 

place the PIC into programming mode.  The 1 kΩ resistor is necessary to protect the PICkit 2 or PICkit 3, 

in case the pushbutton is pressed during programming, grounding the VPP (12 V) signal. 

                                                      

1
 This external pull-up resistor wasn’t needed in the baseline PIC examples, because the baseline PICs, and indeed 

most mid-range PICs, include an internal weak pull-up (see lesson 3) on MCLR   which is automatically enabled 

whenever the device is configured for external reset. 

../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline/4%20-%20Reading%20switches/PIC_Base_A_4.pdf
../3%20-%20Reading%20switches/PIC_Mid_A_3.pdf
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If you are using the Gooligum training board, plug your PIC12F629 into the top section of the 14-pin IC 

socket – the section marked ‘12F’
2
.  Close jumpers JP3 and JP12 to bring the 10 kΩ resistor into the 

circuit and to connect the LED to GP1, and ensure that every other jumper is disconnected.  

If you have the Microchip Low Pin Count Demo Board, refer back to baseline lesson 1 to see how to build 

this circuit, either by adding an LED and resistor to the prototyping area or making a connection from 

GP1 to one of the LEDs on the board via the 14-pin header. 

Plug your PICkit 2 or PICkit 3 programmer into the ICSP connector on the training or demo board, with 

the arrow on the board aligned with the arrow on the PICkit, and plug the PICkit into a USB port on your 

PC.  The PICkit 2 or PICkit 3 can supply enough power for this circuit, so there is no need to connect an 

external power supply. 

 

With this simple circuit in place, and connected to your PC via a PICkit 2 or PICkit 3 programmer, it’s 

time to move on to programming! 

 

The baseline tutorial series explained how to use the MPLAB 8 or MPLAB X environment to create a new 

assembler project.  If you are not familiar with either version of MPLAB, you should follow the 

instructions in baseline lesson 1, but selecting the 12F629 in the project wizard, instead of the 12F509. 

If you choose to use a Microchip-supplied code template, you should choose ‘12F629TMPO.ASM’ in the 

‘…\MPASM Suite\Template\Object’ (for MPLAB 8) or ‘…\mpasmx\templates\Object’ (for MPLAB X) 

directory.  But since this template provides a framework for a number of features, including interrupts, 

which are not covered in this lesson, it is probably best not to include a copy of the template code, but to 

instead start with an empty file. 

 

If you are using MPLAB 8, after finishing the project wizard, you can create a new (empty) file and add it 

to your project by selecting the “Project → Add New File to Project…” menu item (also available under 

the “File” menu, or by right-clicking in the project window), browsing to the project directory, typing a 

name (ending in ‘.asm’) for the new file, and then clicking “Save”. 

Or, if you are using MPLAB X, there are a number of ways to create a new source file and add it to your 

project, but a simple way is to right-click “Source Files” in the project tree, and select “New → ASM 

File...”.  Enter a name for your new file, select ‘.asm’ as the extension, then click on “Finish”. 

 

To begin writing your program, double-click the assembler source file in the project window.  A text 

editor window will open; it will either be blank, or showing the Microchip-supplied template code (if you 

created your file from a copy of it), in which case you will need to edit the template code, deleting some 

parts and changing others, to make it similar to the code presented below. 

The MPLAB text editor is aware of PIC assembler (MPASM) syntax and will colour-code text, depending 

on whether it’s a comment, assembler directive, PIC instruction, program label, etc. 

 

As we did in the baseline tutorial series, we’ll begin each program with a block of comments, giving the 

name of the program, modification date and version, who wrote it, and a general description of what it 

does.  The template code includes a “Files required” section.  This is useful in larger projects, where your 

code may rely on other modules; you can list any dependencies here.  We’ll also document what processor 

                                                      

2
 Note that, although the PIC12F629 comes in an 8-pin package, it will not work in the 8-pin ‘10F’ socket.  You 

must install it in the ‘12F’ section of the 14-pin socket. 

http://www.gooligum.com.au/devboards/base-mid/base-mid.html
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline
../../Baseline/1%20-%20Light%20an%20LED/PIC_Base_A_1.pdf
../../Baseline
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the code is written for, and how each pin is used – and anything else which will help anyone working on 

this code that needs to understand what the program does, and how. 

MPASM comments begin with a ‘;’.  They can start anywhere on a line.  Anything after a ‘;’ is ignored 

by the assembler. 

