{? TeEXAS Application Report
INSTRUMENTS SLAA096B - July 2001

Application of Bootstrap Loader in MSP430 With Flash
Hardware and Software Proposal

Volker Rzehak MSP/ALP Design

ABSTRACT

The bootstrap loader (sometimes called the bootloader) of the MSP430 derivatives with flash
memory allows access to their embedded memories during prototyping, production, and in
the field. It is possible to download or modify code in flash memory (electrically-erasable and
programmable memory) or to store calibration data or other system-relevant data in flash
memory or in RAM.

This application note describes simple and low-cost hardware and software solutions to
access the bootstrap loader functions of the MSP430 flash devices via the serial port
(RS-232) of a personal computer (PC). The description provided and the C-source code of
the software routines allow adaptation of the software to specific requirements.

Contents

L INErOUCHION L 3
Bootstrap Loader BasSiCSttt e 3

2.1 Invoking the Bootstrap Loadert 3

2.2 AcCess to Bootstrap Loader 4

2.3 Bootstrap Loader FUNCHONSttt e et 5
2.3.1 Unprotected FUNCHIONS o e e e 5

2.3.2 Protected FUNCLIONS o e et et 5

3 Hardware DesCriPlioN i e e e e 5
3.l POWET SUPPIY ot 6

3.2 Serial INterface 6
3.2.1 Level Shifting e 7

3.2.2 Control of RST/NMland TEST or TCK PINSot 8

3.3 Target CoONNECIOr . ..ot e e e e 8

34 PaArtS LISt . .o 9

4 Software DesCIiPtiON e 10
4.1 Global Variableso 10

4.2 Initialization of the RS-232 POrt o e 10

4.3 Invoking the Bootstrap Loader i 12

4.4 Access tothe Bootstrap Loader i 13
4.4.1 SYNChronization i e 13

4.4.2 Transmission Of Frame e 14

4.5 Calling the Bootstrap Loader FUNCLIONS i e 14

4.6 Releasing the RS-232 Port i 15

b TEXAS

SLAA096B lNSTRUMENTS
4.7 Complete Application e e 15

4.8 EITOr RECOVEIY . ittt e e e e e e e e e 17

4.9 Advanced FeatUreSttt e e 17
4.9.1 Detecting Bootstrap Loader's Version ...t 17

4.9.2 EXECUtiNg COeo e 18

4.10 Patch for First Version of Bootstrap Loader 19

D REEIENCES . o 21
APPENdiX A LiStiNGS ... e e e e e 22
A.1 Building the Demonstration Program it e 22

A.2 Bootstrap Loader Communication Header File—bslcomm.h 22

A.3 Bootstrap Loader Communication Implementation File—bslcomm.c 24

A.4 Serial Communication Header File—ssp.h 28

A.5 Serial Communication Implementation File—ssp.c 30

A.6 Bootstrap Loader Demonstration Program—bsldemo.c 38

A.7 TXT File for Bootstrap Loader Patch—patch.txt o ... 55
Appendix B PCB Layout SUQQesStioN e 56
Appendix C Demonstration Program USageiiriiitiiii it eiaanans 59
ApPPeNndixX D Errata e 61
Appendix E Third-Party SUPPOIT e 63

List of Figures

1 RST/NMI and TEST Sequence to Start User Program 3
2 RST/NMI and TEST Sequence to Start Bootstrap Loaderc.cc ... 4
3 Frame Sent to BOOtStrap LOadert 4
4 Bootstrap Loader Interface Schematic i i e e e 6
B—1 Universal BSL Interface PCB Layout—TOpottt et e ettt 56
B—2 Universal BSL Interface PCB Layout—Bottom i . 56
B—3 Universal BSL Interface Component Placement 57
B—4 Universal BSL Interface Component Placement 58

List of Tables

1 Bootstrap Loader UART SettiNgsSottt 4
2 Bootstrap Loader FUNCLIONS OVEIVIEWttt ettt e e e e 5
3 Serial-Port Signals and Pin ASSIgNMENtS e 7
4 RS-232 LVEIS . . .ot 7
5 Pin Assignment of Target CONNECION ittt e e e e e e e 8
6 Universal BSL Interface Parts List e e e e 9
7 Bootstrap Loader ACCESS FUNCLIONSt e e e 13
C—1 Command-Line Parameters 59
C—2 Program-Flow Modifiers i e 59
C—=3 INVoCatioN EXamMPIES 60

2 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

1

2.1

Introduction

The MSP430 derivatives with flash memory (electrically-erasable and programmable memory)
allow modification of data and program code in a matter of seconds. Erasure cycles using UV
light to clear the EPROM are no longer required. A control unit is required to access and use
these features. Part of this control unit is the bootstrap loader, implemented in MSP430 devices
with flash memory. This report describes hardware and software solutions to access the loader
from a PC for control and simple use of the bootstrap loader.

Bootstrap Loader Basics

This section reviews the basic principals and use of the bootstrap loader. Please see the
documentation and data sheets for the flash-based MSP430 derivatives and the application note
Features of the MSP430 Bootstrap Loader for more details.

The bootstrap loader is a program that allows communication with the MSP430 via a serial link,
even when the flash memory is completely erased. Do not confuse the bootstrap loader with
programs found in some digital signal processors (DSP) that automatically load program code
(and data) from external memory to the internal memory of the DSP. These programs are often
referred to as bootstrap loaders, too.

Invoking the Bootstrap Loader

The MSP430 bootstrap loader does not start automatically; a special sequence is required on
the RST/NMI and TEST or TCK pins. TCK is used on devices with no dedicated TEST pin.

The start-up sequence for devices with a TEST pin is shown in Figures 1 and 2.

The user program, with its reset vector located at memory address OFFFEh, starts when the
TEST pin is pulled low during a low-to-high transition of RST/NMI (see Figure 1). Figure 2 shows
the sequence required on RST/NMI and TEST to start the bootstrap loader.

Devices without a TEST pin just require the inverted TEST pin sequence on their TCK pin.

See the documentation mentioned in the Bootstrap Loader Basics section for more information
on the start-up sequences. The data sheets of the particular MSP430 versions also describe the
required sequences.

RST/NMI \ 4 A 4

Test/Vpp

User Program Starts

Figure 1. RST/NMI and TEST Sequence to Start User Program

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 3

b TEXAS

SLAA096B lNSTRUMENTS

RST/NMI v v - L ||

Test/VPP J;JLJ' -
A T ' -

Boot Loader Starts

Test/VPP Intern _L—J-—T—I -

Figure 2. RST/NMI and TEST Sequence to Start Bootstrap Loader

2.2 Access to Bootstrap Loader

After invoking the bootstrap loader via the RST/NMI and TEST or TCK pins, communication can
be established using a standard-asynchronous-serial protocol. The UART settings are shown in
Table 1.

MSP430 port pins are used to transmit and receive data. Usually port pins shared with TAO are
used (e.g., P1.1 for transmit and P2.2 for receive on F1xx derivatives; P1.0 for transmit and P1.1
for receive on F4xx derivatives). Consult the data sheet to get the appropriate pinning
information.

Table 1. Bootstrap Loader UART Settings

SETTING VALUE
Baudrate 9600 baud
Data bits 8 (binary)
Parity Even
Stop bits 1

The protocol used to communicate with the bootstrap loader is derived from a more complex
protocol; this adds some overhead to the user program.

First the PC must send a synchronization byte. If the bootstrap loader receives this character
correctly, it returns an acknowledge byte.

After successful synchronization, the PC sends a frame containing a command and its data. The
frame (see Figure 3) can be divided into a header section, a data section, and the check-sum
bytes. The data section contains at least four bytes of data: usually a start address and a length,
but some commands may ignore the contents or interpret it differently. In the case of word data
(two bytes per word), the byte order is always low-byte/high-byte.

[Har [emd | 2 | L2 [ado) [ati) [L (o) [L(hi) | Data | Data | ... | Data | Data | | |
Header Section Data Section Check Sum

Hdr: 0x80 (Always) A: Address (Start)

Cmd: Code For Requested Function L: Length

L1, L2: Number of Bytes in Data Section (lo): Low Byte

(hi): High Byte
Figure 3. Frame Sent to Bootstrap Loader

After processing the frame, the bootstrap loader either returns an acknowledge signal, a
negative acknowledge (if the frame was not valid), or a command-failed signal (if the command
is not allowed).

4 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

2.3

231

2.3.2

Bootstrap Loader Functions

The bootstrap loader has protected and unprotected functions. To enable the protected functions
the fully-programmed interrupt-vector table (located in address range OFFEOh to OFFFFh) must
be sent to the bootstrap loader.

This section gives a brief overview of the commands available. The commands and their usage
are described in more detail in the Features of the MSP430 Bootstrap Loader in the
MSP430F1121 document, literature number SLAA089, and in the software section of this
application note.

Note that it is not currently possible to blow the JTAG security fuse using the bootstrap loader. If
the JTAG fuse is blown, it is still possible to use the bootstrap loader. Access to the code via the
bootstrap loader is pass-word protected.

Unprotected Functions
* Set password, enables protected functions

* Mass erase, completely erases the flash memory. Afterwards the password to access
protected functions is 16 times OFFFFh.

Protected Functions
e Transmit block, writes data into MSP430’s memory
* Receive block, reads data out of MSP430’s memory
* Erase segment

* Load program counter, starts execution

Table 2. Bootstrap Loader Functions Overview

FUNCTION CMD L1=L2 ADDRESS LENGTH DATA
Set password 10h 24h XX XX Password
Mass erase 18h 04h Flash 0A506h -
Transmit byte 12h n+4 Start n Data (n byte)
Receive byte 14h 04h Start n -
Erase 16h 04h Segment 0A502h -

Load PC 1Ah 04h Start XX -

Hardware Description

The low-cost hardware presented in this application note (Figure 4) consists mainly of a
low-dropout voltage regulator, some inverters, and operational amplifiers. There are also some
resistors, capacitors, and diodes. A complete parts list is provided later in this section.

The functional blocks are described in more detail in the following subsections.

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 5

{i’ TEXAS

SLAA096B INSTRUMENTS
J2 G1
ucc_1.,2 5 1C3B 1
7 7{ 6
TXD 3 3 7
+ El
UCC_IN TLO62D ol gz
71 FO9SHP284
18 9 R12
i et
- 5 74AHC14 w R
42, f RXD 8 K S 1
1020 330K
mLren 74AHC14 74AHC14 N e
RST 10 112 AW —
1c28 1c2a 336K
mué 74AHCT 4
213 TST RY 4 Qe R3
3.3K 102E 330K D1
74AHC14 gavre
TCK Rig g 5 < é&ﬂé&ﬂé L)
3.3K o o o
IC2F
ucc 02
BAUZ@
Piridt
TLO62D
2 Ict
\ - . TPS76030
|3 ——+—{our v f— 8 4
of |8 1C3A 1k |@ |5_ND EN 0P PWR |5 BAUZO
«|g =9 8 = B D3
hal W - ﬁ
- L& 74AHCL4 - .
« s
1c2p . g 3 als &% w n %g 2 ! 2° 8|3
NE] o8 - S=s go 1c20 5
& GND TH m T
GND
Figure 4. Bootstrap Loader Interface Schematic
3.1 Power Supply

3.2

6

Power for the bootstrap loader hardware can be supplied via the RS-232 interface. RS-232
signals DTR (pin 7 of the serial connector) and RTS (pin 4 of the serial connector) normally
deliver a positive voltage to load capacitor C1 and power to the low-dropout voltage regulator
IC1 (Texas Instruments TPS76030 or LP2980-3.0, or equivalent 3-V low-dropout regulator).

Using a fairly big capacitor, it is possible to draw a short-duration current that is higher than the
driving serial port can supply. This feature is required to program the flash memory, for example.

It is also possible to connect an external supply voltage to the hardware via pin 8 of the BSL
target connector (J1). Diodes are used to prevent reverse-polarity flow.

Serial Interface

Table 3 shows the signals used to communicate with the bootstrap loader (via connector J2).
The names refer to the pin function as seen from the PC. For example, the PC receives data via

the RxD pin, whereas the bootstrap loader needs to drive this signal.

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{f’ TEXAS

INSTRUMENTS SLAA096B
Table 3. Serial-Port Signals and Pin Assignments
PIN NAME FUL(LPE')A\ME 9-PIN SUB-D FUNCTION ON BSL INTERFACE
RxD Receive data 2 Transmit data to PC
TxD Transmit data 3 Receive data from PC (and negative supply)
DTR Data terminal ready 4 Reset control (and positive supply)
RTS Request to send 7 TEST or TCK control (and positive supply)
GND Ground 5 Ground
3.2.1 Level Shifting

Simple CMOS inverters with Schmitt-trigger characteristics (IC2) are used to transform the
RS-232 levels (see Table 4) to CMOS levels.

Table 4. RS-232 Levels

LOGIC LEVEL | RS-232 LEVEL RS-232 VOLTAGE LEVEL
Mark -3Vv-15V
0 Space 3Vv-15V

The inverters are powered via the operational amplifier IC3A. This amplifier permits adjusting the
provided logic level to the requirements of the connected target application. A voltage applied to
pin 8 of the BSL target connector (VCC_IN) will override the default 3-V level provided via IC1
and the 100-kQ series resistor R11. Thus, the output voltage of the operational amplifier is
pulled to the applied voltage VCC_IN.

Depending on the overvoltage protection of the device family selected, the excess voltage is
either conducted to Vcc (as in the Tl 74HC14) or to GND (as in the TI 74AHC14). If the
protection diode conducts to Vcc, the operational amplifier IC3A needs to compensate for the
overvoltage. Therefore the 74AHC14 device, which conducts to ground (GND), is
recommended.

To avoid excessive power dissipation and damage of the protection diodes, series resistors (R1,
R2, and R3) are used to limit the input current.

An operational amplifier (IC3B) is used to generate RS-232 levels out of CMOS levels. The level
at the positive input is set to Vcc/2 (1.5-V nominal). If the level at the negative input rises above
this level, the output is pulled to the negative supply of the operational amplifier (mark). If the
level drops below Vcc/2, the output is pulled to the positive rail (space).

