РАСЧЕТ

минимально допустимых сечений токопроводящих жил

На токопроводящие жилы распространяется ГОСТ 22483-77 «Жилы токопроводящие медные и алюминиевые для кабелей, проводов и шнуров. Основные параметры. Технические требования».

ГОСТ не распространяется на жилы кабелей связи, обмоточных проводов, проводов неизолированных для ЛЭП, кабелей и проводов специального назначения (импульсные, грузонесущие, геофизические и т.п.).

В ГОСТ установлены 6 классов жил разной степени гибкости. Классы 1 и 2 – для кабелей и проводов стационарной прокладки, классы 3 – 6 – для гибких кабелей, проводов и шнуров нестационарной прокладки и стационарной прокладки, требующей повышенной гибкости при монтаже.

В таблицах для классов 1 и 2 установлены номинальное сечение жилы, минимальное число проволок в жиле и максимальное электросопротивление 1 км жилы.

В таблицах для классов 3 – 6 установлены номинальное сечение жилы, максимальный диаметр проволок жилы и максимальное электросопротивление 1 км жилы.

Номинальное сечение жилы проверке не подлежит, в ГОСТ указано, что это справочная величина. Каких-либо ограничений по фактическому сечению жилы в ГОСТ не установлено. В пункте 1.4а ГОСТ указано: «Фактическое сечение жил может отличаться от номинального при соответствии электрического сопротивления требованиям настоящего стандарта». При производстве и входном контроле у потребителя фактическое сечение жилы в кабельном изделии проверяется косвенно через электросопротивление.

Принципы нормирования и уровень требований ГОСТ 22483-77 полностью соответствуют стандарту МЭК 60228:2004 и европейскому стандарту EN 60228:2005 на токопроводящие жилы (фактическое сечение жил не нормируется и не проверяется).

Далее рассмотрены вариации фактического сечения жил на примерах кабеля силового марки ВВГ по ГОСТ 16442-80 с одной медной жилой класса 1 номинальным сечением 2,5; 4,0; 6,0; 10,0 мм 2 , провода самонесущего для ответвлений от ВЛ к вводу и для прокладки по стенам зданий марки СИП-4 по ТУ 16-705.500-2006 с 2 и 4 алюминиевыми жилами класса 2 номинальным сечением 16,0 мм 2 и провода соединительного марки ПВС по ГОСТ 7399-97 с 2 – 5 медными жилами класса 5 номинальным сечением 1,0; 1,5; 2,5 мм 2 .

Расчеты проведены на основании выражения для электросопротивления жилы на длине 1 км:

$$R = \frac{\rho \cdot L}{S} \cdot K_1 \cdot K_2, \text{ OM,} \tag{1}$$

где:

ho - удельное электросопротивление металла жилы, Ом \cdot мм 2 /м;

L - длина жилы, равная 1000 м;

S - сечение жилы, мм 2 ;

 K_1 - коэффициент укрутки проволок жилы по РД 16.405-87 «Расчет масс материалов кабельных изделий» (таблица 6);

 $K_{\rm 2}$ - коэффициент укрутки жил в кабеле, проводе, шнуре по РД 16.405-87 (таблицы 7 и 8).

1. Кабель марки ВВГ

Исходные данные:

- катанка медная класса В по ТУ16-705.491-2001 как материал для изготовления жилы;
- удельное электросопротивление меди $\rho = 0.01724~{\rm OM\cdot MM}^2/{\rm M}$ (как для проволоки марки ММ по ТУ16-705.492-2005);
- коэффициенты укрутки K_1 и K_2 =1,000 (одножильный кабель);
- электросопротивление 1 км жилы:

$$R = \frac{\rho \cdot L}{S} \cdot K_1 \cdot K_2 = \frac{17,24}{S}, \text{ Om.}$$
 (2)

Результаты расчетов по кабелю марки ВВГ, проведенные по формулам:

$$R_{pac^{q}} = \frac{17,24}{S_{max}}$$
, OM (3)

$$\Delta R = R_{\scriptscriptstyle TOCT} - R_{\scriptscriptstyle pacu.}, \text{ Om} \tag{4}$$

$$S_{\min} = \frac{S_{\text{\tiny HOM.}} \cdot R_{\text{\tiny pac-u.}}}{R_{\text{\tiny FOCT}}}, \text{ MM}^2$$
 (5)

$$\Delta S = \frac{S_{\text{\tiny HOM.}} - S_{\text{min}}}{S_{\text{\tiny HOM.}}} \cdot 100\% , \tag{6}$$

приведены в таблице 1.