For example: 

;************************************************************************ 

;                                                                       * 

;   Filename:      MA_L1-Turn_on_LED.asm                                * 

;   Date:          1/5/12                                               * 

;   File Version:  1.2                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Mid-range PIC                                        * 

;   Processor:     12F629                                               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 1                                 * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

 

Next we need to tell MPLAB what processor we’re using: 

    list        p=12F629       

    #include    <p12F629.inc> 

 

The first line tells the assembler which processor to assemble for.  It’s not strictly necessary, as it is set in 

MPLAB (configured when you selected the device in the project wizard).  MPLAB displays the processor 

it’s configured for at the bottom of the IDE window; see the screen shot above.  Nevertheless, you should 

always use the list directive at the start of your assembler source file, in case you have accidentally 

selected the wrong processor in MPLAB.  If there is a mismatch between the list directive and 

MPLAB’s setting, MPASM will warn you and you can correct the problem. 

The next line uses the #include directive which causes an include file (p12F629.inc, located in the 

‘…\MPASM Suite’ directory) to be read by the assembler.  This file sets up aliases, or labels, for all the 

features of the 12F629, so that we can refer to registers etc. by name (e.g. ‘GPIO’) instead of numbers, as 

was explained in baseline lesson 6. 

So, to correctly specify which processor (such as 12F629) is to be used, you need to select that processor 

when you set up the project in MPLAB and include appropriate list and include directives in the 

assembler source. 

../../Baseline/6%20-%20Assembler%20directives/PIC_Base_A_6.pdf
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Next the processor is configured: 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

                _PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

[this directive must be written as a single line in the assembler source code] 

Mid-range PICs have one or more “configuration words” (sometimes referred to as fuses), mapped outside 

the user program memory space, which define a number of aspects of the processor’s configuration.  Like 

the baseline PICs, the 12F629 has a single configuration word. 

The __CONFIG directive is used to define the value(s) to the loaded into the configuration word(s).  It is 

usually used with labels (defined in the processor’s include file) representing values which are intended to 

be ANDed together to set or clear the configuration bits corresponding to the options being selected. We’ll 

examine these in greater detail in later lessons, but briefly the options being selected here are: 

 _MCLRE_ON 

Enables the external reset, or “master clear” ( MCLR  ) on pin 4. 

As mentioned above, if external reset is enabled, pulling this pin low will reset the processor. 

Or, if external reset is disabled, the pin can be used as an input: GP3. 

Unless you need to use every pin for I/O, it’s a good idea to enable external reset by including 

‘_MCLRE_ON’ in the __CONFIG directive. 

 _CP_OFF 

Turns off program memory code protection. 

When your code is in production and you’re selling PIC-based products, you may want to prevent 

others (such as competitors) from accessing your code.  If you specify _CP_ON, the program 

memory will be protected, meaning that if someone tries to use a PIC programmer to read it, all 

they will see are zeros. 

 _CPD_OFF 

Turns off data memory code protection. 

The 12F629 includes “EEPROM” (more correctly, “flash”) data memory, which is separate to the 

register file address space, and is accessed indirectly through special function registers.  This 

memory is non-volatile; it retains its contents when the PIC is powered off.  EEPROM data may 

be considered to be an integral part of the program, and worthy of protection.  If you specify 

_CPD_ON, the EEPROM memory will be protected; its contents cannot be accessed by an external 

PIC programmer.  Or the EEPROM may be used to hold data, such as system configuration or 

logged data, which the user should be able to access, even if the program code is protected. 

To provide this flexibility, program and data (EEPROM) memory are protected independently. 

 _BODEN_OFF 

Disables brown-out detection. 

The PIC’s operation can become unreliable if the supply voltage drops too low, which can happen 

during a brown-out, when the supply voltage sags, but does not fall quickly to zero.  The 12F629 

has brown-out detect circuitry, which will reset the PIC in a brown-out situation, if _BODEN_ON is 

selected.  But if your power supply is not likely to suffer from brown-outs, you can leave this 

feature disabled. 

 _WDT_OFF 

Disables the watchdog timer. 

As we saw in baseline lesson 7, the watchdog timer provides a means of automatically restarting a 

crashed program, or to regularly wake the device from sleep.  Although the watchdog timer is 

very useful in a production environment, it can be a nuisance when prototyping, so it is best left 

disabled to begin with. 

../../Baseline/7%20-%20Special%20features/PIC_Base_A_7.pdf
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 _PWRTE_ON 

Enables the power-up timer. 

When a power supply is first turned on, it can take a while for the supply voltage to stabilise, 

during which time the PIC’s operation may be unreliable.  If the power-up timer is enabled, the 

PIC is held in reset (it does not begin running the user program) for some time, nominally 72 ms, 

after the supply voltage reaches a minimum level. 

For reliable operation, you should leave this option enabled, unless you are using an external 

supervisor circuit, which monitors system voltages and controls the PIC’s external reset. 

 _INTRC_OSC_NOCLKOUT 

Selects the internal RC oscillator as the clock source, with no clock output. 