The positive supply of the operational amplifier is the same as the input to the voltage regulator.
A separate capacitor (C5) is used to generate the negative-supply voltage. This capacitor is
charged via the receiving signal of the bootstrap loader hardware (pin 3 on SUB-D connector
J2).

During an asynchronous serial communication, the combination of stop bit and start bit is used
to synchronize sender and receiver. After the transmission of a data byte, the stop bit forces the
transmission line into a defined state, which is usually a logic 1 or, in RS-232 terms, a mark. This
means that the transmission-line voltage is negative when there is no transmission and the
capacitor can be charged. Diodes are used to prevent discharge of the capacitor during
transmission.

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 7

SLAA096B

{'f TEXAS
INSTRUMENTS

In very rare circumstances the data sent to the bootstrap loader interface might hold too many
zeros so that the capacitor C5 required for the negative supply is discharged causing a
malfunction of the interface. (A possible work around is to send the respective data in smaller
chunks.) But under normal operating conditions even data containing all zeros will not cause any

problems.

3.2.2

Control of RST/NMI and TEST or TCK Pins

The two pins used to invoke the bootstrap loader software of the MSP430—RST/NMI and TEST
or TCK (for devices without a dedicated TEST pin)—are controlled via the DTR and RTS
signals, respectively. These signals deliver a positive voltage to supply the bootstrap loader
hardware, too.

For devices with dedicated TEST pin the levels at RST/NMI and TEST during normal operation
are logic 1 and logic 0, respectively. To achieve these levels and to use the corresponding

RS-232 signals as power-supply lines, it is necessary to use two inverters (IC1A, IC2B) for the
RST/NMI pin and one inverter (IC2E) for the TEST pin.

Devices without the TEST pin require the inverted TEST pin sequence on their TCK pin to
invoke the bootstrap loader. Thus, the corresponding signal is simply inverted (inverter IC2F).

Diodes prevent discharge of capacitor C1 to allow control of the RS-232 lines (RTS and DTR).

3.3 Target Connector
Table 5. Pin Assignment of Target Connector

PIN SIGNAL NAME PIN ON MSP430F11x(1) PIN OKIAQAPSLEAS?:T;:;A'X OR PIN ON MSP430F4xx
1 TXD P1.1 P1.1 P1.0

2 TCK Do not connect (see Note 1) | TCK TCK

3 RXD P2.2 pP2.2 P1.1

4 RST RST/NMI RST/NMI RST/NMI

5 GND GND GND GND

6 Vce (3.0V) Ve (see Note 2) Ve (see Note 2) Vcc (see Note 2)
7 TST Test Do not connect Do not connect

8 VCC_IN Vcc (see Note 2) Vcc (see Note 2) Vcc (see Note 2)
9 Not connected — — —

10 Not connected — — —

NOTES: 1. Signal TCK must not be connected on MSP430F11x(1) devices.

8 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

2. Pin VCC (3.0 V) is a voltage source that can provide a limited current, depending on the serial port
driver’s capability. If an external power supply is used, VCC (3.0 V) must not be connected to the target.
Inthis case, the external supply voltage must be connected to pin VCC_IN. Otherwise, pin VCC_IN must

be unconnected.

{9 TEXAS
INSTRUMENTS

SLAA096B

3.4 Parts List

Table 6. Universal BSL Interface Parts List

PART VALUE/PART NUMBER PACKAGE COMMENT
C1l 33uF 16V SMD 7243
c2 100 nF SMD 0805
C3 22uF 6.3V SMD 1206
c4 100 nF SMD 0805
C5 33uF 16V SMD 7243
C6 100 nF SMD 0805
D1 BAV70 SOT23 High-speed double diode
D2 BAV70 SOT23 High-speed double diode
D3 BAV70 SOT23
IC1 TPS76030 SOT23/5 Tl
1C2 74AHC14 SO14 TI
IC3 TLO62D SO8 Tl
R1 330 kQ SMD 0805
R2 330 kQ SMD 0805
R3 330 kQ SMD 0805
R4 680 kQ SMD 0805
R5 680 kQ SMD 0805
R6 680 kQ SMD 0805
R7 330 kQ SMD 0805
R8 330 kQ SMD 0805
R9 3.3kQ SMD 0805
R10 3.3kQ SMD 0805
R11 100 kQ SMD 0805
R12 0Q SMD 0805
R13 680 kQ SMD 0805
J1 pinhd-2x5 2X05 Target connector (see Table D-2)
J2 FO9HP284 9-SUB-D female RS-232 connector
CON3 |RESET SMDO0805 Pads to connect an optional reset button

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 9

{'? TEXAS

SLAA096B INSTRUMENTS

4

4.1

4.2

Software Description

This section explains the basic sequences required to access the bootstrap loader using the
RS-232 interface of a PC. The code presented here is written in C language using 32-bit
Windows[I API calls under Microsoft Visual C++0 5.0 (it may also work seamlessly under
version 6.0). The code was originally written for 16-bit Windows and ported to 32-bit Windows
(Win3200, Windows 95/980, and Windows NTO) mainly by replacing the function names. Some
of the Win32 features were not used to maintain portability. A commercial library may be used
instead of the Windows API interface.

A detailed description titled Serial Communications in Win32 is available online at
http://msdn.microsoft.com/library/techart/msdn_serial.htm. Online documentation on Visual C++
is also available from the Microsoft development network library.

Please consult the Windows software development kit (SDK) documentation for a detailed
description of the API functions used.

Complete software listings can be found in Appendix A.

Global Variables

The following global variables are used throughout the code examples. The definitions of types
DCB, COMSTAT, and COMMTIMEQUTS can be found in the Windows SDK documentation.

HANDL E hConPort ; /* COM port handl e */
DCB conDCB; /* COMtport control settings */
COVBTAT contt at e; /* COMtport status information */

COWI MEQUTS orgTi meouts; /* Original COMport tinme-out */

Initialization of the RS-232 Port

To access the serial RS—232 port, the program must request a handle for the port it wants to use
(usually either COM1 or COM2). The following code can be used for this request:

/* Size of internal W NDOAB—-Comm buffer: */
#defi ne QUEUE_SI ZE 512

char* | pszDevice= "COML” /* For example ... *./

hConPort= CreateFil e(l pszDevi ce, GENERI C_READ | GENERI C_WRI TE,
0, 0, OPEN_EXISTING 0, 0);

if (hConPort == | NVALI D HANDLE_ VALUE)

{. . . [* Error! */

}

i f (SetupComm(hConPort, QUEUE_SIZE, QUEUE_SIZE) == 0)
{. . . [I* Error! */

}

An operation known as overlapped input/output (I/O) can be performed under Win32. This
means that the system may immediately return to the caller, even if the 1/0O operation is not
finished, and signal the caller when the operation is complete. Overlapped operation is not a
good choice when portability is a concern because most operating systems do not support it. For
this reason it is not used in this program, and the corresponding parameters required when
calling CreateFile are set to zero.

Microsoft, Windows, Win32, Windows NT, Windows CE, and Visual C++ are trademarks of Microsoft Corporation.

10

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

After receiving a valid handle, the settings of the communication port need to be defined and
assigned (see Table 1).

Get original settings first:

i f (!GetCommttat e(hConPort, &conDCB))
{ . . . [* Error! */

}

Then they can be modified. The most important settings for communication with the bootstrap
loader are shown in the following program section:

conDCB. BaudRat e = CBR _9600; [* Startup Baudrate: 9, 6kBaud */

conDCB. Byt eSi ze = §;

conDCB. Parity = EVENPARI TY;

conDCB. St opBi ts = ONESTOPBI T;

conDCB. f Bi nary = TRUE; /* Enabl e Binary Transmission */

conDCB. f Parity = TRUE; /* Enable Parity Check */

conDCB. f Rt sControl = RTS_CONTROL_ENABLE; /* For power supply and TEST */
/* pin control */

conDCB. f Dt r Cont rol = DTR_CONTROL_ENABLE; /* For power supply and RST/NM */
/* pin control */

Finally, the modified settings are assigned to the port:

if (!SetCommttate(hConPort, &conDCB))
{ . . . [* Error! */

}

A Win32 application should always set communication time-outs when using a communication
port; otherwise, default settings or left-over values from previous applications are used. This
application does not require time-out functionality. Therefore, the time-outs are completely
disabled once the original settings are saved so they can be restored at the end of the program:

/* Save original tinme-out values: */

Get CommTi neout s(hConmPort, &orgTi neouts);
/[* Set Wndows tinme-out values (disable built-in tinme-outs): */
COWII MEQUTS ti meout s;

ti meout s. Readl nt erval Ti meout = 0;

ti meouts. ReadTot al Ti neout Mul ti plier= 0;

ti meout s. ReadTot al Ti meout Const ant = 0;

ti meouts. WiteTotal Ti meout Mul tiplier= 0;

ti meouts. WiteTotal Ti neout Const ant = 0;

i f (!SetComili meout s(hConmPort, &tinmeouts))
{ . . . [* Error! */

}

The transmit and receive buffers are cleared to complete the initialization sequence:
Pur geComm{ hConPort, PURGE_TXCLEAR | PURGE_TXABORT) ;
Pur geCom(hConPort, PURGE RXCLEAR | PURGE_RXABORT) ;

A complete example of the initialization routine can be found under Serial Communication
Implementation File (see Appendix A) in routine:

int comnit(LPCSTR | pszDevi ce, DWORD aTi neout, int aProl ongFactor)

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 11

SLAA096B

{'f TEXAS
INSTRUMENTS

4.3 Invoking the Bootstrap Loader

The levels on RST/NMI and TEST must be toggled as shown in section 2.1 to invoke the

bootstrap loader.

The following subroutines can be used to control the corresponding RS-232 lines RTS and DTR:

voi d Set RSTpi n(BOOL | evel)

/* Controls RST/NM pin (0: G\D; 1: VCO

if (level == TRUE)

conDCB. f Dt r Control = DTR_CONTROL_ENABLE;

el se

conDCB. f Dt r Control = DTR_CONTROL_DI SABLE;

Set Commst at e(hConPort, &conDCB) ;

} /* SetRSTpin */
voi d Set TESTpi n(BOOL | evel)

/* Controls TEST pin (0: VCC 1: G\D

{
if (level == TRUE)
conDCB. f Rt sControl =
el se

conDCB. f Rt sCont r ol

Set Commtst at e(hConPort, &conDCB) ;

} /* Set TESTpin */

RTS_CONTROL_ENABLE;

RTS_CONTROL_DI SABLE;

Calling the function SetRSTpin with a O pulls the RST/NMI pin to ground, whereas calling the
function SetTESTpin with a 0 applies Vcc to the TEST pin. This difference is due to the different

number of inverters used at these pins (see Section 3).

The following subroutine allows resetting of the MSP430 on the bootstrap loader hardware using
the functions previously shown. First it is necessary to charge capacitor C1 to supply power to
the board. Then the RST/NMI and TEST pins can be toggled as required. It is possible to reset
the MSP430 and start the user program (invokeBSL=FALSE) or to invoke the bootstrap loader

with invokeBSL=TRUE:

voi d bsl Reset (BOOL i nvokeBSL)
{

Set RSTpi n(1);

Set TESTpi n(1);

del ay(250);

Set RSTpi n(0) ; [* RST pi
i f (invokeBSL)

{

/* To charge capacitor on boot

Set TESTpi n(1); /* TEST pi
Set TESTpi n(0); /* TEST pi
Set TESTpi n(1); /* TEST pi
Set TESTpi n(0); /* TEST pi
Set RSTpin (1); /* RST pi
Set TESTpi n(1); /* TEST pi

12 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

5 3 3 33 3

| oader

GN\D

GN\D
Vcc
G\D
Vcc
Vcc
GN\D

*/

*/
*/
*/
*/
*/
*/

har dwar e:

{f’ TEXAS

INSTRUMENTS SLAA096B
}
el se
{
Set RSTpin(1); /* RST pin: Vcc */
}
/* Gve MSP430's oscillator tine to stabilize: */
del ay(250);

4.4

44.1

/* Cear buffers: */
Pur geComr(hConPort, PURGE_TXCLEAR); PurgeComm(hConPort, PURGE_RXCLEAR);
} /* bsl Reset */

It is possible to gain access to the RS-232 interface of the PC and to invoke the bootstrap
loader using the functions presented so far.

We are now ready to access the bootstrap loader.

Access to the Bootstrap Loader

This section describes the basic routines to access the bootstrap loader. Table 7 gives an
overview of the functions presented and indicates the sections within Appendix A where their
complete listings can be found. The constant definitions are located in the header listings.

Table 7. Bootstrap Loader Access Functions

SECTIONS FUNCTIONS

Bootstrap loader communication header file, bsIReset, bsISync, bsITxRx
bootstrap loader communication implementation file

Serial-communication header file, comlnit, comTxRx, comDone
serial-communication implementation file

Synchronization

The PC and the MSP430 must be synchronized before each frame that calls a function. The
following character (0x80) must be sent by the PC to the MSP430 for this purpose:

#defi ne BSL_SYNC 0x80

Therefore, this value is assigned to a variable and the function WriteFile is called with the
communication-port handle as the first parameter. The number of bytes to transmit must be
specified (1 is used here). The last two parameters are unimportant and can be ignored in this
particular case.

/* Send synchroni zation byte: */
ch = BSL_SYNC
WiteFile(hConPort, &ch, 1, &NrTx, NULL);

If the bootstrap loader receives this character correctly, it returns a DATA_ACK (0x90);
otherwise, it returns an unknown value because the loader needs this synchronization character
to generate its timing (for serial communication, for example). It is also possible that no
character is returned, as when no MSP430 with bootstrap loader function is connected. The
following subroutine is used to check whether a given number of characters was received within
a given time period. It uses the function ClearCommeError to receive the actual status of the
communication port. The field cbinQue in the COMSTAT structure holds the number of received
bytes:

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 13

{'? TEXAS

SLAA096B INSTRUMENTS

4.4.2

4.5

14

int comMitForData(int count, DWORD tinmeout)

{
DWORD errors;

int rxCount= 0;
DWORD start Ti ne= Get Ti ckCount () ;
do

{
Cl ear ConmEr ror (hConPort, &errors, &conftate);
} while (((rxCount= conttate.chlnQue) < count) &&
(cal cTineout(startTine) <= tinmeout));
return(rxCount);

}

This subroutine is used in the synchronization function to wait for one character. If characters
are received, they can be queried using the function ReadFile, shown in the following program
section. The synchronization is successful when the character received is a DATA_ACK.

