Реклама на сайте English version  DatasheetsDatasheets

KAZUS.RU - Электронный портал. Принципиальные схемы, Datasheets, Форум по электронике

Новости электроники Новости Литература, электронные книги Литература Документация, даташиты Документация Поиск даташитов (datasheets)Поиск PDF
  От производителей
Новости поставщиков
В мире электроники

  Сборник статей
Электронные книги
FAQ по электронике

  Datasheets
Поиск SMD
Он-лайн справочник

Принципиальные схемы Схемы Каталоги программ, сайтов Каталоги Общение, форум Общение Ваш аккаунтАккаунт
  Каталог схем
Избранные схемы
FAQ по электронике
  Программы
Каталог сайтов
Производители электроники
  Форумы по электронике
Удаленная работа
Помощь проекту

Схема садового фонарика

Когда-то с подачи друзей я приобрел садовый аккумуляторный фонарик, имеющий форму грибка и обладающий, как тогда показалось, необыкновенными свойствами: днем он заряжался от солнечной батареи, встроенной в крышку, а ночью светил из-под крышки неярким зеленоватым светом. Работать он должен был автономно и совершенно автоматически. Также была тайная мысль — нельзя ли использовать его и в других полезных целях, например, для питания радиоприемника.

Однако выводов от встроенной аккумуляторной батареи не оказалось, найден был только выключатель лампочки, спрятанный под нижней крышкой шляпки грибка. Применения по своему основному назначению фонарик тоже не нашел, так и пролежал на полке, пока его аккумулятор не разрядился совершенно сам по себе. Теперь настало время развинтить фонарь, благо разбирается он легко и просто с помощью одной крестовой отвертки, и посмотреть, как же все-таки он устроен!

Монтаж этого прибора китайской сборки оказался предельно упрощен, провода отваливались после двух изгибов, узлы были закреплены каплями термоклея или отламывающимися пластмассовыми выступами — все указывало на то, что передо мной одноразовая игрушка. Расскажу лишь о самой схеме и конструкции, в расчете на ее возможное самостоятельное повторение читателями и использование заложенных там решений в других устройствах.

Лампочку в фонаре заменял светодиод небольшой мощности, бело-зеленого свечения. Аккумуляторной батареи тоже не было — под шляпкой грибка обнаружился всего один элемент размера АА емкостью 800 мА/час, хотя место было предусмотрено под два элемента (экономия, однако!). Не густо, и шансы на использование фонарика источником питания для какого бы то ни было устройства резко упали, ведь номинальное напряжение щелочного аккумуляторного элемента — всего 1,2 В.

Сразу же возник вопрос: а как же может гореть светодиод при таком питании, ведь напряжение зажигания самых распространенных красных светодиодов — около 1,8 В, а зеленых и белых еще больше — до 3 В? Значит, на маленькой печатной плате (25×30 мм), содержащей три транзистора и не более десятка других деталей, был собран еще и повышающий инвертор!

Прежде чем браться за тяжкий труд по восстановлению принципиальной схемы, срисовывая ее с печатной платы, захотелось исследовать возможности самого главного и ценного элемента конструкции — солнечной панели. Ее размеры около 70×70 мм, а сквозь защитное стекло ясно видны 7 параллельных полосок шириной около сантиметра — 7 элементов панели.

Как известно, кремниевые солнечные элементы при их освещении развивают ЭДС порядка 0,5… 0,6 В, поэтому следовало ожидать ЭДС батареи из семи элементов около 4 В. Так и оказалось — в тени и при облачном небе панель развивала 3,5 В, а на ярком солнце — 4,5 В.

Соединенная с одним аккумуляторным элементом, такая панель работает в режиме почти короткого замыкания. Это не страшно, поскольку внутреннее сопротивление панели значительно, и ток короткого замыкания не превышает 60 мА даже при ярком солнечном свете. Но КПД заряда невелик, и для полной зарядки аккумуляторного элемента нужно как минимум два солнечных летних дня (20…40 часов). Никаких устройств, предохраняющих элемент от перезарядки при выключенном светодиоде, обнаружено не было.

Другой важный элемент устройства — датчик освещенности, собственно и позволяющий фонарику включаться в темное время суток и выключаться днем. Это фоторезистор, оформленный в плоском цилиндрическом корпусе с двумя выводами, размерами не больше транзистора. Его отдельное исследование показало, что темновое сопротивление превосходит 2 МОм, а на свету резко уменьшается — в тени до 10…20 кОм, а при ярком солнечном свете даже до сотен Ом.

Обратимся теперь к принципиальной схеме садового фонарика (рис. 1). Солнечная панель SP постоянно соединена с аккумуляторным элементом ВАТ через диод D1 (обозначения элементов сохранены такими же, как на печатной плате, имеющей название SY-H019B). Диод пропускает только зарядный ток от панели к аккумулятору и предотвращает его разряд через внутреннее сопротивление панели в темноте. Установка такого защитного диода обязательна в любых устройствах с солнечными панелями.

На транзисторе Q1 собран ключ, срабатывающий в зависимости от степени освещенности датчика PR. В темноте транзистор открыт током смещения, протекающим от источника питания через резистор R1. На свету датчик замыкает этот ток «на себя», напряжение базы становится менее 0,5 В, и транзистор закрывается. Для более четкого срабатывания ключа он охвачен цепью положительной обратной связи через резистор R4 — то, что получилось из транзисторов Q1 и Q2, иногда называют триггером Шмитта. Он имеет некоторый гистерезис, и включение садового фонарика происходит при меньшей освещенности, чем его выключение.