PICs can be clocked in a number of ways, as we saw for the 12F509 in baseline lesson 7 and the 

16F506 in baseline lesson 8.  The 12F629 supports the same clock options as the 16F506, 

although without the ability to select the frequency of the internal ‘RC’ oscillator, which on the 

12F629 always runs at a nominal 4 MHz.  It is not as accurate or stable as an external crystal, but 

has the advantage of not needing any external components and leaves all of the PIC’s pins free for 

I/O, unless the instruction clock (one quarter of the processor clock rate, i.e.  1 MHz, or 1 µs per 

instruction, given a 4 MHz processor clock) is output on CLKOUT. 

To turn on an LED, we don’t need accurate timing.  And there is no need to make the clock signal 

available externally, so the _INTRC_OSC_NOCLKOUT option is appropriate for this application. 

 

If you have based your project on the Microchip-supplied template code, you will see that the next 

sections in the template relate to defining variables and initialising the EEPROM with data.  Since we do 

not need to use variables or the EEPROM in this example, you can safely delete these sections. 

 

The next section of the template code refers to the oscillator calibration value: 

;----------------------------------------------------------------------------- 

; OSCILLATOR CALIBRATION VALUE 

;----------------------------------------------------------------------------- 

 

OSC       CODE    0x03FF 

 

The CODE directive is used to introduce a section of program code. 

The 0x03FF after CODE is an address in hexadecimal (signified in MPASM by the ‘0x’ prefix).  Program 

memory on the 12F629 extends from 0000h to 03FFh.  This CODE directive is telling the linker to place 

the section of code that follows it at 0x3FF – the very top of the 12F629’s program memory. 

However, in this case, there is no code following this first CODE directive.  Instead, this is simply a marker 

to remind us that the oscillator calibration value is held, as an instruction, at the top of program memory. 

Like the 12F509, the speed of the internal RC oscillator in the 12F629 can be varied over a small range by 

changing the value of the OSCCAL register, to compensate for variability in the manufacturing process.  

Microchip tests every 12F629 in the factory, and calculates the value which, if loaded into OSCCAL, will 

make the oscillator run as close as possible to 4 MHz.  This calibration value is inserted into the 

instruction placed at the top of the program memory (0x3FF), which is: 

retlw k 

 

where ‘k’ is the calibration value inserted in the factory. 

A value like this, which is embedded in an instruction, is referred to as a literal.   
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As explained in baseline lesson 3, the ‘retlw’ instruction is used to exit a subroutine, returning a value in 

the W register to the code which called the subroutine – “return with literal in W”. 

This is different from the scheme used in the baseline architecture, where the instruction at the top of 

program memory, which loads the calibration value into W, is the first instruction executed when the PIC 

is reset, and program execution “wraps around” at the start of memory. 

Instead, in the mid-range architecture, the reset vector, where program execution begins, is always at the 

start of memory: address 0000h. 

On a PIC12F629, the user program, beginning at 0000h, can choose to call the calibration “subroutine” 

(consisting of a single ‘retlw’ instruction, as above) at the end of program memory, to “look up” the 

correct oscillator calibration for this device.  Or, if the internal RC oscillator is not being used, or if exact 

timing is not important, the calibration instruction can simply be ignored. 

 

In the baseline examples, we used the ‘res’ directive in a construct like this: 

RESET   CODE    0x3FF           ; processor reset vector 

        res     1               ; holds internal RC cal value, as a movlw k 

 

to reserve the program memory used by the calibration instruction, ensuring that it could not be 

overwritten by the user program.  This is not necessary when using the default, Microchip-supplied linker 

script for the 12F629, because that script (unlike the ones that Microchip supply for the baseline PICs) 

declares the memory used by the calibration instruction to be “protected”, so that it will not be 

overwritten. 

Therefore, there is no need to include a CODE directive, like either of those above, in our program.  It is 

only useful for documentation, but that is not really necessary, since we can adequately comment the code 

which loads OSCCAL – see below.  But of course, how you choose to comment your code is very much a 

matter of personal style. 

 

The next sections in the Microchip-supplied template consist of code used to implement an interrupt 

service routine (ISR) (to be introduced in lesson 6) and some code to jump around the ISR.  Since we are 

not using interrupts in this example, these sections can be deleted. 

 

Since we are using the internal RC oscillator, we should start the program by calibrating it: 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

Because program execution begins at address 0x0000, this address is specified in the CODE directive, 

placing this code section at the start of program memory, so that it will be executed whenever the PIC is 

powered on or reset.  Another way to say this is that the program counter, which points to the next 

instruction to be executed, is initialised to 0x0000 when then PIC is reset. 

This code section is labelled ‘RESET’ here, but you can use any label you want, as long as it’s not a 

reserved word and is not the name of any other code section in your program. 

Next the oscillator calibration value is retrieved, by using the ‘call’ instruction (“call subroutine”) to call 

the calibration instruction at the end of program memory, which returns with the factory calibration value 

in W, as described above.  Note again that this scheme is different from that used in the baseline devices. 