/[* Wait for 1 byte; time-out: 100ns */
rxCount = comAai t ForData(1, 100);
if (rxCount > 0)

ReadFi | e(hConPort, &ch, 1, &NrRx, NULL);

i f (ch == DATA_ACK)

{ return(ERR_NONE); } /* Sync. successful */
}

The routine int bsISync() implements the function previously described.

Transmission of Frame

The following function is used to send and receive a frame:

int comlxRx(BYTE cnd, BYTE data[], BYTE | ength)

This function implements the functionality of the TI Standard Serial Protocol. Only a subset of
the functionality is needed and supported for bootstrap loader communication. This routine uses
the Win32 functions already described.

The function

i nt bsl TxRx(BYTE cnd, WORD addr, WORD | en, BYTE bl kout[], BYTE blkin[])
combines the synchronization and transmission of the frame. It also configures the frame to the
requirements of the bootstrap loader. One important requirement is that the number of bytes

sent to the bootstrap loader (using the command TXBLK, for instance) or requested by the
loader (using command RXBLK) must always be even.

Calling the Bootstrap Loader Functions

It is fairly simple to call the functions of the bootstrap loader using the function bsITxRx
presented before. The parameters must be set as required within the function call (see the
examples in the Complete Application section).

The constant definitions corresponding to the available commands are found in the Bootstrap
Loader Communication Header File (see Appendix A).

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

4.6

4.7

Releasing the RS-232 Port

At the end of a program, the RS-232 port must be released using the function
CloseHandle(hComPort). Otherwise other applications can not use this port because the access
rights to the serial communication ports are usually granted to only one program at a time.

The routine int comDone() provides a more sophisticated method to release the RS-232 port. It
waits until all remaining data is transmitted, clears all buffers, and restores the original time-out
settings.

Note that closing the serial communication port usually cuts power to an application which is
powered via the serial port, because the corresponding control lines are disabled.

Complete Application

A small application is developed in this section to program a file in TI-TXT format into the
MSP430’s flash memory. The complete demonstration program code is contained in Bootstrap
Loader Demonstration Program in Appendix A. The definitions of the variables used are also
found there.

First, the communication port has to be opened. The COM-port name can be changed to fit any
particular needs, or it can be obtained from the command line.

if (comnit(”COML", DEFAULT_TIMEQUT, 4) != 0)
{ . . . [* Error! */
}

Then the bootstrap loader is invoked:
bsl Reset (1) ;

In the next step, the flash memory is completely erased using the mass erase command:

if ((error= bsl TxRx(BSL_MERAS, /* Command: Mass Erase */
oxf f 00, /* Any address within flash nenory. */
0xa506, /* Required setting for nmass erase! */
NULL, blkin)) !'=0)

{ . . . [* Error! */

}

The password to access the protected functions of the bootstrap loader gets reset when the
flash memory is erased. All memory cells are now set to OFFh. The protected functions are
enabled by sending the corresponding password.

/* Fill blkout with Oxff */
for (i=0; i < 0x20; i++)

bl kout[i]= Oxff;

}

if ((error= bsl TxRx(BSL_TXPWORD, /* Conmand: transmit password */
0oxffeO, /* Address of interrupt vectors */
0x0020, /* Nunber of bytes */
bl kout, blkin)) !'= 0)

{ . . . [* Error! */

/* Special case here: 7(ERR _RX NAK): Password not accepted! */
}

Afterwards, the file in TI-TXT format is parsed and the data is programmed into the flash
memory and verified.

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 15

{'? TEXAS

SLAA096B INSTRUMENTS

16

There is a separate subroutine in the demonstration listing that can be called from the main
program to parse the file and to program or verify the flash contents:

/* Program */

if ((error= prograntlash(” TEST. TXT", ACTI ON_PROGRAM)) != 0)

{. . . [* Error! */

}

/* Verify: */

if ((error= prograntlash(”TEST. TXT", ACTION_VERIFY)) != 0)
{. . . [* Error! */

}

The routine programFlash simply parses the file with a given name (the file name can be derived
from the command line), fills a buffer with the extracted data, and calls another subroutine when
the buffer is almost full.

If the data must be programmed, it is sent to the bootstrap loader using the transmit-block
command (BSL_TXBLK).

error= bsl TxRx(BSL_TXBLK, addr, |en, blkout, blkin);

Data is read from the bootstrap loader (receive block, BSL_RXBLK) and compared against the
contents of the transmission buffer for verification:

error= bsl TxRx(BSL_RXBLK, addr, |en, NULL, blkin);
if (error = 0)

{. . . [I* Cancel! */
}
el se
{
for (i=0; i <len; i++)

{ /'* Conpare data in bl kout and bl kin: */
if (blkin[i] !'= blkout[i])
{

printf(”Verification failed at % (%, %)\n”, addr+i, blkin[i],
bl kout[i]);
return(ERR_ VERI FY_FAILED); /* Verify failed! */

}
}
} /* for (i) */

Note that a similar sequence can be used to check the erasure of this range. In this case, the
contents of blkin are compared against the erasure pattern Oxff.

If a readout functionality is required, it is also possible to write the received data to a file instead
of comparing it with given data. (Note that this feature is not included in the provided source
code.)

After successful verification, the MSP430 can be reset and the user program can start
executing:

bsl Reset (0);

The serial communication port must be released at the end of the program:
conmbDone() ;

Now users have all the pieces together to write their own applications to access the MSP430
bootstrap loader and to adapt it to their special needs.

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

4.8

4.9

49.1

Error Recovery

There is no error-recovery mechanism implemented within the demonstration program. The
program is aborted when an error is detected. In some cases it might be useful to implement
some kind of error-recovery mechanism.

If a data frame transmitted to the MSP430 is rejected with a data-not-acknowledged signal
(DATA_NAK), the transmission of the frame can simply be repeated. But it is possible that wrong
data has been programmed in the flash, and a more complex recovery mechanism that includes
verification, erasure, and reprogramming might be required.

If a received frame is not correct (wrong checksum, inconsistent lengths), the command
previously sent to receive a block from the MSP430 needs to be repeated.

Advanced Features

Detecting Bootstrap Loader’s Version

Detecting the bootstrap loader version within the device currently connected requires unlocking
the protected functions (see previous sections). The address (0x0ffa) where the bootstrap loader
version is stored can then be read. The version information consists of two bytes: a main
revision number stored in the first byte, and a subrevision number stored in the second byte.
After extracting this information from the input buffer, the version can be displayed or used for
further processing, depending on the current loader version.

/* Read actual bootstrap | oader version. */

if ((error= bsl TXRx(BSL_RXBLK, /* Conmmand: Read/ Receive Bl ock */
OxO0f f a, /* Start address */
2, /* No. of bytes to read */
NULL, blkin)) == ERR_NONE)

{

BYTE bsl Ver Lo;

BYTE bsl VerHi ;

mencpy(&bsl Ver Hi, &bl kin[0], 1);

mencpy(&sl Ver Lo, &bl kin[1], 1);

bsl Ver= (bsl VerH << 8) | bsl VerlLo;

printf(”Current bootstrap |oader version: %. 9%\n”, bslVerH , bslVerLo);
}
el se
{ . . . [* Error Handling */ . . . }

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 17

{'? TEXAS

SLAA096B INSTRUMENTS

4.9.2

18

Executing Code

The bootstrap loader command LOADPC allows the execution of previously-programmed code.
This command loads a given address in the program counter and starts execution at this
address. The executed code may be located in any type of memory (such as RAM or flash
memory).

For example, this feature can be used to load a calibration routine into RAM, run the calibration,
return to the bootstrap loader, and read back the calibration data. Or it can be used to program
and execute another loader with additional features. The available memory (RAM or flash), the
resources required by the bootstrap loader, their initialization (for example, P1SEL, P2SEL, and
CCTLO must be cleared), and especially the stack usage must be carefully considered. Note that
the initialization of the stack pointer differs from version to version of the bootstrap loader.

The loader’s start-address vector stored at address (0x0c00) can be used to return from a
loaded routine to the bootstrap loader:

br &00C00h ; Return to bootstrap | oader

The demonstration program shows how to program an updated bootstrap loader into RAM and
then execute it. As a prerequisite, the protected functions of the loader must be unlocked by
sending the appropriate password.

After obtaining access to the protected bootstrap loader commands, a subroutine within the
loader’s code must be called to prepare the position of the stack pointer, if the loader version is
1.10 or below. These versions of the loader have a so-called dynamic stack pointer initialization,
and there is no assurance that loading data to RAM will not interfere with the actual stack. The
stack pointer is initialized to point to the fixed loader’s stack frame by loading the PC with the
address of the appropriate routine within the bootstrap loader. Calling this function locks the
protected commands, and the password must be resent.

if (bslVer <= 0x0110) /* BSL Version 1.10 or bel ow? */
{
if ((error= bsl TxRx(BSL_LOADPC, /* Conmand: |oad PC */
0x0C22, /* Address to load into PC */
0, /* No additional data! */
NULL, blkin)) !'= ERR _NONE)
{ . . . [I* Error! */
}
/* Resend password to regain access to protected functions. */
if ((error= txPasswd(passwdFile)) != ERR NONE)
{. . . [I* Error! */
/* Special case here: 7(ERR_RX _NAK): Password not accepted! */
}
}

It is now possible to program any data into RAM using the standard bootstrap loader methods.
In the demonstration program, routineTIText is used to program and verify another loader with
the name of the corresponding Tl Text file given in the variable newBSLFile:

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

4.10

printf(”Load new BSL \"%\” into RAM..\n”, newBSLFile);

if ((error= progranfl Text(newBSLFile, /* File to program */
ACTI ON_PROGRAM) ! = ERR_NONE)

{ . . . [* Error!l */ }

printf(”Verify new BSL \"%\”...\n", newBSLFile);

if ((error= progranill Text(newBSLFile, /* File to verify */
ACTI ON_VERI FY)) != ERR_NONE)

{ . . . [* Error! */ }

The programmed code can now be executed. The new loader has a start-up vector located at
address 0x0300. After reading this address, the contents of the start-up vector (variable
startaddr in the following code snippet) are used to load the program counter:

/* Read startvector of bootstrap |oader: */
if ((error= bsl TxRx(BSL_RXBLK, 0x0300, 2, NULL, blkin)) == ERR_NONE)
{

WORD st art addr;

mencpy(&startaddr, &blkin[0], 2);

printf(”Starting new BSL at %...\n”, startaddr);

error= bsl TxRx(BSL_LOADPC, /* Command: Load PC */
startaddr, /* Address to load into PC */
o, /* No additional data! */
NULL, bl kin);
}
/[* . . . Error Handling . . . */

The loaded program is executed now. Since it is just another loader with the same
communication protocol as the original one, it is possible to continue programming the flash
memory as if it was the original loader.

The protected functions of the loader are locked, since it was started with the start address
pointing to its initialization routine. The password must be sent again to unlock these commands.
Execution can then proceed as normal.

Within the demonstration program, the command-line parameter —b controls if a new loader is
used. For example, to use the loader contained in the Tl Text File BL_130V.TXT, the following
command line may be used:

BSLDEMD —bBL_130V. TXT +epr TEST. TXT

Patch for First Version of Bootstrap Loader

The first versions (1.10 and below) of the bootstrap loader require a small patch to program the
flash (Bug Ids: BSL2, BSL3, and BSL4). The patch is described in this section, and its handling
is included in the program BSLDEMO.C (see Bootstrap Loader Demonstration Program in
Appendix A). The Tl text file patch.txt, included in Appendix A, is also required. The patch
handling within the demonstration program can be switched off (for future versions of the
bootstrap loader) by deleting, or commenting out, the following line:

#def i ne WORKAROUND

The parts of the code required for the workaround are surrounded by preprocessor commands:
#i f def WORKAROUND

#enaif

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 19

{'? TEXAS

SLAA096B INSTRUMENTS

20

After obtaining access to the protected bootstrap loader commands, the position of the stack
pointer must be prepared for the patch as described in section 4.9.2. Afterwards, the patch can
be written into RAM. The text file patch.txt holding the patch can be found in Appendix A. Down-
loading is performed by the flash-programming function that parses a text file:

progr anFl ash(” PATCH. TXT”, ACTI ON_PROGRAM | ACTI ON_VERI FY) ;

In this case, the masks ACTION_PROGRAM and ACTION_VERIFY are used together to
program and verify the patch in one single pass. This means that the file patch.txt is read only
once. Note that the patch must be located in the same directory as the executable program. To
use the patch for programming, only the PC needs to be loaded with the start address of the
patch (0x0220) before sending a frame. In the demonstration program, the invocation of the
patch is done in the separate preparePatch function (see Bootstrap Loader Demonstration
Program in Appendix A).

There is another bug that can affect memory cells (either RAM or peripheral-module registers) if
the transmitted frame has a certain checksum; unfortunately, a general workaround can not be
provided. Transmitting data to, or receiving data from the MSP430 using the patch prevents this
error. In all other cases, the only help that can be provided is a warning when this situation
occurs (however, it is unlikely that the error occurs if reading and writing are performed using the
patch.) The warning is generated within the comRxTx function contained in file SSP.C (see
Serial Communication Implementation File in Appendix A).

#def i ne BSL_CRI TI CAL_ADDR 0x0A00

{
WORD accessAddr= (0x0212 + (checksumOxffff)) & Oxfffe;

i f (BSLMemAccessWarning && (accessAddr < BSL_CRI TI CAL_ADDR))

{
printf(”WARNING This command nmi ght change data

"at address % or %!\n",
accessAddr, accessAddr + 1);

}
}

The global variable BSLMemAccessWarning allows warning message turn-on or turn-off. Since
the patch fixes this bug, the warning is turned off within the preparePatch function, and turned
back on in the postPatch function (see Bootstrap Loader Demonstration Program listing in
Appendix A).