Таблица 1

Номинальное	Максимальное	Расчетное	Запас по эл.	Расчетное	Максималь-
сечение	эл.сопротив-	эл.сопротив-	сопротивле-	минимальное	ное
жилы,	ление по	ление по	нию,	сечение	снижение
	ГОСТ	номиналь-		жилы по	сечения,
	22483-77,	ному		максималь-	
		сечению,		ному эл.	
				сопротив-	
_				лению,	
S _{HOM.} , MM ²	R _{гост} , Ом	R _{расч.} , Ом	∆R, Oм	S _{min} , MM ²	∆S, %
2,5	7,41	6,90	0,51	2,33	6,8
4,0	4,61	4,31	0,30	3,74	6,5
6,0	3,08	2,87	0,21	5,60	6,7
10,0	1,83	1,72	0,11	9,40	6,0

Таким образом, соблюдая требования по электросопротивлению, фактическое сечение однопроволочной жилы класса 1 одножильного кабеля марки ВВГ для указанных сечений может быть ниже номинальных сечений не более чем на 6,0-6,8%.

Эти же результаты могут быть распространены на плоский кабель с параллельно уложенными однопроволочными жилами марки ВВГ-П с числом жил 2 и 3.

2. Провод марки СИП-4

Исходные данные:

- катанка алюминиевая марки АКЛП-ПТ по ГОСТ 13843-78 как материал для изготовления проволоки жилы;
- проволока алюминиевая круглая для проводов воздушных линий электропередачи марки АВЛ по ТУ 16-705.472-87;
- удельное электросопротивление алюминиевой проволоки марки АВЛ не более $0.028264~{\rm CM}\cdot{\rm Mm}^2/{\rm M}$ (установлено в ТУ16-705.472-87);
- коэффициенты укрутки по таблице 6 упомянутого РД ($K_{\scriptscriptstyle 1}$) и по таблице 8 и примечанию 1 к таблице 8 ($K_{\scriptscriptstyle 2}$):

Примечание – Для проводов типа СИП коэффициент укрутки K_2 из-за больших шагов скрутки жил мал и незначительно зависит от конструкции провода.

электросопротивление 1 км жилы:

$$R = \frac{\rho \cdot L}{S} \cdot K_{1} \cdot K_{2} = \frac{28,264}{S} \cdot K_{1} \cdot K_{2}, \text{ om.}$$
 (7)

Результаты расчетов, проведенные по методике, аналогичной изложенной в п.1 по формулам (3) – (6) (но с учетом коэффициентов укрутки по таблицам 6 и 8 упомянутого РД), приведены в таблице 2.

Число и	Макси-	Произ-	Расчетное	Запас по	Расчетное	Максималь-
номи-	мальное	ведение	эл.сопротив-	эл.	минимальное	ное
нальное	эл.	коэф.	ление по	сопроти-	сечение	снижение
сечение	сопротив-	укрут-	номиналь-	влению,	жилы по	сечения,
жилы,	ление	ки	ному сече-		максималь-	
	по ГОСТ		нию и K ₁ , K ₂ ,		ному эл.	
	22483-77,				сопротив-	
					лению,	
$S_{\text{HOM.}}$, MM^2	$R_{\Gamma OCT}$, Om	$K_1 \cdot K_2$	R _{расч.} , Ом	∆R, Om	S _{min} , MM ²	∆S, %
2x16,0	1,91	1,020	1,802	0,108	15,09	5,7
4x16,0	1,91	1,021	1,804	0,106	15,11	5,6

Таким образом, соблюдая требования по электросопротивлению, фактическое сечение семипроволочных жил класса 2 провода марки СИП-4 указанных конструкций может быть ниже номинальных сечений не более чем на 5,6 – 5,7%.

3. Провод марки ПВС

Результаты расчетов, проведенные по методике, аналогичной изложенной в п.1 по формулам (3) – (6) (но с учетом коэффициентов укрутки по таблицам 6 и 7 упомянутого РД), приведены в таблице 3.

Таблица 3

Номи-	Макси-	Произ-	Расчетное	Запас по	Расчетное	Максималь-
нальное	мальное	ведение	эл.сопротив-	эл.	минимальное	ное
сечение	эл.	коэф.	ление по	сопроти-	сечение	снижение
жилы,	сопротив-	укрут-	номиналь-	влению,	жилы по	сечения,
	ление	ки	ному сече-		максималь-	
	по ГОСТ,		нию и K ₁ ,K ₂ ,		ному эл.	
	22483-77				сопротив-	
					лению,	
$S_{\text{HOM.}}$, MM^2	$R_{\Gamma OCT}$, Om	$K_1 \cdot K_2$	R _{расч.} , Ом	∆R, Oм	S _{min} , MM ²	∆S, %
1,0	19,5	1,053	18,15	1,35	0,93	7,0
1,5	13,3	1,053	12,10	1,20	1,36	9,3
2,5	7,98	1,053	7,26	0,72	2,27	9,2

Таким образом, соблюдая требования по электросопротивлению, фактическое сечение многопроволочных жил класса 5 провода марки ПВС для указанных сечений может быть ниже номинальных сечений не более чем на 7,0 – 9,3 %.