The calibration value can then be written to the OSCCAL register, but before doing so, the bank selection 

bits must be configured to allow it to be accessed.  As mentioned above, this is an important difference 
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between the baseline and mid-range architectures.  On mid-range devices, such as the 12F629, you must 

ensure that the correct bank is selected when accessing special function registers.  The best way to ensure 

this, avoiding errors and making your code more portable, is to use the ‘banksel’ directive, as shown in 

the code above, and as explained in baseline lesson 3. 

Finally, the ‘movwf’ instruction – “move W to file register” – is used to copy (“move”, in Microchip-

speak) the factory calibration value, held in W, into the OSCCAL register. 

 

At this point, all the preliminaries are out of the way.  The processor has been specified, the configuration 

set, and the oscillator calibration value updated. 

 

Next it is usual to initialise special function registers, to configure the PIC’s ports and peripherals 

appropriately. 

In this case, we need to configure the GP1 pin as an output: 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

 

Recall that, to configure a pin as an output, the corresponding bit in the TRISIO register must be cleared; 

by default the TRIS bits are set to ‘1’, meaning that all pins are configured as inputs at power-up. 

The first instruction, ‘movlw’ – “move literal to W” – loads a value into W. 

We could have written this instruction as: 

        movlw   b’111101’       ; configure GP1 (only) as an output 

 

Note that to specify a binary number in MPASM, the syntax b’binary digits’ is used, as shown. 

This binary value, when loaded into TRISIO, will configure GP1 as an output, leaving the remaining pins 

configured as inputs. 

However, it is often clearer to make use of expressions containing symbols defined in the processor 

include file, such as ‘GP1’, instead of writing binary constants.  For example, the expression ‘~(1<<GP1)’ 

is equivalent to the binary constant b’11111101’ (only six bits of this value need be specified in the 

instruction above, because the top two bits of TRISIO are unused).  Another advantage of using symbols 

is that mistyping a symbol is likely to be picked up by the assembler, while mistyping a binary constant is 

likely to be missed, making the use of symbols less error-prone. 

Having loaded the correct value into W, the ‘movwf’ instruction is used to write it to TRISIO.  And, of 

course, banksel is used to select the bank containing TRISIO, before it is accessed. 

To make GP1 output a ‘high’, we have to set bit 1 of GPIO to ‘1’. 

This could be done by: 

        banksel GPIO 

        movlw   1<<GP1          ; set GP1 high 

        movwf   GPIO 

 

using the ‘movlw’ and ‘movwf’ instructions we have already seen. 

Note:  The tris instruction is not used to write to the TRIS registers on mid-range devices. 

The TRIS registers are accessed using general instructions, such as movwf. 
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The remaining bits in GPIO are cleared, but since the other pins are all inputs, it doesn’t matter, in this 

example, what their corresponding GPIO bits are set to. 

However, in many cases you will want to set or clear a single bit, while leaving the other bits in a register 

unchanged.  This can be done with the bit set and clear instructions: 

‘bsf f,b’ sets bit ‘b’ in register ‘f’ to ‘1’ – “bit set file register”. 

‘bcf f,b’ clears bit ‘b’ in register ‘f’ to ‘0’ – “bit clear file register”. 

 

These instructions, and any like them, which operate by reading a register, modifying its contents, and 

then writing the changed value back to the register, can create problems when used with port registers, 

such as GPIO.  This is referred to as the read-modify-write problem, and is explained in more detail in 

baseline lesson 2.  It can happen because,  in the mid-range and baseline architectures, whenever an 

instruction reads a port register, the external pins are read, not the internal “output latch” which had been 

written to.   This means that, if an output is slow to change because of a capacitive load, or is being held 

low or high by an excessive external load, the value read may not match the value written to it.  And that 

can lead to unexpected results, when using instructions such as ‘bsf’ and ‘bcf’. 

However, in this simple example, it is very unlikely that there will be any problem with simply turning on 

a single output, since we are not making any fast changes (and hence capacitive loading is not an issue), 

we are not changing multiple pins in the same port using sequential instructions (not giving a pin time to 

change, before being read by the next instruction) and there is no significant load on the pin.  So it is safe 

to use: 

        banksel GPIO 

        bsf     GPIO,GP1        ; set GP1 high 

 

 

If we leave it there, when the program gets to the end of this code, it will continue executing whatever 

instructions happen to be in the rest of the program memory; not what we want!  So we need to get the 

PIC to just sit doing nothing, with the LED still turned on, until it is powered off. 

What we need is an “infinite loop”, where the program does nothing but loop back on itself, indefinitely.  

Such a loop could be written as: 

here    goto    here 

 

‘here’ is a label representing the address of the goto instruction. 

‘goto’ is an unconditional branch instruction.  It tells the PIC to go to a specified program address. 

This code will simply go back to itself, always.  It’s an infinite, do-nothing, loop. 