So the complete sequence for receiving data from the MSP430 becomes:

error= preparePatch();

if (error '= ERR NONE) return(error);

error= bsl TXRx(BSL_RXBLK, addr, |en, NULL, blkin);
post Pat ch();

Similarly, the transmission of data to the MSP430 is handled as follows:
error= preparePatch();

if (error '= ERR NONE) return(error);

error= bsl TXRx(BSL_TXBLK, addr, |en, blkout, blkin);

post Pat ch();

The demonstration program solves an additional problem that applies only to devices with flash
memory sizes greater than 4k bytes. For these memories, the built-in mass-erase time may be
too short to erase it completely. This problem can be fixed simply by repeating the mass-erase
command several times. This workaround is activated by defining the default number of
mass-erase cycles:

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

#define ADD _MERASE_CYCLES 20

The number of mass-erase cycles can be changed to any value using the demonstration
program’s command-line parameter —m. For example, —-m1 can be used to have only one
mass-erase cycle with MSP430F11x(1), which is sufficient for these devices.

5 References
1. MSP430F11x Mixed Signal Microcontroller data sheet, literature number SLAS256
2. MSP430F11x1 Mixed Signal Controller data sheet, literature number SLAS241

3. Graf, Franz. Features of the MSP430 Bootstrap Loader in the MSP430F1121, literature number

SLAA089.
4. Denver, Allen. Serial Communication in Win32, Microsoft Developer Network (MSDN) Library

5. Microsoft Win32 Software Development Kit (SDK) Documentation

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 21

{'.f TEXAS

SLAA096B INSTRUMENTS

Al

A.2

22

Appendix A Listings

Building the Demonstration Program

To build the demonstration program, it is hecessary to compile the files bslcomm.c and
bsldemo.c and to link the resulting object files. It is not necessary to compile the file ssp.c
separately because it is directly included in the file bsicomm.c. If you prefer a different approach,
copy and paste the contents of ssp.c into bslcomm.c at the position of the following line, and
remove this line:

#i ncl ude "ssp.c”

For example, if you are using Visual C++, create a new project and select the Win32 Console
Application template. The project created must be empty. Include the files bsldemo.c,
bslcomm.c, and bslcomm.h to build your project. As stated before, the files ssp.c and ssp.h are
included automatically. The building process will fail if you include the ssp.c file in your project.

Bootstrap Loader Communication Header File—bslcomm.h

/**

*

Copyright (C 1999-2000 Texas Instrunents, Inc.
Aut hor: Vol ker Rzehak

Al software and rel ated docunentation is provided "AS | S” and
wi t hout warranty or support of any kind and Texas Instruments
expressly disclainms all other warranties, express or inplied,
including, but not limted to, the inplied warranties of
merchantability and fitness for a particular purpose. Under no
ci rcunst ances shall Texas Instruments be liable for any

i ncidental, special or consequential danmages that result from
the use or inability to use the software or rel ated
docunentation, even if Texas Instruments has been advi sed of
the liability.

Texas Instruments is distributed as "freeware”. You nay use
and nodify this software without any charge or restriction
You may distribute to others, as long as the original author
i s acknow edged.

R E R EE R R EEEEEEREEESEEEEEEREEEEEEEREEEEEEREEEEREEEEEEEEEEEEEEREEEEEE RS

Proj ect: MSP430 Bootstrap Loader Denonstration Program
File: BSLCOW H

Hi story:
Version 1.00 (05/2000)
Version 1.11 (09/2000)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Unl ess otherw se stated, software witten and copyrighted by
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* — Added definition of BSL_CRI TI CAL_ADDR.

*
**/

#i f ndef BSLConm__H

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

#defi ne BSLComm _H

#i ncl ude "ssp. h”

/* Transnmit password to boot |oader: */
#defi ne BSL_TXPWORD 0x10

/* Transmit bl ock to boot | oader: */
#define BSL_TXBLK 0x12

/* Receive block fromboot |oader: */
#define BSL_RXBLK 0x14

/* Erase one segnent: */
#defi ne BSL_ERASE 0x16
/* Erase conplete FLASH nenory: */
#define BSL_MERAS 0x18
/* Load PC and start execution: */

#defi ne BSL_LOADPC O0x1A
/* Bootstrap | oader synchroni zation error: */
#defi ne ERR BSL_SYNC 99
/* Upper limt of address range that might be nodified by
* "BSL checksum bug”.
*/
#define BSL_CRI TI CAL_ADDR 0x0A00
#i fdef __ cpl usplus
extern "C {
#endi f
extern int BSLMemAccessWar ni ng;
/* */
voi d bsl Reset (BOOL i nvokeBSL);
/* Applies BSL entry sequence on RST/NM and TEST/ VPP pins
* Parameters: invokeBSL = TRUE: conpl ete sequence
* i nvokeBSL = FALSE: only RST/NM pin accessed
*
/*/ */
i nt bsl Sync();
/* Transnits Synchronization character and expects to
* receive Acknow edge character
* Return == 0: K
* Return == 1: Sync. failed.
*/
/* */
int bsl TxRx(BYTE cnd, WORD addr, WORD | en,
BYTE bl kout[], BYTE blkin[]);

/* Transnmits a comand (cnd) with its paraneters:
* start-—address (addr), length (len) and additiona
* data (bl kout) to boot | oader.
* Paraneters return by boot |oader are passed via bl kin.
* Return == 0: XK
* Return != 0: Error!
*/

#i fdef __cplusplus

}

#endi f

#endi f

[* EOF */

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 23

{'.f TEXAS

SLAA096B INSTRUMENTS

A.3

24

Bootstrap Loader Communication Implementation File—bslcomm.c

/**

*

Copyright (C 1999-2000 Texas Instrunents, Inc.
Aut hor: Vol ker Rzehak

Al software and rel ated docunentation is provided "AS | S” and
wi thout warranty or support of any kind and Texas |nstrunents
expressly disclainms all other warranties, express or inplied,
including, but not limted to, the inplied warranties of
nerchantability and fitness for a particular purpose. Under no
circunst ances shall Texas Instrunments be liable for any

i nci dental, special or consequential danmages that result from
the use or inability to use the software or rel ated
docunent ati on, even if Texas Instruments has been advi sed of
the liability.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* Unl ess otherw se stated, software witten and copyrighted by
* Texas Instrunments is distributed as "freeware”. You nay use
* and nmodify this software without any charge or restriction
* You may distribute to others, as long as the original author
* | s acknow edged.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

EE R R R I I R I R R R I R R I R I R R R I R O O O

Project: MSP430 Bootstrap Loader Denonstration Program
File: BSLCOW C

Hi story:
Version 1.00 (05/2000)
Version 1.11 (09/2000)

— Added handling of franes with odd starting address
(This is required for bootstrap | oaders with word
programing al gorithm > BSL-Version >= 1. 30)

— Usage of BSL_CRITI CAL_ADDR for warni ngs about nenory
accesses due to "BSL checksum bug”.

*

**/

#i ncl ude <wi ndows. h>

#i ncl ude <string. h>

#i ncl ude <stdio. h>

#incl ude <fcntl. h>

#i ncl ude "bsl comm h”

#i ncl ude "ssp.c”

#defi ne BSL_SYNC 0x80

/[* 1. Warning, if access to nenory bel ow 0x1000 is possible.

* Thi s can happen due to an error in the first version(s) of
the bootstrap | oader code in conbination with specific
checksum val ues.

0: No Warni ng.
/

* x X

*

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

i nt BSLMemAccessWarning= 0; /* Default: no warning. */

[* */
voi d Set RSTpi n(BOCL | evel)

/* Controls RST/NM pin (0: G\D, 1. VCC */

if (level == TRUE)
conDCB. f Dt r Control = DTR_CONTROL_ENABLE;
el se

conDCB. f Dt r Control = DTR_CONTROL_DI SABLE;
Set Comm5t at e(hConPort, &conDCB);
} /* SetRSTpin */
voi d Set TESTpi n(BOCL | evel)
/* Controls TEST pin (0: VCC, 1: G\D) */

{
if (level == TRUE)
conDCB. f Rt sControl = RTS _CONTROL_ENABLE;
el se

conDCB. f Rt sControl = RTS_CONTROL_DI SABLE;

Set Comm5t at e(hConmPort, &conDCB) ;
} /* Set TESTpin */
/* */
voi d bsl Reset (BOCL i nvokeBSL)
/* Applies BSL entry sequence on RST/NM and TEST/ VPP pins

* Paraneters: invokeBSL = TRUE: conpl ete sequence
i nvokeBSL = FALSE: only RST/NM pin accessed

*
*
* RST is inverted twice on boot |oader hardware
* TEST is inverted (only once)
* Need positive voltage on DIR, RTS for power—supply of hardware
*/
{

/* To charge capacitor on boot |oader hardware: */
Set RSTpi n(1);
Set TESTpi n(1);

del ay(250);

Set RSTpi n(0) ; /* RST pin: G\D */

i f (invokeBSL)

{
Set TESTpi n(1); /* TEST pin: G\D */
Set TESTpi n(0); /* TEST pin: Vcc */
Set TESTpi n(1); /* TEST pin: G\D */
Set TESTpi n(0); /* TEST pin: Vcc */
Set RSTpin (1); /* RST pin: Vcc */
Set TESTpin(1); /* TEST pin: G\D */

}

el se

{
Set RSTpin(1l); /* RST pin: Vcc */

}

/* Gve MSP430's oscillator tine to stabilize: */

del ay(250);

/* Clear buffers: */
Pur geCom{ hConPort, PURGE TXCLEAR); PurgeCom{hConPort, PURGE RXCLEAR);

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 25

{'.f TEXAS

SLAA096B INSTRUMENTS

26

} /* bsl Reset */
/* */
i nt bsl Sync()
/[* Transmts Synchronization character and expects to
* receive Acknow edge character
* Return == 0: K
* Return == 1: Sync. failed.
*/
{

BYTE ch;

i nt rxCount, |oopcnt;

const BYTE cLoopQut = 3; /* Max. trials to get synchronization */
DWORD Nr Tx;

DWORD Nr Rx;

for (loopcnt=0; |oopcnt < cLoopQut; | oopcnt++)
{
Pur geCom hConPort, PURGE RXCLEAR); /* Cl ear receiving queue */
/* Send synchroni zation byte: */
ch = BSL_SYNC
WiteFile(hConPort, &ch, 1, &NrTx, NULL);
/* Wait for 1 byte; Tinmeout: 100nms */
rxCount = comit For Dat a(1, 100);
if (rxCount > 0)

ReadFi | e(hConPort, &ch, 1, &NrRx, NULL);

if (ch == DATA ACK)

{ return(ERR_NONE); } /* Sync. successful */
}

} /* for (loopcount) */

return(ERR_BSL_SYNC); /* Sync. failed */
} /'* bslSync */
/* */
i nt bsl TxRx(BYTE cnd, WORD addr, WORD | en,
BYTE* bl kout, BYTE* bl ki n)
[* Transmts a command (cnd) with its paraneters:
* start—address (addr), length (len) and additional

* data (bl kout) to boot | oader.
* Paraneters return by boot |oader are passed via blkin.
* Return == 0: K
* Return != 0: Error!
*/
{
BYTE dat aOut [MAX_FRANME_SI ZE] ;
int error;
WORD | engt h= 4;
/1 /* Make sure that len is even, when sending data to BSL: */
11 if ((cnd == BSL_TXBLK) && ((len %2) !'= 0))
/1 { /* Inc. len and fill blkout wth OxFF
/1 * => even nunber of bytes to send!
11 */
/1 bl kout [(1 en++)] = OxFF;

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

/1 }
if (cmd == BSL_TXBLK)
{
/* Align to even start address */
if ((addr %2) !'= 0)

{
/* Decrenent address and */
addr —;
/* fill first byte of blkout with OxFF */
menmove(&l kout [1], &bl kout[0], |en);
bl kout [0] = OxFF;
| en++;

}

/* Make sure that len is even */
if ((len %2) '=0)

/* Inc. len and fill last byte of blkout with OXFF */
bl kout [(I en++)] = OxFF;
}
}
/1 /* Make sure that len is even, if receiving data fromBSL: */
/1 if ((cnmd == BSL_RXBLK) && ((len % 2) != 0))
/1 {
/1 | en++;
/1 }
if (cmd == BSL_RXBLK)
{

/[* Align to even start address */
if ((addr %2) !'= 0)

{
/* Decrenent address but */
addr —;
/* request an additional byte. */
| en++;

}

/* Make sure that len is even */
if ((len %2) !=0)

{
| en++;

}
}
if ((cmd == BSL_TXBLK) || (cmd == BSL_TXPWORD))
{

length = len + 4;
}
/* Add necessary information data to frame: */
dataQut[0] = (BYTE)(addr & 0x00ff);
dataQut[1] = (BYTE)((addr >> 8) & 0x00ff);
dataQut[2] = (BYTE)(len & 0x00ff);
dataCut[3] = (BYTE)((len >> 8) & Ox00ff);
if (blkout !'= NULL)

{ I'* Copy data out of blkout into frame: */

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 27

{'.f TEXAS

SLAA096B INSTRUMENTS

A4

28

mencpy(&at aCut [4], bl kout, len);

}
if (bslSync() != ERR _NONE)
{
return(ERR BSL_SYNC) ;
}

/* Send frame: */

error = confxRx(cnd, dataCQut, (BYTE)Iength);

if (blkin !'= NULL)

{ /'* Copy received data out of frame buffer into blkin: */
mencpy(bl kin, & xFrane[4], rxFrane[2]);

}

return (error);
}
/* EOF */

Serial Communication Header File—ssp.h

/**

*

Copyright (C) 1999-2000 Texas Instruments, Inc.
Aut hor: Vol ker Rzehak

*
*
*
*
* Al software and rel ated docunentation is provided "AS 1S" and
* without warranty or support of any kind and Texas Instrunents
* expressly disclains all other warranties, express or inplied,
* including, but not Iimted to, the inplied warranties of

* merchantability and fitness for a particular purpose. Under no
* circunstances shall Texas Instrunments be liable for any

* incidental, special or consequential danmages that result from
* the use or inability to use the software or rel ated

* docunentation, even if Texas Instruments has been advi sed of

* the liability.