Транзисторы Q2 и Q3 образуют повышающий инвертор. Маленькое отступление: поначалу у меня возникала мысль, что, может быть, нехорошо срисовывать чужие схемы готовых устройств (авторские права и пр.), хотя в целях самообразования это никогда и нигде не возбранялось. Однако, когда я увидел, что схема инвертора практически не отличалась от той, которую когда-то я сам разработал для светодиодов и опубликовал в «Юном технике» (статьи «Сверхэкономичные индикаторы» и «Солнечная энергетика»), совесть моя совершенно успокоилась.

Это лишнее подтверждение того, что оптимальные технические решения одинаковы и в Малайзии, и в Китае, и в России.

Итак, транзисторы Q2 и Q3 включены последовательно, один за другим, по схеме двухкаскадного усилителя. Усилитель охвачен цепью положительной обратной связи через емкостной делитель C1, С2 и поэтому превращается в релаксационный генератор импульсов. Нагрузкой транзистора Q3 служит катушка индуктивности L1, запасающая энергию во время открытого состояния транзисторов Q2 и Q3. Но это состояние не может продолжаться долго, поскольку ток через L1 нарастает, ее ферритовый сердечник входит в насыщение, индуктивность уменьшается, а напряжение на коллекторе Q3 повышается. Это повышение немедленно передается через конденсатор С2 на базу Q2 и запирает его. Вслед за ним запирается Q3, и импульс тока через транзисторы прекращается.

Но ток через катушку индуктивности L1 не может прекратиться мгновенно. Он продолжает идти и формирует на коллекторе Q3 положительный выброс напряжения, который может во много раз превосходить напряжение питания. Но у нас он просто открывает светодиод LED, и энергия, запасенная в катушке, превращается в световую. Пауза между импульсами продолжается до тех пор, пока не израсходуется энергия магнитного поля катушки и затем не разрядятся конденсаторы C1, С2.

Дальнейшее поведение генератора зависит от состояния Q1. Когда он заперт днем, то смещения на базе Q2 нет, оба транзистора генератора закрыты и импульсы генерироваться не будут. Если же Q1 открыт ночью, то ток смещения поступает на базу Q2 через резистор R3, и генератор будет продолжать генерировать импульсы — светодиод загорится. Для отключения светодиода служит выключатель SW — если он разомкнут, то генерации импульсов нет, и светодиод не горит, поскольку напряжение аккумуляторного элемента меньше его напряжения зажигания.

Кстати говоря, если бы изготовители не экономили, а поставили два аккумуляторных элемента, а также 3-вольтовый белый светодиод, то он все равно бы не горел без генерации импульсов инвертором, поскольку номинальное напряжение батареи было бы 2×1,2=2,4 В. Зато в данной схеме он служил бы хоть каким-то предохранителем от перезаряда аккумуляторов, ограничивая напряжение на каждом элементе на уровне 1,5 В, то есть загораясь при этом напряжении даже на свету.

В заключение несколько практических советов для желающих повторить эту конструкцию. Для нее вполне подойдут отечественные транзисторы КТ315 и КТ361 с любыми буквенными индексами. Диод D1 может быть любым, с предельным током 40…60 мА. Марка датчика — фоторезистора неизвестна, но наверняка можно подобрать что-нибудь подходящее из имеющихся, измерив сопротивление на свету и в темноте с помощью тестера. Катушка L1 миниатюрная, по виду напоминающая резистор, индуктивность ее также неизвестна, но полагаю, что нескольких миллигенри будет достаточно. Можно намотать 100…150 витков на ферритовом колечке или использовать одну из обмоток малогабаритного трансформатора. Полезны рекомендации, приведенные в упомянутых выше статьях.

Желаю удачных экспериментов! 

Источник: Юный Техник № 9 2012г.
Автор: В. Поляков


C этой схемой также часто просматривают:

Схема клавиатуры компьютера
Схема десульфатирующего зарядного устройства
МОСТОВАЯ СХЕМА НА TDA2005
Простая схема бипера (NE555)
Схема подключения модема к АВУ
Схема регулятора температуры для паяльника на 36В
Аналоговый блок управления паяльной станции
Схема преобразователя из стерео в псевдо 5.1
Мощная светодиодная лампа

Главные категории

Arduino


Аудио


В Вашу мастерскую


Видео


Для автомобиля


Для дома и быта


Для начинающих


Зарядные устройства


Измерительные приборы


Источники питания


Компьютер


Медицина и здоровье


Микроконтроллеры


Музыкантам


Опасные, но интересные конструкции


Охранные устройства


Программаторы


Радио и связь


Радиоуправление моделями


Световые эффекты


Связь по проводам и не только...


Телевидение


Телефония


Узлы цифровой электроники


Фототехника


Шпионская техника



Реклама на KAZUS.RU




Последние поступления

Автоматизация смывного бачка

Кухонный таймер

Прибор для поиска скрытой проводки на PIC12F629

Фотореле-таймер на микроконтроллере

Термометр на DS18B20

Часы с термометром дом-улица и таймером

Автомат полива для дачи и огорода

Стабилизация мощности тока электродной батареи на микроконтроллере

Ёмкостный измеритель уровня жидкости

Термометр с четырьмя датчиками DS18B20



© 2003—2017 «KAZUS.RU - Электронный портал»