 

A shorthand way of writing the same thing, that doesn’t need a unique label, is: 

        goto    $               ; loop forever 

 

‘$’ is an assembler symbol meaning the current program address. 

So this line will always loop back on itself. 

 

Finally, at the end of your program source, you must include an ‘END’ directive. 
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If you put together all the pieces of code presented above, and assemble it, the assembler will give you a 

couple of messages like: 

Message[302] C:\...\MA_L1-TURN_ON_LED.ASM 49 : Register in operand not in bank 

0.  Ensure that bank bits are correct. 

 

These messages are generated whenever your code references a register which is not in bank 0, to remind 

you that you should be taking care to set the bank selection bits correctly.  Since we have been taking care 

to ensure that the bank selection bits are correct, it can be annoying to see these messages – particularly in 

a larger program, where there will be many more of them.  And worse, having a large number of 

unnecessary messages can make it easy to miss more important messages and warnings. 

Luckily, messages and warnings can be disabled, using the ‘errorlevel’ directive: 

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

This should be placed toward the beginning of your program. 

 

Complete program 

Putting together all the above, here’s our complete assembler source for turning on an LED: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 1                                 * 

;                                                                       * 

;   Turns on LED.  LED remains on until power is removed.               * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 
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        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

 

;***** Main code         

        ; turn on LED 

        banksel GPIO 

        bsf     GPIO,GP1        ; set GP1 high 

 

        ; loop forever   

        goto    $                

 

 

        END 

 

 

Now that you have the complete assembler source, you can build the application, which involves 

assembling the source files to create object files, and then linking the object files to build the executable 

code.  Normally this is transparent; MPLAB does both steps for you in a single operation.  It is really only 

important to know that assemble and link steps are separate operations when working with projects that 

consist of multiple source files or libraries of pre-assembled routines. 

 

The build process is shown in detail in baseline lesson 1, but, briefly, to build a project in MPLAB 8, 

select the “Project  Make” menu item, press F10, or click on the “Make” toolbar button:  

“Make” will assemble any source files which need assembling (i.e. ones 

which have changed since the last time the project was built), then link them 

together. 

 

If you are using MPLAB X, you should first ensure that your project is the “main” project – it should be 

highlighted in bold in the Projects window.  If not, right-click it and select “Set as Main Project”. 

To build the project, right-click it in the Projects window and select “Build”, or select the “Run → Build 

Main Project” menu item, or simply click on the “Build Main Project” button (looks like a hammer) in the 

toolbar: 

This will assemble any source files which have changed since the 

project was last built, and link them. 

 

 

The final step is to load (program) the final assembled and linked code into the PIC.   This process is also 

shown in more detail in baseline lesson 1. 

If you are using a PICkit 2 or PICkit 3 programmer, the PIC12F629 can be programmed from within 

MPLAB 8 or MPLAB X. 

 

In MPLAB 8, select PICkit 2 or PICkit 3 from the “Programmer  Select Programmer” submenu. 

If you are using a PICkit 3, you may see messages telling you that new firmware must be downloaded, or 

warning you that the voltage may be too high – just click ‘OK’ on these.  You also need to tell your PICkit 

3 to provide power.  Open the PICkit 3 Settings window by selecting the “Programmer → Settings” menu 

item and then in the “Power” tab, select “Power target circuit from PICkit 3”. 
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After you select your programmer, an additional toolbar will appear. 

 

For the PICkit 2, it looks like:  

 

For the PICkit 3, we have:  

 

The first icon (on the left) is used to initiate programming.  When you click on it, you should see messages 

telling you that the PIC is being programmed and verified. 

Your PIC should now be programmed! 

 

If you are using a PICkit 3, the LED on GP1 should immediately light. 

If you have a PICkit 2, you won’t see anything yet.  That is because, by default, the PICkit 2 holds the 

MCLR  line low after programming.  Since we have used the _MCLRE_ON option, enabling external reset, 

the PIC is held in reset and the program will not run.  If the external reset was disabled, the LED would 

have lit as soon as the PIC was programmed. 

To allow the program to run, click on the  icon. 

The LED should now light up! 

 

If you are using MPLAB X, you must first ensure that your PICkit 2 or PICkit 3 is selected as the 

hardware (programmer) tool in the project properties window, which you can open by right-clicking your 

project in the Projects window and selecting “Properties”, or simply click on the “Project Properties” 

button on the left side of the Project Dashboard. 

While in the project properties window, if you have a PICkit 3, you should ensure that the “Power target 

circuit from PICkit3” option, under the PICkit 3’s “Power” category, is selected. 

To program the PIC and run your program (in a single operation): 

 Right-click your project in the Projects window, and select “Run”, or 

 Select the “Run → Run Main Project” menu item, or 

 Press ‘F6’, or 

 Click on the “Make and Program Device” button in the toolbar:  

Whichever of these you choose, you should see output messages ending in: 

Running target... 