*
*
*
*
*
*

Unl ess otherwi se stated, software witten and copyrighted by
Texas Instruments is distributed as "freeware”. You nay use
and nodify this software w thout any charge or restriction.

You may distribute to others, as long as the original author
i s acknow edged.

*

**/

#i f ndef SSP__H
#define SSP__H

#i ncl ude <wi ndows. h>
#define MODE _SSP 0
#define MODE BSL 1
/* Error Codes:

*/

/* No Error: */
#def i ne ERR_NONE 0
/* Unspecific error: */
#def i ne ERR_COM 1

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{f’ TEXAS

INSTRUMENTS SLAA096B

/* OpenComm fail ed: */

#def i ne ERR_OPEN_COWM 2

/* Set Conmttate fail ed: */

#defi ne ERR_SET_COWM STATE 3

/* Synchroni sation failed: */

#defi ne ERR_SYNC FAI LED 4

/* Unspecific error concerning transm ssion of conmand: */
#defi ne ERR_SEND_COWMVAND 5

/* Tinmeout while receiving header”: */

#defi ne ERR_RX_HDR Tl MEQUT 6

/* NAK received: */

#defi ne ERR_RX_NAK 7

/* Command did not send ACK: indicates that it didn't conplete correctly: */
#define ERR_ CVD_NOT_COWLETED 8
/* Command failed, is not defined or is not allowed: */

#defi ne ERR_CVD _FAI LED 9
/* C oseComm fail ed: */
#defi ne ERR_CLOSE_COW 10
/* Header Definitions: */

#defi ne CVMD_FAI LED 0x70
#def i ne DATA FRAVE 0x80
#defi ne DATA_ACK 0x90
#defi ne DATA_NAK 0xAO0
#defi ne QUERY_POLL 0xBO

#defi ne QUERY_RESPONSE 0x50

#def i ne OPEN_CONNECTI ON 0xCO

#defi ne ACK_CONNECTION 0x40

#defi ne DEFAULT_TI MEQUT 300

#defi ne DEFAULT_PROLONG 10

#defi ne MAX_FRAME_SI ZE 256

#defi ne MAX_DATA BYTES 250

#defi ne MAX_DATA WORDS 125

#i fdef __ cpl uspl us

extern "C {

#endi f

/*
* Support Subroutines:
*

*/

/* */
extern DWORD cal cTi neout (DWORD start Ti me) ;

/* Calculates the difference between startTime and the actual

* windows tinme (in mlliseconds).

*/

/* */
extern void del ay(DWORD tine);

/* Del ays the execution by a given tinme in ns.

*/

[* * |
extern int comitForData(int count, DWORD tineout);

/* Waits until a given nunmber (count) of bytes was received or a
* given time (tineout) has passed.

*/

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 29

{'.f TEXAS

SLAA096B INSTRUMENTS

A5

30

extern void conirxHeader (const BYTE t xHeader);
/*
* Communi cati on Subrouti nes:
*
*/
extern int conGetlLastError();
/* Returns the error code generated by the |last function call to

* a SERCOMW-Function. If this function returned without errors,
* contetLastError will return zero (errNoError) as well.
*/

/* */

#i fdef _ cpl uspl us

extern int comnit(LPCSTR | pszDevi ce
DWORD aTi meout
i nt aPr ol ongFact or

DEFAULT_TI MEOUT,
DEFAULT_PROLONG) ;

#el se
extern int com nit(LPCSTR | pszDevi ce
DWORD aTi nmeout, int aProl ongFactor);
#endi f
/* Tries to open the serial port given in '|pszDevice and
* initializes the port and gl obal variabl es.
* The tinmeout and the nunber of allowed errors is multiplied by
* "aProl ongFactor’ after transm ssion of a conmand to give
* plenty of tine to the nicro controller to finish the conmand.
* Returns zero if the function is successful
*
/*/ */
extern int comDone();
/* Cl oses the used serial port.
* This function nust be called at the end of a program
* otherw se the serial port mght not be rel eased and can not be
* used in other prograns.
* Returns zero if the function is successful
*/
#i fdef _ cpl uspl us
}
#endi f
#endi f
/* ECF */

Serial Communication Implementation File—ssp.c

/**

*

Copyright (C) 1999-2000 Texas Instruments, Inc.
Aut hor: Vol ker Rzehak

Al software and rel ated docunentation is provided "AS | S” and
wi thout warranty or support of any kind and Texas |nstrunents
expressly disclains all other warranties, express or inplied,
including, but not limted to, the inplied warranties of
merchantability and fitness for a particul ar purpose. Under no
circunst ances shall Texas Instrunments be liable for any

L N T I

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

i nci dental, special or consequential damages that result from
the use or inability to use the software or rel ated
docunentati on, even if Texas Instrunents has been advi sed of
the liability.

Texas Instruments is distributed as "freeware”. You nay use
and nodify this software wi thout any charge or restriction.
You may distribute to others, as long as the original author

*

*

*

*

*

* Unl ess otherwi se stated, software witten and copyri ghted by
*

*

*

* s acknow edged.

*

**/

#i ncl ude <string. h>

#i ncl ude <stdi o. h>

#i ncl ude <w ndows. h>

#i ncl ude "ssp. h”

/* d obal Constants: */

/* Size of internal W NDOWs—Comm-Buffer: */

#defi ne QUEUE_SI ZE 512
#defi ne MAX_FRAVE_COUNT 16
#defi ne MAX_ERR COUNT 5

/* dobal Variables: */
const unsi gned short protocol Mode= MODE BSL;

HANDLE hConPort ; /* COM-Port Handl e */
DCB conDCB; /* COM-Port Control —Settings */
COVSTAT contt at e; /* COM-Port Status—Information */

COWII MEQUTS orgTi meouts; /* Original COM-Port Tinme—out */
/* Time in mlliseconds until a timeout occurs: */
DWORD t i meout = DEFAULT_TI MEQUT;
/* Factor by which the tineout after sending a frame is prol onged: */
i nt prol ongFact or= DEFAULT PROLONG
/* Variable to save the latest error (used by contetlLastError): */
int lastError;
BYTE seqNo, reqNo, txPtr, rxPtr;
BYTE r xFr ane[MAX_FRAME_SI ZE] ;
DWORD nakDel ay; /* Delay before DATA NAK will be send */
/***/
DWORD cal cTi neout (DWORD startTime) /* exported! */
/* Calculates the difference between startTinme and the actual
* windows time (in nmlliseconds).
*/
{
return((DWORD) (Get Ti ckCount () — startTine));
}
/* */
void del ay(DWORD tine) /* exported! */
/* Del ays the execution by a given tinme in ns.
*/
{
#i f ndef W N32
DWORD start Ti me= Get Ti ckCount () ;
while (cal cTineout(startTine) < tine);
#el se

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 31

{'.f TEXAS

SLAA096B INSTRUMENTS
Sl eep(tine);
#endi f
}
/* * [

32

WORD cal cChecksun{BYTE data[], WORD | ength)
/* Cal cul ates a checksum of "data”.
*/
{
WORD* i _dat a;
WORD checksun¥ 0;
BYTE i = O;
i _data= (WORD*) dat a;
for (i=0; i < length/2; i++)

{
checksunt= i _data[i]; /* xor-ing */
}
return(checksum~ Oxffff); /* inverting */
}
/* * |

int comMitForData(int count, DWORD tineout) /* exported! */
/[* Waits until a given nunber (count) of bytes was received or a
* given tinme (timeout) has passed.

*/
{
DWORD errors;
int rxCount= 0;
DWORD start Ti ne= Get Ti ckCount () ;
do
{
Cl ear ConmEr ror (hConPort, &errors, &conftate);
} while (((rxCount= conttate.chlnQue) < count) &&
(cal cTineout(startTine) <= tinmeout));
return(rxCount);
}
/* */

i nt conmRxHeader (BYTE *r xHeader, BYTE *r xNum
DWORD ti neout)
{
BYTE Hdr;
DWORD dwRead;
if (comMitForData(l, tinmeout) >= 1)
{
ReadFi | e(hConPort, &Hdr, 1, &dwRead, NULL);
*r xHeader= Hdr & OxfO;
*rxNum = Hdr & OxOf;
i f (protocol Mode == MODE _BSL)
{ regNo= O0;
seqNo= O;
*rxNune O;
}
r et ur n(ERR_NONE) ;

}

el se

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{f’ TEXAS

INSTRUMENTS SLAA096B
{
*rxHeader = 0;
*rxNunme O;
return(l ast Error= ERR RX HDR TI MEQUT) ;
}
}
[* */
voi d conixHeader (const BYTE t xHeader)
{

DWORD dwW it e;
BYTE Hdr = t xHeader ;
WiteFile(hConPort, &Hdr, 1, &IwWite, NULL);

}

/***/

int comGetLastError()
/* Returns the error code generated by the last function call to

* a SERCOMM-Function. |If this function returned w thout errors,
* comCetLastError will return zero (errNoError) as well.
*/

{ return(lastError); }
/***/
int comnit(LPCSTR | pszDevi ce, DWORD aTi neout, int aProl ongFactor)
/* Tries to open the serial port given in '|pszDevice and
* initializes the port and gl obal vari abl es.
The tinmeout and the nunber of allowed errors is multiplied by
"aProl ongFactor’ after transnission of a conmand to give
plenty of time to the micro controller to finish the comrand.
Returns zero if the function is successful.
/

L T

COwMT| MEQUTS ti meout s;
DWORD dwComrEvent s;
/* Init. global variables: */

segNo= O;
regNo= 0,
rxptr= 0;
txPtr= 0;

ti meout = aTi meout ;
pr ol ongFact or = aPr ol ongFact or;

hConPort= CreateFil e(l pszDevi ce, GENERI C_ READ | GENERI C_WRI TE,
0, 0, OPEN_EXISTING 0, 0);
/[* In this application the serial port is used in
* nonover| apped node!
*/
if (hConPort == | NVALI D_HANDLE_VALUE)
{
hConPort = 0;
return (lastError= ERR OPEN COW); /* Error! */

}
i f (SetupConm(hConPort, QUEUE_SIZE, QUEUE_SIZE) == 0)

{
G oseHandl e(hConPort);

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 33

{'f TEXAS
SLAA096B INSTRUMENTS

hConPort = 0;

return (lastError= ERR_OPEN. COW); /* Error! */
}
/* Save original timout values: */
Get CommiTi neout s(hConPort, &orgTi neouts);
/* Set Wndows tinmeout values (disable build-in tinmeouts): */
ti meout s. Readl nt erval Ti meout = 0;
ti meout s. ReadTot al Ti meout Mul ti plier= 0;
ti meout s. ReadTot al Ti meout Const ant = 0;
timeouts. WiteTotal Ti meoutMul tiplier= 0;
ti meouts. WiteTotal Ti neout Constant= 0;
i f (!SetCommili meout s(hConmPort, &tinmeouts))

{
Cl oseHandl e(hConPort);
hConPort = 0;
return (lastError= ERR OPEN COW); /* Error! */
}

dwCommEvent s= EV_RXCHAR | EV_TXEMPTY | EV_RXFLAG | EV_ERR
Set Commvask(hConPort, dwComEvents);

/* Get state and nodify it: */

i f (!GetCommttate(hConPort, &conDCB))

{
Cl oseHandl e(hConPort);
hConmPort = 0;
return (lastError= ERR OPEN COW); /* Error! */
}

conDCB. BaudRat e CBR 9600; /* Startup-Baudrate: 9, 6kBaud */
conDCB. Byt eSi ze 8;
nakDel ay= (DWORD) ((11* MAX_FRAME_SI ZE)/ 9. 6) ;

conDCB. Parity = EVENPARI TY;
conDCB. St opBi ts = ONESTOPBI T,;
conDCB. f Bi nary = TRUE; /* Enable Binary Transm ssion */
conDCB. fParity = TRUE; /* Enable Parity Check */

conDCB. Er r or Char (char) Oxff;

[* Char. w Parity—-Err are replaced w th Oxff
*(if fErrorChar is set to TRUE)

*/

conDCB. f Rt sCont r ol
conDCB. f Dt r Cont r ol

RTS_CONTROL_ENABLE; /* For power supply */
DTR_CONTROL_ENABLE; /* For power supply */

conDCB. f Qut xCt sFl ow= FALSE; conDCB. f Qut xDsr Fl ow= FALSE;
conDCB. f Qut X = FALSE; conDCB. f I nX = FALSE;
conDCB. f Nul | = FALSE;

conDCB. f Err or Char = FALSE;

/* Assign new state: */
if (!SetCommttate(hConPort, &conDCB))

{
Cl oseHandl e(hConPort);
hConPort = 0;
return(lastError= ERR SET_COWM STATE); /* Error! */
}

/* Clear buffers: */
Pur geComm(hConPort, PURGE_TXCLEAR | PURGE_TXABORT) ;

34 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{f’ TEXAS

INSTRUMENTS SLAA096B
Pur geCom(hConPort, PURGE RXCLEAR | PURGE_RXABORT);
return(lastError= 0);
} /* comnit */
/***/
i nt conmDone()
/* Coses the used serial port.
* This function nust be called at the end of a program
* otherwi se the serial port mght not be released and can not be
* used in other prograns.
* Returns zero if the function is successful.
*/
{
DWORD errors;
DWORD start Ti me= Get Ti ckCount () ;
/[* WAit until data is transmtted, but not too long... (Tinmeout-Tinme) */
do
{

/

*

/*

/*

el

O ear CommEr ror (hComPort, &errors, &conftate);
} while ((confttate.cbQutQe > 0) &&

Cl ear
Pur geCom(hConPort, PURGE TXCLEAR | PURGE_TXABORT);
Pur geCom(hConPort, PURGE RXCLEAR | PURGE_RXABORT);
/* Restore original timeout values: */