Приведенная методика расчета может использоваться для определения допустимых значений сечения жил (допустимые отклонения) при контроле в процессе производства при условии обеспечения соответствия жил требованию по электросопротивлению.

Технологическая документация должна быть составлена таким образом, чтобы все требования стандартов и ТУ на продукцию, в том числе требования по электрическому сопротивлению токопроводящей жилы, обеспечивались в ходе производственного процесса изготовления продукции.

В приложении А приведены рекомендации по расчету минимальных значений удельных масс и диаметров токопроводящих жил при их установлении в технических условиях на конкретные кабельные изделия.

Приложение А

Рекомендации по расчету минимально допустимых значений удельных масс и диаметров токопроводящих жил кабельных изделий

Для конкретных кабельных изделий, поступающих в розничную торговлю, когда нет возможности проверить соответствие фактического сечения жил измерением их электросопротивления, можно применить простые для приобретателей и контролирующих органов способы косвенной проверки фактического сечения жил изделий непосредственно в зоне их продажи (приобретения) на основании минимально допустимых значений удельных масс и диаметров токопроводящих жил, если они установлены в технических условиях на эти изделия.

Расчеты следует проводить с точностью до третьей значащей цифры после запятой, с требуемым округлением конечных значений.

А.1 Расчет минимально допустимых удельных масс токопроводящих жил

Удельную массу жил на единицу длины кабельного изделия для указанных выше проверок выражают в килограммах.

Минимально допустимую массу одного метра жилы, полученного при разборке кабельного изделия, без выпрямления неровностей жилы, вызванных скруткой в сердечник, m_{min} , кг, определяют по следующим выражениям:

$$m_{min} = \frac{\pi d_{min}^2}{4} \cdot n \cdot \gamma \cdot K_1 \cdot K_2 \cdot L \cdot K_{\text{san.}}^m \cdot 10^{-3};$$

$$d_{min} = \sqrt{\frac{4S_{min}}{\pi}};$$

$$S_{min} = \frac{\rho \cdot L \cdot K_1 \cdot K_2 \cdot 10^3}{R_{\text{TOCT}}},$$

где d_{min} - минимально допустимый диаметр проволоки жилы, мм;

и - число проволок в жиле;

 γ - плотность металла жилы, г/см 3 (для меди – 8,89; для алюминия – 2,70 и т.п.)

 K_{1},K_{2} см. стр. 2, выражение (1); для однопроволочных жил K_{1} = 1;

L - длина жилы в составе кабельного изделия, равная 1 м;

 $K_{\mathtt{зап.}}^m$ - коэффициент запаса по минимальной массе, который устанавливается разработчиком технической или технологической документации с учетом особенностей изделий и технологии их изготовления (предварительное значение может быть выбрано, например в диапазоне $1,010 \div 1,015$, т.е. запас по сечению, а значит и по массе в 1,0-1,5%).

 S_{min} - расчетное минимально допустимое сечение жилы по максимальному электросопротивлению, мм 2 ;

ho - удельное электросопротивление металла жилы, Ом·мм²/м;

 $R_{\Gamma {
m OCT}}$ - максимальное электросопротивление жилы на длине 1 км по ГОСТ 22483-77, Ом.

А.2 Расчет минимально допустимых диаметров токопроводящих жил (только для однопроволочных жил)

Расчет минимально допустимых диаметров для указанных выше проверок проводят только для однопроволочных жил в составе одножильных круглых, одножильных плоских, многожильных круглых кабелей или проводов.

Минимально допустимый диаметр D_{min} , мм, определяют по следующим выражениям:

$$D_{min} = \sqrt{\frac{4S_{min}}{\pi}} \cdot K_{\text{san.}}^{D};$$

$$S_{min} = \frac{\rho \cdot L \cdot K_2 \cdot 10^3}{R_{\Gamma \text{OCT}}}.$$

Расшифровка приведенных величин указана в п. А.1. Коэффициент запаса по минимальному диаметру жилы $K^D_{\mathtt{3an.}}$ устанавливается на основании статистических данных изготовителя по результатам контроля электросопротивления и диаметра жил, и может быть несколько ниже значений $K^m_{\mathtt{3an.}}$, приведенных в п. А.1.