The LED on GP1 should now light. 

 

Being able to build, program and run in a single step, by simply pressing ‘F6’ or clicking on the “Make 

and Program Device” button is very useful, but what if you don’t want to automatically run your code, 

immediately after programming? 

If you want to avoid running your code, click on the “Hold in Reset” toolbar button ( ) before 

programming.  You can now program your PIC as above. 

Your code won’t run until you click the reset toolbar button again, which now looks like and is now 

tagged as “Release from Reset”. 
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Example 2: Flashing an LED (50% duty cycle) 

Having lit a single LED, the next step is to make it flash. 

Although it is often preferable to make use of timer-driven interrupt routines (as we will see in lesson 6) to 

do something like flashing an LED in the “background”, the simplest approach is to simply light the LED, 

wait for some time by using a fixed delay, toggle the LED, wait again, and then repeat. 

Or, if the LED is going to be on half the time (on for the same period that it is off, for a 50% duty cycle), 

we can simply continue to repeatedly toggle the LED, following a single fixed delay, as expressed in the 

following pseudo-code: 

start with LED off 

repeat 

 delay 500 ms 

 toggle LED 

done 

 

Note that the 500 ms delay gives a total flash period of 1 s, meaning that the LED is flashing at 1 Hz. 

But first, you’ll need to create a new project.  It makes sense to base it on the project and code you created 

in example 1; one method for doing this is given in baseline lesson 2. 

The configuration sections of the code (specifying the device and its configuration) remain the same, but 

of course you should update the comments to reflect this new project. 

If you want really accurate timing, you’d use a crystal or external clock source, but the internal RC 

oscillator is good enough for simple LED flashing.  Nevertheless, to make the LED flash timing as 

accurate as possible, it’s important to include the oscillator calibration code at the start of your program. 

To generate the delay, we need to make the PIC “do nothing” for some amount of time, and, as explained 

in more detail in baseline lesson 2, this is means implementing delay loops. 

A loop needs a loop counter: a variable which is incremented or decremented on every pass through the 

loop. 

Variables are defined by reserving data memory (or general purpose registers), using the ‘UDATA’ and 

‘res’ directives.  For example: 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

However, if you include these directives in your program for the PIC12F629, you will find that, although 

the code compiles ok, the build fails in the link phase, with an error like: 

Error - section '.udata' can not fit the section.  

 

What’s going on? 

Baseline lesson 3 explained that, on many baseline PICs, some registers are banked, being mapped into 

only one of the PIC’s banks of data memory, while another set of registers (usually much smaller) are 

shared, or unbanked, being mapped into every bank.  This is also true for mid-range PICs. 

The ‘UDATA’ directive declares a section of banked data memory. 

If you do not specify a label for a UDATA section, MPASM will name it ‘.udata’. 

Recall that the 12F629 does not have any banked data memory; it is all shared.  So this error message is 

telling us that the linker cannot find space for our UDATA section, because there is no banked memory to 

put it into. 
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Therefore, on the 12F629 (or any mid-range PIC without banked GPRs), all variables must be defined 

using ‘UDATA_SHR’, which declares a section of shared data memory, instead of ‘UDATA’. 

For example: 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

 

This will declare two single-byte variables, ‘dc1’ and ‘dc2’, in shared memory. 

And note that, since the variables are held in shared memory, there is no need to use banksel before 

accessing them. 

 

Here’s an example of a simple “do nothing” delay loop: 

        movlw   .N 

        movwf   dc1  ; dc1 = 10 = number of loop iterations 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

The first two instructions initialise the loop counter variable ‘dc1’ to the decimal value “N”.  Since the 

mid-range PICs are 8-bit devices, “N” has to be between 0 and 255. 

Note that numbers in MPASM are specified as being decimal constants by prefixing them with a ‘.’, or 

using the syntax d‘decimal digits’.  If you don’t do this, the assembler will use the default radix 

(hexadecimal), and you may not be using the number you think you are!  Although it’s possible to set the 

default radix to decimal, you’ll run into problems if you rely on a particular default radix being set, and 

then later copy and paste your code into another project, with a different default radix, giving different 

results.  It’s much safer to simply prefix all decimal numbers with ‘.’. 

The ‘decfsz’ instruction performs the work of implementing the loop – “decrement file register, skip if 

zero”.  First, it decrements the contents of the specified register, and either writes the result back to the file 

register (if ‘,f’ is specified as the destination) or to W, (if ‘,w’ is specified as the destination).  If the 

result is not yet zero, the next instruction is executed, which will normally be a ‘goto’ which jumps back 

to the start of the loop.  But if the result is zero, the next instruction is skipped, exiting the loop. 

Mid-range PICs also have an ‘incfsz’ instruction, equivalent to ‘decfsz’, except that it increments a file 

register instead of decrementing it.  It’s used in loops where you want to count up from an initial value, 

instead of down. 