Set CommTi neout s(hConPort, &orgTi neouts);

Cl ose COM-Port: */

if (!C oseHandl e(hConPort))

return(lastError= ERR CLOSE_COW); /* Error! */

se

(cal cTineout (startTinme) < tineout));
buffers: */

return(l ast Error= ERR _NONE);
} /* conDone */

/***/

*/

i nt conRxFrane(BYTE *rxHeader, BYTE *rxNum

{

DWORD dwRead;

WORD checksum

BYTE* rxLengt h;

WORD r xLengt hCRC;

rxFrame[0] = DATA FRAME | *rxNum

if (comMitForData(3, timeout) >= 3)

{

ReadFi | e(hConPort, & xFrane[l], 3, &JIwRead, NULL);

if ((rxFrame[l] == 0) && (rxFrane[2] == rxFrame[3]))

rxLengt h= &r xFrange[2] ;

/* Pointer to rxFrange[2] */

rxLengt hCRC= *rxLength + 2; /* Add CRC-Bytes to length */

i f (comAitForData(rxLengthCRC, timeout) >= rxLengt hCRC)

{

ReadFi | e(hConPort, & xFrane[4], rxLengthCRC, &dwRead, NULL);

/*

Check received frame: */

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

35

{'f TEXAS
SLAA096B INSTRUMENTS

checksum= cal cChecksun(r xFrame, (WORD)(*rxLength+4));
/* rxLength+4: Length with header but w o CRC */
if ((rxFranme[*rxLengt h+4] == (BYTE)checksum &&
(rxFrame[*rxLengt h+5] == (BYTE) (checksum >> 8)))
{
r et ur n(ERR_NONE) ;
/* Frame received correctly (=> send next frame) */
} /* if (Checksum correct?) */
} /* if (Data: no timeout?) */
} /* if (Add. header info. correct?) */
} /* if (Add. header info.: no tineout?) */
return(ERR_COM; /* Franme has errors! */
} /* conRxFrame */
/* */
i nt comlxRx(BYTE cnd, BYTE dataCut[], BYTE | ength)
/* Sends the comand cnd with the data given in dataQut to the
* mcrocontroll er and expects either an acknow edge or a frane

* with result fromthe mcrocontroller. The results are stored
* in dataln (if not a NULL pointer is passed).
* In this routine all the necessary protocol stuff is handl ed.
* Returns zero if the function was successful.
*/

{

DWORD dw\W i t e;
DWORD errors;
BYTE t xFr ane[MAX_FRANME_SI ZE] ;
WORD checksume O;
int k= 0;
int errCr= 0;
int resendCr= 0;
BYTE r xHeader = O;
BYTE r xNune O;
i nt resent Frame= 0;
int pollCtr= 0;
[* Transmitting part */
/* Prepare data for transmt */
if ((length %2) !'= 0)
{ /* Fill with one byte to have even nunber of bytes to send */
i f (protocol Mbde == MODE_BSL)
dataQut [l engt h++] = OxFF; // fill w th OxFF

el se
dat aQut [| engt h++] = O; [l fill with zero
}
t xFrame[0] = DATA_FRAME | segNo;
t xFrame[1] = cnd;
t xFrame[2] = | engt h;

t xFrame[3] = | engt h;

reqNo= (seqNo + 1) % MAX FRAME COUNT;

mencpy(& xFranme[4], dataCut, |ength);

checksum= cal cChecksum(t xFrame, (WORD) (| ength+4));
t xFrame[| engt h+4] = (BYTE) (checksum ;

t xFrane[| engt h+5] = (BYTE) (checksum >> 8);

{

36 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS

SLAA096B

WORD accessAddr= (0x0212 + (checksumOxffff)) & Oxfffe;
[* 0x0212: Address of WCHKSUM */
i f (BSLMemAccessWarni ng && (accessAddr < BSL_CRI TI CAL_ADDR))
{
printf("”WARNING This command m ght change data ”
"at address % or %!\n”,
accessAddr, accessAddr + 1);

}
}

/* Transmt data: */

k= 0;

/* C ear receiving queue: */

Pur geComm{ hConPort, PURGE _RXCLEAR | PURGE_RXABORT);
do

{
WiteFile(hConPort, & xFranme[k++], 1, &IwWite, NULL);

O ear CommEr ror (hComPort, &errors, &conftate);
} while ((k <length + 6) && (conttate.chlnQue == 0));
/* Check after each transmtted character,
* if mcrocontroller did send a character (probably a NAK!).
*/
/* Receiving part */
rxFrame[2] = O;
rxFrame[3]= 0; /* Set |engths of received data to 0! */
do
{
lastError=0; /* Clear last error */
i f (conmRxHeader (& xHeader, & xNum ti meout*prol ongFactor) == 0)
/* prolong tineout to allow execution of sent command */
{ I'* => Header received */
do
{
resent Frane= 0;
swi tch (rxHeader)
{ case DATA ACK:
i f (rxNum == regNo)
{ segNo= regNo;
return(l astError= ERR _NONE);
/* Acknowl edge received correctly => next frame */
}
break; /* case DATA ACK */
case DATA _NAK:
return(l astError= ERR _RX NAK);
break; /* case DATA NAK */
case DATA_ FRAME:
i f (rxNum == regNo)
i f (comRxFrane(& xHeader, & xNum) == 0)
return(lastError= ERR _NONE);
break; /* case DATA FRAME */
case CNMVD_FAI LED:
/* Frame ok, but comuand failed. */
return(l astError= ERR_CVD_FAI LED);

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 37

SLAA096B

{'f TEXAS
INSTRUMENTS

A.6

38

}

/*

break; /* case CVD FAILED */
defaul t:

} /* switch */

errCtr= MAX_ERR_COUNT;
} while ((resentFrane == 0) && (errCr < MAX_ERR COUNT));
} /* if (conRxHeader) */
el se
{ /'* => Timeout while receiving header */
errCtr= MAX_ERR _COUNT
} /* else (conRxHeader) */
} while (errCr < MAX _ERR COUNT);
if (lastError == ERR _CVD_NOT_COWPLETED)
{ I'* Accept QUERY_RESPONSE as real ACK and correct Seq.-No.: */
seqNo= reqNo
}
if (lastError == ERR_NONE)
return(lastError= ERR COV ;
el se
return(lastError);
/* comIxRx */
EOF */

Bootstrap Loader Demonstration Program—bsldemo.c

/**

*

L R T I I S B N S B B T A T R S R

Copyright (C 1999-2000 Texas Instrunents, Inc.
Aut hor: Vol ker Rzehak

Al software and rel ated docunentation is provided "AS | S” and
wi t hout warranty or support of any kind and Texas |nstrunents
expressly disclains all other warranties, express or inplied,
including, but not limted to, the inplied warranties of
merchantability and fitness for a particular purpose. Under no
circunst ances shall Texas Instrunents be liable for any

i ncidental, special or consequential danmages that result from
the use or inability to use the software or rel ated
docunentation, even if Texas Instruments has been advi sed of
the liability.

Unl ess ot herwi se stated, software witten and copyrighted by
Texas Instruments is distributed as "freeware”. You may use
and nodify this software w thout any charge or restriction
You may distribute to others, as long as the original author
i s acknow edged.

EE R R R R R R R R R R R I I I R R I R R R

Project: MSP430 Bootstrap Loader Denonstration Program

Fil e: BSLDEMO. C

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

Descri pti on:
This is the nmain programof the bootstrap | oader
denonstration.
The main function holds the general sequence to access the
bootstrap | oader and program verify a file.
The parsing of the TI TXT file is done in a separate
function.

A coupl e of paraneters can be passed to the programto
control its functions. For a detail ed description see the
appendi x of the corresponding application note.

H story:
Version 1.00 (05/2000)
Version 1.10 (08/2000)
— Hel p screen added.
— Additional nmass erase cycl es added
(Required for larger flash nenories)
Defined with: #define ADD_MERASE CYCLES 20
— Possibility to load a conpletely new BSL i nto RAM
(supposing there is enough RAM — Mainly a test feature!
— A new wor karound nmet hod to cope with the checksum bug
est abli shed. Because this workaround is inconpatible with
the fornmer one the required TI TXT file is renamed to
" PATCH. TXT".
Version 1.11 (09/2000)
— Added handling of frames with odd starting address
to BSLCOWM C. (This is required for |oaders with word
progranmm ng al gorithm > BSL-Version >= 1. 30)
— Changed default nunber of data bytes within one frane
to 240 bytes (old: 64). Speeds up progranm ng.
— Always read BSL version nunber (even if new one is | oaded
into RAM
— Fixed setting of warning flag in conjunction with | oading
a new BSL into RAM
— Added a byte counter to the progranill Text function
— Nunber of mass erase cycles can be changed via comrand
line option (-m
Version 1.12 (09/2000)
— Mnor fixes and cosnetics.

L B S I D S T R T N N N N R T N N R T R T N N N N S SR N N S N S TR N N

*

**/

#i ncl ude <string. h>
#i ncl ude <stdi o. h>
#i ncl ude <wi ndows. h>
#i ncl ude " bsl comm h”
/*
* Defi nes:
*
* [
/* This definition includes code to | oad a new BSL i nto RAM
* NOTE: Can only be used with devices with sufficient RAM

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 39

{'.f TEXAS

SLAA096B INSTRUMENTS

40

The program flow is changed slightly conpared to a version
wi t hout "NEW BSL” defi ned.

The definition also defines the filename of the TI-TXT file
* with the new BSL code.

*/

#defi ne NEW BSL

[* The "WORKAROUND' definition includes code for a workaround

* required by the first version(s) of the bootstrap | oader.

*/

#defi ne WORKAROUND

[* If "DEBUG’ is defined, all checked and programed bl ocks are
*] ogged on the screen.

*/

/I #def i ne DEBUG

/* Additional mass erase cycles required for (sone) F149 devi ces.
* | f ADD MERASE CYCLES is not defined only one nass erase

* cycle is executed.

* Renove #define for fixed F149 or Fl1lxx devi ces.

* X %

*/

#defi ne ADD_MERASE CYCLES 20

[* Error: verification failed: */
#def i ne ERR _VERI FY_FAI LED 98

/* Error: erase check fail ed: */

#def i ne ERR_ERASE_CHECK_FAI LED 97

[* Error: unable to open input file: */
#def i ne ERR_FI LE_OPEN 96

/* Mask: program dat a: */

#defi ne ACTI ON_PROGRAM 0x01

/* Mask: verify data: */
#defi ne ACTI ON_VERI FY 0x02
/* Mask: erase check: */

#defi ne ACTI ON_ERASE_CHECK 0x04

[* Mask: transmit password: */

/* Note: Should not be used in conjunction with any other action! */
#defi ne ACTI ON_PASSWD 0x08

/*
* d obal Variables:

*

*/

char *programName= "MBP430 Boot strap Loader Denonstration Progrant;
char *progranVersion= "Version 1.12";

/* Max. bytes sent within one frane if parsing a Tl TXT file.

* (>= 16 and == n*16 and <= MAX_DATA BYTES!)

*/

i nt nmaxDat a= 240;

/* Buffers used to store data transmitted to and received fromBSL: */
BYTE bl ki n [MAX_DATA BYTES]; /* Receive buffer */

BYTE bl kout [MAX_DATA BYTES]; /* Transnit buffer */

#i f def WORKAROUND

char *patchFile = "PATCH. TXT";

#endi f /* WORKAROUND */

BOOL pat chRequired = FALSE;

BOOL pat chLoaded FALSE;

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS

SLAA096B

WORD bsl Ver = 0;

char *newBSLFi | e= NULL;

struct toDoLi st

{
unsi gned MassErase : 1
unsi gned EraseCheck: 1
unsi gned Program 1
unsi gned Verify D1,
unsi gned Reset 1
unsi gned Wit 1

unsi gned OnePass 1,

} toDo;

void *errData= NULL;
int byteCr= 0;

/-k

/* Wait for <Enter> at end of program */
/* (0: no; 1. yes): */
/* Do EraseCheck, Program and Verify */
/[* in one pass (Tl TXT file is read */
/* only once) */

* Functions:

*

*/
i nt preparePatch()
{
int error= ERR_NONE
#i f def WORKAROUND
i f (patchLoaded)

{

/* Load PC with 0x0220.
* This will invoke the patched bootstrap | oader subroutines.