For a ‘decfsz’ loop, the number of loop iterations is equal to the initial value of the loop counter (“N” in 

the example above), assuming it is greater than zero. 

The ‘nop’ instruction – “no operation” – was included to pad out the example delay loop, to make the 

delay longer.  It does nothing but take some time to execute. 

How much time depends on the clock rate.  Instructions are executed at one quarter the rate of the 

processor clock.  In this case, the PIC is using the internal RC clock, running at a nominal 4 MHz.  The 

instructions are clocked at ¼ of this rate: 1 MHz.   So in this example, each instruction cycle is 1 µs. 

Most mid-range PIC instructions, including ‘nop’, execute in a single cycle.  The exceptions are those 

which jump to another location, such as ‘goto’, which take two cycles to execute. 

This means that another useful “do nothing” instruction is ‘goto $+1’.  Since ‘$’ stands for the current 

address, ‘$+1’ is the address of the next instruction.  Hence, ‘goto $+1’ jumps to the following 

instruction – apparently useless behaviour.  But like all ‘goto’ instructions, it executes in two cycles.  So 

‘goto $+1’ provides a two cycle delay in a single instruction – equivalent to two ‘nop’s, but using less 

program memory. 
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The ‘decfsz’ instruction normally executes in a single cycle.  But if the result is zero, and the next 

instruction is skipped, an extra cycle is added, making it a two-cycle instruction. 

To calculate the total time taken by the loop, add the execution time of each instruction in the loop: 

        nop    1 

        decfsz  dc1,f  1 (except when result is zero) 

        goto    dly1  2 
 

That’s a total of 4 cycles, except the last time through the loop, when the decfsz takes an extra cycle and 

the goto is not executed (saving 2 cycles), meaning the last loop iteration is 1 cycle shorter.  And there 

are two instructions before the loop starts, adding 2 cycles. 

Therefore the total delay time = (N × 4  1 + 2) cycles = (N × 4 + 1) µs 

If there was no ‘nop’, the delay would be (N × 3 + 1) µs. 

 

It may seem that, because 255 is the highest 8-bit number, the maximum number of iterations (N) should 

be 255.  But not quite.  If the loop counter is initially 0, then the first time through the loop, the ‘decfsz’ 

instruction will decrement it to 255, which is non-zero, and the loop continues – another 255 times.  

Therefore the maximum number of iterations is in fact 256, with the loop counter initially 0. 

So for the longest possible single loop delay, we can do something like: 

        clrf    dc1             ; loop 256 times 

dly1    nop 

        decfsz  dc1,f 

        goto    dly1 

 

The two “move” instructions have been replaced with a single ‘clrf’ instruction , which clears (to 0) the 

specified register – “clear file register”. 

This uses 1 cycle less, so the total time taken is 256 × 4 = 1024 µs  1 ms. 

 

That’s still well short of the 0.5 s needed, so we need to wrap (or nest) this loop inside another, using 

separate counters for the inner and outer loops, as shown: 

        movlw   .N              ; loop (outer) N times 

        movwf   dc2 

        clrf    dc1             ; loop (inner) 256 times 

dly1    nop                     ; inner loop = 256 x 4 – 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

        decfsz  dc2,f 

        goto    dly1 

 

The loop counter ‘dc2’ is being used to control how many times the inner loop is executed. 

Note that there is no need to clear the inner loop counter (dc1) on each iteration of the outer loop, because 

every time the inner loop completes, dc1 = 0. 

The total time taken for each iteration of the outer loop is 1023 cycles for the inner loop, plus 1 cycle for 

the ‘decfsz  dc2,f’ and 2 cycles for the ‘goto’ at the end, except for the final iteration, which, as 

we’ve seen, takes 1 cycle less.  The three setup instructions at the start add 3 cycles, so the total delay 

(assuming N > 0) is: 

delay time = (N × (1023 + 3)  1 + 3) cycles = (N × 1026 + 2) µs. 
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The maximum delay would be with 256 outer loop iterations, giving 262,658 µs.  We need a bit less than 

double that.  We could duplicate all the delay code, but it takes fewer lines of code if we only duplicate the 

inner loop, as shown: 

        ; delay 500 ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

The two inner loops of 1023 cycles each, plus the 3 cycles for the outer loop control instructions (decfsz 

and goto) make a total of 2049 µs.  Dividing this into the required 500,000 gives 244.02.  This is very 

close to a whole number, so an outer loop count of 244 will give a good result. 

The total execution time for this delay code is 499.958 ms – within 0.01% of the desired result! 

Since the internal RC oscillator has a precision of only around ±2%, there is no point trying to make this 

delay any more accurate.  But in some cases, to generate a given delay, you will need to add or remove 

‘nop’ or ‘goto $+1’ instructions while adjusting the number of loop iterations.  With a little 

experimentation, it is generally possible to get quite close to the delay you need. 

For delays longer than about 0.5 s, you’ll need to add more levels of nesting – with enough levels you 

generate delays which last for years! 

 

Next we need to be able to toggle, or flip the GP1 output from low to high and back again. 

As we saw in baseline lesson 2, to flip a single bit, you can exclusive-or it with 1. 

For example, to toggle GP1, we could write: 

        movlw   1<<GP1          ; bit mask to flip only GP1 

        xorwf   GPIO,f          ; flip bits in GPIO 

 

The ‘xorwf’ instruction exclusive-ors the W register with the specified register – “exclusive-or W with 

file register”, and writes the result either to the specified file register (GPIO in this case) or to W, 

depending on whether ‘,f’ or ‘,w’ is given as the instruction destination. 

 

However, as mentioned earlier, there is a danger in using instructions, such as ‘xorwf’, which read from a 

register, modify the contents and then write the new value back to the register, to operate directly on port 

registers, because the value read from a port pin will not always be the same as that written to it. 

To avoid these potential read-modify-write problems, it is better to use a shadow register, which holds a 

copy of the value the port register is supposed to have, operating on that shadow copy and then copying 

the updated value to the port register in a single operation. 

For example, if we define a variable to use as a shadow register: 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

we can use it in a loop to flash the LED, as follows: 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

../../Baseline/2%20-%20Flash%20an%20LED/PIC_Base_A_2.pdf
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flash   ; toggle LED 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   1<<GP1          ; flip bit corresponding to GP1 

        movwf   sGPIO           ;   in shadow register       

        banksel GPIO            ; and write to GPIO 

        movwf   GPIO 

           

        ; delay 500 ms (delay code goes here) 

 

        goto    flash           ; repeat forever 

 

The ‘movf’ instruction – “move file register to destination” – is used to read a register. 

With ‘,w’ as the destination, ‘movf’ copies the contents of the specified register to W. 

With ‘,f’ as the destination, ‘movf’ copies the contents of the specified register to itself.  That would 

seem to be pointless; why copy a register back to itself?  The answer is that the ‘movf’ instruction affects 

the Z (zero) status flag, so copying a register to itself is a way to test whether the value in the register is 

zero. 

The ‘xorlw’ instruction exclusive-ors the given literal (constant) value with the W register, placing the 

result in W – “exclusive-or literal to W”. 

Complete program 

Putting together all the above pieces, here’s the complete program for flashing an LED: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 1, example 2                                 * 

;                                                                       * 

;   Flashes an LED at approx 1 Hz.                                      * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;   Uses inline 500 ms delay routine                                    * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 = indicator LED                                             * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F629       

    #include    <p12F629.inc> 

     

    errorlevel  -302            ; no warnings about registers not in bank 0 

 

 

;***** CONFIGURATION 

                ; ext reset, no code or data protect, no brownout detect, 

                ; no watchdog, power-up timer, 4 Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _CPD_OFF & _BODEN_OFF & _WDT_OFF & 

_PWRTE_ON & _INTRC_OSC_NOCLKOUT 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

dc1     res 1                   ; delay loop counters 

dc2     res 1 
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;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x0000          ; processor reset vector 

        ; calibrate internal RC oscillator 

        call    0x03FF          ; retrieve factory calibration value  

        banksel OSCCAL          ;   (stored at 0x3FF as a retlw k) 

        movwf   OSCCAL          ;   then update OSCCAL 

 

 

;***** MAIN PROGRAM ***************************************************** 

 

;***** Initialisation 

start 

        ; configure port 

        movlw   ~(1<<GP1)       ; configure GP1 (only) as an output 

        banksel TRISIO 

        movwf   TRISIO 

         

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

main_loop    

        ; toggle LED 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   1<<GP1          ; toggle bit corresponding to GP1 

        movwf   sGPIO           ;   in shadow register 

        banksel GPIO            ; and write to GPIO 

        movwf   GPIO 

           

        ; delay 500 ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        ; repeat forever 

        goto    main_loop            

 

 

        END 

 

 

If you follow the programming procedure described earlier, you should now have an LED flashing at 

something very close to 1 Hz. 

 

Conclusion 

There has been a lot of theory in this lesson, but we now have a solid base to build on. 

By flashing an LED, you have shown that you have a working development environment and that you can 

create projects, modify your code, load (program) your code into your PIC, and make it run. 
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We’ve seen how to toggle a pin, and how to use shadow registers can be used to avoid potentially 

problematic “read-modify-write” operations on a port. 

We also saw how to use decrement instructions with conditional tests to implement loops, and how to use 

loops to create delays of any length. 

 

In the next lesson we’ll see how to make the code more modular, so that useful code such as the 500 ms 

delay developed here can be easily re-used within a program, or in other programs. 

 

../2%20-%20Modular%20code/PIC_Mid_A_2.pdf
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