*/

error= bsl TXRx(BSL_LOADPC, /* Command: Load PC */

0x0220,
0

/* Address to load into PC */
/* No additional data! */

NULL, bl kin);

if (error !'= ERR _NONE)

return(error);

BSLMenAccessWarning= 0; /* Error is renoved w thin workaround code */

}
#endi f /* WORKAROUND */

return(error);

}
voi d post Pat ch()

{
#i f def WORKAROUND
i f (patchLoaded)

{

BSLMenAccessWarni ng= 1; /* Turn warni ng back on. */

}
#endi f /* WORKAROUND */

}

int verifyBl K(WORD addr, WORD | en, unsigned action)

{
int i= 0;
int error= ERR_NONE

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 41

{'.f TEXAS

SLAA096B INSTRUMENTS
if ((action & (ACTION_VERI FY | ACTI ON_ERASE CHECK)) != 0)
{
#i f def DEBUG
printf(”Check starting at %, % bytes... ", addr, len);
#endi f /* DEBUG */
error= preparePatch();
if (error = ERR NONE) return(error);
error= bsl TxRx(BSL_RXBLK, addr, |en, NULL, blkin);
post Pat ch();
#i f def DEBUG
printf("Error: %\n”, error);
#endi f /* DEBUG */
if (error !'= ERR _NONE)
{
return(error); /* Cancel, if read error */
}
el se
{
for (i=0; i < len; i++)
if ((action & ACTION_VERI FY) = 0)
{
/* Conpare data in bl kout and bl kin: */
if (blkin[i] !'= blkout[i])
{
printf(”"Verification failed at % (%, %)\n”, addr+i, blkin[i],
bl kout[i]);
return(ERR_VERI FY_FAILED); /* Verify failed! */
}
conti nue;
}
if ((action & ACTI ON ERASE CHECK) != 0)
{
/* Conpare data in blkin with erase pattern: */
if (blkin[i] !'= Oxff)
printf(”"Erase Check failed at % (%)\n”, addr+i, blkin[i]);
return(ERR_ ERASE CHECK FAILED); /* Erase Check failed! */

}

conti nue;
} /* if ACTI ON_ERASE_CHECK */
Yy I* for (i) */
} /* else */
} /* if ACTI ON_VERI FY | ACTI ON_ERASE CHECK */
return(error);

}
i nt progranBl k(WORD addr, WORD | en, unsigned action)
{

int i= 0;

int error= ERR _NONE

if ((action & ACTION PASSWD) != 0)

{

return(bsl TXRx(BSL_TXPWORD, /* Conmand: Transnmit Password

42 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

addr, /* Address of interrupt vectors */
| en, /* Nunber of bytes */
bl kout, bl kin));

} /* if ACTI ON_PASSWD */

/* Check, if specified range is erased: */

error= verifyBl k(addr, len, action & ACTI ON ERASE CHECK) ;

if (error !'= ERR _NONE)

{
return(error);
}
if ((action & ACTI ON_PROGRAM) != 0)
{
#i f def DEBUG
printf(”Programstarting at %, % bytes... ", addr, len);

#endi f /* DEBUG */
error= preparePatch();
if (error '= ERR NONE) return(error);
/* Program bl ock: */
error= bsl TXRx(BSL_TXBLK, addr, |en, blkout, blkin);
post Pat ch();
#i f def DEBUG
printf("Error: %\n", error);
#endi f /* DEBUG */
if (error !'= ERR _NONE)
{

}
} /* if ACTI ON_PROGRAM */
/* Verify block: */
error= verifyBl k(addr, len, action & ACTI ON_VERI FY);
if (error !'= ERR _NONE)
{

return(error);

}

return(error);
} /* progranBl k */
i nt progranill Text (char *fil ename, unsigned action)
{
int next= 1;
i nt error= ERR_NONE;
int linelen= 0;
int |inepos= O;
WORD dat af r anel en=0;
WORD current Addr;
char strdata[128];
FILE* infile;
byteCr= 0;
if ((infile = fopen(filenane, "rb”)) == 0)
{
errData= fil enane;
return(ERR_FI LE_OPEN) ;

return(error); /* Cancel, if error (ACTION_VERI FY is skipped!) */

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 43

{'f TEXAS
SLAA096B INSTRUMENTS

}
/* Convert data for MsP430, TXT-File is parsed line by line: */

for (next= 1; next>=1;)

{
/* Read one line: */
if ((fgets(strdata, 127, infile) == 0) ||
/* if End OF File or */
(strdata[0] =="4q"))
/* if g (last character in file) */
{ /* => send frane and quit */
if (datafranelen > 0) /* Data in frame? */
{
error= progranBl k(current Addr, datafranel en, action);
byteCtr+= datafranel en; /* Byte Counter */
dat af r anel en=0;
}
next=0; [* Quit! */
conti nue;
}
Iinelen= strlen(strdata);
if (strdata[0] =="'@)
[* if @=> new address => send frane and set new addr. */
{
if (datafranelen > 0)
{
error= progranBl k(current Addr, datafranel en, action);
byteCtr+= datafranel en; /* Byte Counter */
dat af r amel en=0;
}
sscanf (&strdata[1l], "% x\n", ¤tAddr);
conti nue;
}
/* Transfer data in line into bl kout: */
for(linepos= 0O;
i nepos < linelen-3; |inepos+= 3, datafranel ent++)
{
sscanf (&strdata[linepos], "%x", &bl kout[datafranelen]);
/* (Max 16 bytes per line!) */
}
i f (datafranel en > maxDat a—16)
[* if frame is getting full => send frame */
{
error= progranBl k(current Addr, datafranel en, action);
byteCtr+= datafranel en; /* Byte Counter */
current Addr += dat af ranel en;
dat af r anmel en=0;
}
if (error !'= ERR NONE)
{
next=0; /* Cancel loop, if any error */
}
}

fclose(infile);

44 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

return(error);
} /* progranill Text */
i nt txPasswd(char* passwdFil e)

{ . .
int i;
if (passwdFile == NULL)
{
/* Send "standard” password to get access to protected functions. */
printf(”Transmt Password...\n");
/* Fill blkout wth Oxff
* (Flash is completely erased, the contents of all Flash cells is Oxff)
*/
for (i=0; i < 0x20; i++)
{
bl kout[i]= Oxff;
}
return(bsl TxRx(BSL_TXPWORD, /* Conmand: Transmit Password */
0oxff eO, /* Address of interupt vectors */
0x0020, /* Nunber of bytes */
bl kout, bl kin));
}
el se
{
/* Send TI TXT file holding interrupt vector data as password: */
printf(”"Transnmt password file \"%\"...\n", passwdFile);
return(progranill Text (passwdFi | e, ACTI ON_PASSWD)) ;
}

} /* txPasswd */
int signOf(int error, BOOL passwd)
{
if (toDo. Reset)
{
bsl Reset (0); /* Reset MSP430 and start user program */
}
switch (error)
{
case ERR_NONE
printf(”Programing conpleted!\n”);
br eak;
case ERR BSL_SYNC
printf(”ERROR Synchronization failed!\n");
printf(”Device with boot |oader connected?\n”);
br eak;
case ERR VERI FY_FAI LED:
printf(”ERROR Verification failed!'\n");
br eak;
case ERR_ERASE_CHECK FAI LED:
printf(”"ERROR Erase check failed!'\n");
br eak;
case ERR FI LE_OPEN
printf(”ERROR Unable to open input file \"%\"!\n", (char*)errData);
br eak;
defaul t:

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 45

{'f TEXAS
SLAA096B INSTRUMENTS

if ((passwd) && (error == ERR RX NAK))

[* 1f last conmand == transmit password &% Error: */
printf(”ERROR Password not accepted!\n”);
el se

printf(”ERROR Comuni cation Error!\n”);
} /* switch */
if (toDo.Vait)

{
printf(”Press <ENTER> ...\n"); getchar();
}
conDone(); /* Rel ease serial comunication port. */

/* After having rel eased the serial port,
* the target is no longer supplied via this port!
*/
if (error == ERR_NONE)
return(0);
el se
return(l);
} /* signOf */
voi d showHel p()

{
char *hel p[]=
{
"BSLDEMO [-h] [-c{port}] [-p{file}] [-w] [-1] [-m{num}] [+ecpvrw] {file}",
"The | ast paraneter is required: file nane of TI-TXT file to be
programed. ",
"QOptions:”,
" —h Shows this help screen.”,
" —c{port} Specifies the comrmunication port to be used (e.g. —cCOW).",
" —p{file} Specifies a TI-TXT file with the interrupt vectors that are”,
” used as password (e.g. —plNT_VECT. TXT).",
T—w Waits for <ENTER> before closing serial port.”,
Too-1 Programm ng and verification is done in one pass through the
file.”,
/*
" —a{file} Filename of workaround patch (e.g. —aWAROUND. TXT).",
" —b{file} Filenane of conplete |oader to be |oaded into RAM (e.g. —
bBSL. TXT). ",
" —f{nun Max. nunmber of data bytes within one transnitted franme (e.g.
—f 240).",
*/

#i f def ADD_MERASE_CYCLES
" —m{ nunt Number of mass erase cycles (e.g. —-n20).",
#endi f /* ADD_MERASE_CYCLES */
"Program Fl ow Specifiers [+ecpvrw]”,
e Mass Erase”,
Erase Check by file {file}",
Programfile {file}",
Verify by file {file}”,
Reset connected MSP430. Starts application.”,

- <TO

46 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

JQ’]EXAS
INSTRUMENTS SLAAQ096B

” w Wait for <ENTER> before closing serial port.”,

" Only the specified actions are executed!”,

"Default Program Fl ow Specifiers (if not explicitly given): +ecpvr”,
"\0" /* Marks end of hel p! */

1
int i=0;
while (help[i] !'="\0") printf("%\n", help[i++]);
}
/*
* Main:
*/
int main(int argc, char *argv[])
{

int error= ERR _NONE;
int i, j;
char comnPort Nane[10] = "COML”; /* Default setting. */
char *fil enanme= NULL;
char *passwdFi | e= NULL;
#i f def ADD_MERASE_CYCLES
i nt nmeraseCycl es= ADD MERASE CYCLES;
#el se
const int neraseCycles= 1;
#endi f /* ADD_MERASE CYCLES */
#i f def NEW BSL
newBSLFi | e= NULL;
#endif /* NEWBSL */
/* Default: all actions turned on: */
t oDo. MassEr ase 1;
t oDo. Er aseCheck ;
t oDo. Program
toDo. Verify
t oDo. Reset
t oDo. Wi t
t oDo. OnePass

; /* Do not wait for <Enter> at the end! */
; /* Do erase check, programand verify */
/* sequential! */

cerkERR

#i f def WORKAROUND
/* Show nenmory access warning, if working with bootstrap
* | oader version(s) requiring the workaround patch.
* Turn warning on by default until we can determ ne the
* actual version of the bootstrap | oader.
*
/
BSLMemAccessWar ni ng= 1;
#endi f /* WORKAROUND */
printf(”"% (%)\n”, progranName, progranVersion);
/-k
* Parse Conmand Line Paraneters ...
*
*/
if (argc > 1)

for (i=1; i < (argc — 1); i++4)

{

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 47

{'f TEXAS
SLAA096B INSTRUMENTS

switch (argv[i][0])
{

case '—':
switch (argv[i][1])
{
case 'h': case '"H:
showHel p(); /* Show hel p screen and */

return(l); /* exit program */
br eak;
case 'c’: case 'C:
mencpy(conPort Name, &argv[i][2], strlen(argv[i])-2);
br eak;
case 'p’': case 'P:
passwdFi |l e= &argv[i][2];
br eak;

case 'w : case 'W:
toDo.WAit=1; /* Do wait for <Enter> at the end! */
br eak;
case '1':
t oDo. OnePass= 1;
br eak;
case 'f’': case 'F':
if (argv[i][2] !'= 0)
{

sscanf(&argv[i][2], "% ", &maxData);
/* Make sure that conditions for maxData are met:
* (>= 16 and == n*16 and <= MAX_DATA BYTES!)

*/
maxDat a= (maxData > MAX_DATA BYTES) ? MAX DATA BYTES : naxDat a;
maxDat a= (maxData < 16) 2 16 : maxDat a;

maxDat a= maxData — (naxData % 16);
printf(”Max. nunber of data bytes within one frame set to
% .\n",
maxDat a) ;
}
br eak;
#i f def ADD_MERASE_CYCLES
case 'nm: case 'M:
if (argv[i][2] '= 0)
{
sscanf(&argv[i][2], "% ", &nmeraseCycles);
mer aseCycl es= (neraseCycles < 1) ? 1 : neraseCycles;
printf(”Number of mass erase cycles set to % .\n”, nerase
Cycl es);
}
br eak;
#endi f /* ADD_MERASE_CYCLES */
#i f def WORKAROUND

case 'a’': case 'A:
patchFil e= &argv[i][2];
br eak;

#endi f /* WORKAROUND */
#i f def NEW BSL

48 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

case 'b’': case 'B':
newBSLFi | e= &argv[i][2];

br eak;
#endi f /* NEWBSL */
defaul t:
printf("ERROR Illegal comrand |ine paraneter!\n”);
} /* switch argv[i][1] */
break; /* = */
case '+':

/[* Turn all actions off: */
t oDo. MassErase = O;

t oDo. Er aseCheck
t oDo. Program
toDo. Verify

t oDo. Reset ;

t oDo. Wi t 0;

[* Turn only specified actions back on: */
for (j=1;, j < (int)(strlen(argv[i])); j++)

{

0
0;
0
0

switch (argv[i]l[j])

{

case 'e’': case 'E':
/* Erase Fl ash */
t oDo. MassErase = 1;
br eak;

case 'c’: case 'C:
/* Erase Check (by file) */
t oDo. Er aseCheck= 1;
br eak;

case 'p’': case 'P:
/* Programfile */
toDo. Program = 1,
br eak;

case 'v':. case 'V
/* Verify file */
toDo. Verify = 1;
br eak;

case 'r case 'R :
/* Reset MSP430 before waiting for <Enter> */
t oDo. Reset = 1;
br eak;

case 'w . case 'W.:
/[* Wait for <Enter> before closing serial port */
t oDo. Wi t = 1;
br eak;

defaul t:
printf("ERROR Illegal action specified!\n");

} /* switch */

YoI* for (j) */
break; /* '+ */

def aul t:

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 49

{'f TEXAS
SLAA096B INSTRUMENTS

printf("ERROR Illegal conmmand |ine parameter!\n”);
} /* switch argv[i][0] */
Yy /* for (i) */
if (stricnp(”"-h", argv[i]) == 0)

showHel p(); /* Show hel p screen and */

return(l); /* exit program */
}
el se
{
filename= argv[i];
}
}
el se
{
printf(”ERROR Filenane required!\n");
printf(”Use —h to get help!\n”);
return(l);
}
/*

* Communi cati on with Bootstrap Loader

*

*/
/* Open COW port (Change COM-port name to your needs!): */
if (comnit(conPortName, DEFAULT TIMEQUT, 4) != 0)
{

printf(”ERROR Opening COMPort failed!'\n");
return(l);

}

bsl Reset (1); /* Invoke the boot |oader. */

#i f def NEW BSL
if ((newBSLFile == NULL) || (passwdFile == NULL))

{
/* If a password file is specified the "new bootstrap | oader can be
| oaded
* (if also specified) before the mass erase is perfornmed. Than the mass
* erase can be done using the "new BSL. O herwi se the mass erase is done
* now
*/
#endi f /* NEWBSL */
if (toDo.MassErase)
{ . .
int i;
/* Erase the flash nenory conpletely (with nmass erase conmand): */
printf(”Mass Erase...\n");
for (i=0; i < nmeraseCycles; i++)
{
if (i == 1)
{

}

printf(”Additional Mass Erase Cycles...\n");

50 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{f’ TEXAS

INSTRUMENTS SLAA096B

if ((error= bsl TxRx(BSL_MERAS, /* Commrand: Mass Erase */
Oxf f 00, /* Any address within flash nmenmory. */
0xab06, /* Required setting for nmass erasel */
NULL, bl kin)) != ERR _NONE)

{

return(si gnOf(error, FALSE));
}

}
passwdFi | e= NULL; /* No password file required! */

}
#i f def NEW BSL
} /* if ((newBSLFile == NULL) || (passwdFile == NULL)) */
#endi f /* NEWBSL */
/* Transmt password to get access to protected BSL functions. */
if ((error= txPasswd(passwdFile)) != ERR NONE)

{
return(signOf(error, TRUE)); /* Password was transmnitted! */

}

/* Read actual bootstrap | oader version. */

if ((error= bsl TXRx(BSL_RXBLK, /* Conmmand: Read/ Receive Bl ock */
0xO0f f a, [* Start address */
2, /* No. of bytes to read */
NULL, blkin)) == ERR _NONE)

{

BYTE bsl Ver Lo;

BYTE bsl Ver Hi ;

mencpy(&bsl VerH, &blkin[0], 1);

mencpy(&sl VerLo, &blkin[1], 1);

printf(”Current bootstrap | oader version: 9%. %\n”, bslVerH, bslVerLo);

bsl Ver= (bsl VerH << 8) | bsl VerlLo;
if (bslVer <= 0x0110)

{
#i f def WORKAROUND
#i f def NEW BSL
if (newBSLFile == NULL)
{
#endi f /* NEWDBSL */
printf(”Patch for flash progranm ng required!\n”);
pat chRequi r ed= TRUE;
#i f def NEW BSL
}

#endi f /* NEWBSL */

#endi f /* WORKAROUND */
BSLMemAccessWar ni ng= 1;

}

el se

{

BSLMemAccessWarning= 0; /* Fixed in newer versions of BSL. */

}
}
if (patchRequired || ((newBSLFile != NULL) && (bslVer <= 0x0110)))
{

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 51

{'.f TEXAS

SLAA096B INSTRUMENTS
/* Execute function within bootstrap | oader
* to prepare stack pointer for the follow ng patch.
* This function will lock the protected functions again.
*/
printf(”Load PC with 0x0C22...\n");
if ((error= bsl TxRx(BSL_LOADPC, /* Command: Load PC */
0x0C22, /* Address to load into PC */
0, /* No additional datal */
NULL, blkin)) !'= ERR _NONE)
{
return(signOf(error, FALSE));
}
/* Re—send password to re—gain access to protected functions. */
if ((error= txPasswd(passwdFile)) != ERR NONE)
{
return(signOf(error, TRUE)); /* Password was transmtted! */
}
}

#i f def NEW BSL
if (newBSLFile != NULL)

{

printf(”Load new BSL \"%\” into RAM..\n", newBSLFile);

if ((error= progranill Text(newBSLFile, /* File to program */
ACTI ON_PROGRAM)) ! = ERR_NONE)

{

return(signOf(error, FALSE));

}

printf(”Verify new BSL \"%\"...\n”, newBSLFile);

if ((error= progranill Text(newBSLFile, /* File to verify */
ACTI ON_VERI FY)) != ERR_NONE)

{
return(signOff(error, FALSE));

}

/* Read start vector of bootstrap |oader: */
if ((error= bsl TxRx(BSL_RXBLK, 0x0300, 2, NULL, blkin)) == ERR_NONE)
{

WORD st art addr;

mencpy(&startaddr, &blkin[0], 2);

printf(”Starting new BSL at %...\n”, startaddr);

error= bsl TXRx(BSL_LOADPC, /* Conmmand: Load PC */
startaddr, /* Address to load into PC */
0, /* No additional data! */
NULL, bl kin);
}
if (error !'= ERR _NONE)
{
return(signOf(error, FALSE));
}

/* BSL-Bugs should be fixed within "new BSL: */
BSLMemAccessWar ni ng= O;
pat chRequi r ed= FALSE;

52 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

pat chLoaded = FALSE;

/* Re-send password to re—gain access to protected functions. */
if ((error= txPasswd(passwdFile)) != ERR NONE)

{
}

}
#endi f/* NEWBSL */
#i f def WORKAROUND
i f (patchRequired)
{

return(signOf(error, TRUE)); /* Password was transmitted! */

printf(”Load and verify patch \"%\”...\n", patchFile);
/* Programm ng and verification is done in one pass.
* The patch file is only read and parsed once.
*/
if ((error= progranill Text(patchFile, /* File to program */
ACTI ON_PROGRAM | ACTI ON_VERI FY)) != ERR NONE)

{
return(signOff(error, FALSE));

}
pat chLoaded= TRUE;

}
#endi f /* WORKAROUND */
#i f def NEW BSL
if ((newBSLFile != NULL) && (passwdFile != NULL) && toDo. MassErase)
{
/* Erase the flash menory conpletely (with nass erase conmand): */
printf(”Mass Erase...\n”);

if ((error= bsl TxRx(BSL_MERAS, /* Command: Mass Erase */
oxf f 00, /* Any address within flash nenory. */
0xa506, /* Required setting for nmass erase! */
NULL, blkin)) !'= ERR_NONE)
{
return(signOf(error, FALSE));
}

passwdFi | e= NULL; /* No password file required! */

}
#endi f /* NEW BSL*/
if (!'toDo. OnePass)

{
i f (toDo. EraseCheck)

{

[* Parse file in TXT-Format and
* check the erasure of required flash cells.

*/
printf(”Erase Check by file \"%\"...\n", filenane);
if ((error= progranTl Text (fil enanme, ACTI ON_ERASE CHECK)) != ERR _NONE)
{
return(signOff(error, FALSE));
}

}

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 53

{'.f TEXAS

SLAA096B INSTRUMENTS
if (toDo.Program
{
/* Parse file in TXT-Format and programdata into flash menory. */
printf("Program\”"%\”...\n", filenane);
if ((error= progranill Text (fil enane, ACTI ON_PROGRAM) != ERR_NONE)
{
return(signOif(error, FALSE));
}
el se
{
printf(”"% bytes progranmed.\n”, byteCr);
}
}
if (toDo. Verify)
{
/* Verify progranmmed data: */
printf(”Verify \"%\”...\n", filenane);
if ((error= progranill Text (fil ename, ACTI ON_VERI FY)) != ERR NONE)
{
return(si gnOff(error, FALSE));
}
}
}
el se
{
unsi gned action= O;
i f (toDo. EraseCheck)
{
action | = ACTI ON_ERASE_CHECK; printf(”EraseCheck ");
}
i f (toDo.Progranm
{
action | = ACTI ON_PROGRAM printf(”Program™”);
}
if (toDo. Verify)
{
action | = ACTI ON_VERI FY; printf(”Verify ");
}
if (action !'= 0)
{
printf("\"%\” ...\n", filenane);
error= progranil Text (fil enane, action);
if (error !'= ERR _NONE)
{
return(signOf(error, FALSE));
}
el se
{
printf(”% bytes progranmed.\n”, byteCr);
}
}
}

54 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS

SLAA096B

A7

}
/*

TXT File for Bootstrap Loader Patch—patch.txt

ECF */

@220

31
0B
75
06
10
76
08
00
16
17
10
13
30

q

40
02
90
3C
A5
0D
02
A5
53
83
OF
02
41

1A
75
16
BO
2C
30
14
2C
17
FC
D2
38

02
90
00
12
01
40
24
01
83
23
42
E3

09
12
16
94
B2
AC
BO
B2
EF
BO
06
18

43
00
24
OE
40
oC
12
40
23
12
02
92

BO
1F
75
03
00
16
10
40
BO
BA
12
12

12
24
90
3C
A5
42
OF
A5
12
02
02
02

2A
BO
14
21
28
OE
36
28
BA
Do
BO
BF

OE
12
00
53
01
02
90
01
02
3F
12
23

BO
BA
11
BO
30
17
00
D6
D3
18
10
E2

return(signOf(ERR_NONE, FALSE));

12
02
24
12
40
42
10
42
3F
42
OF
B3

BA
55
BO
8C
42
10
06
06
BO
12
D2
08

oD
42
12
OE
oC
02
28
02
12
02
42
02

55
0B
84
B2
30
E2
B2
00
10
BO
06
BC

42
02
OE
40
40
B2
40
00
OF
12
02
23

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 55

{'f TEXAS
SLAA096B INSTRUMENTS

Appendix B PCB Layout Suggestion

Figure B-1. Universal BSL Interface PCB Layout—Top

Figure B—2. Universal BSL Interface PCB Layout—Bottom

56 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS

SLAA096B

IC3

R4
RS
Res

(|

RS

(|

R”

60,00 mm

—

D — 3,5 mm

Figure B-3. Universal BSL Interface Component Placement

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 57

b TEXAS

SLAA096B lNSTRUMENTS
I FO9HP284 l
oR
0N e e 3
O toare | 58 GH 680K
” " |
330K
2 29F 6 @ . 680K
TDS76@3®:| — '8 | c
| BAUZB BHU7@ 580K =
allll -
33gf tev ., Q| ° =g g.
s N
Eleﬁwa FITTI " ©
-
E@
334F 16U o
o
[(§ | 100nF H
100K 1 74AHC14
‘may
O mm wm X
O)
11138
O 2
ek
A
ML1OL
¢«—— 3,5mm
Figure B—4. Universal BSL Interface Component Placement
58 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS

SLAA096B

Appendix C Demonstration Program Usage

The bootstrap loader demonstration program has a simple command-line interface. The only
parameter required is the name of the Tl TXT file to program. All other parameters are optional
and must be entered before of the TI TXT file name. The TI TXT file name must be the last

parameter.

Table C-1 shows the command-line parameters available.

Table C-1. Command-Line Parameters

PARAMETER DESCRIPTION EXAMPLE
-h Shows help screen -h
—c{COM-port name} | Specifies the COM port to be used (default: COM1) —-cCOM2

—p{TI TXT-file name}

Specifies a TI TXT file containing the actual password to access the bootstrap loader.

—pint_vect.txt

-w The program will wait after successful programming and reset for the <ENTER> key. The application | -w
can run powered via the serial port.
-1 Do erase-check, programming, and verification in one pass (the Tl TXT file is read and parsed only | -1
once). This option is discouraged with the first version(s) of the bootstrap loader that require the work-
around patch.
—a{Tl TXT-file name} | Specifies a Tl TXT file containing a valid patch for the bootstrap loader —apatch.txt
—b{T1 TXT-file name} | Specifies a TI TXT file containing a valid loadable bootstrap loader that is loaded before any further | —bbl_130v.txt
programming takes place and that replaces the original one for programming
—f{num} Specifies the maximum number of data bytes within one transmitted frame —f240
—m{num} Specifies the number of mass erase cycles -m20

In addition to these command-line parameters, a parameter exists that allows control of the pro-
gram flow. For example, it is possible to just verify the contents of the flash memory. This param-
eter is introduced by the + character. The + character is followed by the specification of the steps
to be taken (and only these steps are taken). Table C-2 shows the modifiers available. The
steps are taken in the order of the modifiers within Table C-2.

Table C-2. Program-Flow Modifiers

MODIFIER DESCRIPTION
e Erase complete flash (mass erase)
c Check erasure
p Program given file
Y Verify against given file
r Reset device
w Wait for <ENTER> at the end

NOTE: If the modifier e is omitted the flash is not erased completely and thus it is required to provide a password file using the —p parameter (see
fourth invocation example in Table C-3).

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 59

SLAA096B

{'f TEXAS
INSTRUMENTS

Table C-3 shows some examples of the demonstration program’s invocation.

Table C-3. Invocation Examples

EXAMPLE

DESCRIPTION

bsldemo -h

Shows help screen

bsldemo test.txt

Erase flash, check erasure, program and verify file test.txt, exit

bsldemo -1 —w —cCOM2 test.txt

Same as above, butthe hardware is connected to COM2; erase-check, program, and verify are donein
one pass through file test.txt; the program waits for <ENTER> at the end.

bsldemo +vrw —pint_vect.txt test.txt

Use data within file int_vect.txt as password, verify against file test.txt (no erasure or programming),
reset MSP430, wait for <ENTER> at the end.

bsldemo +rw —pint_vect.txt test.txt

Reset MSP430 and wait for <ENTER> at the end. Password and file name are also required.

bsldemo —bbl_130v.txt +epr test.txt

Load new bootstrap loader bl_130v.txt into RAM and program file test.txt using the new loader (the
verification step is omitted because the loader bl_130v.txt does the verification internally during
programming.) Note: There needs to be enough memory to load the new loader.

NOTE: If the downloaded bootstrap loader BI_130v.txt is used or the connected device has a bootstrap loader version 1.40 and higher, the
verification step can be omitted because these loaders perform the verification during programming (see last invocation example in

Table C-3).

60 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{f’ TEXAS

INSTRUMENTS SLAAQ096B

Appendix D Errata

This appendix summarizes errata in former revisions of the Application of Bootstrap Loader in
MSP430 application note.

Errata SLAAO96A:

Appendix D: Universal Bootstrap Loader Interface Board: Operational amplifier IC2 must be
replaced with TLO62D or equivalent type.

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 61

{'f TEXAS
SLAA096B INSTRUMENTS

62 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

{9 TEXAS
INSTRUMENTS SLAAQ096B

Appendix E Third-Party Support

Gessler Electronic GmbH (Germany) offers a complete kit with bootstrap loader interface
hardware and software: MSP430 Flash Programming Tool Kit. This information can be found by
accessing the following url: http://www.gessler—electronic.de/msp430/

Gessler Electronic GmbH

Tel.: [+49]-9073-2509

Fax: [+49]-9073-3737

E-mail: info@gessler—electronic.de

Web site: www.gessler—electronic.de

Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal 63

{'f TEXAS
SLAA096B INSTRUMENTS

64 Application of Bootstrap Loader in MSP430 With Flash Hardware and Software Proposal

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI's publication of information regarding any third party’s products
or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and Tl is not responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and Tl is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 0 2001, Texas Instruments Incorporated

